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Abstract

Large Language Models (LLMs) have shown001
impressive performance across numerous tasks002
but often produce hallucinated or inaccurate003
responses, reducing their reliability. Retrieval-004
Augmented Generation (RAG) mitigates this005
issue by incorporating external knowledge into006
the generation process, yet the effectiveness007
of the retrieval depends heavily on the search008
queries and query rewriting techniques are typ-009
ically adopted to improve the retrieval qual-010
ity. However, current rewriting methods rely011
on indirect feedback or costly direct feedback012
with annotated labels, limiting their practicality013
and effectiveness. We introduce DynQR, an014
annotation-free query rewriting framework that015
uses uncertainty from the reader LLM to pro-016
vide direct feedback, effectively bridging the017
gap between the input queries and the needed018
knowledge in retrieval. DynQR follows a three-019
stage approach to train a rewriter that reduces020
uncertainty in the reader’s responses. Addition-021
ally, DynQR employs an active rewriting mech-022
anism and post-verification process to mini-023
mize unnecessary rewriting and avoid potential024
noise. Our experiments on five datasets across025
three QA tasks show that DynQR consistently026
outperforms existing baselines.027

1 Introduction028

Large Language Models (LLMs) (Taylor et al.,029

2022; Chowdhery et al., 2022; Zhao et al., 2023)030

have recently demonstrated exceptional perfor-031

mance across a wide range of downstream tasks032

(Xia et al., 2024; Yamauchi et al., 2023; Imani et al.,033

2023; Lewkowycz et al., 2022). Despite these ad-034

vancements, LLMs frequently produce responses035

containing hallucinated facts or inaccurate infor-036

mation (Ji et al., 2023; Shuster et al., 2021; Zhang037

et al., 2023), which undermines their overall re-038

liability. To address this issue, researchers have039

leveraged Retrieval-Augmented Generation (RAG)040

to integrate external knowledge into the generation041
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Who was awarded the Nobel Prize in 
Literature in the year 2020?

Doc 1: In 2020, the Nobel Prize in 
Literature was awarded to the 
American poet Louise Glück. The 
Nobel committee praised her for her 
'unmistakable poetic voice that …
Doc 2: The Nobel Prize in Literature 
for 2020 went to Louise Glück, 
marking her as the 16th woman to 
receive this prestigious award. Glück's
poetry is known for its emotional …
…
Doc 5: Louise Glück, a prominent 
American poet, was awarded the Nobel 
Prize in Literature in 2020. The 
Swedish Academy highlighted her ...

Rewriter

It was awarded to Louise Glück. ✅

Figure 1: Illustration of Query Rewriting for RAG.

process (Ram et al., 2023; Shi et al., 2023; Rashkin 042

et al., 2021; Gao et al., 2022; Bohnet et al., 2022; 043

Menick et al., 2022). In a typical RAG system, a 044

user’s query is used to retrieve relevant documents 045

from external sources, which are then combined 046

with the model’s internal knowledge to generate 047

more accurate and informative responses. However, 048

the effectiveness of this approach hinges on the 049

quality of the retrieved documents, which in turn 050

depends on the formulation of the initial user query. 051

A major challenge in RAG systems arises from the 052

ambiguity and vagueness of user queries. Users 053

often submit incomplete or overly broad queries, 054

expecting the system to infer their intent. This de- 055

fect in query formulation can lead to suboptimal 056

generation responses, as the system may fail to 057

retrieve the most relevant information. 058

To mitigate this issue, query rewriting has 059

emerged as a promising technique to improve the 060

retrieval process by refining the original query. Ex- 061
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isting studies (Ye et al., 2023; Wang et al., 2023;062

Shen et al., 2023) have leveraged the strong rea-063

soning capabilities of LLMs to expand or rewrite064

queries effectively. To further reduce the inference065

cost associated with these rewriters, researchers066

have employed feedback training (Zheng et al.,067

2023; Wang et al., 2024; Rafailov et al., 2024; Yuan068

et al., 2023) to enhance smaller query rewriting069

models, utilizing both supervised and unsupervised070

methods. For supervised approaches, RRR (Ma071

et al., 2023) uses the feedback regarding whether072

the rewritten query leads the reader LLM to gen-073

erate the correct answer as a reward signal to train074

the rewriter. Similarly, RETPO (Yoon et al., 2024)075

uses the signal of whether the documents retrieved076

by the rewritten query contain the correct answer077

as the reward to guide the training of the rewriter.078

To reduce the dependency on labeled data, the un-079

supervised method RaFe (Mao et al., 2024) pro-080

poses utilizing the relevance between documents081

retrieved by the rewritten query and the original082

query as a reward for training the rewriter model.083

Despite their superior performance, these meth-084

ods suffer from several limitations. Supervised085

approaches rely on manually labeled data, which086

is costly and time-consuming to obtain at scale.087

Unsupervised methods, while more scalable, often088

rely on indirect feedback, such as the relevance089

of retrieved documents, which may not align well090

with the actual needs of the reader LLM. For in-091

stance, while RaFe might generate queries that092

retrieve documents more relevant to the original093

query, these documents do not necessarily provide094

the information the reader LLM truly requires. As095

a result, such indirect feedback can sometimes be096

misleading and lead to suboptimal results. More-097

over, most existing approaches apply query rewrit-098

ing universally, assuming that all queries require099

rewriting. However, we argue that not every query100

benefits from rewriting, as it may introduce addi-101

tional inference costs. Therefore, selectively rewrit-102

ing only those queries that would substantially ben-103

efit from it could strike a better balance between104

performance and computational efficiency.105

Recent studies have highlighted a strong correla-106

tion between the uncertainty of large language mod-107

els and their correctness across various tasks (Ka-108

davath et al., 2022; Jiang et al., 2021; Hua et al.,109

2023; Plaut et al., 2024; Fadeeva et al., 2023; Weller110

et al., 2023). As an unsupervised metric, uncer-111

tainty is derived directly from the model itself,112

reflecting its own assessment of the given input.113

Motivated by this insight, we propose DynQR, an 114

unsupervised query rewriting method that lever- 115

ages direct feedback from the reader LLM with- 116

out requiring hand-crafted labels. Specifically, our 117

approach consists of three stages: Supervised Dis- 118

tillation, Uncertainty-Aware Sampling, and Prefer- 119

ence Alignment. In Supervised Distillation, we 120

construct a query rewriting dataset to train the 121

rewriter model, thereby equipping it with a basic 122

query rewriting capability. In Uncertainty-Aware 123

Sampling, we utilize the trained rewriter model to 124

generate new queries and record the uncertainty of 125

the reader LLM based on the documents retrieved 126

by these queries. In Preference Alignment, we 127

train the rewriter to favor generating queries that 128

result in the reader LLM producing answers with 129

lower uncertainty. The resulting rewriter model 130

can effectively generate queries that retrieve high- 131

quality documents, enabling the reader LLM to 132

produce more accurate answers with lower uncer- 133

tainty. During inference, we introduce an active 134

rewriting mechanism that selectively triggers query 135

rewriting only when the LLM exhibits high un- 136

certainty in its initial response. Additionally, we 137

implement a post-verification step that compares 138

the uncertainties of the answers generated from the 139

original and rewritten queries, ensuring that the fi- 140

nal response is based on the query that results in 141

lower uncertainty. 142

To summarize, our contributions can be summa- 143

rized as follows: 144

• We propose an unsupervised query rewriting 145

method, DynQR, which directly leverages 146

uncertainty-based feedback from the reader 147

LLM, eliminating the need for labeled data 148

from downstream tasks. 149

• DynQR introduces an active rewriting mecha- 150

nism to minimize query costs and incorporates 151

a post-verification mechanism to avoid poten- 152

tial noise from unnecessary query rewriting. 153

• We conduct extensive experiments on five 154

datasets across three knowledge-intensive 155

tasks, verifying the effectiveness of DynQR. 156

2 Methodology 157

2.1 Preliminary 158

In Retrieval Augmented Generation (RAG), given 159

an original query q, a retriever is first used 160

to retrieve a set of similar documents D = 161
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Figure 2: The illustration of DynQR. 1) Supervised Distillation: The rewriter learns basic rewriting skills. 2)
Uncertainty-Aware Sampling: The rewriter generates multiple rewrites for each query, which are used to retrieve
relevant documents. The uncertainty of the reader LLM’s answers is recorded. 3) Preference Alignment: The
rewriter is trained to generate queries that lead the reader LLM to produce answers with lower uncertainty. During
inference, query rewriting is triggered only when the LLM exhibits high uncertainty in its initial response. The final
answer is selected based on the query that results in lower uncertainty.

{d0, d1, . . . , dm}. A reader LLM then answers162

the query based on these retrieved documents.163

The goal of query rewriting is to develop a bet-164

ter rewriter model Mθ, which rewrites the original165

query q into a refined query r:166

r = Mθ(q), (1)167

where r represents the rewritten query, which will168

be used to retrieve relevant documents for aug-169

mented generation.170

2.2 DynQR Framework171

As illustrated in Figure 2, DynQR consists of three172

stages: Supervised Distillation, Uncertainty-Aware173

Sampling, and Preference Alignment. In the Su-174

pervised Distillation stage, the rewriter is trained175

to develop basic query rewriting capabilities. Dur-176

ing Uncertainty-Aware Sampling, the rewriter gen-177

erates multiple rewrites for each query, and the178

reader LLM uses the retrieved documents to gen-179

erate answers, with the uncertainty of each answer180

recorded. Finally, in the Preference Alignment181

stage, preference pairs are constructed by labeling 182

rewrites that result in lower uncertainty as posi- 183

tive samples, and those with higher uncertainty as 184

negative samples. 185

Supervised Distillation In the first stage, a large 186

language model is used as a data labeler to rewrite 187

queries in the training set, constructing a dataset for 188

rewriter training. The rewriter model is then trained 189

on this dataset to acquire the basic capability to 190

generate effective rewrites for given queries. 191

Uncertainty-Aware Sampling Given a query, its 192

rewrites R = {r1, r2, ...rn}, the corresponding 193

document set will be retrieved using each rewrite: 194

Di = Retrieve(ri) (2) 195

These retrieved documents Di are then combined 196

with the original query to generate an answer us- 197

ing the reader LLM. We employ an uncertainty 198

estimator U(·) to evaluate the uncertainty of each 199

generated response: 200

si = U(q,Di, LLM), (3) 201
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where si represents the uncertainty of the genera-202

tion using documents retrieved from rewrite ri. The203

uncertainty score provides a quantitative measure204

of the model’s confidence in its generated answer,205

reflecting how well the retrieved information aligns206

with the query’s intent. Consequently, it serves207

as a direct indicator of the quality of the rewritten208

queries—where lower uncertainty generally indi-209

cates more relevant retrieval and a more effective210

rewriting process.211

Preference Alignment For a given query and212

its set of rewrites R = {r1, r2, . . . , rn}, we enu-213

merate all possible combinations ⟨ri, rj⟩, where214

the uncertainty score of ri is lower than that of215

rj . We then select the three combinations with216

the largest uncertainty differences between ri and217

rj . These pairs are used to construct preference218

triplets ⟨q, ri, rj⟩, which are utilized to train the219

rewriter model using Direct Preference Optimiza-220

tion (Rafailov et al., 2024).221

Active Rewriting Existing query rewriting ap-222

proaches often assume that rewriting should be ap-223

plied universally to all queries. However, we argue224

this may not always be necessary. In many cases,225

the documents retrieved by the original query al-226

ready contain sufficient information for the reader227

LLM to generate an accurate response. Addition-228

ally, applying query rewriting to every query intro-229

duces unnecessary inference costs for the RAG sys-230

tem. To address this, we propose an active rewriting231

mechanism. In our approach, the reader LLM first232

attempts to generate an answer using documents233

retrieved by the original query. If the uncertainty234

of the generated answer falls below a predefined235

threshold θ, indicating high confidence, the answer236

is directly used as the final response. If the uncer-237

tainty exceeds the threshold—indicating a higher238

potential for hallucination—the query rewriter is239

activated to refine the original query. The reader240

LLM then generates a revised answer using docu-241

ments retrieved from this rewritten query.242

Post Verification To ensure that query rewriting243

enhances the final response without introducing244

additional noise, we implement a post-verification245

process. Specifically, we compare the uncertainties246

of the answers generated using documents retrieved247

from both the original and rewritten queries. The248

answer with the lower uncertainty score is selected249

as the final output, ensuring that the response with250

higher confidence is used, while avoiding potential251

noise introduced by unsuccessful rewritings. 252

3 Experiment Setup 253

3.1 Datasets and Metrics 254

Datasets We conduct experiments on five 255

datasets across three knowledge-intensive 256

tasks: (1) Open-domain QA, including NQ 257

dataset (Kwiatkowski et al., 2019), Trivi- 258

aQA dataset (Joshi et al., 2017) and PopQA 259

dataset (Mallen et al., 2022); (2) Multi-hop QA, 260

including 2WikiMultiHopQA dataset (Ho et al., 261

2020). (3) Ambiguous QA, including ASQA 262

dataset (Stelmakh et al., 2022). 263

Metrics We evaluate performance using two key 264

metrics: Exact Match (EM) and F1 Score. A pre- 265

dicted answer is considered correct under the EM 266

metric if its normalized form exactly matches any 267

of the normalized versions of the reference answers 268

in the answer list. The F1 score, on the other 269

hand, measures the word-level overlap between 270

the normalized predicted answer and the reference 271

answers in the provided answer list. 272

3.2 Baselines 273

We compare our methods with the following base- 274

lines: 275

• Direct: Directly answer the question without 276

retrieving any external documents. 277

• OriQR: Use the original query to retrieve doc- 278

uments and then answer the question. 279

• LLMQR: Use GPT-3.5-Turbo to rewrite the 280

query, then retrieve relevant documents. 281

• RRR (Ma et al., 2023): Utilize the down- 282

stream task answers as supervision signals. 283

• RETPO (Yoon et al., 2024): Utilize the re- 284

trieval results as supervision signals. 285

• RaFe (Mao et al., 2024): Utilize the relevance 286

results as supervision signals. 287

To ensure a fair comparison, we replace the reward 288

signals in our framework with those used by these 289

methods and evaluate their performance. 290

Following Mao et al. (2024), we compare our 291

method’s performance with the baselines in the 292

following two settings: 293

• SUBSTITUTE: Use the documents retrieved 294

by the rewritten query to answer the question. 295
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Methods NQ TriviaQA ASQA 2WikiMQA PopQA Avg.

EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

Direct 30.90 38.45 59.90 65.91 36.31 45.90 25.70 29.57 25.50 27.75 35.66 41.51
OriQR 40.20 49.04 62.00 67.31 47.71 56.60 24.00 27.53 27.10 28.88 40.20 45.87

SUBSTITUTE

LLMQR 40.50 48.94 62.42 68.37 48.83 56.96 25.83 29.51 28.10 29.44 41.14 46.64
RetPO 41.00 49.58 61.90 68.23 48.60 56.74 25.30 28.77 29.20 30.87 41.20 46.84
RRR 40.70 49.57 62.50 68.50 48.94 56.74 25.50 28.74 28.90 30.66 41.31 46.84
RaFe 40.30 48.32 61.90 68.08 47.82 56.07 25.70 29.36 29.20 31.04 40.98 46.57
DynQR 42.10 49.94 63.30 68.67 50.50 58.86 26.20 29.77 29.60 31.23 42.34 47.69

EXPAND

LLMQR 40.44 49.32 61.96 67.77 47.71 56.29 24.42 27.98 28.90 30.72 40.69 46.42
RetPO 41.30 49.72 62.20 67.93 48.60 56.88 23.90 27.60 29.40 31.14 41.08 46.65
RRR 40.70 49.29 62.40 68.22 47.82 56.49 24.50 27.80 29.10 30.52 40.90 46.46
RaFe 39.90 48.40 61.80 67.86 49.05 57.35 24.80 28.41 29.30 30.82 40.97 46.57
DynQR 41.80 50.19 62.70 68.23 50.50 58.77 25.10 28.74 29.60 31.67 41.94 47.52

Table 1: Performance comparison on five QA datasets under both the Substitute and Expand settings.

• EXPAND: Use documents from both the origi-296

nal and rewritten query, applying a circulating297

mechanism to iteratively gather documents298

until the desired number is reached.299

3.3 Implementation Details300

In our experiment, the rewriter model is initial-301

ized with the Llama-2-7B1. We employ Llama-2-302

7B, Meta-Llama-3-8B2, and Llama-2-13B3 as the303

reader LLMs. We use GPT-4-Turbo as the data304

labeler in the supervised distillation stage. We use305

Wikipedia dump from Jan. 27, 2020 as our retrieval306

corpus and use DPR (Karpukhin et al., 2020) as307

our dense retriever. For each query, we retrieve the308

top-5 most similar documents from the corpus. For309

more details, please refer to Appendix B.310

4 Experimental Results311

4.1 Main Results312

In this section, we present the results of experi-313

ments conducted on five QA datasets under both314

the Substitute and Expand settings, using Meta-315

Llama-3-8B as the reader. Based on the results in316

Table 1, several key observations can be made:317

First, our method achieves the best performance318

across all datasets in both the Substitute and Ex-319

pand settings. This is primarily because our query320

rewriter effectively caters to the reader’s informa-321

tion needs by retrieving documents that signifi-322

1
https://huggingface.co/meta-llama/Llama-2-7b-hf

2
https://huggingface.co/meta-llama/Meta-Llama-3-8B

3
https://huggingface.co/meta-llama/Llama-2-13b-hf

cantly reduce the reader’s uncertainty. Furthermore, 323

the post-verification and active rewriting mecha- 324

nisms help minimize noise from potentially subop- 325

timal rewrites, thus improving the robustness of the 326

query rewriting process. 327

Second, between the two settings, our method 328

shows more substantial improvement in the Sub- 329

stitute setting. This is mainly because, in the Sub- 330

stitute setting, all retrieved documents originate 331

from the rewritten query, whereas in the Expand 332

setting, documents come from both the original and 333

rewritten queries. As a result, when the method is 334

particularly effective, the Substitute setting yields 335

greater improvements, further confirming the effec- 336

tiveness of our approach. 337

Third, among the baselines, RETPO performs 338

relatively well due to its effective use of ques- 339

tion answers as supervision. Although RRR also 340

leverages question answers, its labels are highly 341

sparse due to the rigorous requirements of the Exact 342

Match metric. This sparsity minimizes the distinc- 343

tion between nearly correct answers and incorrect 344

ones, resulting in weaker performance. In contrast, 345

our method utilizes uncertainty metrics to evaluate 346

the quality of rewritten queries, capturing subtle 347

differences between query qualities and enriching 348

the supervisory signals. 349

4.2 Ablation Study 350

In this section, we assess the impact of each com- 351

ponent of our model by gradually removing them 352

one at a time. Specifically, we conduct experiments 353
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Methods EM F1

DynQR 50.50 58.77
-w/o Post Verification 50.28 58.50
-w/o Active Rewriting 49.39 57.38
-w/o Preference Alignment 48.38 56.94

Table 2: Ablation Study. We experiment by gradually
removing all components on the ASQA dataset using
the EXPAND setting.

NQ ASQA 2WikiMQA

θ EM Freq EM Freq EM Freq

1.0 41.60 1.00 49.83 1.00 26.80 1.00
1.1 41.80 0.98 49.94 0.99 26.90 0.99
1.2 41.90 0.87 49.83 0.88 26.70 0.88
1.3 41.80 0.75 49.72 0.72 26.40 0.68
1.4 41.60 0.63 49.50 0.58 26.20 0.54

Table 3: Performance with different rewriting threshold.

on the NQ dataset under both rewriting settings.354

As shown in Table 2, removing any compo-355

nent results in performance degradation, confirm-356

ing the significance of each part. Notably, remov-357

ing Preference Alignment causes the largest drop358

in performance. This is because preference align-359

ment guides the rewriter to generate queries that360

better meet the reader’s information needs by re-361

trieving documents that significantly reduce the362

reader’s uncertainty. Without preference align-363

ment, the rewriter generates semantically simi-364

lar queries without targeted optimization, leading365

to inferior results. Additionally, both the Post-366

Verification and Active Rewriting mechanisms con-367

tribute to improved robustness by mitigating subop-368

timal rewrites that could introduce noise, thereby369

enhancing overall performance.370

4.3 Hyper-parameter Study371

In DynQR, we use a predefined hyperparameter to372

determine whether to activate the query rewriter. In373

this section, we analyze the impact of the thresh-374

old value p on model performance. Specifically,375

we tune the threshold on the NQ, ASQA, and376

2WikiMQA datasets, with the corresponding re-377

sults presented in Table 3.378

The results indicate that as the threshold de-379

creases, the frequency of query rewriting increases,380

leading to higher inference costs. However, per-381

formance does not consistently improve with in-382

creased rewriting frequency; instead, it initially383

Methods TriviaQA ASQA PopQA

EM F1 EM F1 EM F1

LLAMA-2-7B

Direct 52.16 60.03 32.74 42.69 20.04 22.26
OriQR 56.30 63.97 44.67 54.69 29.20 30.50
LLMQR 57.76 65.27 45.25 54.28 29.70 30.84
RetPO 58.30 66.06 46.70 55.59 31.00 32.28
RRR 57.80 65.22 46.70 54.75 27.90 29.21
RaFe 57.80 65.79 47.71 56.47 31.50 32.78
DynQR 58.60 66.19 48.38 57.91 31.60 32.84

LLAMA-2-13B

Direct 60.10 66.70 37.99 48.26 18.80 22.31
OriQR 61.40 68.91 49.50 58.78 29.00 30.06
LLMQR 61.92 69.21 48.94 58.52 28.00 29.13
RetPO 62.30 70.01 50.95 59.71 31.90 33.35
RRR 62.50 69.62 52.18 60.49 29.30 30.65
RaFe 62.50 69.95 50.39 58.90 30.20 31.65
DynQR 62.90 70.60 53.07 61.53 32.60 34.05

Table 4: Result comparison using readers of different
parameter sizes under the Substitute setting.

improves and then declines. This behavior can be 384

attributed to the fact that, with a low threshold, 385

the model tends to rewrite queries that are already 386

effective in retrieving the necessary information, re- 387

sulting in redundant rewritings. Conversely, when 388

the threshold is set too high, queries that would 389

benefit from rewriting remain unchanged, leading 390

to suboptimal performance. 391

4.4 Analysis 392

Generalization Ability In this section, we eval- 393

uate the generalization ability of our methods by 394

conducting experiments using readers of varying 395

parameter sizes. Specifically, we use Llama-2-7B 396

and Llama-2-13B as the reader LLMs. 397

As shown in Table 4, switching from Llama- 398

2-7B to Llama-2-13B generally results in perfor- 399

mance improvements across all methods, attributed 400

to the enhanced reasoning ability of the larger 401

reader model. Importantly, our method consistently 402

achieves the best performance across all datasets, 403

regardless of the reader LLMs used, demonstrat- 404

ing its strong generalization capability. Notably, 405

achieving performance gains with more advanced 406

readers is typically challenging due to their al- 407

ready strong baseline performance. However, our 408

method maintains comparable improvements even 409

with Llama-2-13B. We attribute this to the fact that 410

as the parameter size of the readers increases, the 411

uncertainty metrics provide a more accurate reflec- 412

tion of the answer quality, as also noted by Chen 413

et al. (2024). As a result, the preference alignment 414
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(a) On Meta-Llama-3-8B (b) On Llama-2-13B

Figure 3: Uncertainty reliability study, where “Correct”
means uncertainty decreases with the ground truth doc-
ument, and “Wrong” means the opposite.

labels become more precise, leading to a more ef-415

fective query rewriter.416

Uncertainty Reliability In DynQR, we utilize417

the uncertainty of answers to represent the quality418

of the queries, under the assumption that answers419

with low uncertainty indicate that the retrieved doc-420

uments likely contain the information needed to421

answer the question. In this section, we verify this422

assumption by examining how the uncertainty of423

answers changes when the quality of the retrieved424

documents is improved. Specifically, we randomly425

replace one document in the retrieved documents426

with a ground truth document that contains the cor-427

rect answer, and then prompt the reader LLM to428

answer the question. We compare the uncertainty429

of the answers before and after the inclusion of the430

ground truth document and record the percentage431

of cases where the uncertainty decreases.432

As shown in Figure 3, after adding the ground433

truth document, the uncertainty of the answers de-434

creases in most cases. This indicates that improv-435

ing the quality of the retrieved documents can in-436

deed lead to a reduction in the reader’s uncertainty.437

This finding verifies that by comparing the uncer-438

tainties of two answers, we can accurately assess439

the quality of the documents, and by extension,440

the quality of the queries used to retrieve them.441

Moreover, we observe that the decrease in uncer-442

tainty is more pronounced with Meta-Llama-3-8B.443

This is likely because stronger LLMs can better444

reflect the quality of the documents through their445

uncertainty measures, a phenomenon also observed446

in Chen et al. (2024). Therefore, we believe that447

the uncertainty-based labeling method can achieve448

even better performance with LLMs that possess449

stronger reasoning abilities.450

Uncertainty Categories In this section, we451

explore various metrics for estimating LLM452

uncertainty. Perplexity estimates uncertainty453

Metrics TriviaQA ASQA PopQA

EM F1 EM F1 EM F1

Perplexity 58.40 66.01 46.70 54.72 28.90 30.32
LN-Entropy 57.70 65.41 45.92 54.55 28.40 29.78
Probability 57.70 65.15 45.47 53.90 26.50 27.47
Energy 57.60 65.31 45.59 54.56 25.70 27.31

Table 5: Performance with different uncertainty metrics.

based on the log probabilities of generated to- 454

kens (Fomicheva et al., 2020). Length Normalized 455

Entropy (LN-Entropy) is a normalized version of 456

entropy (Malinin and Gales, 2020). Probability- 457

based estimation assesses uncertainty by focusing 458

on the tokens with the lowest probabilities (Jiang 459

et al., 2023). Finally, the energy-based method eval- 460

uates uncertainty in the logit space, aiming to detect 461

out-of-distribution samples (Liu et al., 2020). 462

We conducted experiments on subsets of the 463

TriviaQA, ASQA, and PopQA datasets, using 464

Llama-2-7B as the reader. As shown in Table 5, 465

the perplexity-based method consistently outper- 466

forms all other metrics across the datasets, while 467

the energy-based method performs the worst, align- 468

ing with findings in Yao et al. (2024). Additionally, 469

the perplexity-based method exhibits a more stable 470

value range, typically between [1, 2], which simpli- 471

fies the tuning of the activation threshold. Based 472

on these observations, we selected perplexity as the 473

uncertainty measure for our experiments. 474

4.5 Case Study 475

In this section, we analyze the effectiveness of 476

our method using cases from the NQ and ASQA 477

datasets, as shown in Table 6. After rewriting, 478

queries generally exhibit improved formatting, 479

specificity, and grammar, which enhances the ac- 480

curacy of retrieved answers. In Case 1 (Better For- 481

mat), the original query “Who plays elsa’s aunt 482

in once upon a time?” is rewritten to improve 483

capitalization and formatting, resulting in the cor- 484

rect answer, Elizabeth Mitchell. In Case 2 (En- 485

hanced Specificity), “Who has won the most f1 486

grand prix?” is rewritten to clarify that it refers to 487

a "driver,” which helps accurately identify Michael 488

Schumacher as the answer. In Case 3 (Corrected 489

Grammar), “When is season 14 of grey’s anatomy 490

coming back?” is rewritten with proper grammar 491

and formality, leading to the correct premiere date 492

of September 28, 2017. These cases illustrate that 493

our method significantly enhances query quality, 494

improving document retrieval and answer accuracy 495

through better formatting, clarity, and specificity. 496
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Case 1: Better Format
Original Query: Who plays elsa’s aunt in once upon a time?
Rewrite Query: In the show "Once Upon a Time," what is the identity of Elsa’s aunt?
Retrieved Documents:
Document 1: Rumplestiltskin told her that her parents were afraid of Elsa. She does not tell this to Elsa, but is shocked to see
that Elsa is learning to control her power—due to a new woman by the name of Ingrid (Elizabeth Mitchell), who claims she is...
Document 2: As she searches for her sister Anna (Elizabeth Lail) with the aid of the main characters, they encounter the Snow
Queen (Elizabeth Mitchell). Meanwhile, Regina seeks the Author of Henryś Once Upon a Time book so that she can finally...
Answer: Elizabeth Mitchell [CORRECT]

Case 2: Enhanced Specificity
Original Query: Who has won the most f1 grand prix?
Rewrite Query: Which driver has the greatest number of Formula 1 victories?
Retrieved Documents:
Document 1: Formula One drivers have won the World Drivers’s Championship, with Michael Schumacher holding the record
for most championships with seven, as well as holding the race wins record. Juan Manuel Fangio and Lewis Hamilton have...
Document 2: There have been 52 Formula One drivers from Germany including three world champions, one of whom is
currently racing in the sport. Michael Schumacher holds many records in F1 including the most world championship titles...
Answer: Michael Schumacher [CORRECT]

Case 3: Corrected Grammar
Original Query: When is season 14 of grey’s anatomy coming back?
Rewrite Query: When does Grey’s Anatomy return for its fourteenth season?
Retrieved Documents:
Document 1: The fourteenth season of the American television medical drama Greyś Anatomy was ordered on February 10,
2017, by American Broadcasting Company (ABC), and premiered on September 28, 2017 with a special two-hour premiere...
Document 2: U.S. viewers in millions refers to the number of Americans in millions who watched the episodes live. The
fourteenth season of the American television medical drama Greyś Anatomy was premiered on September 28, 2017 with...
Answer: September 28, 2017 [CORRECT]

Table 6: Case studies of rewritten queries. Blue text indicates the stem, pink text indicates the effective hint,
[CORRECT] indicates the judgment of whether the answer is correct.

5 Related Work497

5.1 Query Rewriting498

Query rewriting is commonly used in retrieval499

tasks (Wu et al., 2021; Qian and Dou, 2022;500

Anand et al., 2023) and significantly enhances501

LLM capabilities in Retrieval Augmented Gener-502

ation (RAG)(Ram et al., 2023; Jiang et al., 2023;503

Yao et al., 2024). Many studies leverage LLMs for504

query rewriting to improve retrieval(Ye et al., 2023;505

Wang et al., 2023; Shen et al., 2023). For example,506

RRR (Ma et al., 2023) and RETPO (Yoon et al.,507

2024), which use downstream performance signals,508

and RaFe (Mao et al., 2024), which uses document509

relevance to minimize labeling. However, these510

methods either rely on human-crafted labels or use511

indirect, potentially suboptimal feedback. In this512

paper, we propose using uncertainty as direct feed-513

back, which eliminates the need for handcrafted514

labels and offers a more effective approach.515

5.2 Feedback Learning516

Feedback learning has recently been instrumen-517

tal in aligning LLM outputs with human prefer-518

ences. Various optimization methods have been de-519

veloped to enhance LLM capabilities (Zheng et al.,520

2023; Wang et al., 2024; Rafailov et al., 2024; Yuan521

et al., 2023), and new feedback signals have been 522

constructed from different perspectives (Lee et al., 523

2023; Shinn et al., 2024; Pang et al., 2023; Liu 524

et al., 2023; Xu et al., 2023). Feedback learning 525

has also been employed in query rewriting, as seen 526

in RRR (Ma et al., 2023), RETPO (Yoon et al., 527

2024), and RaFe (Mao et al., 2024). These ap- 528

proaches either depend on hand-crafted labels or 529

rely on indirect signals, limiting their effectiveness. 530

Our method addresses these limitations by using 531

LLM uncertainty as direct feedback, thus eliminat- 532

ing the need for handcrafted labels and improving 533

the effectiveness of feedback-based optimization. 534

6 Conclusion 535

In this work, we propose DynQR, an unsupervised 536

query rewriting method that leverages uncertainty- 537

based feedback from the reader LLM, eliminating 538

the need for labeled data from downstream tasks. 539

DynQR employs an active rewriting mechanism 540

and a post-verification process to minimize unnec- 541

essary rewrites and reduce noise. We conduct ex- 542

tensive experiments on five datasets across three 543

knowledge-intensive tasks, and the results demon- 544

strate the effectiveness of DynQR. 545
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Limitations546

In this paper, we utilize reader LLM’s uncer-547

tainty as a supervision signal for training the query548

rewriter. We acknowledge two limitations:549

(1) The effectiveness of uncertainty feedback550

relies on a strong correlation between uncertainty551

and response quality, which may require the reader552

LLM to have significant reasoning abilities (e.g.,553

parameter sizes larger than 7B);554

(2) Our method incurs a small additional compu-555

tational cost for uncertainty calculations.556

Ethics Statement557

This work complies with the ACL Ethics Policy.558

All datasets and LLMs used are publicly available.559

Our research focuses on an annotation-free method560

for training query rewriters, and we do not antici-561

pate any negative ethical impacts.562
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A Dataset Statistics823

The dataset statistics used in this paper are shown in Table 7.

Settings NQ TriviaQA PopQA 2WikiMQA ASQA
(Kwiatkowski et al., 2019) (Joshi et al., 2017) (Mallen et al., 2022) (Ho et al., 2020) (Stelmakh et al., 2022)

Dataset statistics
Task Open-domain QA Open-domain QA Open-domain QA Multi-hop QA Ambiguous QA
Train Data 60,000 60,000 0 0 0
Test Data 1,000 1,000 1,000 1,000 895

Evaluation settings
Metrics EM, F1 EM, F1 EM, F1 EM, F1 EM, F1

Retrieval settings
Corpus Wikipedia Wikipedia Wikipedia Wikipedia Wikipedia
Retriever DPR DPR DPR DPR DPR

Table 7: Statistics and experimental settings of different tasks/datasets.

824

B Implementation Details825

Reward Signals The reward calculation method for baselines are:826

• RRR (Ma et al., 2023): The reward signal is based on whether the retrieved documents lead to a827

correct answer when processed by the reader.828

• RETPO (Yoon et al., 2024): The reward comes from whether the retrieved documents contain a829

correct answer.830

• RaFe (Mao et al., 2024): The reward signal is derived from whether the rewritten query leads to831

documents that are more relevant to the original query.832

Training Process We conducted full parameter fine-tuning during both stages using 8 NVIDIA A100833

80GB GPUs.834

• Supervised Distillation Stage: We randomly sampled 30,000 queries from the NQ dataset and835

30,000 queries from the TriviaQA dataset for supervised fine-tuning. The model (LLama-2-7B) was836

fully fine-tuned for 1 epoch with a learning rate of 1e-6 and a batch size of 100.837

• Preference Alignment Stage: In this stage, we sample another 30,000 queries from the NQ dataset838

and another 30,000 queries from the TriviaQA dataset. Then we conduct query rewriting for these839

queries and construct the preference labeling based on the uncertainty of different rewrites for each840

reader LLM. The rewriter model was further fine-tuned for 2 epochs with a learning rate of 1e-5 and841

a batch size of 20 using Direct Preference Optimization (Rafailov et al., 2024).842

Active Rewriting Threshold In our experiments, we sample 100 queries from the test dataset as the843

validation set, and the remaining queries are used as the test set. We then tuned the active rewriting844

threshold based on its performance on the validation set and selected the one that performed the best.845
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C Prompts 846

The prompts used in our experiments are listed as follows. 847

Prompt: Answering with Retrieval

Instruction: Refer to the documents and answer the question with only one entity without giving any explanation. Here is an
example:
Documents:....
Question: who did lebron james play for before the cleveland cavalier?
The answer is: Miami Heat
Now refer to the documents below and answer the question with only one entity without giving any explanation:
Documents: {background}
Question: {query}
The answer is

Prompt: Answering without Retrieval

Instruction: Answer the question as short as possible without giving any explanation.
Question: who did lebron james play for before the cleveland cavalier?
The answer is: Miami Heat.
Question: {query}
The answer is:

Prompt: Query Rewriting

Instruction: output the rewrite of input query.
Query:{query}
Output:
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