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ABSTRACT

Genes are fundamental for analyzing biological systems and many recent works
proposed to utilize gene expression for various biological tasks by deep learning
models. Despite their promising performance, it is hard for deep neural networks
to provide biological insights for humans due to their black-box nature. Recently,
some works integrated biological knowledge with neural networks to improve the
transparency and performance of their models. However, these methods can only
incorporate partial biological knowledge, leading to suboptimal performance. In
this paper, we propose the Biological Factor Regulatory Neural Network (BFReg-
NN), a generic framework to model relations among biological factors in cell sys-
tems. BFReg-NN starts from gene expression data and is capable of merging most
existing biological knowledge into the model, including the regulatory relations
among genes or proteins (e.g., gene regulatory networks (GRN), protein-protein
interaction networks (PPI)) and the hierarchical relations among genes, proteins
and pathways (e.g., several genes/proteins are contained in a pathway). Moreover,
BFReg-NN also has the ability to provide new biologically meaningful insights
because of its white-box characteristics. Experimental results on different gene
expression-based tasks verify the superiority of BFReg-NN compared with base-
lines. Our case studies also show that the key insights found by BFReg-NN are
consistent with the biological literature.

1 INTRODUCTION

Understanding how cells work is an essential problem in biology, and it is also very important in
biomedical areas because of disease phenotype and precision medicine. From a genome-scale view,
the whole cell system is modeled by level, starting from DNA, mRNA, and protein to metabolomics,
and finally, inferring the phenotype. We define these molecules and molecule sets as biological
factors. At each level, the same type of biological factors interact or regulate each other, which
determines cell fate, driving the cells to develop, differentiate, and do other activities (Angione,
2019). Thanks to single-cell sequencing technologies, we can obtain gene expression data from the
mRNA level, which is fundamental to analyzing the whole cell system. Currently, gene expression
data is widely used to identify cell states during cell development, characterize specific tissues or
organs, and analyze patient-specific drug responses (Paik et al., 2020).

Many deep learning methods are proposed to utilize gene expression data for predictions, and
achieve extraordinary performance in different biological tasks. For instance, gene expression could
be treated as a type of input feature to classify cell types, cluster cells and even calculate patient sur-
vival time (Erfanian et al., 2021; Huang et al., 2020). Although most deep neural networks (DNNs)
model could diagnose cancers with high precision, the original DNNs cannot tell us detailed bio-
logical factors/processes which cause cancers. For instance, the regulation between gene PFKL
and HIF1A under HEPG2 pathway has a high probability of causing liver cancer (Shoemaker, 2006;
Garcia-Alonso et al., 2019).

Recently, some works leverage existing biological knowledge as graphs to represent the relations of
biological factors into the prediction models, and significantly improve the prediction accuracy of
specific tasks. For example, Rhee et al. (2018) and Chereda et al. (2021) mapped gene expression
data into the protein-protein interaction network, and used graph neural networks to predict cancer.
Elmarakeby et al. (2021) modeled the relations of gene-pathway and pathway-biological process as
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a network, and used a deep neural network to diagnose prostate cancer. Yu et al. (2016); Ma et al.
(2018) used the Gene Ontology (GO) knowledgebase to build the neural network architecture, but
they are too sketchy to simulate the gene or protein reactions in the cells, and may lead to subop-
timal performance. Although they mitigate the black-box issues, they only use partial biological
knowledge, and they cannot explore new knowledge from gene expression data.

In this paper, we propose a generic framework, named biological factor regulatory neural network
(BFReg-NN), whose goal is to simulate the complex biological processes in a cell system, under-
stand the functions of genes or proteins, and ultimately give insights into the mechanism of larger
living systems. Particularly, BFReg-NN is a neural network with the following characteristics. First
of all, each neuron is mapped into a biological factor (e.g., a specific gene or protein), and arranged
level by level based on the hierarchy of biological concepts, such as genes, proteins, pathways, bio-
logical processes, and so on. Secondly, since biological factors regulate each other, edges between
neurons (and hyperedges among neurons) are set to reflect the existence of these regulations. In such
a manner, edges also model biological meanings. Moreover, two different operations are utilized to
simulate the reactions inside/across the layer. Since genes regulate each other and create feedback
loops to form cyclic chains of dependencies in gene regulatory network, graph neural network styled
operations are suitable to model the “steady state” of genes. It is the same for proteins in PPI. In
the layer of pathways, it is a hypergraph where each hyperedge is a pathway including multiple pro-
teins. Accordingly, a hypergraph neural network is used to aggregate and balance the information
of each protein. The operations across the layers imitate the material transformation (e.g., genes
translate protein), so we adopt deep neural network styled operations to map the relations. Finally,
BFReg-NN is flexible to explore new biological knowledge by adding important but not existing
edges in the current biological neural network. We illustrate BFReg-NN simulates on genome-scale
cell system as an example in Figure 1.

The advantages of our proposed model include: (1) Compared with previous works, BFReg-NN
merges with the structural biological knowledge in cell systems, including hierarchical relations
(e.g., genes-proteins, proteins-pathways mappings), and regulatory relations among certain factors,
such as GRN and PPI. Therefore, it could imitate how different biological factors work inside a
cell. (2) The model of BFReg-NN is transparent and interpretable, as each neuron and edge has its
corresponding biological meaning. Thus, the learned model weights give evidence of which biolog-
ical parts are activated and which biological products are generated, leading to the final prediction.
(3) By adding new edges between neurons, BFReg-NN not only achieves better performance in
downstream tasks, but also has the potential to complete undiscovered biological knowledge. Tra-
ditional knowledge completion methods for biological domains (e.g., link prediction by knowledge
bases/graphs) suffer from imbalanced data problems (Bonner et al., 2022). BFReg-NN utilizes the
gene expression data, which reflects the real cell states, and thus obtains more reliable results.

In the experiment, we show the effectiveness of BFReg-NN on several biological tasks which have
different output formats, including missing gene expression value prediction, cell classification and
future gene expression value forecasting. We also test the knowledge completing ability of BFReg-
NN by the recall of the existing biological knowledge. Further, we do case studies for newly discov-
ered knowledge. The results demonstrate that BFReg-NN provides biologically meaningful insights.

2 RELATED WORK

Gene expression and its applications: By RNA sequencing, it is easy to obtain gene expression
which is a value to represent the amount of gene transcripts from a DNA fragment (Eberwine et al.,
2014). It has been used in a variety of biological applications, including single-cell analysis (Yu
et al., 2022; Zhou et al., 2022), disease diagnosis (Xing et al., 2022) and drug discovery (Pham et al.,
2021). But most of these models lack transparency and ignore the existing biological knowledge.

Knowledge graph enhanced downstream tasks: The emergence of knowledge bases/graphs has
led to enhancing the performance in many fields of computer science, such as computer vision
and natural language processing (Ren et al., 2021; Hao et al., 2021; Liu et al., 2021). Similarly,
knowledge graphs also have been widely used for specific biological tasks such as cancer diagno-
sis in recent years (Elmarakeby et al., 2021; Rhee et al., 2018). OntoProtein (Zhang et al., 2022)
embedded the gene ontology knowledge in pre-training to improve the performance of several pro-

2



Under review as a conference paper at ICLR 2023

Figure 1: The pipeline of BFReg-NN. We build the hierarchical biological network inspired by
the cell system, modeling several levels to separate mRNA, protein, pathway and phenotype, and
simulating biological factor interactions both at the intra-level and inter-level. We obtain the gene
expression value from RNA sequencing as input, to predict the property of the phenotype as output.
Taking the cancer dataset NCI-60 as an example. We know that the regulatory activations start from
gene HIF1A and TP53 to gene AURKA and CDKN1A at the gene level (Garcia-Alonso et al., 2019).
And at the protein level, the translated proteins Q16665 and P04637 stimulate P17858 and O14965
respectively (Türei et al., 2016). We mark those relations as existing biological knowledge by the
black solid lines. Multiple genes with their products consist of pathways to drive cells to different
types. For example, PFKL and HIF1A are activated in the HEPG2 cell line pathway, which leads
to a type of liver cancer (Shoemaker, 2006). Besides, new regulatory relations would be identified
at each level shown as dotted lines. After training, we learn the good representations of biological
factors, and employ them for different downstream tasks with various output formats.

tein downstream tasks. But it limited the interpretation ability because of transforming knowledge
into embeddings. Elmarakeby et al. (2021) modeled the relations of gene-pathway and pathway-
biological process as a neural network to diagnose prostate cancer. Chereda et al. (2021) assigned
genes to the PPI network to predict breast cancer, and then explained the important genes by Layer-
wise Relevance Propagation. Although they mitigate the black-box issues, they all use a small part
of biological knowledge, and they cannot explore new knowledge from gene expression data.

Knowledge complement: Our work is related to knowledge complement (Yao et al., 2020; Goel
et al., 2020). In particular, lots of work on biological knowledge complement has been done re-
cently (Yu et al., 2021; Zitnik et al., 2018). Much attention is paid to predicting the relation between
specific biological factors, which can be regarded as a link prediction problem. For example, Mo-
hamed et al. (2020) predicted drug-target interaction (DTI) by learning representations of drugs
and targets from the KEGG database. Hamilton et al. (2018) discovered new drugs for diseases
by embedding the drug-gene-disease database in multiple relations. However, existing biological
knowledge is collected in imbalance, which causes little biological meaningful predictions (Bonner
et al., 2022). In our work, we expect discovered knowledge from gene expression data, which can
interpret the cell state by biological factor interactions and avoid imbalanced situations.

3 BIOLOGICAL BACKGROUND

The biological system is modeled by a complex network that connects many biologically relevant
entities to work together to perform one or more particular functions. It could be at the organ/tissue
scale, such as the nervous system, or the integumentary system. On the micro/nanoscopic scale,
examples include cells, organelles, and so on. In this work, we focus on the simulation of the
biological system in a cell at a genome-scale.

Thanks to the development of sequencing technologies, it is easy and cheap to obtain an amount
of gene expression data to build genome-scale analysis. Starting from genes, we model the cell
genome-scale system by single-omic level (intra-level) regulations and different omic level (inter-
level) mappings (Angione, 2019). Among different omic levels, defined as inter-level in BFReg-
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NN, genes are first transcribed from DNA and then translate to proteins. Then, pathways integrate
individual genes or protein products to perform certain cell functions. To model single-omic level
regulations, we define the intra-level interactions. Genes are regulated by each other, known as GRN,
which means the gene expression values are governed to be inhabited or activated by association
molecule products, such as RNA. Proteins interact with each other in a similar way, inhabiting,
activating, or combining with others to influence the expression values (or protein abundances) in
cells, called PPI. Notice that in general, the relations among factors are universal for all the cells, thus
the biological knowledge could adapt to different types of cells. But sometimes the biological factor
interaction would rewire in specific cells, and thus the extra knowledge discovered and verified is
also important (Lynch et al., 2011).

4 METHOD

Assume we have gene expression data x ∈ Rn show the state of a cell, where n is the number of
genes. Besides, we also define the neural network architecture of BFReg-NN according to structural
biological knowledge with the intra-level regulations A and the inter-level mappings M. After
training BFReg-NN, we obtain the hidden embedding Hi = BFReg-NN(x,A,M) for each gene i,
and do predictions for downstream tasks.

The output format of predictions could be a single value y = f(H), or multiple values x̄ = f(H).
Further, we also handle the time-series output. Given the gene expressions of cells at the t0 time,
we aim to predict the gene expressions X̂ ∈ Rn×T = f(H) in the following t1, . . . , T time steps.
Finally, BFReg-NN could explore new insights by adding more edges A′.

In the following sections, we first extract A and M from the existing biological databases/graphs.
Then, we propose two versions of BFReg-NN. Finally, we introduce how to apply BFReg-NN to
different downstream tasks.

4.1 BIOLOGICAL KNOWLEDGE DATABASES/GRAPHS

Based on the existing biological knowledge, we first divide biological factors into different levels,
L = {Gene,Protein,Pathway, ...}. At each level, regulatory relations between factors in the intra-
level are formulated as a matrix set A = {AGene,AProtein,APathway, . . . ,AL}, where AGene could be
gene relations and defined by GRN, and AProtein is decided by PPI. APathway is a little special because
it is a hypergraph, where each edge could connect more than two nodes, called the hyperedge. The
proteins in a hyperedge propagate the information to influence each other directly. The values in
Al are binary to represent the existence of relations. We also identify the binary mapping matrixes
M = {M1,M2, . . . ,ML−1} from level l to its upper level l + 1 as the inter-level interaction. The
dimension of Ml is dependent on the factor numbers of the two levels. We set M1 to map between
genes and proteins, and M2 as a direct mapping between protein-level and pathway-level. A and M
both decide the architecture of the neural network, including neurons and links between neurons.

4.2 BASIC BFREG-NN MODEL

Given the gene expression of a cell x ∈ Rn, we first utilize an embedding layer to encode each gene
independently, where H0,0

i = Emb(xi). The embedding layer let genes share a same parameter
MLP layer to obtain the gene expression representation. As the gene expression is in a float form
with a little measurement error, the embedding layer is utilized to reduce this error and thus enhance
the performance of the model. Then we obtain H0,0 ∈ Rn×d as the input to neurons at the first
level, i.e., gene neurons.

We have Al as intra-level relations between neurons at level l. Inspired by graph neural networks,
we use the message passing mechanism to update Hl,k, which is the hidden representation of the
neuron in the k-hop at level l. The formulation is:

Hl,k+1
i = update

 ∑
j∈Al(i)

message
(
Hl,k

i ,Hl,k
j

)
,Hl,k

i

 . (1)

The message function is to generate the message from neuron j to neuron i, where Al(i) decides
which neurons are neighbors for neuron i. Then the update function is to update the embedding
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of neuron i using the obtained messages and the previously hidden embedding. k ∈ [0,K − 1] is
the number of hops to determine that neuron i is influenced by other neurons in the K-hop neigh-
borhood. In detail, we utilize GAT-styled (graph attention) (Vaswani et al., 2017) to compute the
attention weight for each message, and weighted sum up all the messages to update. As for op-
erations in hypergraphs, we apply HGNN-styled (hypergraph neural network) (Bai et al., 2021)
message and update functions. Batch normalization is conducted at the end of each level.

Due to multiple level interactions in biological systems, the embedding is also learned level by level.
Since Ml is inter-level relations between level l and l + 1, we utilize the masked neural network to
update the initial representation Hl+1,0 at level l + 1:

Hl+1,0 = activation
(
(Ml ⊙Wl)H

l,K + bl

)
(2)

Hl,K is the output after batch normalization. The element-wise multiplication Ml⊙Wl ensures that
non-existing relations are not used for updating. In fact, the important biological factors could be
ranked by the weighted matrix Wl calculated between levels. Wl and bl are learnable parameters.

4.3 ENHANCED BFREG-NN MODEL

Here the enhanced version is introduced by adding new edges in A = {AGene,AProtein,APathway,...}.
It can explore new biological insights and improve the performance simultaneously.

Existing biological knowledge is detected by biological technology to reflect the implicit relations
among factors. However, some knowledge is still hard to be discovered due to technological limi-
tations and rewiring phenomenons in individual cells. Therefore, we spilt the interaction into two
types. One is the universal regulation, supported by existing knowledge A. The other is local inter-
action, inferring the new biological knowledge or rewiring in individual cells, but now hidden in the
non-existent edges of A.

Instead of a binary matrix Al used in the basic model, we use Al to constrain the learnable matrix
A′

l to discover new knowledge. As universal regulations are verified by biological methods, we use
them the same as the basic model. For non-existent edges, we reweigh it by a small value 0 ≤ α < 1
due to it being less convincing. Thus, the edge intensity based on two types of knowledge is modified
as:

A′
l =

{
wl

ij , universal regulation between i and j and it already exists in Al

αwl
ij , local interaction between i and j but it is ignored in Al

(3)

where wl
ij = σ(MLP(concat[Hl

i,H
l
j ])). In the enhanced model, we not only learn the neuron em-

beddings, but also utilize these embeddings with an MLP transformation to infer the intensity of the
hidden interaction between neuron i and j. Then we update the representations by

Hl,k+1 = σ
(

MLP
(
A′

lH
l,k

))
. (4)

After the model is trained to converge, we obtain the learned weights for non-existence edges, which
provides insights for new knowledge and the rewiring phenomenon. We sort the weights wl

ij to iden-
tify the candidates which deserve verification by biological experiments. Here we use a simple edge
weight modification method instead of gated edges implemented by the gumble-softmax function or
advanced graph structure learning algorithms (Zheng et al., 2020; Jin et al., 2020). The reason is that
the biological knowledge is not sparse, and even dense in some core genes. Thus, it does not satisfy
the sparse and low-rank requirements. Our simple method does not add much extra computation
cost while achieving great effectiveness in biological tasks.

4.4 DOWNSTREAM TASKS

After we obtain the final embedding HL,K , we could conduct different types of downstream tasks,
whose output format could be one-dimensional, multiple-dimensional, or time-series. Here we illus-
trate them by three specific tasks, missing gene expression value prediction, future gene expression
value forecasting, and cell classification.

Missing gene expression value prediction: Suppose we have a gene expression vector x ∈ Rn

for n genes, measured by the single-cell sequencing technology. Some parts in the vector are zeros
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or in a low value because of dropout events (Gong et al., 2018), causing biases among cells. So
we aim to accurately recover all the missing values and obtain a new vector x̄. Since the gene
expression is dependent on a certain cell, we merge gene representations. The new gene value
vector is generated directly by x̄ = MLP(HL,K) = MLP(BFReg-NN(x)). We minimize the mean
squared loss between predicted values and ground truth for all the non-zero elements in x. Finally,
the missing values are imputed with the predicted values.

Cell classification: This task is to classify the cell types using gene expression values x, which is
important to determine the situation of tissues or patients. Because cell type is the observable result
of a biological system, we simulate each gene to pass the multiple levels of transformation to infer
the property of the cell. The prediction is computed by ŷ = MLP(HL,K) = MLP(BFReg-NN(x)).
It is a multi-class classification task and we employ a cross-entropy loss.

Future gene expression value forecasting: The single-cell data is efficient to analyze the cell
response under different drugs. However, it is expensive to collect the data at different time steps
and draw the development trend of cells. Thus, we model the cell response by future gene expression
value prediction. In other words, given the gene expression data x ∈ Rn at t0, we aim to forecast
the gene expression data X̂ ∈ Rn×T in the following t1, . . . , T time steps. We use two backbones,
MLP and LSTM. MLP predicts the gene expression in the future time steps simultaneously, and the
equation is X̂ = MLP(BFReg-NN(x)). LSTM models the dynamic values step by step, where it
takes the last time output as the next step input, and the equation is x̂t = LSTM(BFReg-NN(x̂t−1)).
We employ MSE as the loss function.

5 EXPERIMENTS

5.1 SETUP

Here we introduce the experimental setting for downstream tasks, including datasets, neural network
architecture, and baselines. Training details are presented in Appendix. The code and toy datasets
are attached in the supplementary material.

Missing gene expression value prediction: In this task, we collect 10 cell lines (BT20, HS578T,
LNCAP, A549, MCF7, MCF10A, MDAMB231, PC3, SKBR3 and A375) from the L1000 dataset.
Because of the limitation of sequencing technology, the L1000 dataset does not have the golden
standard values for non-landmark genes. Thus, we employ the pre-processed data based on Qiu
et al. (2020). Besides, we also ignore the time point information in cell lines. In each cell line, we
have 1482 cell samples and 714 genes. We also collect 541 and 2305 existing knowledge edges
for GRN and PPI respectively. We randomly mask the gene expression value with a 60% prob-
ability, and predict these missing values. The cell samples are randomly split by 60/20/20% as
training/validation/test data. The evaluation metric is mean square error (MSE), which means the
smaller the better.

Cell classification: We gather 5 datasets to predict cell types. The first one is GSE756888 (breast
cancer) collected from Chung et al. (2017). The following four datasets are about organs, including
muscle, diaphragm, lung and trachea, obtained from Consortium et al. (2018). We pre-process the
data by deleting the cells and genes which have a larger ratio of zeros. The remaining data are
summarized in Table 6. We also split the data same as the missing value task, and evaluate the
results by macro AUC.

Future gene expression value forecasting: For future value prediction, we choose the breast cancer
dataset from 2019 Dream Challenge (Gabor et al., 2021). There are 44 cell lines and 6 treatments.
Different treatments mean using various drugs on cells to test the drug effects. Since the data are
quantified at the proteomic level, we have 37 biomarkers as genes and 38 related PPIs as existing
knowledge, which is a small protein-protein interactions graph where nodes are phosphorylated
genes. The detailed process to obtain dynamic gene expression data is: all the cells are first treated
and then divided into several groups. At regular intervals, a group of cells is killed and measured
their gene expression. To avoid noise caused by this measurement on each individual cell, we
calculate the median for each gene at every time step. Different from the previous two tasks, we use
5 treatments as training data, and the remaining one as test data. The 5-fold cross validation is done.
We use MSE and Pearson correlation coefficient (PCC) to evaluate average performance.
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Table 1: Results on missing gene expression value prediction (evaluated by MSE ↓).
Knowledge Models BT20 HS578T LNCAP A549 MCF7 MCF10A MDAMB231 PC3 SKBR3 A375

no
knowledge

MLP 0.314 0.344 0.344 0.320 0.326 0.337 0.325 0.378 0.317 0.336
transformer 0.396 0.377 0.406 0.383 0.396 0.399 0.418 0.402 0.387 0.407
Gated NN 0.709 0.681 0.644 0.533 0.647 0.700 0.667 0.722 0.594 0.729

co-expression GCN 0.715 0.714 0.722 0.653 0.688 0.675 0.707 0.731 0.677 0.702
GAT 0.719 0.715 0.723 0.655 0.693 0.669 0.720 0.721 0.676 0.716

existing
knowledge

MLP+N2V 0.351 0.378 0.380 0.349 0.368 0.350 0.358 0.392 0.343 0.354
GCN 0.331 0.329 0.330 0.304 0.340 0.313 0.319 0.338 0.331 0.317
GAT 0.324 0.331 0.332 0.308 0.321 0.314 0.317 0.347 0.317 0.315
P-NET 0.349 0.335 0.340 0.340 0.321 0.352 0.336 0.354 0.322 0.331
BFReg-NN(Basic) 0.318 0.336 0.332 0.329 0.308 0.328 0.328 0.344 0.318 0.328
BFReg-NN(Enhanced) 0.318 0.317 0.320 0.297 0.308 0.306 0.320 0.335 0.307 0.308

Table 2: Results on cell classification (evaluated by macro AUC ↑).
Knowledge Models GSE muscle diaphragm lung trachea

no prior
knowledge

MLP 0.9122 0.8586 0.7881 0.8545 0.9387
transformer 0.9476 0.8785 0.8717 0.8900 0.9242
Gated NN 0.7910 0.7784 0.7110 0.8240 0.9120

co-expression GCN 0.6916 0.6424 0.5945 0.5822 0.6612
GAT 0.7790 0.6882 0.6305 0.6312 0.6294

existing
knowledge

MLP+N2V 0.9064 0.8772 0.7501 0.8180 0.9404
GCN 0.9285 0.8449 0.7896 0.8581 0.9421
GAT 0.9255 0.8470 0.8039 0.8246 0.9409
P-NET 0.9052 0.8654 0.7973 0.8425 0.9332
BFReg-NN(Basic) 0.9476 0.8808 0.8420 0.8808 0.9376
BFReg-NN(Enhanced) 0.9693 0.8884 0.8509 0.8903 0.9446

Neural network architecture: The architecture is totally defined by existing knowledge. From
open-source databases, we select Dorothea (Garcia-Alonso et al., 2019) as GRN construction, and
Omnipath (Türei et al., 2016) as PPI. As the pathway is specific in different cells, we collect path-
ways for each dataset by Enrich (Chen et al., 2013), which provides knowledge of the hyperedge
connection among genes and proteins, including LINCS L1000 Ligand Perturbations for missing
value task and WikiPathways 2019 MOUSE(HUMAN) for cell classification task. For future value
forecasting, we utilize its corresponding relations in the dataset.

Baselines: We divide baselines into three types: (1) There is no prior knowledge integrated into the
model, and the input is only gene expression data. MLP is the simplest model for static prediction.
LSTM is the typical RNN-based model for dynamic value prediction. We also select more com-
plex models, Transformer (Vaswani et al., 2017) and GatedNN as competitors. GatedNN is an
improved version of deep neural networks, where edges between neurons are gated by the gumble-
softmax function so the network could be sparse. (2) The second type of baselines is to first learn
a gene co-expression matrix as knowledge and then do the prediction. The co-expression matrix
identifies which genes have a tendency to show a coordinated expression pattern, so it can be built
by the similarity between gene expressions. We follow the process described in MLA-GNN (Xing
et al., 2022) to learn the knowledge and then apply two classical graph neural networks, GCN (Kipf
& Welling, 2017) and GAT (Veličković et al., 2018), to aggregate the information and do the pre-
diction. (3) We also compare the models using the existing biological knowledge. This knowledge
could be graphs, such as GRN or PPI. MLP+N2V used node2vec (Grover & Leskovec, 2016) to
learn node embeddings of the prior graph, combine them with gene expression data and employ
MLP to predict. GCN and GAT directly utilized the prior graph. As there are different prior graphs
(GRN or PPI), we report the best results for GCN and GAT with the most suitable graph. P-NET
(Elmarakeby et al., 2021) utilized protein-pathway relations as prior knowledge and apply DNNs to
predict. For our proposed model BFreg-NN, we test basic and enhanced versions.

5.2 EXPERIMENTAL RESULTS

Static task results: We report the main results for missing value prediction and cell classification,
summarized in Table 1 and Table 2 respectively. Firstly, in general, compared to no prior knowledge
methods, biological knowledge improves the performance of models effectively, which means that
modeling specific meanings for neural networks could improve the performance in biological tasks.
Although Gated NN includes the gumble-softmax function which also is able to predict edges in a
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Table 3: Results on future gene expression value forecasting (evaluated by MSE↓ and PCC↑).
Knowledge Models MSE PCC

no prior
knowledge

MLP 0.0761 ± 0.0038 0.9704 ± 0.0018
LSTM 0.0822 ± 0.0028 0.8888 ± 0.0034
transformer 0.0743 ± 0.0013 0.9717 ± 0.0007
Gated NN 0.0743 ± 0.0026 0.9717 ± 0.0007

co-expression GCN 0.3838 ± 0.0090 0.8293 ± 0.0036
GAT 0.3447 ± 0.0236 0.8455 ± 0.0114

existing
knowledge

MLP+N2V 0.0760 ± 0.0043 0.9706 ± 0.0018
GCN 0.0920 ± 0.0053 0.9646 ± 0.0020
GAT 0.0869 ± 0.0044 0.9661 ± 0.0017
BFReg-NN (MLP, Basic) 0.0732 ± 0.0026 0.9719 ± 0.0009
BFReg-NN (MLP, Enhanced) 0.0724 ± 0.0023 0.9724 ± 0.0007
BFReg-NN (LSTM, Basic) 0.0825 ± 0.0029 0.8906 ± 0.0041
BFReg-NN (LSTM, Enhanced) 0.0819 ± 0.0027 0.8907 ± 0.0049

Table 4: Ablation study results on cell classification (evaluated by macro AUC ↑).
Models Knowledge muscle diaphragm lung trachea

Basic
GRN 0.8165 0.7564 0.8230 0.9376
GRN&PPI 0.8798 0.8219 0.8784 0.9241
GRN&PPI&Pathway 0.8808 0.8420 0.8808 0.9321

Enhanced

GRN 0.8165 0.7873 0.8373 0.9446
GRN&PPI 0.8807 0.8417 0.8892 0.9297
GRN&PPI&Pathway 0.8884 0.8509 0.8903 0.9360
No Intra-level 0.8799 0.8382 0.8809 0.9235
No Inter-level 0.8790 0.8058 0.8268 0.9391

probability, it is hard to generate the existing biological knowledge. Besides, co-expression knowl-
edge does not show outstanding performance because it is extracted from a small size of data and
thus brings the noise. Some complex model also achieves promising results, such as Transformer,
which indicates that building dense biological relations may be needed for the cell samples. Sec-
ondly, BFReg-NN also outperforms the baselines using the existing knowledge. MLP+N2V fails in
prediction because it uses the knowledge by embedding nodes implicitly, rather than in an explicit
architecture. Compared with GCN, GAT and P-NET, the basic BFReg-NN could merge hierarchical
knowledge from different levels of the biological system. Further, the enhanced version learns im-
portant undiscovered knowledge from the gene expression data. Overall, the enhanced BFReg-NN
achieves the best results in most cases.

Dynamic task results: Results for future value prediction are presented in Table 3. Compared with
directly employing MLP/LSTM to forecast future values, BFReg-NN with MLP/LSTM could im-
prove the quality of embeddings and achieve better performance. GCN and GAT with co-expression
matrix perform badly due to the small dataset. When using existing knowledge, MLP+N2V, GCN
and GAT still cannot obtain a good result because the knowledge is incomplete. For example, there
are several isolated nodes in the dataset, and these methods fail in updating the embeddings of these
nodes. Since transformer and Gated NN could merge the gene information densely, they obtain bet-
ter results. Finally, the enhanced BFReg-NN could add the extra discovered knowledge to mitigate
the problem of incomplete prior knowledge, and learn the embeddings with a suitable architecture.
Therefore, it can reach the best performance.

5.3 ABLATION STUDY

In this section, we provide a brief description of the effectiveness of each part in BFReg-NN. The
ablation analysis for the cell classification task is shown in Table 4. The accuracy is gradually
improved when adding a higher level of knowledge to the model in most cases. In trachea dataset,
GRN shows the best performance which indicates PPI may lead to an overfitting problem in this
organ. In addition, we present the results of no intra-level and no inter-level situations. No intra-
level version removes PPI and GRN knowledge and maintains the hierarchical network; and no
inter-level merges the PPI and GRN into a large graph and deletes the hierarchical structure. The
results show that hierarchical structure is more important than simply linking the factors together,
which obeys the phenomenon that the biological factors in a cell are produced step by step.
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Table 5: Ablation study results on missing value prediction (evaluated by MSE ↓).
Knowledge BT20 HS578T LNCAP A549 MCF7 MCF10A MDAMB231 PC3 SKBR3 A375

GRN 0.318 0.317 0.320 0.297 0.308 0.306 0.320 0.335 0.307 0.308
GRN&PPI 0.343 0.342 0.338 0.326 0.339 0.333 0.343 0.357 0.338 0.344
GRN&Pathway 0.335 0.335 0.326 0.314 0.324 0.319 0.331 0.332 0.327 0.325
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Figure 2: Recall score for all the nodes in
breast cancer. The average score is 0.4175.
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Figure 3: Frequency of newly discovered interactions including p53.

In addition, we could choose different levels from the biological system as layers for BFReg-NN
to adapt to different tasks. For example, the cell classification task aims to capture the cell state
involving a variety of factors in a cell, and thus it needs multiple levels of biological knowledge
to build the cell phenotype. In contrast, shown in Table 5, the missing value task focuses on gene
expression value, which means single gene level knowledge is enough while protein or pathway
level knowledge may bring the noise to predictions.

5.4 KNOWLEDGE COMPLETION BY BFREG-NN

To demonstrate the ability of BFReg-NN to complete the knowledge, we test it on the future value
forecasting task with breast cancer to evaluate the knowledge recall score. For each gene in the
dataset, we remove its related edges to make it an isolated node, and then conduct the model to
recover the knowledge. We run BFReg-NN several times to avoid randomness. In each run, the
discovered edges come out with weights, and are ranked to select the top-k list. The frequency of
an edge is computed by (the times that the edge is in the top-k list)/(the total runs). We select the
top-20 interaction pairs with the highest frequency as discovered knowledge. The results are shown
in Figure 2, where BFReg-NN achieves an average 0.4172 recall score for all the nodes. We also
take p.p53 gene as example. The detailed recalled edges are shown in Figure D.1. We found all the
existing edges for p.p53 in the top-20 list. Overall, we notice that most of the edges are recalled by
our model, while BFReg-NN also adds knowledge that does not appear in the existing database.

In recent breast cancer research, some new knowledge is discovered by biological methods, which
is also found in our proposed BFReg-NN. We take the gene p53, a well-known tumor suppressor, as
an example to verify the biological meaning of discovered knowledge. We show the top-10 frequent
interaction pairs including p53 in Figure 3. And then we find the cues in recent biological literature.
Iododeoxyuridine (Idu) is the most frequent marker, which identifies cell phases, indicating whether
the cell division is continued in breast cancer (Behbehani et al., 2012; Gabor et al., 2021). S6 takes
the second place, which is regulated in mTOR signaling by p53, and the level of S6 increases when
p53 is insufficiency (Luo et al., 2021). Besides, p53 also regulates the expression level of Her2,
where the interaction frequency is about 0.15 in our prediction. As a kind of Her2-positive cancer,
breast cancer could be treated by inhibiting p53 (Fedorova et al., 2020). After that, the regulatory
relation between p53 and RB is in the existing biological knowledge dataset.

6 CONCLUSION

In this paper, we propose a generic framework BFReg-NN, which offers biological meanings to
neurons and links between neurons, and imitates the whole cell system as a neural network at both
intra-level and inter-level. We apply BFReg-NN to different downstream tasks and our experimental
results demonstrate that BFReg-NN consistently outperforms baselines and discovers new biological
meaningful insights. BFReg-NN provides a novel paradigm to merge cell sequencing data and
biological knowledge, and it could be extended to more types of genomics data to simulate and
understand complex biological systems in the future.
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A APPENDIX - EXPERIMENTAL SETUP

Table 6: statistics for cell classification datasets
Dataset #Sample #Gene GRN knowledge PPI knowledge Pathways #Label

GSE 4658 418 172 136 89 8
lung 1642 382 148 332 121 11
muscle 1051 401 317 401 119 6
trachea 3587 326 109 207 110 5
diaphragm 853 355 239 299 115 5

Table 7: Hyperparameter setting

Task Learning rate Max epoch Dimension of hidden embeddings
BFReg-NN module Prediction module

missing value prediction 1e-3 200 4 1024
cell classification 5e-4 200 4 256
future value forecasting 1e-4 2000 16 512

Table 8: The setting of α in different tasks
Missing value prediction

Knowledge α set BT20 HS578T LNCAP A375 A549 MCF7 MCF10A MDAMB231 PC3 SKBR3
GRN α1 1e-2 1e-4 1e-5 1e-4 1e-3 0 1e-3 5e-4 1e-3 5e-5

GRN&PPI α1 1e-4 0 5e-4 0 1e-4 5e-5 5e-5 5e-5 5e-4 5e-4
α2 0 0 0 0 0 0 0 0 0 0

Cell classification Future value forecasting
Knowledge α set GSE muscle diaphragm lung trachea Backbone α set
GRN α1 1e-5 1e-5 5e-5 5e-5 5e-4 MLP 1e-2
GRN&PPI α1 5e-4 1e-5 1e-5 1e-4 1e-4 LSTM 5e-3

α2 1e-5 0 5e-5 0 1e-5

A.1 TRAINING DETAILS

Data statistics are summarized in Table 6 for the cell classification task. For optimizers, we use
Adam for all the models. The hyperparameters are summarized in Table 7. We set a small dimension
of hidden embeddings to avoid overfitting. For the prediction module, we set the number of hidden
units with the best value obtained from the validation data. In addition, the update function could be
implemented by the sum or concatenation operation. We set K = 1 for all the experiments.

The performance of BFReg-NN is influenced by the value of hyperparameter α. While α controls
the acceptance of newly discovered knowledge, it is dependent on whether the existing biological
knowledge is suitable for the current dataset, as shown in Table 8. For example, in the future value
forecasting task, α is larger than in other tasks to get the best result because existing knowledge
is incomplete in the dataset. Besides, in the missing value task, our model performs better when
α = 0 in the protein level, which means BFReg-NN ignores the irrelevant level when discovering
knowledge. We vary it from {0, 0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005} and select the best
value when the loss is the smallest in the validation dataset.

A.2 MODEL COMPLEXITY

The complexity of the BFREg-NN model depends on the number of levels L and the number of
biological factors at each level nl. Therefore, the model complexity is O(

∑L
l=1 nl

2). In the real
application, we choose the potentially important genes. If the computation resource is adequate, we
could set as many genes as possible. In this paper, we use a single A100 GPU to run experiments.

B APPENDIX - OTHER BASELINES

We complement three baselines, Random Forest, XGboost and DCell, in this section.
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B.1 CELL CLASSIFICATION TASK

Table 9: other baselines for the cell classification task.
Models GSE muscle diaphragm lung trachea
Random Forest 0.9688 0.8771 0.7161 0.8834 0.9273
XGBoost 0.8867 0.8534 0.7549 0.8625 0.9193
DCell 0.9482 0.7158 0.6731 0.7545 0.9322
BFReg-NN(basic) 0.9476 0.8798 0.8420 0.8808 0.9376
BFReg-NN(enhanced) 0.9693 0.8884 0.8509 0.8903 0.9446

Although in single-cell tasks, Random Forest and XGBoost models could have comparable perfor-
mance, they are still worse than BFReg-NN on most of the datasets in Table 9.

DCell (Ma et al., 2018) used the Gene Ontology (GO) knowledgebase to build the neural network
architecture, which limits the performance. GO defines GO terms (e.g., molecular function, cellu-
lar component, biological process) and builds the architecture based on term relations. Since each
GO term includes several genes, the authors leverage the genes as the input layer and GO terms
as the following layers in the neural network. We think the network is too sketchy to simulate the
gene/protein reactions in the cell, which may lead to suboptimal performance. Instead, BFReg-NN
uses more specific knowledge (gene regulatory network, protein-protein interactions and pathways)
to mimic the cell system. Therefore, BFReg-NN(basic) is much better than DCell on the mus-
cle/diaphragm/lung dataset. Further, BFReg-NN has the potential ability to discover new biological
relations from inputs (i.e., gene expression data) to enhance performance. As shown in Table 9, the
enhanced BFReg-NN achieved the best results.

B.2 FUTURE GENE EXPRESSION PREDICTION

Table 10: other baselines for future gene expression task.
Model MSE PCC

RF 0.1115 ± 0.0021 0.9685 ± 0.0006
XGBoost 0.0837 ± 0.0033 0.9753± 0.0008
BFReg-NN (MLP,enhanced) 0.0724± 0.0023 0.9724 ± 0.0007

The best-performing models in the 2019 Dream Challenge are ensemble methods, which include
several sub-models of Random Forest and XGBoost. Here we verify the performance of a single
model shown in Table 10. In the future gene expression prediction task, Random Forest has pool
performance on both MSE and PCC metrics. XGboost has a little higher value on PCC value but
also a higher MSE value, which means XGboost could predict the trend of the cells but fail on the
specific values. However, they lack the interpretation of the gene regulatory level from the biological
view, and they can not discover new biological knowledge.

C APPENDIX - PRE-TRAINING

Table 11: performances of pre-trained BFReg-NN.
Model MSE PCC

BFReg-NN 0.0724 ± 0.0023 0.9724± 0.0007
Pre-trained BFReg-NN 0.0719± 0.0042 0.9723± 0.0018

BFReg-NN could benefit from the pre-training and fine-tuning framework. The detailed experimen-
tal steps are: (1) Utilize the missing gene expression prediction task to pre-train a BFReg-NN model
on the breast cancer dataset; (2) Freeze the parameters of the BFReg-NN model except for the last

14



Under review as a conference paper at ICLR 2023

MLP layers, and (3) Fine-tune the last MLP layers to do the future gene expression prediction. The
results are shown in Table 11.

With the pre-training on the missing value task, the performance increases significantly on the MSE
metric. Because biological knowledge is universal and similar in the cell across different tasks, it
is reasonable that pre-trained BFReg-NN improves the other tasks’ performance with fine-tuning.
However, the standard deviation slightly rises, which means a more stable method to fine-tune the
model should be discussed in the future.

D APPENDIX - ABLATION STUDIES

D.1 TOP-20 GENE PAIRS FOR P.P53 GENE

Figure 4: Top-20 frequent interactions for gene p.p53

Figure 4 shows the top-20 frequent interactions for gene p.p53 in breast cancer. The purple color
marks the relations that have been identified in the existing knowledge. All the related genes of
p.p53 are discovered by BFReg-NN. The recall of p.p38 is 0.4933 averaged by the total runs.

D.2 TRAINING SAMPLE INFLUENCE

��
 ��	 ��� ���
����

����

���	

���


����

����

����

���	

�
��

�#�
!"
�

���
��
���
������������#���
����������� �� ����

��� ��
 ��� ���
��	���

����

���	

���


����

����

���

����

�
��

�'�
%&
 

���
���
���
��� !�������'#��
��� !����� $"�$� ��

��� ��	 ��� ���
���


����

���	

����

����

����

�
��

�$�
"#

�

���
���
���
�����������$ ��
����������!��!����

�� ��� ��	 ���
���

���	

���


����

����

���

����

��	�

��	�

�
��

�'�
%&
 

���
���
���
��� !�������'#��
��� !����� $"�$� ��

Figure 5: Influence on missing value task when reducing cell samples
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We test the model performance with the number of training samples. Take the missing value task
as an example, shown in Figure 5. We randomly leave the cell samples in {0.8, 0.6, 0.4, 0.2}
proportions of the dataset, then run the models 5 times to compute the average MSE score. Most
models perform badly when removing more samples. GCN is not stable with a steep curve. MLP
performs worse than others because it only relies on gene expression data while others are also
supported by existing biological knowledge. Compared to GAT, BFReg-NN (basic) and BFReg-NN
(enhanced) have better results. Also, BFReg-NN (enhanced) has the lowest MSE scores and is less
influenced by small cell samples. The reason is that BFReg-NN (enhanced) has the ability to build
new knowledge as the additional features to predict the gene expression.

D.3 STABILITY ANALYSIS
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Figure 6: Distribution of AUC score on the cell classification task

In this section, we report the distribution of AUC score on the cell classification task, shown in
Figure 6. We ignore the GatedNN and GCN/GAT with co-expression knowledge due to their poor
performance. The results of MLP are in a large range or have outliers, indicating it is severely
influenced by random seeds. GCN, transformer and BFReg-NN (enhanced) have fewer outliers over
four datasets. GCN has a low AUC score, while transformer and BFReg-NN (enhanced) perform
well in both stability and accuracy, which means learning complex relations is beneficial in the
cell classification task. However, the average score of BFReg-NN (enhanced) is still higher than the
transformer in most cases, because it uses confident knowledge to define important regulations. GAT
and BFReg-NN (basic) are less stable than the above three, but BFReg-NN (basic) achieves better
results than GAT. In conclusion, BFReg-NN (enhanced) consistently obtains stable and accurate
predictions.

Table 12: Stablity analysis of BFReg-NN.
Metrics GSE muscle diaphragm lung trachea

AUC 0.9399 0.9046 0.8201 0.9065 0.9540
STD 0.0583 0.0096 0.0213 0.0193 0.0059

More specifically, we randomly split the whole dataset into training/validation/test sets and verify
BFReg-NN model stability in Table 12. We observe that the standard deviations are in a small
value, which means BFReg-NN is stable.
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