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ABSTRACT

Diffusion models are becoming widely used in state-of-the-art image, video and
audio generation. Score-based diffusion models stand out among these methods,
necessitating the estimation of the score function of the input data distribution.
In this study, we present a theoretical framework to analyze two-layer neural
network-based diffusion models by reframing score matching and denoising score
matching as convex optimization. We show that the global optimum of the score
matching objective can be attained by solving a simple convex program. Specif-
ically, for univariate training data, we establish that the Langevin diffusion pro-
cess through the learned neural network model converges in the Kullback-Leibler
(KL) divergence to either a Gaussian or a Gaussian-Laplace distribution when the
weight decay parameter is set appropriately. Our convex programs alleviate issues
in computing the Jacobian and also extends to multidimensional score matching.

1 INTRODUCTION

Diffusion model (Sohl-Dickstein et al., 2015) has been invented to tackle the problem of sampling
from unknown distribution in machine learning area and is later shown to be able to generate high
quality graphs in (Ho et al., 2020). Song et al. (2021) recognize diffusion model as an example
of score-based models which exploit Langevine dynamics to produce data from an unknown dis-
tribution which only requires estimating the score function of the data distribution. Specifically,
the simplest form of Langevine Monte Carlo procedure involves first sampling x0 from an initial
distribution, then repeating the following update

xt ← xt−1 +
ϵ

2
∇x log p(x

t−1) +
√
ϵzt

where zt is an independently generated random variable. Here, ∇x log p(x) is known as score
function of the distribution p(x) we desire to sample from. It can be shown that under certain
conditions (Chewi, 2023), we obtain data distributed according to the target distribution p(x) as ϵ
tends to zero and number of iterations tend to infinity. Langevine dynamics sampling procedure
suggests that we can attempt to sample from an unknown distribution as long as we can estimate the
score function of this distribution at each data point, which is the key observation in current diffusion
models designed for generative tasks. In practice, deep neural networks are trained to minimize the
score matching or denoising score matching objective for fitting the score function. However, the
theoretical assurances of Langevin sampling do not immediately apply to neural network based
score models. Crucially, there is a limited understanding of the distribution of samples produced by
these models. Moreover, the standard score matching objective includes the computation of trace
of Jacobian of neural network output (Hyvärinen, 2005), introducing computational challenges. In
addition, this causes major problems when activation function such as ReLU are used, since the
Jacobian of neural network output involves threshold functions which have zero gradient almost
everywhere. Thus, gradient-based optimization method faces fundamental problems during training
of a neural network to minimize the score matching objective.

Recent development of convex neural network literature studies convex programs that are equiva-
lent to the non-convex neural network training problem in the sense that they have the same optimal
value and one can construct a neural network parameter set that achieves global minimum of train-
ing problem by solving the corresponding convex program. Motivated by (Ergen et al., 2023), in
which the authors show the equivalent convex problems for supervised training objectives involving
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deep neural network with threshold activation functions, we derive the convex program for score
matching objective which solves the score estimation training problem to global optimality when
the neural network model consists of two-layers. We then investigate the convex program and show
that when data is univariate and weight decay parameter is set appropriately, the sampled data dis-
tribution converges to either Gaussian or Gaussian-Laplace distribution (defined in Theorem 6.2) in
KL divergence. We also derive convex programs for the denoising score matching objective. Our
theoretical findings are verified by numerical simulations.

1.1 CONTRIBUTIONS

• We show that the score matching objective can be transformed to a convex program and
solved to global optimality for a two-layer neural network, which bypasses the difficulties
faced by gradient-based methods for this specific objective as described in the introduction
section.

• When the data is univariate, we fully characterize the distribution of the samples gener-
ated by the diffusion model where the score function is learned through a two-layer neural
network on arbitrary training data for a certain range of weight decay. We show that the
generated samples converge to either Gaussian or Gaussian-Laplace distribution in KL di-
vergence. For multivariate data, we establish connections between neural network based
diffusion models and score matching objective used in graphical models.

• We present a convex formulation for the denoising score matching objective, an alternative
to traditional score matching, tailored for two-layer neural networks. Additionally, we
explore annealed Langevin sampling.

2 BACKGROUND

Diffusion model has been shown to be useful in various generative tasks including graph generation
(Ho et al., 2020), audio generation (Zhang et al., 2023), and text generation (Wu et al., 2023).
Variants of diffusion models such as denoising diffusion implicit model (Song et al., 2022) have
been designed to speedup sample generation procedure. The key to score-based diffusion model is
the estimation of score function at any data point. In practice, a deep neural network model sθ is
trained to minimize the score matching objective E[∥sθ(x)−∇x log pdata(x)∥22] and is used for score
function estimation. The score matching objective can be shown to be equivalent up to a constant to

Epdata(x)

[
tr (∇xsθ(x)) +

1

2
∥sθ(x)∥22

]
(1)

which is practical since ∇x log pdata(x) is not available. To help alleviate the computation overhead
in computing trace of Jacobian in (1) for deep neural network and high dimensional data, sliced score
matching (Song et al., 2019) that exploits trace estimation method for trace of Jacobian evaluation
and denoising score matching (Vincent, 2011) which considers a perturbed distribution and totally
circumvents the computation of trace of Jacobian have been proposed. Score matching method is
also studied in graphical model selection (Hyvärinen, 2005; Lin et al., 2016). To demonstrate, with
linear neural network, the optimal coefficient that minimizes (1) would give the concentration matrix
which is important in modeling correlation among variables.

Note for commonly used activation function such as ReLU, trace of Jacobian involves threshold
function which has zero gradient almost everywhere. Therefore, conventional gradient-based op-
timizers may face difficulties minimizing the training objective. Recent developments in convex
neural network literature, originated by (Pilanci & Ergen, 2020) and extended to vector output in
(Sahiner et al., 2021), introduced convex programs equivalent to neural network training objectives.
Specifically, convex program for training neural network with threshold activation function studied
by (Ergen et al., 2023) helps tackle the toughness of applying gradient-based method to training ob-
jective which has gradient zero almost everywhere. However, the authors only investigate squared
loss objective in their work. In this work we seek to derive a convex program equivalent to score
matching objective which solves the training problem globally and always finds an optimal neural
network parameter set.
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3 NOTATION

Here we introduce some notations we will use in later sections. We use sign(x) to denote the sign
function taking value 1 when x ∈ [0,∞) and−1 otherwise, and 1 to denote the 0-1 valued indicator
function taking value 1 when the argument is a true Boolean statement. For any vector x, sign(x)
and 1{x ≥ 0} applies elementwise. We denote the pseudoinverse of matrix A as A†. We denote
subgradient of a convex function f : Rd → R at x ∈ Rd as ∂f(x) ⊆ Rd.

4 SCORE MATCHING OBJECTIVE AND NEURAL NETWORK ARCHITECTURES

In this section, we describe the training objective and the neural network architecture we investigate.
Let sθ denote a neural network parameterized by parameter θ with output dimension the same as
input data dimension which is required for score matching estimation. With n data samples, the
empirical version of score matching objective (1) is

SM(sθ(x)) =

n∑
i=1

tr (∇xi
sθ(xi)) +

1

2
∥sθ(xi)∥22.

The final training loss we consider is the above score matching objective together with weight decay
term, which writes

min
θ

SM(sθ(x)) +
β

2
∥θ′∥22, (2)

where θ′ ⊆ θ denotes the parameters to be regularized. Let m denote number of hidden neurons.
Consider two-layer neural network architecture of general form as below

sθ(x) = W (2)σ
(
W (1)x+ b(1)

)
+ V x+ b(2) (3)

with activation function σ, parameter θ = {W (1), b(1),W (2), b(2), V } and θ′ = {W (1),W (2)}
where x ∈ Rd is the data matrix, W (1) ∈ Rm×d is the first-layer weight, b(1) ∈ Rm is the first-layer
bias, W (2) ∈ Rd×m is the second-layer weight, b(2) ∈ Rd is the second-layer bias and V ∈ Rd×d

is the skip connection coefficient. We will consider network models of the form (3) with ReLU,
i.e., σ(t) = (t)+, and absolute value, i.e., σ(t) = |t| activations and also with or without the skip
connection term V x.

4.1 UNIVARIATE DATA

We consider training data x1, . . . , xn ∈ R, and assume that these values are distinct. The fol-
lowing theorem gives the convex program equivalent to the score matching objective (2) for one-
dimensional data and for both ReLU and absolute value activation with or without skip connection.
Theorem 4.1. When σ is ReLU or absolute value activation and for both the network model with the
skip connection (V ̸= 0) and without (V = 0) skip connection, denote the optimal score matching
objective value (2) with sθ specified in (3) as p⋆, when m ≥ m∗ and β > β0,

p∗ =min
y

1

2
yTATAy + bT y + c+ dβ∥y∥1 , (4)

where m∗ = ∥y∗∥0, and y∗ is any optimal solution to (4).

We specify {β0, A, b, c, d} for each of the four following neural network architectures correspond-
ing to σ being ReLU or absolute value activation with or without skip connection and analyze the
predicted score function accordingly. For sake of page limit, we move the result for neural network
with absolute value activation and with skip connection to Appendix A.2.

4.1.1 NEURAL NETWORK TYPE I: RELU ACTIVATION WITH NO SKIP CONNECTION.

Here we consider σ to be ReLU activation and V = 0, then Theorem 4.1 holds with β0 = 1, A =
[Ā1, Ā1, Ā2, Ā2] ∈ Rn×4n, b = [1TC1, 1

TC2,−1TC3,−1TC4]
T ∈ R4n, c = 0, d = 1 where

Ā1 =
(
I − 1

n11
T
)
A1, Ā2 =

(
I − 1

n11
T
)
A2 with [A1]ij = (xi−xj)+ and [A2]ij = (−xi+xj)+,
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Figure 1: Predicted score function (left) and log of the corresponding probability density (right)
for univariate data and type I neural network architecture. The left plot shows all optimal score
predictions corresponding to solution to the convex program (4) for weight decay parameter β1 <
β ≤ n and univariate input data of arbitrary distribution.

[C1]ij = 1{xi − xj ≥ 0}, [C2]ij = 1{xi − xj > 0}, [C3]ij = 1{−xi + xj ≥ 0}, [C4]ij =
1{−xi + xj > 0}. See Appendix A.3 for proof and reconstruction of optimal parameter set θ⋆.
Consider convex program (4), when β > ∥b∥∞, y = 0 is optimal and the neural network will
always output zero. When β1 < β ≤ ∥b∥∞ for some threshold β1, y is all zero except for the first
and the 3nth entry, which have value (β − n)/2nv + t and (n − β)/2nv + t for any |t| ≤ n−β

2nv

correspondingly1. For any input data point x̂, the predicted score ŷ is
ŷ = β−n

nv (x̂− µ), x1 ≤ x̂ ≤ xn

ŷ = −(n−β
2nv + t)x̂+ (β−n

2nv + t)x1 +
n−β
nv µ, x̂ < x1

ŷ = (β−n
2nv + t)x̂− (n−β

2nv + t)xn + n−β
nv µ. x̂ > xn

where µ =
∑n

i=1 xi/n denotes the sample mean and v =
∑n

i=1(xi − µ)2/n denotes the sample
variance. Figure 1 shows the score function prediction and log of corresponding probability density
given by reconstructed optimal neural network via solving convex program (4). Note within sampled
data range, the predicted score function aligns with score function of Gaussian distribution param-
eterized by sample mean µ and sample variance v; outside data range, the predicted score function
is a linear interpolation. The integration of score function is always concave in this case, and there-
fore Langevine dynamics sampling with predicted score function has well-established convergence
guarantees (Durmus & Moulines, 2016a; Dalalyan, 2016; Durmus & Moulines, 2016b).

4.1.2 NEURAL NETWORK TYPE II: ABSOLUTE VALUE ACTIVATION WITHOUT SKIP
CONNECTION.

When σ is absolute value activation and V = 0, then Theorem 4.1 holds with β0 = 1, A =
[Ā1, Ā1] ∈ Rn×2n, b = [1TC1,−1TC2]

T ∈ R2n, c = 0, d = 1. where Ā1 =
(
I − 1

n11
T
)
A1,

[A1]ij = |xi−xj |, [C1]ij = sign(xi−xj) and [C2]ij = sign(−xi+xj). See Appendix A.4 for the
proof and reconstruction of optimal network parameter set θ⋆. When β > ∥b∥∞, y = 0 is optimal
and the predicted score is always zero. When β is decreased further to some threshold β2 < n, i.e.,
when β2 < β ≤ n, then

y =
[
β−n
2nv + t, 0, . . . , 0, n−β

2nv + t
]T

is optimal with any t ∈ R such that |t| ≤ n−β
2nv where µ and v denotes the sample mean and sample

variance as described in Section 4.1.1 2. For any test data x̂, the corresponding predicted score ŷ is
given by 

ŷ = β−n
nv (x̂− µ), x1 ≤ x̂ ≤ xn

ŷ = −2tx̂+ (β−n
nv + 2t)x1 +

n−β
nv µ, x̂ < x1

ŷ = 2tx̂− (n−β
nv + 2t)xn + n−β

nv µ. x̂ > xn

(5)

Surprisingly, the global optimum set is parameterized by the scalar variable t, and is not unique.
Figure 2 shows the score function prediction and its integration given by reconstructed optimal neu-
ral network via solving convex program (4). The score prediction corresponds to score of Gaussian

1see Appendix A.10 for proof and value of β1.
2see Appendix A.11 for proof and value of β2.
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Figure 2: Predicted score function (left) and log of the corresponding probability density (right)
for univariate data and type II neural network architecture. The left plot shows all optimal score
predictions corresponding to solution to the convex program (4) for weight decay parameter β2 <
β ≤ n and univariate input data of arbitrary distribution.

distribution parameterized by sample mean and sample variance which is the same as the score pre-
dicted by type I neural network within the sampled data range as described in Section 4.1.1. The
score prediction outside sampled data range is a linear interpolation with a different slope from what
is predicted by the type I neural network. This underscores the distinction between absolute value
activation and ReLU activation. The corresponding probability density is log-concave only when
t = 0. Notably, the solution with t = 0 corresponds to the unique minimum norm solution of the
convex program, highlighting its significance.

4.1.3 NEURAL NETWORK TYPE III: RELU ACTIVATION WITH SKIP CONNECTION

Here we consider σ to be ReLU activation with V ̸= 0, then Theorem 4.1 holds with β0 = 1, A =
B

1
2A1, b = AT

1 (−nx̄/∥x̄∥22) + b1, c = −n2/(2∥x̄∥22), d = 2 where B = I − Px̄ with Px̄ =
x̄x̄T /∥x̄∥22, and A1, b1 are identical to A, b defined in Section 4.1.2 respectively. Here, x̄j := xj −∑

i xi/n denotes mean-subtracted data vector. See Appendix A.5 for proof and reconstruction of the
optimal parameter set θ⋆. In the convex program (4), y = 0 is an optimal solution when 2β ≥ ∥b∥∞.
Therefore, following the reconstruction procedure described in Appendix A.5, the corresponding
neural network parameter set is given by {W (1) = 0, b(1) = 0,W (2) = 0, b(2) = µ/v, V = −1/v}
with µ and v denotes the sample mean and sample variance as described in Section 4.1.1. For any
test data x̂, the corresponding predicted score is given by

ŷ = V x̂+ b(2) = −1

v
(x̂− µ),

which gives the score function of Gaussian distribution with mean being sample mean and variance
being sample variance.Therefore, adding skip connection would change the zero score prediction to
a linear function parameterized by sample mean and variance in the large weight decay regime.

4.2 EXTENSION TO MULTIVARIATE DATA

The below theorem gives the convex program equivalent to the score matching objective (2) for
high-dimensional data and for both ReLU and absolute value activation without skip connection and
bias terms. More precisely, d is arbitrary and b(1) = 0, b(2) = 0, V = 0. σ is either ReLU activation
or absolute value activation. For data matrix X ∈ Rn×d and any arbitrary vector u ∈ Rd, We
consider the set of diagonal matrices

D := {diag(1{Xu ≥ 0})},

which takes value 1 or 0 along the diagonal that indicates the set of possible arrangement activation
patterns for the ReLU activation. Indeed, we can enumerate the set of sign patterns asD = {Di}Pi=1
where P is bounded by

P ≤ 2r

(
e(n− 1)

r

)r

for r = rank(X) (Pilanci & Ergen, 2020; Stanley et al., 2004).
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Theorem 4.2. When σ is ReLU or absolute value activation and b(1) = 0, b(2) = 0, V = 0, β = 0,
denote the optimal score matching objective value (2) with sθ specified in (3) as p⋆, when m ≥ 2Pd,

p⋆ = min
Wj

1

2

∥∥∥∥∥∥
P∑

j=1

DjXWj

∥∥∥∥∥∥
2

F

+

P∑
j=1

tr(Dj)tr(Wj), (6)

where Wj ∈ Rd×d. Dj = Dj when σ is ReLU activation and Dj = 2Dj − I when σ is absolute
value activation.

Proof. see Appendix A.7.

4.2.1 CONNECTION TO GRAPHICAL MODELS

For ReLU activation, denote X̃ = [D1X, . . . ,DPX], Ṽ = [tr(D1)I, tr(D2)I, . . . , tr(DP )I],W =
[W1, . . . ,WP ]

T , then the convex program (6) can be written as

min
W

1

2

∥∥X̃W
∥∥2
F
+ ⟨Ṽ ,W ⟩. (7)

When the optimal value is finite, e.g., Ṽ ∈ range(X̃T X̃), an optimal solution to (7) is given by

W = (X̃T X̃)†Ṽ

=

∑k∈S11
XkX

T
k

∑
k∈S12

XkX
T
k · · ·∑

k∈S21
XkX

T
k

∑
k∈S22

XkX
T
k · · ·

· · ·

†


tr(D1)I
tr(D2)I

...
tr(DP )I

 ,

where Sij = {k : XT
k ui ≥ 0, XT

k uj ≥ 0} and ui is the generator of Di = diag(1{Xui ≥ 0}).
Remark 4.3. Note that the above model can be seen as a piecewise empirical covariance estimator
which partitions the space with hyperplane arrangements. When P = 1, D1 = I and XTX is
invertible, then (X̃T X̃)† reduces to the empirical precision matrix which models the correlation
between different data points. This was observed in the application of score matching objective in
graphical models (Hyvärinen, 2005; Lin et al., 2016). Here, we obtain a more expressive model with
the non-linear neural network through data partitioning.

5 DENOISING SCORE MATCHING

To tackle the difficulty in computation of trace of Jacobian required in score matching objective (1),
denoising score matching ((Vincent, 2011)) first perturbs data point with a predefined noise distri-
bution and then estimates the score of the perturbed data distribution. When the noise distribution is
chosen to be standard Gaussian, for some ϵ > 0, the objective is equivalent to

min
θ

Ex∼p(x)Eδ∼N (0,I)

∥∥∥∥sθ(x+ ϵδ)− δ

ϵ

∥∥∥∥2
2

,

and the empirical version is given by

DSM(sθ) =

n∑
i=1

1

2

∥∥∥∥sθ(xi + ϵδi)−
δi
ϵ

∥∥∥∥2
2

, (8)

where {xi}ni=1 are samples from p(x) and {δi}ni=1 are samples from standard Gaussian. The final
training loss we consider is the above score matching objective together with weight decay term,
which writes

min
θ

DSM(sθ(x)) +
β

2
∥θ′∥22, (9)

where θ′ ⊆ θ denotes the parameters to be regularized. Note (9) circumvents the computation of
trace of Jacobian and is thus more applicable for training tasks in large data regime. One drawback
is that optimal sθ that minimizes (9) measures score function of the perturbed data and is only close
to original data distribution when noise is small enough. We consider the same neural network
architecture and types described in Section 4 below.
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5.1 UNIVARIATE DATA

The following theorem gives the convex program equivalent to the score matching objective (9)
for one-dimensional data and for both ReLU and absolute value activation with or without skip
connection. Let l denotes the label vector, i.e, l = [δ1/ϵ, δ2/ϵ, . . . , δn/ϵ]

T .
Theorem 5.1. When σ is ReLU or absolute value activation and for both the network model with the
skip connection (V ̸= 0) and without (V = 0) skip connection, denote the optimal score matching
objective value (9) with sθ specified in (3) as p⋆, when β > 0 and m ≥ m∗,

p⋆ =min
y

1

2
∥Ay + b∥22 + dβ∥y∥1 , (10)

where m∗ = ∥y∗∥0, and y∗ is any optimal solution to (10).

We specify {A, b, d} for each of the four neural network architecture corresponding to σ being
ReLU or absolute value activation with or without skip connection.When σ is ReLU activation and
V = 0, Theorem 5.1 holds with A = [Ā1, Ā2] ∈ Rn×2n, b = l̄ ∈ Rn, d = 1 where Ā1 =(
I − 1

n11
T
)
A1, Ā2 =

(
I − 1

n11
T
)
A2 with [A1]ij = (xi − xj)+ and [A2]ij = (−xi + xj)+.

l̄j = lj −
∑

i li/n is the mean-subtracted label vector. When σ is absolute value activation and
V = 0, the above theorem holds with A =

(
I − 1

n11
T
)
A3 ∈ Rn×n, b = l̄ ∈ Rn, d = 1 where

[A3]ij = |xi − xj |. When σ is the ReLU activation and V ̸= 0, the above theorem holds with
A = B

1
2

(
I − 1

n11
T
)
A3 ∈ Rn×n, b = B

1
2 l̄ ∈ Rn, d = 2 where B = I −Px̄ with Px̄ = x̄x̄T /∥x̄∥22

and x̄ being the mean-subtracted data vector as defined in Section 4.1.3. When σ is absolute value
activation and V ̸= 0, the above theorem holds with the same A, b as for ReLU activation with skip
connection and d = 1. See Appendix A.8 for proof and reconstruction of optimal neural network
parameter set θ⋆.

5.2 EXTENSION TO HIGH-DIMENSIONAL DATA

The below theorem gives the convex program equivalent to the score matching objective (9) for
high-dimensional data and for both ReLU and absolute value activation without skip connection and
bias terms. Namely, d is arbitrary and b(1) = 0, b(2) = 0, V = 0. σ is either ReLU or absolute
value activation. Let L ∈ Rn×d denote the label matrix, i.e., Li = δi/ϵ, and D = {Di}Pi=1 be the
arrangement activation patterns for ReLU activation as defined in Section 4.2.
Theorem 5.2. When σ is ReLU or absolute value activation and b(1) = 0, b(2) = 0, V = 0, β = 0,
denote the optimal score matching objective value (9) with sθ specified in (3) as p⋆, when m ≥ 2Pd,

p⋆ = min
Wj

1

2

∥∥∥∥∥∥
P∑

j=1

DjXWj − L

∥∥∥∥∥∥
2

F

(11)

where Wj ∈ Rd×d. Dj = Dj when σ is ReLU activation and Dj = 2Dj − I when σ is absolute
value activation.

Proof. see Appendix A.9.

6 ALGORITHM AND CONVERGENCE RESULT

Strong convergence guarantees for the Langevin Monte Carlo method are often contingent upon the
log-concavity of the target distribution. Notably, in Section 4.1 we analyze the predicted score func-
tion for different neural network architecture in certain ranges of weight decay. Some of these score
functions correspond to log concave distributions and thus we can exploit existing convergence re-
sults for Langevine dynamics to derive the convergence of the diffusion model with a neural network
based score function. Here, we follow notations used in Section 4.1. Algorithms of score matching
and Langevine sampling are given in Algorithm 1 and 2 respectively. To the best of our knowl-
edge, prior to our study, there had been no characterization of the sample distribution generated by
Algorithm 2 when the score model is trained using Algorithm 1.
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Algorithm 1 Score Matching

Input: training data x1, . . . , xn ∈ Rd

minimize
n∑

i=1

1

2
s2θ(xi) +∇θsθ(xi) +

β

2
∥θ′∥22

Algorithm 2 Langevine Monte Carlo

Initialize: x0 ∼ µ0(x)
for t = 1, 2, ..., T do
zt ∼ N (0, 1)
xt ← xt−1 + ϵ

2sθ(x
t−1) +

√
ϵzt

end for

Theorem 6.1. When sθ is of neural network type III and IV and β > ∥b∥∞, let π denote Gaussian
distribution with mean µ and variance v. For any τ ∈ [0, 1], if we take step size ϵ ≍ 2τ2v, then for
the mixture distribution µ = T−1

∑T
t=1 x

t and µ′ = T−1
∑2T

t=T+1 x
t, it holds that W2(µ, π) ≤ τ

and
√

KL(µ′∥π) ≤ τ after

O

(
1

τ2
log

W2(µ0, π)

τ

)
iterations

Proof. see Appendix A.12.1.

Theorem 6.2. When sθ is of neural network type II and corresponds to the min-norm solution
to the corresponding convex program (4) and β2 < β ≤ n, let π1 denote the Gaussian-Laplace
distribution (defined below). Let L = (n − β)max(|x1 − µ|, |xn − µ|)/nv. For any τ > 0, if
we take step size ϵ ≍ 2τ2/L2, then for the mixture distribution µ = T−1

∑T
t=1 x

t, it holds that√
KL(µ∥π1) ≤ τ after

O

(
L2W 2

2 (µ
+
0 , π

1)

τ4

)
iterations,

where µ+
0 = x0 + ϵsθ(x

0)/2 and π1 satisfies

π1 ∝


exp(β−n

nv (x1 − µ)x+ n−β
2nv x

2
1), x < x1,

exp(β−n
2nv x

2 − µ(β−n)
nv x), x1 ≤ x ≤ xn,

exp(β−n
nv (xn − µ)x+ n−β

2nv x
2
n), x ≥ xn.

Proof. see Appendix A.12.2.

7 NUMERICAL RESULTS

We now present our simulation results. See Appendix A.14 for additional results. For univariate data
and two-layer neural network with ReLU activation and without skip connection, Figure 3 shows
our simulation results for score matching tasks. We take n = 500 data points sampled from standard
Gaussian and we take weight decay parameter β = ∥b∥∞ − 1.3 The left plot in Figure 3 shows the
training loss where the dashed blue line is the objective value obtained by optimal neural network
reconstructed from our derived convex program (4). For non-convex neural network training, we
run 10 trials with random parameter initiation and use Adam as optimizer with step size 1e − 2.
We train for 500 epochs. The result shows that our convex program solves the training problem
globally and stably. The gap between the non-convex training loss and the objective value obtained
by our reconstructed optimal neural network can be caused by the non-smoothness in the training
objective. The middle plot in Figure 3 is the score prediction given by optimal reconstructed neural
network, which confirms our derived score function (5). The right plot shows the histogram for
running Langevine dynamics sampling in Algorithm 2 with 105 data points and T = 500 iterations,
we take µ0 to be uniform distribution from −10 to 10 and ϵ = 1.

Figure 4 shows our simulation results for denoising score matching tasks. The left plot in Figure
4 shows denoising score matching training loss where the dashed blue line indicates the loss of
optimal neural network reconstructed from our derived convex program (10). We take weight decay
parameter β = 0.5, n = 1000 data points with standard Gaussian distribution, and noise level

3see Section 4 for definition of b.

8
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ϵ = 0.1 in (8). The non-convex training uses Adam with step size 1e − 2 and takes 200 epochs.
We run 10 trials. The notable gap between non-convex training loss and the reconstructed optimal
neural network loss reveals that our convex program solves the training problem globally and stably.
The middle plot shows the histogram for samples generated via annealed Langevine process (see
Appendix A.13 for algorithm, with L = 10, T = 10, ϵ0 = 2e − 5, [σ1, . . . , σL] being the uniform
grid from 1 to 0.01, and µ0 being uniform distribution from −1 to 1) where the non-convex trained
neural network is used as the score estimator and the right plot shows the same histogram with
reconstructed optimal neural network as score estimator. The right histogram is closer to histogram
of standard Gaussian samples compared to the middle histogram, which reveals the superiority of our
reconstructed optimal neural network over non-convex trained neural network in score prediction.
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Figure 3: Simulation results for score matching tasks with type I neural network. The left plot shows
training loss where the dashed blue line indicates loss of neural network reconstructed from convex
program (4). The middle plot shows score prediction from reconstructed optimal neural network.
The right plot shows sampling histogram via Langevine process with reconstructed optimal neural
network as score estimator. The ground truth distribution is standard Gaussian.
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Figure 4: Simulation results for denoising score matching tasks with type I neural network. The left
plot shows training loss where the dashed blue line indicates loss of neural network reconstructed
from convex program (10). The middle plot shows sampling histogram via annealed Langevine
process with non-convex trained neural network as score predictor. The right plot shows sampling
histogram via annealed Langevine process with reconstructed optimal neural network as score pre-
dictor. The ground truth distribution is standard Gaussian, which is recovered by our model.

8 CONCLUSION

In this work, we analyze neural network based diffusion models from the lens of convex optimiza-
tion. We derive an equivalent convex program for two-layer neural networks trained using the score
matching objective, which solves the problem globally and bypasses the difficulty of using gradient-
based optimizers due to the Jacobian terms. We also derive the convex program for denoising score
matching objective. When data is univariate, we find the optimal set of the convex program for the
score matching objective for certain weight decay range, and show that for arbitrary data distribu-
tions, the neural-network-learned score function is piecewise linear and can always be parameterized
by sample mean and sample variance. We established convergence results for Langevine sampling
with neural-network-learned score function.
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A APPENDIX

A.1 LEMMAS

Lemma A.1. The below constraint set is strictly feasible only when β > 1.

|zT (x− 1xi)+ − 1T1{x− 1xi ≥ 0}| ≤ β

|zT (x− 1xi)+ − 1T1{x− 1xi > 0}| ≤ β

|zT (−x+ 1xi)+ + 1T1{−x+ 1xi ≥ 0}| ≤ β

|zT (−x+ 1xi)+ + 1T1{−x+ 1xi > 0}| ≤ β

zT 1 = 0

∀i = 1, · · · , n

Proof. Consider without loss of generality that x1 < x2 < · · · < xn. Let k = −
∑m

j=1 zj(xj −
xi) + m for some 1 ≤ m ≤ n, the first four constraints with i = m are then |zTx − (n + 1) +
k|, |zTx − (n + 1) + k + 1|, |k|, |k − 1|. When i = n, the first constraint is β ≥ 1. Thus β > 1 is
necessary for the constraint set to be strictly feasible. Since we can always find z⋆ satisfying

xT z⋆ = n

1T z⋆ = 0

(x− 1xi)
T
+z

⋆ − 1T1{x− 1xi ≥ 0} = 0 ∀i = 2, · · · , n− 1

Note such z⋆ satisfies all constraints in the original constraint set when β > 1. Therefore when
β > 1, the original constraint is strictly feasible.

Lemma A.2. The below constraint set is strictly feasible only when β > 1.
|zT |x− 1xi| − 1T sign(x− 1xi)| ≤ β

|zT | − x+ 1xi|+ 1T sign(−x+ 1xi)| ≤ β

zT 1 = 0

∀i = 1, · · · , n

Proof. Consider without loss of generality that x1 < x2 < · · · < xn. Then taking i = 1 and n in
the first constraint gives |zTx − n| ≤ β and |zTx − n + 2| ≤ β. It’s necessary to have β > 1 and
zTx = n− 1 to have both constraints strictly satisfiable. Since we can always find z⋆ satisfying the
below linear system

xT z⋆ = n− 1

1T z⋆ = 0

|x− 1xi|T z⋆ − 1T sign(x− 1xi) = −1 ∀i = 2, · · · , n− 1

Note such z⋆ also satisfies
|| − x+ 1xi|T z⋆ + 1T sign(−x+ 1xi)| ≤ 1

Therefore when β > 1, the original constraint set is strictly feasible.

Lemma A.3. The below constraint set is strictly feasible only when β > 2.
|zT |x− 1xi| − 1T sign(x− 1xi)| ≤ β

|zT | − x+ 1xi|+ 1T sign(−x+ 1xi)| ≤ β

zT 1 = 0

zTx = n

∀i = 1, · · · , n

Proof. Consider without loss of generality that x1 < x2 < · · · < xn. Then taking i = n in the first
constraint gives | − n+ (n− 2)| ≤ β, which indicates that β > 2 is necessary for the constraint set
to be strictly feasible. Since we can always find z⋆ satisfying

xT z⋆ = n

1T z⋆ = 0

|x− 1xi|T z⋆ − 1T sign(x− 1xi) = 0 ∀i = 2, · · · , n− 1

Note such z⋆ also satisfies
|| − x+ 1xi|T z⋆ + 1T sign(−x+ 1xi)| ≤ 2

Therefore when β > 2, the original constraint set is strictly feasible.

11
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A.2 NEURAL NETWORK TYPE IV: ABSOLUTE VALUE ACTIVATION WITH SKIP CONNECTION.

We consider σ to be absolute value activation with V ̸= 0, then Theorem 4.1 holds with the same
A, b, c as in Section 4.1.3 and with β0 = 2, d = 1. See Appendix A.6 for proof and reconstruction
of optimal parameter set θ⋆. Consider convex program (4), when β > ∥b∥∞, y = 0 is optimal. Fol-
lowing the reconstruction procedure described in Appendix A.6, the corresponding neural network
parameter set is given by {W (1) = 0, b(1) = 0,W (2) = 0, b(2) = µ/v, V = −1/v} with µ and v
denotes the sample mean and sample variance as described in Section 4.1.1. For any testing data x̂,
the corresponding predicted score is given by

ŷ = V x̂+ b(2) = −1

v
(x̂− µ),

which is the score function of Gaussian distribution with mean being sample mean and variance
being sample variance, just as the case for σ being ReLU activation and V ̸= 0 described in Section
4.1.3.

A.3 PROOF FOR THEOREM 4.1: NEURAL NETWORK TYPE I

Proof. Consider data x ∈ Rn, then the score matching objective is reduced to

p⋆ = min
w,α,b

1

2

∥∥∥∥∥∥
m∑
j=1

(xwj + 1bj)+αj + 1b0

∥∥∥∥∥∥
2

2

+1T

 m∑
j=1

wjαj1{xwj + 1bj ≥ 0}

+
1

2
β

m∑
j=1

(w2
j+α2

j ).

According to Lemma 2 in Pilanci & Ergen (2020), after rescaling, the above problem is equivalent
to

min
w,α,b
|wj |=1

1

2

∥∥∥∥∥∥
m∑
j=1

(xwj + 1bj)+αj + 1b0

∥∥∥∥∥∥
2

2

+ 1T

 m∑
j=1

wjαj1{xwj + 1bj ≥ 0}

+ β

m∑
j=1

|αj |,

which can be written as

min
w,α,b,r1,r2

|wj |=1

1

2
∥r1∥22 + 1T r2 + β

m∑
j=1

|αj |

s.t. r1 =

m∑
j=1

(xwj + 1bj)+αj + 1b0

r2 =

m∑
j=1

wjαj1{xwj + 1bj ≥ 0}.

The dual problem writes

d⋆ = max
z1,z2

min
w,α,b,r1,r2

|wj |=1

1

2
∥r1∥22 + 1T r2 + β

m∑
j=1

|αj |+ zT1

r1 −
m∑
j=1

(xwj + 1bj)+αj − 1b0


+ zT2

r2 −
m∑
j=1

wjαj1{xwj + 1bj ≥ 0}

 ,

which gives a lower bound of p⋆. Minimizing over r1, r2, αj gives

max
z

min
b0
−1

2
∥z∥22 − b0z

T 1

s.t. |zT (xwj + 1bj)+ − wj1
T
1{xwj + 1bj ≥ 0}| ≤ β, ∀|Wj | = 1,∀bj .

12
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For the constraints to hold, we must have zT 1 = 0 and bj takes values over xj’s. The above is
equivalent to

max
z

−1

2
∥z∥22

s.t.



|zT (x− 1xi)+ − 1T1{x− 1xi ≥ 0}| ≤ β

|zT (x− 1xi)+ − 1T1{x− 1xi > 0}| ≤ β

|zT (−x+ 1xi)+ + 1T1{−x+ 1xi ≥ 0}| ≤ β

|zT (−x+ 1xi)+ + 1T1{−x+ 1xi > 0}| ≤ β

zT 1 = 0

∀i = 1, . . . , n,
(12)

According to Lemma A.1, when β > 1, the constraints in (12) are strictly feasible, thus Slater’s
condition holds and the dual problem writes

d⋆ = min
z0,...,z7,z8

s.t.z0,...,z7≥0

max
z
−1

2
∥z∥22 +

n∑
i=1

z0i
(
zT (x− 1xi)+ − 1T1{x− 1xi ≥ 0}+ β

)
+

n∑
i=1

z1i
(
−zT (x− 1xi)+ + 1T1{x− 1xi ≥ 0}+ β

)
+

n∑
i=1

z2i
(
zT (x− 1xi)+ − 1T1{x− 1xi > 0}+ β

)
+

n∑
i=1

z3i
(
−zT (x− 1xi)+ + 1T1{x− 1xi > 0}+ β

)
+

n∑
i=1

z4i
(
zT (−x+ 1xi)+ + 1T1{−x+ 1xi ≥ 0}+ β

)
+

n∑
i=1

z5i
(
−zT (−x+ 1xi)+ − 1T1{−x+ 1xi ≥ 0}+ β

)
+

n∑
i=1

z6i
(
zT (−x+ 1xi)+ + 1T1{−x+ 1xi > 0}+ β

)
+

n∑
i=1

z7i
(
−zT (−x+ 1xi)+ − 1T1{−x+ 1xi > 0}+ β

)
+ z8z

T 1,

which is equivalent to

min
z0,...,z7,z8

s.t.z0,...,z7≥0

max
z
−1

2
∥z∥22 + eT z + f,

where e =
∑n

i=1 z0i(x−1xi)+−
∑n

i=1 z1i(x−1xi)++
∑n

i=1 z2i(x−1xi)+−
∑n

i=1 z3i(x−1xi)++∑n
i=1 z4i(−x+1xi)+−

∑n
i=1 z5i(−x+1xi)++

∑n
i=1 z6i(−x+1xi)+−

∑n
i=1 z7i(−x+1xi)++1z8

and f = −
∑n

i=1 z0i1
T
1{x− 1xi ≥ 0}+

∑n
i=1 z1i1

T
1{x− 1xi ≥ 0}−

∑n
i=1 z2i1

T
1{x− 1xi >

0}+
∑n

i=1 z3i1
T
1{x− 1xi > 0}+

∑n
i=1 z4i1

T
1{−x+ 1xi ≥ 0} −

∑n
i=1 z5i1

T
1{−x+ 1xi ≥

0}+
∑n

i=1 z6i1
T
1{−x+1xi > 0}−

∑n
i=1 z7i1

T
1{−x+1xi > 0}+β(

∑7
i=0 ∥zi∥1). Maximizing

over z gives

min
z0,...,z7,z8

s.t.z0,...,z7≥0

1

2
∥e∥22 + f,

Simplifying to get

min
y0,y1,y2,y3,y4

1

2
∥A1(y0 + y1) +A2(y2 + y3) + 1y4∥22 + 1TC1y0 − 1TC3y2

+1TC2y1 − 1TC4y3 + β(∥y0∥1 + ∥y1∥1 + ∥y2∥1 + ∥y3∥1).
Minimizing over y4 gives the convex program (4) in Theorem 4.1. Once we obtain optimal solution
y⋆ to problem 4, we can take

w⋆
j =

√
y⋆j , α

⋆
j =

√
y⋆j , b

⋆
j = −

√
y⋆jxj for j = 1, . . . , n,

w⋆
j =

√
y⋆j , α

⋆
j =

√
y⋆j , b

⋆
j = −

√
y⋆j (xj−n + ϵ) for j = n+ 1, . . . , 2n,

w⋆
j = −

√
y⋆j , α

⋆
j =

√
y⋆j , b

⋆
j =

√
y⋆jxj−2n for j = 2n+ 1, . . . , 3n,

w⋆
j = −

√
y⋆j , α

⋆
j =

√
y⋆j , b

⋆
j =

√
y⋆j (xj−3n − ϵ) for j = 3n+ 1, . . . , 4n,

b⋆0 = − 1
n1

T ([A1, A1, A2, A2]y
⋆),

then score matching objective has the same value as optimal value of convex program (4) as ϵ→ 0,
which indicates p⋆ = d⋆ and the above parameter set is optimal.

13



Under review as a conference paper at ICLR 2024

A.4 PROOF FOR THEOREM 4.1: NEURAL NETWORK TYPE II

Proof. Consider data x ∈ Rn, then the score matching objective is reduced to

p⋆ = min
w,α,b

1

2

∥∥∥∥∥∥
m∑
j=1

|xwj + 1bj |αj + 1b0

∥∥∥∥∥∥
2

2

+1T

 m∑
j=1

wjαjsign(xwj + 1bj)

+
1

2
β

m∑
j=1

(w2
j +α2

j ).

According to Lemma 2 in Pilanci & Ergen (2020), after rescaling, the above problem is equivalent
to

min
w,α,b
|wj |=1

1

2

∥∥∥∥∥∥
m∑
j=1

|xwj + 1bj |αj + 1b0

∥∥∥∥∥∥
2

2

+ 1T

 m∑
j=1

wjαjsign(xwj + 1bj)

+ β

m∑
j=1

|αj |,

which can be written as

min
w,α,b,r1,r2

|wj |=1

1

2
∥r1∥22 + 1T r2 + β

m∑
j=1

|αj |

s.t. r1 =

m∑
j=1

|xwj + 1bj |αj + 1b0

r2 =

m∑
j=1

wjαjsign(xwj + 1bj).

(13)

The dual problem of (13) writes

d⋆ = max
z1,z2

min
w,α,b,r1,r2

|wj |=1

1

2
∥r1∥22 + 1T r2 + β

m∑
j=1

|αj |+ zT1

r1 −
m∑
j=1

|xwj + 1bj |αj − 1b0


+ zT2

r2 −
m∑
j=1

wjαjsign(xwj + 1bj)

 ,

which is a lower bound of optimal value to the original problem, i.e., p⋆ ≥ d⋆. Minimizing over r1
and r2 gives

max
z

min
w,α,b
|wj |=1

−1

2
∥z∥22+β

m∑
j=1

|αj |−zT
 m∑

j=1

|xwj + 1bj |αj + 1b0

+1T
m∑
j=1

wjαjsign(xwj+1bj).

Minimizing over αj gives

max
z

min
b0
−1

2
∥z∥22 − b0z

T 1

s.t. |zT |xwj + 1bj | − wj1
T sign(xwj + 1bj)| ≤ β, ∀|wj | = 1,∀bj ,

which is equivalent to

max
z

min
b0
−1

2
∥z∥22 − b0z

T 1

s.t.
{
|zT |x+ 1bj | − 1T sign(x+ 1bj)| ≤ β

|zT | − x+ 1bj |+ 1T sign(−x+ 1bj)| ≤ β
∀bj .

For the constraints to hold, we must have zT 1 = 0 and bj takes values over xj’s. Furthermore, since
sign is discontinuous at input 0, we add another function sign∗ which takes value −1 at input 0 to
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cater for the constraints. The above is equivalent to

max
z

−1

2
∥z∥22

s.t.



|zT |x− 1xi| − 1T sign(x− 1xi)| ≤ β

|zT |x− 1xi| − 1T sign∗(x− 1xi)| ≤ β

|zT | − x+ 1xi|+ 1T sign(−x+ 1xi)| ≤ β

|zT | − x+ 1xi|+ 1T sign∗(−x+ 1xi)| ≤ β

zT 1 = 0

∀i = 1, . . . , n.
(14)

Since the second constraint overlaps with the third, and the fourth constraint overlaps with the first,
(14) is equivalent to

max
z
−1

2
∥z∥22

s.t.


|zT |x− 1xi| − 1T sign(x− 1xi)| ≤ β

|zT | − x+ 1xi|+ 1T sign(−x+ 1xi)| ≤ β

zT 1 = 0

∀i = 1, . . . , n.
(15)

According to Lemma A.2, when β > 1, the constraints in (15) are strictly feasible, thus Slater’s
condition holds and the dual problem writes

d⋆ = min
z0,z1,z2,z3,z4

s.t.z0,z1,z2,z3≥0

max
z
−1

2
∥z∥22 +

n∑
i=1

z0i
(
zT |x− 1xi| − 1T sign(x− 1xi) + β

)
+

n∑
i=1

z1i
(
−zT |x− 1xi|+ 1T sign(x− 1xi) + β

)
+

n∑
i=1

z2i
(
zT | − x+ 1xi|+ 1T sign(−x+ 1xi) + β

)
+

n∑
i=1

z3i
(
−zT | − x+ 1xi| − 1T sign(−x+ 1xi) + β

)
+ z4z

T 1,

which is equivalent to

min
z0,z1,z2,z3,z4

s.t.z0,z1,z2,z3≥0

max
z
−1

2
∥z∥22 + eT z + f,

where e =
∑n

i=1 z0i|x−1xi|−
∑n

i=1 z1i|x−1xi|+
∑n

i=1 z2i|−x+1xi|−
∑n

i=1 z3i|−x+1xi|+1z4
and f = −

∑n
i=1 z0i1

T sign(x−1xi)+
∑n

i=1 z1i1
T sign(x−1xi)+

∑n
i=1 z2i1

T sign(−x+1xi)−∑n
i=1 z3i1

T sign(−x+ 1xi) + β(∥z0∥1 + ∥z1∥1 + ∥z2∥1 + ∥z3∥1). Maximizing over z gives

min
z0,z1,z2,z3,z4

s.t.z0,z1,z2,z3≥0

1

2
∥e∥22 + f.

Simplifying to get

min
y1,y2,z

1

2
∥A1(y1 + y2) + 1z∥22 + 1TC1y1 − 1TC2y2 + β(∥y1∥1 + ∥y2∥1).

Minimizing over z gives the convex program (4) in Theorem 4.1. Once we obtain optimal solution
y⋆ to problem 4, we can take

w⋆
j =

√
y⋆j , α

⋆
j =

√
y⋆j , b

⋆
j = −

√
y⋆jxj for j = 1, . . . , n,

w⋆
j = −

√
y⋆j , α

⋆
j =

√
y⋆j , b

⋆
j =

√
y⋆jxj−n for j = n+ 1, . . . , 2n,

b⋆0 = − 1
n1

T ([A1, A1]y
⋆),

then score matching objective has the same value as optimal value of convex program (4), which
indicates p⋆ = d⋆ and the above parameter set is optimal.
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A.5 PROOF FOR THEOREM 4.1: NEURAL NETWORK TYPE III

Proof. Here we reduce score matching objective including ReLU activation to score matching ob-
jective including absolute value activation and exploits results in Theorem 4.1 for neural network
type IV. Let {wr, br, αr, vr} denotes parameter set corresponding to ReLU activation, consider an-
other parameter set {wa, ba, αa, va} satisfying

αr = 2αa,

wr = wa,

br = ba,

br0 = ba0 − 1
2

∑m
j=1 b

r
jα

r
j ,

vr = va − 1
2

∑m
j=1 w

r
jα

r
j .

Then the score matching objective

min
wr,αr,br,vr

1

2

∥∥∥∥∥∥
m∑
j=1

(xwr
j + 1brj)+α

r
j + xvr + 1br0

∥∥∥∥∥∥
2

2

+1T

 m∑
j=1

wr
jα

r
j1{xwr

j + 1brj ≥ 0}

+nvr+
β

2

m∑
j=1

(wr
j
2+αr

j
2)

is equivalent to

min
wa,αa,ba,va

1

2

∥∥∥∥∥∥
m∑
j=1

|xwa
j + 1baj |αa

j + xva + 1ba0

∥∥∥∥∥∥
2

2

+1T

 m∑
j=1

wa
jα

a
j sign(xw

a
j + 1baj )

+nva+
β

2

m∑
j=1

(
wa

j
2 + 4αa

j
2
)
.

According to Lemma 2 in Pilanci & Ergen (2020), after rescaling, the above problem is equivalent
to

min
wa,αa,ba,va

|wa
j |=1

1

2

∥∥∥∥∥∥
m∑
j=1

|xwa
j + 1baj |αa

j + xva + 1ba0

∥∥∥∥∥∥
2

2

+1T

 m∑
j=1

wa
jα

a
j sign(xw

a
j + 1baj )

+nva+2β

m∑
j=1

|αa
j |.

(16)
Following similar analysis as in Appendix A.6 with a different rescaling factor, the optimal solution
set to (16) is given by

wa
j
⋆ =

√
2y⋆j , α

a
j
⋆ =

√
y⋆j /2, b

a
j
⋆ = −

√
2y⋆jxj for j = 1, . . . , n,

W a
j
⋆ = −

√
2y⋆j , α

a
j
⋆ =

√
y⋆j /2, b

a
j
⋆ =

√
2y⋆jxj−n for j = n+ 1, . . . , 2n,

va⋆ = −(x̄TA1y
⋆ + n)/∥x̄∥22,

ba0
⋆ = − 1

n1
T ([A′

1, A
′
1]y

⋆ + xva⋆),

where A′
1 is A1 defined in Section 4.1.2 and y⋆ is optimal solution to convex program (4). Then the

optimal parameter set {wr, br, αr, zr} is given by
wr

j
⋆ =

√
2y⋆j , α

r
j
⋆ =

√
2y⋆j , b

r
j
⋆ = −

√
2y⋆jxj for j = 1, . . . , n,

wr
j
⋆ = −

√
2y⋆j , α

r
j
⋆ =

√
2y⋆j , b

r
j
⋆ =

√
2y⋆jxj−n for j = n+ 1, . . . , 2n,

vr⋆ = −(x̄TA1y
⋆ + n)/∥x̄∥22 −

∑m
j=1 w

r
j
⋆αr

j
⋆/2,

br0
⋆ = − 1

n1
T ([A′

1, A
′
1]y

⋆ + x(−(x̄TA1y
⋆ + n)/∥x̄∥22))−

∑m
j=1 b

r
j
⋆αr

j
⋆/2.

A.6 PROOF FOR THEOREM 4.1: NEURAL NETWORK TYPE IV

Proof. Consider data matrix x ∈ Rn, then the score matching objective is reduced to

p⋆ = min
w,α,b,v

1

2

∥∥∥∥∥∥
m∑
j=1

|xwj + 1bj |αj + xv + 1b0

∥∥∥∥∥∥
2

2

+1T

 m∑
j=1

wjαjsign(xwj + 1bj)

+nv+
1

2
β

m∑
j=1

(w2
j+α2

j ).
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Following similar analysis as in Appendix A.4, we can derive the dual problem as

d⋆ = max
z1,z2

min
w,α,b,v,r1,r2

|wj |=1

1

2
∥r1∥22 + 1T r2 + nv + β

m∑
j=1

|αj |+ zT1

r1 −
m∑
j=1

|xwj + 1bj |αj − xv − 1b0


+ zT2

r2 −
m∑
j=1

wjαjsign(xwj + 1bj)

 .

which gives a lower bound of p⋆. Minimizing over r1 and r2 gives

max
z1

min
w,α,b,v
|wj |=1

−1

2
∥z1∥22+nv+β

m∑
j=1

|αj |−zT1

 m∑
j=1

|xwj + 1bj |αj + xv + 1b0

+1T
m∑
j=1

wjαjsign(xwj+1bj).

Minimizing over v gives

max
z1

zT
1 x=n

min
w,α,b
|wj |=1

−1

2
∥z1∥22+β

m∑
j=1

|αj |−zT1

 m∑
j=1

|xwj + 1bj |αj + 1b0

+1T
m∑
j=1

wjαjsign(xwj+1bj).

Minimizing over αj gives

max
z

min
b0
−1

2
∥z∥22 − b0z

T 1

s.t.
{
zTx = n

|zT |xwj + 1bj | − wj1
T sign(xwj + 1bj)| ≤ β, ∀|wj | = 1,∀bj .

Following same logic as in Appendix A.4, the above problem is equivalent to

max
z

−1

2
∥z∥22

s.t.


|zT |x− 1xi| − 1T sign(x− 1xi)| ≤ β

|zT | − x+ 1xi|+ 1T sign(−x+ 1xi)| ≤ β

zT 1 = 0

zTx = n

∀i = 1, . . . , n.
(17)

According to Lemma A.3, when β > 2, the constraints in (17) are strictly feasible, thus Slater’s
condition holds and the dual problem writes

d⋆ = min
z0,z1,z2,z3,z4,z5
s.t.z0,z1,z2,z3≥0

max
z
−1

2
∥z∥22 +

n∑
i=1

z0i
(
zT |x− 1xi| − 1T sign(x− 1xi) + β

)
+

n∑
i=1

z1i
(
−zT |x− 1xi|+ 1T sign(x− 1xi) + β

)
+

n∑
i=1

z2i
(
zT | − x+ 1xi|+ 1T sign(−x+ 1xi) + β

)
+

n∑
i=1

z3i
(
−zT | − x+ 1xi| − 1T sign(−x+ 1xi) + β

)
+ z4(z

Tx− n) + z5z
T 1,

which is equivalent to

min
z0,z1,z2,z3,z4,z5
s.t.z0,z1,z2,z3≥0

max
z
−1

2
∥z∥22 + eT z + f,

where e =
∑n

i=1 z0i|x−1xi|−
∑n

i=1 z1i|x−1xi|+
∑n

i=1 z2i|−x+1xi|−
∑n

i=1 z3i|−x+1xi|+
xz4+1z5 and f = −

∑n
i=1 z0i1

T sign(x−1xi)+
∑n

i=1 z1i1
T sign(x−1xi)+

∑n
i=1 z2i1

T sign(−x+

17
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1xi)−
∑n

i=1 z3i1
T sign(−x+1xi)− z4n+ β(∥z0∥1 + ∥z1∥1 + ∥z2∥1 + ∥z3∥1). Maximizing over

z gives

min
z0,z1,z2,z3,z4,z5
s.t.z0,z1,z2,z3≥0

1

2
∥e∥22 + f.

Simplifying to get

min
y0,y1,y2,y3

1

2
∥A′

1(y0 + y1) + xy2 + 1y3∥
2
2 + 1TC1y0 − 1TC2y1 + ny2 + β(∥y1∥1 + ∥y2∥1),

(18)
where A′

1, C1, C2 are as A1, C1, C2 defined in Section 4.1.2. Minimizing over y3 gives y3 =
−1T (A′

1(y0 + y1) + xy2)/n and (18) is reduced to

min
y0,y1,y2

1

2

∥∥Ā′
1(y0 + y1) + x̄y2

∥∥2
2
+ 1TC1y0 − 1TC2y1 + ny2 + β(∥y1∥1 + ∥y2∥1),

where Ā′
1 is as Ā1 defined in Section 4.1.2. Minimizing over y2 gives y2 =

−
(
x̄T Ā′

1(y0 + y1) + n
)
/∥x̄∥22 and the above problem is equivalent to the convex program (4) in

Theorem 4.1. Once we obtain optimal solution y⋆ to problem 4, we can take
w⋆

j =
√
y⋆j , α

⋆
j =

√
y⋆j , b

⋆
j = −

√
y⋆jxj for j = 1, . . . , n,

w⋆
j = −

√
y⋆j , α

⋆
j =

√
y⋆j , b

⋆
j =

√
y⋆jxj−n for j = n+ 1, . . . , 2n,

v⋆ = −(x̄TA1y
⋆ + n)/∥x̄∥22,

b⋆0 = − 1
n1

T ([A′
1, A

′
1]y

⋆ + xv⋆),

then score matching objective has the same value as optimal value of convex program (4), which
indicates p⋆ = d⋆ and the above parameter set is optimal.

A.7 THEOREM 4.2 PROOF

Proof. When X ∈ Rn×d for some d > 1, the score matching objective can be reduced to

p⋆ = min
uj ,vj

n∑
i=1

1

2

∥∥∥∥∥∥
m∑
j=1

(Xiuj)+v
T
j

∥∥∥∥∥∥
2

2

+ tr

∇Xi

 m∑
j=1

(Xiuj)+v
T
j


 , (19)

which can be rewritten as

min
uj ,vj

1

2

∥∥∥∥∥∥
m∑
j=1

(Xuj)+v
T
j

∥∥∥∥∥∥
2

F

+ 1T

 m∑
j=1

1{Xuj ≥ 0}vTj uj

 . (20)

Let D′
j = diag (1{Xuj ≥ 0}), then problem (20) is equivalent to

min
uj ,vj

1

2

∥∥∥∥∥∥
m∑
j=1

D′
jXujv

T
j

∥∥∥∥∥∥
2

F

+

m∑
j=1

tr(D′
j)v

T
j uj . (21)

Thus

p⋆ = min
Wj=ujv

T
j

(2D′
j−I)Xuj≥0

1

2

∥∥∥∥∥∥
m∑
j=1

D′
jXWj

∥∥∥∥∥∥
2

F

+

m∑
j=1

tr(D′
j)tr(Wj) (22)

≥ min
Wj

1

2

∥∥∥∥∥∥
P∑

j=1

DjXWj

∥∥∥∥∥∥
2

F

+

P∑
j=1

tr(Dj)tr(Wj), (23)

where D1, . . . , DP enumerates all possible sign patterns of diag (1{Xu ≥ 0}) . Let W ⋆
j be the

optimal solution to the convex program (6). To reconstruct optimal {uj , vj} to the original training

18
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problem (19), we first factorize W ⋆
j =

∑d
k=1 ũjkṽ

T
jk. According to Theorem 3.3 in ((Mishkin

et al., 2022)), for any {j, k}, we can write ũjk = ũ′
jk − ũ′′

jk such that ũ′
jk, ũ

′′
jk ∈ Kj with Kj =

{u ∈ Rd : (2Dj − I)Xu ⪰ 0}. Therefore, when m ≥ 2Pd, we can set {uj , vj} to enumerate
through {ũ′

jk, ṽjk} and {ũ′′
jk,−ṽjk} to achieve optimal value of (6). With absolute value activation,

replace D′
j to be diag (sign(Xuj)) and the constraints in 22 become Wj = ujv

T
j , D

′
jXuj ≥ 0, and

D1, . . . , DP enumerates all possible sign patterns of diag (sign(Xu)) .

A.8 THEOREM 5.1 PROOF

A.8.1 PROOF FOR NEURAL NETWORK TYPE I

Proof. Consider data matrix x ∈ Rn×1, then the score matching objective is reduced to

p⋆ = min
w,α,b

1

2

∥∥∥∥∥∥
m∑
j=1

(xwj + 1bj)+αj + 1b0 − l

∥∥∥∥∥∥
2

2

+
1

2
β

m∑
j=1

(w2
j + α2

j ).

According to Lemma 2 in Pilanci & Ergen (2020), after rescaling, the above problem is equivalent
to

min
w,α,b
|wj |=1

1

2

∥∥∥∥∥∥
m∑
j=1

(xwj + 1bj)+αj + 1b0 − l

∥∥∥∥∥∥
2

2

+ β

m∑
j=1

|αj |,

which can be rewritten as

min
w,α,b,r
|wj |=1

1

2
∥r∥22 + β

m∑
j=1

|αj |

s.t. r =

m∑
j=1

(xwj + 1bj)+αj + 1b0 − l.

(24)

The dual of problem (24) writes

d⋆ =max
z
−1

2
∥z∥22 + zT l

s.t.


|zT (x− 1xi)+| ≤ β

|zT (−x+ 1xi)+| ≤ β

zT 1 = 0

∀i = 1, . . . , n.

Note the constraint set is strictly feasible since z = 0 always satisfies the constraints, Slater’s con-
dition holds and we get the dual problem as

d⋆ = min
z0,z1,z2,z3,z4

s.t.z0,z1,z2,z3≥0

1

2
∥e∥22 + f,

where e =
∑n

i=1 z0i(x− 1xi)+−
∑n

i=1 z1i(x− 1xi)++
∑n

i=1 z2i(−x+1xi)+−
∑n

i=1 z3i(−x+
1xi)+ + 1z4 + l and f = β(∥z0∥1 + ∥z1∥1 + ∥z2∥1 + ∥z3∥1). Simplify to get

min
y

1

2
∥Ay + l̄∥22 + β∥y∥1.

Once we obtain optimal solution y⋆ to problem (10), we can take
w⋆

j =
√
y⋆j , α

⋆
j = −

√
y⋆j , b

⋆
j = −

√
y⋆jxj for j = 1, . . . , n,

w⋆
j = −

√
y⋆j , α

⋆
j = −

√
y⋆j , b

⋆
j =

√
y⋆jxj−n for j = n+ 1, . . . , 2n,

b⋆0 = 1
n1

T ([A1, A2]y
⋆ + l),

then denoising score matching objective has the same value as optimal value of convex program
(10), which indicates p⋆ = d⋆ and the above parameter set is optimal.
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A.8.2 PROOF FOR NEURAL NETWORK TYPE II

Proof. Consider data matrix x ∈ Rn×1, then the score matching objective is reduced to

p⋆ = min
w,α,b

1

2

∥∥∥∥∥∥
m∑
j=1

|xwj + 1bj |αj + 1b0 − l

∥∥∥∥∥∥
2

2

+
1

2
β

m∑
j=1

(W 2
j + α2

j ).

According to Lemma 2 in Pilanci & Ergen (2020), after rescaling, the above problem is equivalent
to

min
w,α,b
|wj |=1

1

2

∥∥∥∥∥∥
m∑
j=1

|xwj + 1bj |αj + 1b0 − l

∥∥∥∥∥∥
2

2

+ β

m∑
j=1

|αj |, (25)

which can be rewritten as

min
w,α,b,r
|wj |=1

1

2
∥r∥22 + β

m∑
j=1

|αj |

s.t. r =

m∑
j=1

|xwj + 1bj |αj + 1b0 − l.

(26)

The dual of problem (26) writes

d⋆ = max
z

min
w,α,b,r
|wj |=1

1

2
∥r∥22 + β

m∑
j=1

|αj |+ zT

r −
m∑
j=1

|xWj + 1bj |αj − 1b0 + l

 ,

which gives a lower bound of p⋆. Minimizing over r and α gives

max
z

min
b0
−1

2
∥z∥22 − b0z

T 1 + zT l

s.t. |zT |xwj + 1bj || ≤ β, ∀|wj | = 1,∀bj .

Since wj = ±1 and zT |xwj + 1bj | is continuous in bj , the above problem is equivalent to

max
z
−1

2
∥z∥22 + zT l

s.t.


|zT |x− 1xi|| ≤ β

|zT | − x+ 1xi|| ≤ β

zT 1 = 0

∀i = 1, . . . , n.

Since the constraints are satisfied by taking z = 0, thus Slater’s condition holds and the above
problem is equivalent to

d⋆ = min
z0,z1,z2,z3,z4

s.t.z0,z1,z2,z3≥0

max
z
−1

2
∥z∥22 + zT l +

n∑
i=1

z0i
(
zT |x− 1xi|+ β

)
+

n∑
i=1

z1i
(
−zT |x− 1xi|+ β

)
+

n∑
i=1

z2i
(
zT | − x+ 1xi|+ β

)
+

n∑
i=1

z3i
(
−zT | − x+ 1xi|+ β

)
+ z4z

T 1.

Maximizing over z gives

min
z0,z1,z2,z3,z4

s.t.z0,z1,z2,z3≥0

1

2
∥e∥22 + f,

where e =
∑n

i=1 z0i|x − 1xi| −
∑n

i=1 z1i|x − 1xi| +
∑n

i=1 z2i| − x + 1xi| −
∑n

i=1 z3i| − x +
1xi|+ 1z4 + l and f = β(∥z0∥1 + ∥z1∥1 + ∥z2∥1 + ∥z3∥1). Simplifying to get

min
y,z

1

2
∥A3y + 1z + l∥22 + β∥y∥1.
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Minimizing over z gives

min
y

1

2
∥Ay + l̄∥22 + β∥y∥1.

Once we obtain optimal solution y⋆ to problem (10), we can take{
w⋆

j =
√

y⋆j , α
⋆
j = −

√
y⋆j , b

⋆
j = −

√
y⋆jxj for j = 1, . . . , n,

b⋆0 = 1
n1

T (A3y
⋆ + l),

then denoising score matching objective has the same value as optimal value of convex program
(10), which indicates p⋆ = d⋆ and the above parameter set is optimal.

A.8.3 PROOF FOR NEURAL NETWORK TYPE III

Proof. Following proof logic in Appendix A.5, let {wr, br, αr, vr} denotes parameter set corre-
sponding to ReLU activation with skip connection, consider another parameter set {wa, ba, αa, za}
satisfying 

αr = 2αa,

wr = wa,

br = ba,

br0 = ba0 − 1
2

∑m
j=1 b

r
jα

r
j ,

vr = va − 1
2

∑m
j=1 W

r
j α

r
j .

Then the denoising score matching objective

min
wr,αr,br,vr

1

2

∥∥∥∥∥∥
m∑
j=1

(xwr
j + 1brj)+α

r
j + xvr + 1br0 − l

∥∥∥∥∥∥
2

2

+
β

2

m∑
j=1

(wr
j
2 + αr

j
2)

is equivalent to

min
wa,αa,ba,va

1

2

∥∥∥∥∥∥
m∑
j=1

|xwa
j + 1baj |αa

j + xva + 1ba0 − l

∥∥∥∥∥∥
2

2

+
β

2

m∑
j=1

(
wa

j
2 + 4αa

j
2
)
.

According to Lemma 2 in Pilanci & Ergen (2020), after rescaling, the above problem is equivalent
to

min
wa,αa,ba,va

|wa
j |=1

1

2

∥∥∥∥∥∥
m∑
j=1

|xwa
j + 1baj |αa

j + xva + 1ba0 − l

∥∥∥∥∥∥
2

2

+ 2β

m∑
j=1

|αa
j |. (27)

Following similar analysis as in Appendix A.8.4 with a different rescaling factor, the optimal solu-
tion set to (27) is given by

wa
j
⋆ =

√
2y⋆j , α

a
j
⋆ = −

√
y⋆j /2, b

a
j
⋆ = −

√
2y⋆jxj for j = 1, . . . , n,

wa
j
⋆ = −

√
2y⋆j , α

a
j
⋆ = −

√
y⋆j /2, b

a
j
⋆ =

√
2y⋆jxj−n for j = n+ 1, . . . , 2n,

va⋆ = x̄T ((I − 1
n11

T )A3y
⋆ + l̄)/∥x̄∥22,

ba0
⋆ = 1

n1
T (A3y

⋆ − xva⋆ + l),

where y⋆ is optimal solution to convex program (10). Then the optimal parameter set
{wr, br, αr, vr} is given by

wr
j
⋆ =

√
2y⋆j , α

r
j
⋆ = −

√
2y⋆j , b

r
j
⋆ = −

√
2y⋆jxj for j = 1, . . . , n,

wr
j
⋆ = −

√
2y⋆j , α

r
j
⋆ = −

√
2y⋆j , b

r
j
⋆ =

√
2y⋆jxj−n for j = n+ 1, . . . , 2n,

vr⋆ = x̄T ((I − 1
n11

T )A3y
⋆ + l̄)/∥x̄∥22 −

∑m
j=1 w

r
j
⋆αr

j
⋆/2,

br0
⋆ = 1

n1
T (A3y

⋆ − x(x̄T ((I − 1
n11

T )A3y
⋆ + l̄)/∥x̄∥22) + l)−

∑m
j=1 b

r
j
⋆αr

j
⋆/2.
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A.8.4 PROOF FOR NEURAL NETWORK TYPE IV

Proof. Consider data matrix x ∈ Rn×1, then the score matching objective is reduced to

p⋆ = min
w,α,b,v

1

2

∥∥∥∥∥∥
m∑
j=1

|xwj + 1bj |αj + xv + 1b0 − l

∥∥∥∥∥∥
2

2

+
1

2
β

m∑
j=1

(w2
j + α2

j ).

After applying the rescaling strategy as in Pilanci & Ergen (2020), the above problem is equivalent
to

min
w,α,b,v,r
|wj |=1

1

2
∥r∥22 + β

m∑
j=1

|αj |

s.t. r =

m∑
j=1

|xwj + 1bj |αj + xv + 1b0 − l.

The dual problem is given by

d⋆ =max
z
−1

2
∥z∥22 + zT l

s.t.


|zT |x− 1xi|| ≤ β

|zT | − x+ 1xi|| ≤ β

zT 1 = 0

zTx = 0

∀i = 1, . . . , n,

which gives a lower bound of p⋆. Note the constraint set is satisfied by taking z = 0, thus Slater’s
condition holds and the dual problem is given by

d⋆ = min
y1,y2,y3

1

2
∥A3y1 + xy2 + 1y3 + l∥22 + β∥y1∥1.

Minimizing over y2 and y3 gives the optimal y⋆3 = −1T (A3y1 + xy2 + l)/n and y⋆2 = −x̄T ((I −
1
n11

T )A3y1 + l̄)/∥x̄∥22 and the above problem is equivalent to

min
y1

1

2
∥Ay1 + b∥22 + β∥y1∥1.

Once we obtain optimal solution y⋆ to problem (10), we can take
w⋆

j =
√
y⋆j , α

⋆
j = −

√
y⋆j , b

⋆
j = −

√
y⋆jxj for j = 1, . . . , n,

v⋆ = x̄T ((I − 1
n11

T )A3y
⋆ + l̄)/∥x̄∥22,

b⋆0 = 1
n1

T (A3y
⋆ − xv⋆ + l),

then denoising score matching objective has the same value as optimal value of convex program
(10), which indicates p⋆ = d⋆ and the above parameter set is optimal.

A.9 THEOREM 5.2 PROOF

Proof. When X ∈ Rn×d for some d > 1, when β = 0, the score matching objective can be reduced
to

p⋆ = min
uj ,vj

n∑
i=1

1

2

∥∥∥∥∥∥
m∑
j=1

(Xiuj)+v
T
j − Li

∥∥∥∥∥∥
2

2

,

which can be rewritten as

min
uj ,vj

1

2

∥∥∥∥∥∥
m∑
j=1

(Xuj)+v
T
j − Y

∥∥∥∥∥∥
2

F

. (28)
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Let D′
j = diag (1{Xuj ≥ 0}), then problem (28) is equivalent to

min
uj ,vj

1

2

∥∥∥∥∥∥
m∑
j=1

D′
jXujv

T
j − Y

∥∥∥∥∥∥
2

F

.

Therefore,

p⋆ = min
Wj=ujv

T
j

(2D′
j−I)Xuj≥0

1

2

∥∥∥∥∥∥
m∑
j=1

D′
jXWj − Y

∥∥∥∥∥∥
2

F

≥ min
Wj

1

2

∥∥∥∥∥∥
P∑

j=1

DjXWj − Y

∥∥∥∥∥∥
2

F

,

where D1, . . . , DP enumerates all possible sign patterns of diag (1{Xu ≥ 0}) . The construction
of optimal parameter set follows Appendix A.7. With absolute value activation, replace D′

j to be
diag (sign(Xuj)) and the constraints in 22 become Wj = ujv

T
j , D

′
jXuj ≥ 0, and D1, . . . , DP

enumerates all possible sign patterns of diag (sign(Xu)) .

A.10 PROOF OF OPTIMALITY CONDITION IN SECTION 4.1.1

Proof. The optimality condition for convex program (4) is

0 ∈ ATAy + b+ βθ1, (29)

where θ1 ∈ ∂∥y∥1. To show y⋆ satisfies optimality condition (29), let ai denote the ith column of
A. Check the first entry,

aT1 Ay + b1 + β(−1) = nvy⋆1 − nvy⋆3n + n− β = 0.

Check the 3nth entry,

aT3nAy + b3n + β = −nvy⋆1 + nvy⋆3n − n+ β = 0.

For jth entry with j ̸∈ {1, 3n}, note

|aTj Ay + bj |
= |aTj (a1y⋆1 + a3ny

⋆
3n) + bj |

= |aTj (a1y⋆1 − a1y
⋆
3n) + bj |

=

∣∣∣∣β − n

nv
aTj a1 + bj

∣∣∣∣ .
Since |bj | ≤ n− 1, by continuity, |aTj Ay + bj | ≤ β should hold as we decrease β a little further to
threshold β2 = maxj ̸∈{1,3n} |aTj Ay + bj |. Therefore, y⋆ is optimal.

A.11 PROOF OF OPTIMALITY CONDITION IN SECTION 4.1.2

Proof. Assume without loss of generality data points are ordered as x1 < . . . < xn, then

b = [n, n− 2, · · · ,−(n− 2), n− 2, n− 4, · · · ,−n] .
The optimality condition to the convex program (4) is given by

0 ∈ ATAy + b+ βθ1 , (30)

where θ1 ∈ ∂∥y∥1. To show y⋆ satisfies optimality condition (30), let ai denote the ith column of
A. We check the first entry

aT1 Ay + b1 + β(−1) = nvy1 − nvyn + n− β = 0.
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We then check the last entry
aTnAy + bn + β = −nvy1 + nvyn − n+ β = 0.

For jth entry with 1 < j < n, note
|aTj Ay + bj |

= |aTj (a1y1 + anyn) + bj |
= |aTj (a1y1 − a1yn) + bj |

=

∣∣∣∣β − n

nv
aTj a1 + bj

∣∣∣∣ .
Since |bj | ≤ n− 2, by continuity, |aTj Ay + bj | ≤ β should hold as we decrease β a little further to
some threshold β1 = maxj ̸∈{1,n} |aTj Ay + bj |. Therefore, y⋆ satisfies (30).

A.12 PROOF FOR CONVERGENCE THEOREMS

A.12.1 PROOF FOR THEOREM 6.1

Proof. When sθ is of neural network type III and IV and β ≥ ∥b∥∞, the predicted score function
is linear with slope − 1

v and interception µ as analyzed in Appendix A.2 and Section 4.1.3, which
corresponds to Gaussian distribution with mean µ and variance v. Then since the integrated score
function is strongly concave, Theorem 6.1 follows Theorem 4.3.3 in (Chewi, 2023).

A.12.2 PROOF FOR THEOREM 6.2

Proof. When sθ is of neural network type II and corresponds to the min-norm solution to the corre-
sponding convex program (4) and β2 < β ≤ n, the predicted score function is given by

ŷ = β−n
nv (x̂− µ), x1 ≤ x̂ ≤ xn

ŷ = β−n
nv (x1 − µ), x̂ < x1

ŷ = β−n
nv (xn − µ), x̂ > xn

as analyzed in Section 4.1.2. Since the score function is bounded by L = (n − β)max(|x1 −
µ|, |xn − µ|)/nv, Theorem 6.2 follows Theorem 4.3.9 in (Chewi, 2023). Note Theorem 4.3.3 in
(Chewi, 2023) here since the predicted score function is not smooth.

A.13 ANNEALED LANGEVINE SAMPLING

Here we outline the annealed Langevine sampling procedure below,

Algorithm 3 Annealed Langevine Sampling

Initialize: ϵ0, σ1, . . . , σL, x
0 ∼ µ0(x)

for i = 1, 2, ..., L do
ϵi = ϵ0σ

2
i /σ

2
L

for t = 1, 2, ..., T do
zt ∼ N (0, 1)
xt ← xt−1 + ϵi

2 sθi(x
t−1) +

√
ϵiz

t

end for
end for

where sθi for i = 1, 2, . . . , L are neural networks trained for denoising score matching with different
noise scales.

A.14 SUPPLEMENTARY SIMULATION RESULTS

In this section, we give more simulation results besides those discussed in main text in Section 7.
In Section A.14.1 we show simulation results for score matching tasks with more neural network
types and in section A.14.2 we show simulation results for denoising score matching tasks with
more neural network types.
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A.14.1 SCORE MATCHING SIMULATION

Figure 5,6, and 7 below show simulation results for score matching tasks with neural network type II,
III, IV respectively. In Figure 5, we use the same data samples and training parameters as explained
in Section 7. The gap between non-convex training loss and reconstructed optimal neural network
loss can be due to the non-smoothness threshold function in the score matching training objective.
The score prediction in the middle plot is aligned with our theoretic result in Section 4.1.2 and the
sampling histogram in the right plot is consistent with the score prediction. In Figure 6 and 7, we set
the weight decay parameter to β = ∥b∥∞ + 1.4 Data samples and the rest training parameters are
the same as in Section 7. Interestingly, the gap between non-convex training loss and reconstructed
optimal neural network loss is minor compared to Figure 5. The predicted score functions are linear
with slope close to minus one over sample variance and interception close to sample mean, i.e., −1
and 0 respectively. This is aligned with our theoretic result in Section 4.1.3 and Appendix A.2. The
sampling histograms are consistent with the score prediction.
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Figure 5: Simulation results for score matching tasks with type II neural network. The left plot shows
training loss where the dashed blue line indicates loss of neural network reconstructed from convex
program (4). The middle plot shows score prediction from reconstructed optimal neural network.
The right plot shows sampling histogram via Langevine process with reconstructed optimal neural
network as score estimator. The ground truth distribution is standard Gaussian.
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Figure 6: Simulation results for score matching tasks with type III neural network. The left plot
shows training loss where the dashed blue line indicates loss of neural network reconstructed from
convex program (4). The middle plot shows score prediction from reconstructed optimal neural
network. The right plot shows sampling histogram via Langevine process with reconstructed optimal
neural network as score estimator. The ground truth distribution is standard Gaussian.

A.14.2 DENOISING SCORE MATCHING SIMULATION

Figure 8,9, and 10 below show simulation results for denoising score matching tasks for neural
network type II, III, IV respectively. We use the same simulation parameters as described in Section
7. The left plots in these three figures show the training loss where the dashed blue line is the
objective value obtained by optimal neural network reconstructed from our derived convex program
(10). The gap between non-convex training loss and reconstructed optimal neural network loss
indicates that our convex program solves the training problem globally. The middle plots in these
three figures show sampling histogram via annealed Langevine process with non-convex trained
neural network as score estimator. Since the ground truth distribution is standard Gaussian, the

4see Section 4 for definition of b.
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Figure 7: Simulation results for score matching tasks with type IV neural network. The left plot
shows training loss where the dashed blue line indicates loss of neural network reconstructed from
convex program (4). The middle plot shows score prediction from reconstructed optimal neural
network. The right plot shows sampling histogram via Langevine process with reconstructed optimal
neural network as score estimator. The ground truth distribution is standard Gaussian.

sample results are not ideal and this is likely caused by that the non-convex trained neural network
is not optimal thus the score prediction is not accurate for sampling. The right plot in these three
figures show sampling histogram via annealed Langevine process with reconstructed optimal neural
network as score estimator. This time the distribution histogram is aligned with standard Gaussian,
which indicates the superiority of our convex program used for neural network training.
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Figure 8: Simulation results for denoising score matching tasks with type II neural network. The left
plot shows training loss where the dashed blue line indicates loss of neural network reconstructed
from convex program (10). The middle plot shows sampling histogram via annealed Langevine
process with non-convex trained neural network as score predictor. The right plot shows sampling
histogram via annealed Langevine process with reconstructed optimal neural network as score pre-
dictor. The ground truth distribution is standard Gaussian, which is recovered by our model.
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Figure 9: Simulation results for denoising score matching tasks with type III neural network. The left
plot shows training loss where the dashed blue line indicates loss of neural network reconstructed
from convex program (10). The middle plot shows sampling histogram via annealed Langevine
process with non-convex trained neural network as score predictor. The right plot shows sampling
histogram via annealed Langevine process with reconstructed optimal neural network as score pre-
dictor. The ground truth distribution is standard Gaussian, which is recovered by our model.
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Figure 10: Simulation results for denoising score matching tasks with type IV neural network. The
left plot shows training loss where the dashed blue line indicates loss of neural network reconstructed
from convex program (10). The middle plot shows sampling histogram via annealed Langevine pro-
cess with non-convex trained neural network as score predictor. The right plot shows sampling
histogram via annealed Langevine process with reconstructed optimal neural network as score pre-
dictor. The ground truth distribution is standard Gaussian, which is recovered by our model.
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