Calibrating Generative Models

Henry Smith! Brian L. Trippe

Abstract

Generative models frequently suffer miscalibra-
tion, wherein class probabilities and other statis-
tics of the sampling distribution deviate from
desired values. We frame calibration as a con-
strained optimization problem and seek the min-
imally perturbed model (in Kullback-Leibler di-
vergence) satisfying calibration constraints. To
address the intractability of the hard constraint,
we introduce two surrogate objectives: (1) the
relaxed loss, which replaces the constraint with
a miscalibration penalty, and (2) the reward loss,
which we derive as a divergence to a known, ap-
proximate solution. We show how to minimize
these losses for neural-SDE models and find they
solve synthetic calibration problems to high pre-
cision. Lastly, we demonstrate the practicality
of the approach by calibrating a 15M-parameter
protein structure diffusion model to match the dis-
tribution of secondary structure composition of
natural proteins.

1. Introduction

Generative models commonly produce samples whose statis-
tics deviate systematically from desired values. Such miscal-
ibration occurs across a range of domains. In protein struc-
ture modeling, for instance, protein design models sample
alpha-helical and beta-strand structural motifs at frequencies
atypical of proteins in nature (Lu et al., 2025). Language
models disproportionately sample words like “delve” and
“crucial” (Kobak et al., 2024). And protein diffusion models
trained to approximate Boltzmann distributions fail to pro-
duce structures in different states with probabilities that are
consistent with experimental measurements (Lewis et al.,
2024). Similar phenomena exist in vision models, where
image generators disproportionately render clocks showing
10:10 AM or PM.

"Department of Statistics, Stanford University, Palo Alto,
USA. Correspondence to: Henry Smith <smithhd @stanford.edu>,
Brian L. Trippe <btrippe @stanford.edu>.

Proceedings of the Workshop on Generative Al for Biology at the
42" International Conference on Machine Learning, Vancouver,
Canada. PMLR 267, 2025. Copyright 2025 by the author(s).

These calibration errors can arise from many sources:
dataset imbalances, model capacity limitations, subopti-
mal training dynamics, or post-hoc adjustments such as
low-temperature sampling or preference fine-tuning. While
reward-based fine-tuning methods such as direct preference
optimization (Schulman et al., 2017; Fan et al., 2023; Wal-
lace et al., 2024; Black et al., 2024) and adjoint matching
(Domingo-Enrich et al., 2025) allow practitioners to incor-
porate preferences that may be specified on the level of
individual samples, calibration is a hard constraint specified
at the distribution level.

To address this gap, we frame calibration as a constrained
optimization problem: find the distribution closest in KL di-
vergence to the base model that satisfies a set of expectation
constraints. We introduce two algorithms—CGM-relax
(“calibrating generative models”) and CGM-reward—that
approximately solve the calibration problem by stochastic
optimization. These algorithms apply to general moment
constraints and are compatible with high-dimensional gen-
erative models.

2. Problem Statement

Consider a pre-trained “base” generative model pg,,. ()
with parameters Oy, a statistic h(x), and an expectation
value desired for the statistic h*. We say py,,. is calibrated
if Ep, [h(x)] = h" and miscalibrated if E,,, [h(x)] #
h*. In the case that py,, is miscalibrated, our goal is to fine-
tune its parameters Oy, to some 6 such that py is calibrated.

For example, if h(x) = 1 for belonging to a particular
class and h(x) = 0 otherwise, then the value h* corre-
sponds to the probability that « belongs to that class. And
if h(xz) = [t(x),t(x)?] for a scalar statistic ¢(z), then the
choice h* = [, 0% + p1?] corresponds to the constraint that

t(x) has mean p and variance o2.

For a given h(-) and h*, many calibrated models may exist.
Provided a calibrated model exists, we seek the one that is
minimally perturbed from the base model,

argmin Dkr (pg || Poy..) - (1)
po st. Epy [h(x)]=h*

Do+ 1=

Equation (1) realizes the notion of the minimally perturbed
model as the one that is closest in the Kullback-Leibler (KL)

Calibrating Generative Models

divergence Dxy. (p' || p) = Ep [logp’(x)/p(x)], where p’
is assumed to have a probability density with respect to p.

Out of many possible notions of distance we focus on Dk,
because it is simple and, as we will see, can be computation-
ally tractable even for some complex generative models.

3. Calibrating Generative Models with
CGM-relax and CGM-reward

The calibration problem is challenging to solve for non-
trivial generative models for two principal reasons. First,
both the objective and the calibration constraint in equa-
tion (1) are defined by expectations that are intractable to
compute. Second, even if these expectations could be com-
puted, neither the objective function nor set of parameters 6
that satisfy the calibration constraint is, in general, convex.

To address the intractability of the constraint, we propose
two alternative objectives whose unconstrained optima ap-
proximate the solution to (1). These objectives still involve
expectations under py and are non-convex; however, we
demonstrate that one can obtain unbiased estimates for both
the objectives themselves as well as their gradients. As a
result, they are amenable to stochastic optimization.

We call our algorithms optimizing the two surrogate loss
functions CGM-relax and CGM-reward (Algorithms 1 and 2,
respectively). These algorithms require only that one can
draw samples from py and that py(x) is computable and has
computable gradients with respect to 6.

3.1. The Relaxed Loss

The CGM-relax loss avoids the intractability of imposing
the calibration constraint exactly by replacing it with a con-
straint violation penalty
L (0) :=DkL (9o || Por) A Ep, [h()] —
LKL L viol

R, ()

where A € R is a hyperparameter that controls the tradeoff
between satisfying the calibration constraint and minimizing
the KL divergence. In the limit as A — oo, we can expect
the minimizer of (2) to approach that of (1).

Suppose we have M independent samples {x,, }}/_; from
the generative model py. In order to construct an unbiased
estimate for £, we separately construct unbiased esti-
mates for £XL, the KL divergence, and for LV the squared
norm difference between the actual and target expectation
of h. For the KL, we propose a Monte Carlo estimator

MZI

And for the squared norm difference, we use the bias-

pG a:m
pebuse (mm)

variance decomposition to construct the estimator

R 1M 2 1 M
Eviol R ilm o
[2] - X
Iy) a 3)
- 1 -
hm — X5 hm/)
o=
m’/=1
where we have defined h,, = h(z,,) — h* for m =
1,..., M. Combining these estimators yields our overall
estimator for the relaxed objective,
Erelax _ z\KL +)\Eviol.)

We prove in Appendix A.1 that L s unbiased for £relex,

3.2. The Reward Loss

The CGM-reward loss avoids the intractability of imposing
the calibration constraint exactly by leveraging a connection
between the calibration problem (1) and the maximum en-
tropy problem (Kullback, 1959; Kullback & Khairat, 1966;
Csiszar, 1975). We first introduce the maximum entropy
problem. We then show how to approximate its solution
with samples from py,,. . Lastly, we propose the reward
loss £%4 a5 a divergence to this approximate solution and
describe connections to reward fine-tuning.

Maximum entropy problem. The maximum entropy
problem solves

arg min DL (P [| Pow.) » ®)

PEP (Poy,) st Ep[h(x)]=h*

where P(p) is the collection of probability distributions that
have a density with respect to p. The calibration problem
and the maximum entropy problem differ only in their do-
mains: the domain of the calibration problem is generative
models py in the same parametric class as pg,,, rather than
the nonparametric set P (py,,.). Despite this difference we
obtain an alternative objective by considering the solution
to (5). The following theorem characterizes this solution.
Theorem 3.1. Suppose there exists o™ such that

Pa (®) ¢ poy,, (@) exp {rax (@)}, ra(x):=a'h(z) ©)

satisfies B,,_ . [h(x)] = h™. Then, under conditions, pa~ is
the unique solution to problem (5).

Appendix B gives conditions for and a proof of Theorem 3.1
adapted from Kullback & Khairat (1966). For the remainder
of our discussion, we will assume that an o™ satisfying
the conditions of Theorem 3.1 exists; Appendix B.1 details
conditions that guarantee this existence.

The domain of calibration problem (1) may not contain pq«.
However, if the class of generative models py is sufficiently

Calibrating Generative Models

Algorithm 1 CGM-relax fine-tuning

Algorithm 2 CGM-reward fine-tuning

Require: py,. ., h(-),h", M, and X\
1: > Initialize and optimize
2: p9 < pgbase
3: while not converged do

4: > Sample and compute weights
ii.d.

5 L1y,..-, LM " Pstop-grad(9)

6: Wy, < Do (wm)/pstopfgrad(e) (wm)

7: > Kullback-Leibler loss, with LOO baseline
8: b < logpstop—gradw) (mm)/pebase (mm)
9: l,,%loo — lm - ﬁ Zm/;ﬁm lm/
10: LKL LS, 100

11: > Constraint violation and bias correction
12: h., + Wy (h(xy) — hY)

13: LViol ||ﬁ > hm||2 — ﬁVar[hlsM},

where Var[hi.a] = 24 3 [hn — 25 3 o |12
14: > Total loss and update
15: Erelax — AEKL +)\Zviol
16: 0 + gradient-step(6, Vo L)

expressive, then the optimum of the calibration problem pg«
will be close to po~. This observation suggests a second
way to remove the constraint in equation (1): fine-tune py
to minimize a divergence to p=.

Estimating p,-. The idea of minimizing a divergence to
P+ introduces a challenge: although we know the solution
Do+ to the maximum entropy problem (5) exists, we do not
know how to determine its parameters *. To address this
challenge, we leverage a result from Wainwright et al. (2008,
Chapter 3.6), which states that, under conditions, solving
the maximum entropy problem (5) is equivalent to solving
the problem

argmax o' h* — log (/ exp{aTh(w)}pgbase(m)dw))]

(a7

In other words, by solving (7) one obtains the parameters
a* of ro (), which then determines the solution pq+ to the
maximum entropy problem up to a normalizing constant.

One issue with solving equation (7) is that for the pre-trained
generative models of interest, the second term involves an
intractable integral. Tohme et al. (2023) discuss approximat-
ing this integral with numerical integration; however, this
approach is infeasible when the dimension of x is large. We

instead propose drawing M independent samples {x,, }M_;
from pg,,.. and replacing the integral with respect to pg, . by
the integral with respect to the empirical distribution that

places probability mass M ~! on each of the samples x,,,

M
~ Ty % 1 T
a:argoanaxa h* —log <M E exp{a h(:cm)}>. (8)

m=1

The problem (8) is concave, and when & is well-defined
(see Appendix B.1), it can be found by convex solvers. We

Require: py,. ,h(:),h", M, N
1: > Estimate o for reward

1.7.4.

2 1y s N N Phyaee

3: a+ argmaxa'h' —log + > exp{a'h(z,)}
4: > Initialize and optimize

5: po < pebase

6: while not converged do

7: > Sample and compute weights

iy

8: Liy.-y M < Pstop-grad(0)

9: Wy, < Do (:Bm)/pstopfgrad(e) (wm)
10: > Kullback-Leibler loss, with LOO baseline
11: lm — 10gpstop—grad(9)(wm)/pebase (:Bm)

. LOO 1

132 LKV LS, 100

14: > Negative reward loss, with LOO baseline
15: rrL;LOO A Ta(wm) - ﬁ Zm/;ém Ta(iﬂm/)
16: L —ﬁ 3wy, rEO0

17: > Total loss and update

18: Lreved = LKL 4

19: 6 « gradient-step(6, ng‘ew‘“d)

demonstrate in Appendix B.1 that & converges to o* in the
limit of many samples M.

L£revard and its estimation. With & in hand, we formulate
our second loss as a divergence to pg. For simplicity and
because it avoids the requirement to compute the normaliz-
ing constant of pg, we again choose the KL divergence. In
particular, we define the reward loss Lrevard 4 pe

L£=%9(9) = Dy (po || pa)
= Ep, [log ps(®) /g, ()] + Epy [—1a(2)] +C, (9)

LKL =Dy, (PS I p9basc) ol

where C = E,, [exp{ra(z)}] is a normalizing constant
that does not depend on 6 and so can be ignored.

We call 74 () the reward and £¥* the reward loss be-
cause L coincides with the objective of reward fine-
tuning algorithms (e.g., Rafailov et al., 2023; Wallace et al.,
2024; Uehara et al., 2024; Domingo-Enrich et al., 2025).
The goal of reward fine-tuning is to fine-tune the base gen-
erative model py,,. to a tilted version of itself, where the tilt
is determined by a so-called reward r(x).

As with £XL in Section 3.1, Monte Carlo sampling provides
an unbiased estimate as

M
Zreward ,_ i Z (10

m=1

Pe(wm)) —rg (mm)> .

Dhse (T

Calibrating Generative Models

3.3. Gradient Estimation

We next describe approaches to compute unbiased estimates
for gradients of £™% () and L£"¥(6) with respect to 0
that permit minimization of these losses by stochastic op-
timization. We first describe our general approach which
is a generalization of the score-function gradient estimator.
We then propose adjustments of the associated gradient es-
timators £XL and L' to reduce variance that we use in our
experiments. Lastly, we present our estimator of Vg £!(6).
Appendix A.2 provides conditions for and proofs of the
unbiasedness of the resulting gradient estimators.

Score-based gradient estimation. The primary challenge
to computing gradients is the inability to directly exchange
the order of the gradients and expectations taken with re-
spect to 6; that is because Vo L(0) = VyE,, [f(x,0)] #
E,,[Vof(x,8)], VoL(0) can not in general be usefully ap-
proximated by M~" Y-V f(xm,) from samples @, of
pg. To address this challenge, we first observe that we can
rewrite L(0) = L(6,6") for

’ po(x)
£0.0) =B, |2 @] a0
where 6’ is another arbitrary set of model parameters. Since
the expectation in equation (10) does not depend on 6, we
can approximate it with Monte Carlo samples from py-.
Moreover, since the choice of ¢ is arbitrary, we can choose
0'=0, draw independent samples x.,, from py, and compute

[Vaﬁ(e 9’)] | or—o ~ [VoL(0,0")] | =0
Ly L Cm@ar@en.

p9 mnz

The density ratio pg(xm,)/pe () in equation (10) can
be understood as the weights of an importance sampling
estimate against target pyp with proposal py.. Perhaps un-
intuitively, when 6’=6 this ratio is necessarily equal to
one by construction but its gradient is the “score” function
(Vopo(xm))/po(m) = Vlogpe(x) which is non-trivial
in general (Mohamed et al., 2020). Algorithms 1 and 2
each demonstrate an implementation that computes these
weights with a copy of the parameters ¢ detached from the
computational graph, which we denote by stop—-grad(f).

Variance reduction of VQEKL In the case of the KL loss,
for which f(x,0) = log[pe(x)/pe,,. ()], an application of
the product rule expands each term of equation (11) into

x o p@(wm> _
pe(mm)VG p@(m)l gp9ba-e(mm):|

pg(ZBm) /O‘E/M
Vo log po(@m)]log ———"= +1-Vy
[4 gpe()] g pebase (mm) ’ pabase (wm)

=0 in expectation

While both terms contribute to the variance of Vo ZX-(,6'),
the second term has expectation zero for any 6 and so can be
dropped to reduce variance without sacrificing unbiasedness.
The resulting estimate of Vo £XL(9) is

2 Z Vo log po(@m)] log peb((%

This idea is adapted from Ranganath et al. (2014), who
consider a similar score-based gradient estimate for the KL,
divergence in the context of variational Bayesian inference.

The integrands of £ and £¥°! in equations (2) and (9) do not
depend on 6, and so the gradient in equation (11) involves
only a single term.

Variance reduction with a baseline. As a second strategy
to reduce the variance of the score-based gradient estimate,
we subtract from each term in the gradient estimate (11) a
baseline or control variate, which is a term that has expec-
tation zero under py and is correlated with each individual
term in the estimate (Lavenberg & Welch, 1981; Ranganath
et al., 2014; Mohamed et al., 2020). A simple choice of
baseline is the product of the score of each sample and the
leave-one-out (LOO) average of the evaluations of the inte-
grand in equation (10) (Kool et al., 2019). In the case of the
estimate of V£X(6) we obtain

M
1 Po(Tm) KL
— Vo logpg(xm, (log —————— —LOO,,
M mzz:l(()) peh'wc(mm)
where LOOKXL .= log bo wm/)
- 1 mz?;m Pbryse (wm)

In the same way, we include a LOO baseline for Vg .L'.

Unbiased estimation of V£V, Equation (11) does not
immediately apply to £¥°' since £¥1°' cannot be expressed in
the form E,,, [f(z, #)] for some function f. Instead, we be-
gin with LV“" in equation (3) which depends on M samples
and compute a gradient estimate as [V£"/(6,8")] | gr—g.
Here,

£V101 9 9

wTVL m

1 R 2
M<M_1>ZmHWmhmMzm,wm/hmf

where w,,, = pg(a:m)/pg/ (€,) and b, = h(z,,) — h*.
Similar to equation (11), £Y°(6, 6) has the interpretation
as an importance weighted estimate. We detail this interpre-
tation in Appendix A.2 alongside a proof of unbiasedness.

b

3.4. CGM-relax and CGM-reward

Algorithms 1 and 2 provide pseudo-code for CGM-relax and
CGM-reward, which approximately solve the calibration

Calibrating Generative Models

problem (1) by optimizing £*!# and L£V¥{, respectively.
Both algorithms initialize model parameters to those of the
base model, and use stochastic optimization with unbiased
gradient estimates computed with samples from the current
model iterate.

To apply CGM-relax one must first select the hyperparame-
ter A that controls the magnitude of the constraint penalty.
In our experiments (see Section 6), we perform a grid search
and choose the) for which the calibration constraints are ap-
proximately satisfied and the KL to the base model is small.
In CGM-reward, on the other hand, one first pre-computes
. While this step also introduces a hyperparameter, the
number of Monte Carlo samples N, we find in our experi-
ments that CGM-reward is not sensitive to this choice.

We implement CGM-relax and CGM-reward in our code-
base at https://github.com/smithhenryd/cgm.

4. Calibrating Neural-SDEs

We next specialize CGM-relax and CGM-reward to neural
stochastic differential equations (SDEs). Neural-SDEs are a
class of generative models that includes diffusion generative
models (Ho et al., 2020; Song et al., 2020; 2021) and have
been widely adopted for de novo protein design (Watson
et al., 2023), medical image reconstruction (Song et al.,
2022), image generation (Dhariwal & Nichol, 2021) among
other applications. We first introduce neural-SDEs. We
then characterize conditions under which the solutions to
the calibration and maximum entropy problems coincide
for neural-SDEs. Lastly, we describe computational details
necessary to implement CGM-relax and CGM-reward.

Background on neural-SDEs. A d-dimensional neural
stochastic differential equation is a generative model pg ()
defined over continuous paths © = (x(t))o<i<1 Wwith
x(t) € R? governed by an SDE as

po(x) : da(t) = by(x(t), t)dt + o(t)dw(t), (0) ~ pinir-

Dinit 18 an initial distribution from which sampling is tractable
and for 0 < t < 1, the drift by : R? x [0,1] — R is
parameterized by a neural-network, o : [0,1] — Ry isa
diffusion coefficient, and (w(t))o<¢<1 is a d-dimensional
Brownian motion. In the case of a diffusion model py,, is
trained by score matching (Song et al., 2020).

Relationship between calibration and maximum entropy
solutions. Recall that the calibration and maximum en-
tropy problems, equations (1) and (5), respectively, are re-
lated insofar as their optima, pg« and pq =, respectively, will
be close when the class of generative models is sufficiently
expressive. For the case of a neural-SDE base model, we
identify sufficient conditions under which these solutions
coincide exactly.

Theorem 4.1. Suppose py,,, is a neural-SDE with drift bg,,,,.
If h is a bounded, continuous function of (1), and if (0)
and x(1) are independent under py,,,, then the solution to
the maximum entropy problem is a neural-SDE with drift

bo (113, t) = bebase (xv t)"_

12
PV logEy,_[explra-(@(1)} |o(t) = a).
The significance of Theorem 4.1 is that, with an expressive
enough parametric class of neural network drift functions by,
the optimal drift in equation (12) may be approximated to
arbitrary precision, and so py« can be made arbitrarily close
to po- . As a consequence, the global minimizer of £©%d
will be very close to satisfying the calibration constraint.

A key condition of Theorem 4.1 is the independence of x(0)
and x(1) under py,, . In the context of reward fine-tuning,
Domingo-Enrich et al. (2025) call this assumption “memo-
rylessness” and find that when it is violated the tilted target
Do () cannot be represented by a neural-SDE since then
Do ((0)) # pinit(x(0)). However, Denker et al. (2024)
demonstrate a setting where exact memorylessness does
not hold, but there exists a neural-SDE that is close in total
variation distance to pg,-.

CGM-relax and CGM-reward for neural-SDEs. Imple-
menting CGM-relax and CGM-reward requires the ability
to draw independent samples from py, to compute density
ratios pg(x)/pes (x), and to take gradients of these density
ratios with respect to 6. Each of these steps is possible with
minimal approximation error when py is a neural-SDE.

To draw samples from a neural-SDE, one simulates paths
using a numerical SDE solver. For our experiments, we will
use Euler-Maruyama, which is widely used for diffusion
models (Song et al., 2020) and incurs approximation error
proportional to the square root of the size of the discretiza-
tion grid (Karatzas & Shreve, 2012; Oksendal, 2013).

Computation of density ratios requires further notational pre-
cision. So far, we have been imprecise insofar as pyg,, . ()
and pg(x) represent probability measures on the space of
d-dimensional continuous paths, rather than probability den-
sities with respect to a common measure on Euclidean
space. Nonetheless, Girsanov’s Theorem (Appendix C, The-
orem C.1) characterizes this density ratio as an integral over
t € [0,1] that can be computed numerically with minimal
discretization error. This result allows computation of the
terms in the KL divergence estimates and weights in Algo-
rithms 1 and 2. We provide further details in Appendix C.

5. Related Work

Calibration problem. Prior works have addressed prob-
lems related to the calibration problem. Wu et al. (2020) pro-
pose a training objective for generative adversarial networks

https://github.com/smithhenryd/cgm

Calibrating Generative Models

A

1.2 1
>
g
T 0.8 A
2
5 [
.g 0.4 1
o

1
-2 0 2

C

0.4
>
e
(]
©
£0.2 -
O
3
o
a

T T T 0 -
-2 0 2 4
== CGM-reward = CGM-relax

1
0 200

==Base model

1 1 1 1
400 600 800 1000
Dimension

=== Maximum entropy solution

Figure 1. A & B: Calibrating mixture proportions in a Gaussian mixture model (GMM). Both CGM-relax and CGM-reward recover the
analytical solution to the calibration problem in 1D (A). Even in high-dimensional GMMs, both methods approximately satisfy the desired
constraint and achieve KL divergence to the base model that is near optimal (B). KL divergence is computed in nats. C & D: Calibrating
the mean of a d-dimensional Gaussian distribution. Similar to A, both methods recover the known solution in 1D (C). As the number of
calibration constraints grows with the dimension, CGM-reward more faithfully solves the calibration problem (D).

that includes a penalty term similar to £"° that encour-
ages model agreement with statistics of the training data.
Ganchev et al. (2010) build on Theorem 3.1 to impose con-
straints on the Bayesian posterior of a probabilistic model.
In the context of molecular dynamics simulations, R6zycki
et al. (2011); Kofinger et al. (2019); Bottaro et al. (2020)
leverage Theorem 3.1 to reweight Monte Carlo samples of
molecular configurations to match experimental observa-
tions of ensemble averages.

Reward fine-tuning for generative models. Several re-
cent works address fine-tuning of neural-SDE models to
maximize a pre-specified reward function. For discrete-time
denoising diffusion models (Ho et al., 2020), Fan & Lee
(2023); Fan et al. (2023); Wallace et al. (2024); Black et al.
(2024) frame reward fine-tuning as a reinforcement learning
problem. Xu et al. (2023); Clark et al. (2024) instead evalu-
ate the reward on predictions of the denoised state made at
various time points and directly perform backpropagation.
Tang (2024); Uehara et al. (2024); Domingo-Enrich et al.
(2025) extend the reward fine-tuning framework to neural-
SDE models and demonstrate that maximizing the expected
reward with a KL penalization term is equivalent to solving
a stochastic optimal control (SOC) problem. As we pointed

out, the solution to the reward fine-tuning problem with
choice of reward rg coincides with optimizing the reward
loss, and so the algorithms in these works may be applicable
to minimizing £,

Conditional generation. Our method is related to condi-
tional sampling methods for neural-SDE models, most of
which aim to learn an approximation to a time-dependent
likelihood term (Dhariwal & Nichol, 2021; Song et al., 2022;
Jalal et al., 2021; Rout et al., 2023; Song et al., 2023; Denker
et al., 2024). In particular, Denker et al. (2024) establish
a connection between conditional generation and reward
fine-tuning. Choosing the calibration constraint h to be
the indicator function of an event A and taking the limit
h* — 1 is analogous to the task of conditional gener-
ation; in this limit, equation (12) becomes by, (x,t) +
o(t)*VglogP,, (x(1) € A|z(t) =), which is the
“classifier guidance” term from Dhariwal & Nichol (2021).

6. Experiments

In this section, we evaluate the capability of CGM-relax and
CGM-reward to calibrate neural-SDEs. First, we evaluate
the performance of our algorithms on two toy examples.

Calibrating Generative Models

These experiments provide insights into when we would
expect each algorithm to approximately solve the calibra-
tion problem (1). We then apply CGM-relax to calibrate
the Genie2 protein backbone diffusion model (Lin et al.,
2024) to match the secondary structure composition of nat-
urally occurring proteins. Appendix D provides additional
information regarding our experimental setup.

6.1. Synthetic Data Experiments

We first evaluate CGM-relax and CGM-reward on two syn-
thetic calibration problems. We start by describing each of
these two problems, which we select because the maximum
entropy problem (5) admits a closed-form solution. We
find that in one dimension, CGM-relax and CGM-reward
recover the maximum entropy solutions to high accuracy.
We further examine the dependence of each algorithm on
(i) the dimension of the problem (i.e. x) and (ii) the dimen-
sion of the constraint h. We find that both algorithms can
perform well, even in settings where problem dimension
is large and the constraint dimension is small as well as in
settings where both the problem and constraint dimension
are moderately large.

Experimental setup. Across all of our synthetic data ex-
periments, we model the base neural-SDE py, . as the true
reversal of the forward noising process. This choice allows
us to isolate the effect of calibration (as opposed to training
Do,... Via score matching). We parameterize the calibrated
model py as having drift equal to that of p,, plus a neural
network offset. The output layer of the neural network is
initialized to zero so that the calibrated and pre-trained mod-
els are equal at initialization. For CGM-relax, we perform a
grid search over possible values of A for one-dimensional z.
For CGM-reward, we use M = 10* samples to compute o.
All results reported are averages over 10 replications.

For our first synthetic data problem, we calibrate mix-
ture proportions in a Gaussian mixture model (GMM). In
particular, our base model pg, generates samples from
a GMM with modes at p™), u® € R?, isotropic noise
with variance 62 = 0.25, and mixture proportions 7(1) =
1 — 7 = 0.5. We choose the means such that all the
coordinates are zero except —(pM)[1] = (u@)[1] = 1,
where v[i] denotes the ith component of a vector v. In
other words, the means of the mixture components differ
only along the first dimension (Figure 1A). We then cali-
brate the pre-trained neural-SDE using a single constraint
h(z) = 1{x(1)[1] > 0}, where 1{ A} is the indicator func-
tion of event A and h* = 0.8. Since the components of
the mixture model are well-separated, h intuitively captures
the proportion of probability mass that lies in the second
mixture component. Indeed, in this setting there exists
a closed-form solution to the maximum entropy problem
that resembles (but is not exactly equal to) another mixture
model with mixing proportions 1 — h*, h* (Figure 1A). We

perform CGM-relax with A\ = 2 - 102

Second, we calibrate the mean of a d-dimensional standard
multivariate normal distribution (Figure 1C). Observe that in
order to specify the mean of a d-dimensional distribution, we
need d calibration constraints h(x) = x(1). To ensure that
the KL distance between the base model and the calibration
solution (1) remains constant in dimension, we fix h™ to be
the all-ones vector, scaled by d—/2. It is straightforward to
verify that the solution to the maximum entropy problem (5)
is another multivariate Gaussian distribution with mean h*
and identity covariance (Figure 1C). We perform CGM-relax
with A = 102 scaled by d~!, the number of constraints.

Recovery of maximum entropy solution. For both the
GMM mixture proportions and Gaussian mean calibration
problems, we observe that in one dimension CGM-relax
and CGM-reward correctly calibrate the base neural-SDE
to the known maximum entropy solution (Figure 1A,C).
This is supported by Figure 1B,D, which demonstrate that
for low-dimensional problems, both CGM-relax and CGM-
reward attain KL to the base model, £XT, that is near optimal
(dashed green line) and small violation of the calibration
constraint £¥°!,

Scaling in dimension. Of particular relevance to modern
applications of neural-SDEs is the question of how our al-
gorithms perform as the dimension of the problem i.e. x
and of the constraint h grows large. We observe for the one-
dimensional mixture proportion constraint, both CGM-relax
and CGM-reward achieve £XU that is close to that of the
maximum entropy solution as well as small constraint vio-
lation £V°! (Figure 1B), even in up to d = 10% dimensions.
Whereas CGM-relax more faithfully represents the calibra-
tion constraint, CGM-reward remains closer to the base
model. In the d-dimensional Gaussian mean experiments,
though, CGM-reward strictly outperforms CGM-relax in
moderate and high-dimensional settings (Figure 1D). Even
uptod = 102 moment constraints, CGM-reward accurately
calibrates the base neural-SDE to the target moment.

6.2. Calibrating a Protein Design Generative Model

Diffusion generative models have become a central tool in
protein design (Trippe et al., 2023; Watson et al., 2023).
However, heuristics such as reduced noise during sampling
have been necessary to reliably obtain biophysically plau-
sible samples (see, e.g., Yim et al., 2023). Such heuristics
introduce deviations from the statistics of natural proteins
(Lu et al., 2025) and lead to substantial losses in diversity
as compared to structures in the CATH (Sillitoe et al., 2021)
dataset. This relationship can pose a trade-off in application
between reliable generation of biophysically plausible sam-
ples and diversity. We investigate whether this trade-off can
be mitigated by calibrating a protein design model to match
the statistics of natural proteins.

Calibrating Generative Models

A Bi.o _

20— 10 o N CATH RN Genie2 ¢ = 0.5
Genie2 o = 1.0+ L] & *\. (calibration target) M. (base model)
Genie2 0 = 0.5 -ﬂ | krd SO N

1 A Y N
A=5, uni-[l 2_ \\ \\\
A~ 500, Uni-l:l % 0.51 \\\\ \\\\

A~5,joint{ | -§ . .

N N
A ~ 500, joint l:l g \\ \\
00 02 04 06 08 10 00 10 20 30 4.0 2 ! . N
Prop design failures Miscalibration ©0.0 -
(symmetric KL distance to CATH) 1.0 R
- e CGM-relax A = 5 ~. CGM-relax 1 ~ 500
Genie2 g = 0.5 CGM-relax 1 ~ 5 § \\\\ KL to base ~ 6 \\\\ KL to base ~ 103
(%] N\ N
1 N N
& N N
\\ “d% ? < \\\ \\\
f\’\ &y = :7\ g 0 5 \\\ \\\
=) \\ \\
.g \\ \\
a \\\ \\\
o
— - 0.0 0.5 1.0 0.0 0.5 1.0
~ Prop residues in a-helix Prop residues in a-helix

Figure 2. CGM-relax calibrates the secondary structure composition of Genie2 samples to more closely align with CATH domains. A:
Proportion of design failures, defined as structures having self-consistency RMSD > 24, generated by the CGM-relax and Genie2 models
as well as the symmetric KL distance of each model’s distribution over secondary structure to that of the CATH domains. B: Contour plots
of the joint distribution over secondary structure. C: Example generations from Genie2 and CGM-relax. All plots performing calibration
with CGM-relax use N = 9 constraints; panels B & C are generated using univariate quantile constraints.

In this section we first provide background on protein design
models and their miscalibration. We then define a set of
desired calibration constraints and details of our applica-
tion of CGM fine-tuning on the Genie2 protein backbone
model (Lin et al., 2024). Finally, we provide results (sum-
marized in Figure 2) demonstrating successful calibration
while maintaining biophysical plausibility.

Proteins, secondary structure, and miscalibration of pro-
tein design models. Proteins are a class of molecules that
are central to biology and medicine. A key feature of the
3-dimensional structure of proteins is their “backbone”, a
chain of atoms representable as a list of spatial coordinates.
These coordinates adopt canonical geometries relative to
one another that may be grouped into three categories (“he-
lix”, “strand”, and “loop”) that define a protein’s secondary
structure. The secondary structure composition of a protein
is the fraction of its backbone atoms in each category.

Although protein design diffusion generative models are
typically fit to examples of proteins from nature, Lu et al.
(2025) observe that the secondary structure composition
of samples from these models deviate systematically from
those of natural proteins represented in the CATH database
(Sillitoe et al., 2021). In particular, samples are less diverse
and under-sample strand secondary structures. This pathol-
ogy is particularly pronounced for samples generated with
heuristics such as reduced noise scaling (Lu et al., 2025).

The top two panels of Figure 2B illustrate the mismatch
in secondary structure composition for samples from Ge-

nie2 Lin et al. (2024). These samples are generated with a
noise-scaling of o = 0.5, similar to the recommendations
of Lin et al. (2024). Generations without the reduced noise-
scaling heuristic agree more closely with CATH statistics
(Figure 2A, right), but most appear biophysically implau-
sible as quantified by in silico “self-consistency” or “des-
ignability” (see, e.g., Trippe et al., 2023; Watson et al., 2023)
(details provided in Appendix D.2).

Calibration constraints. We consider calibration based
on the univariate and bivariate cumulative distribution func-
tion (CDF) of helical and strand composition. In detail, let
y(x) := [ya(x), ys(x)] denote the helical and strand frac-
tions, respectively, of a protein structure. For Genie2 sam-
ples, which consist only of C,, carbon backbone coordinates,
we compute y(x) using the Biotite package (Kunzmann
& Hamacher, 2018). Forn = 1,..., N, let hy ,(x)
{ya(z) < a,} and hg ,(x) = 1{ys(x) < B,} denote
indicators of whether these proportions are less than or equal
to the n/N quantile of y(x) across CATH proteins. Finally,
let h(w) = [ha,lhﬁ,la ha’lhgyg, Cey ha’Nhg’Nfl] and h*
be the empirical mean of h across CATH domains. The
above defines an (N2 —1)-dimensional joint calibration con-
straint. We also consider univariate quantile constraints, in
which case h(xz) = [ha1,.. -, ha,N—1,18,1, ..., hg N—1]
defines a 2(IN — 1)-dimensional calibration constraint.

Calibration details. Genie2 (Lin et al., 2024) is a ~15M-
parameter SE(3)-equivariant diffusion generative model of
protein backbones. Although Genie? is trained as a discrete-

Calibrating Generative Models

time diffusion model (see, e.g., Ho et al., 2020), in our
experiments we first reparameterize it as a neural SDE fol-
lowing (Song et al., 2020, Appendix B) by viewing it as a
discretization of a “variance preserving” SDE. This repa-
rameterization allows sampling with 10-fold fewer steps
(102 vs. 103) using a non-uniform time grid. We implement
a 0 = 0.5 noise scaling by multiplying the diffusion co-
efficient by 0. We set the length of generations to be 100
residues (i.e. atoms); with 3 spatial dimensions, each x(1)
is 300 dimensional. Just as we did for the Gaussian mean
experiments, we divide the A hyperparameter in CGM-relax
by the number of constraints.

In each calibration run, we fine-tune Genie2 for roughly 52
NVIDIA H100 GPU-hours on the Marlowe cluster (Kapfer
et al., 2025) with data parallelism across 4 GPUs.

Results. Figure 2 demonstrates that Genie2 calibrated
with CGM-relax generates backbones with secondary struc-
ture composition similar to CATH proteins while maintain-
ing high designability. The similarity to CATH proteins,
quantified by symmetrized KL divergence based on kernel
density estimates, is lower than py, , (< 1 nat versus > 3
nats). This similarity is comparable to the base model when
sampled without noise-scaling (Figure 2A). However, in
contrast to the model without noise-scaling, this high simi-
larity is obtained with high designability; fewer than 20%
of all CGM-relax fine-tuned generations are not designable
versus 75% for the base model without noise-scaling. Fig-
ure 2C illustrates sample generations from the base Genie2
and CGM-relax calibrated models; Appendix Figure 4 pro-
vides additional samples.

Among the CGM-relax calibrated models, we observe that
larger penalties on £V! (i.e. \) result in secondary struc-
ture compositions more closely aligned with the CATH
domains. However, a smaller fraction of these generations
are designable (Figure 2A). Models calibrated with joint
CDF constraints (‘joint’) generate structures more similar
in secondary structure content to the CATH domains com-
pared to those calibrated with univariate constraints (‘uni’)
but produce fewer designable structures.

An initial exploration of CGM-reward proved less fruitful.
We found that CGM-reward was less successful at satisfying
the calibration constraints. Provided the success of CGM-
reward in high-dimensional regimes for our synthetic data
experiments, we will investigate its failure in future work.

7. Discussion

Despite a large and growing body of work on algorithms
for fine-tuning generative models, algorithms for calibrating
these models remain underexplored. Presumably, this is due
in part to the relative complexity of the task compared to
reward fine-tuning, which maximizes the expected reward

plus a KL penalty; the reward is defined at the level of
single samples. CGM-relax and CGM-reward provide first
steps by framing calibration as a constrained optimization
problem and searching for approximate solutions.

However, our work has limitations and presents several di-
rections for future investigation. A first limitation is that
each of CGM-relax and CGM-reward aims to solve a high-
dimensional, non-convex optimization problem via stochas-
tic gradients. The fundamental difficulty of non-convex
optimization is likely responsible for much of the deviation
of our calibrated models from the solution to the calibra-
tion problem (1). Second, we have yet to investigate how
the capabilities of CGM-relax and CGM-reward depend on
the extent of miscalibration of the base model, and what
algorithmic variations or alternatives might be required for
calibration constraints that are more difficult to satisfy. A
third limitation is that it is not clear how to calibrate to
infinite-dimensional constraints, for example, to a full cu-
mulative distribution function of a statistic rather than its
quantiles. These questions remain open for future work.

Acknowledgments

We thank Julius Berner for his numerous helpful discussions
about the connection between the calibration problem and
the reward fine-tuning problem for neural-SDE models as
well as the inclusion of a baseline in the CGM-relax and
CGM-reward gradient estimates. We thank Tianyu Lu for
providing us with the dataset of secondary structure compo-
sition for CATH domains. This dataset appeared in Lu et al.
(2025). We thank Zhaoyang Li for his assistance with the
self-consistency evaluations. We thank Zoe Ryan for her
help parallelizing CGM-relax for Genie2 across GPUs.

Henry Smith is supported by the NSF Graduate Research
Fellowship (DGE-2146755) and the Knight-Hennessy Grad-
uate Fellowship.

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References

Black, K., Janner, M., Du, Y., Kostrikov, I., and Levine, S.
Training diffusion models with reinforcement learning. In
International Conference on Learning Representations,
2024.

Bottaro, S., Bengtsen, T., and Lindorff-Larsen, K. Inte-
grating molecular simulation and experimental data: a

Calibrating Generative Models

Bayesian/maximum entropy reweighting approach. Struc-
tural Bioinformatics: Methods and Protocols, 2020.

Cameron, R. H. and Martin, W. T. Transformations of
Wiener integrals under translations. Annals of Mathemat-
ics, 1944.

Clark, K., Vicol, P., Swersky, K., and Fleet, D. J. Directly
fine-tuning diffusion models on differentiable rewards. In
International Conference on Learning Representations,
2024.

Csiszdr, L. I-divergence geometry of probability distributions
and minimization problems. The Annals of Probability,
1975.

Dauparas, J., Anishchenko, 1., Bennett, N., Bai, H., Ragotte,
R.J., Milles, L. F., Wicky, B. I. M., Courbet, A., de Haas,
R.J., Bethel, N., Leung, P. J. Y., Huddy, T. F., Pellock, S.,
Tischer, D., Chan, F., Koepnick, B., Nguyen, H., Kang,
A., Sankaran, B., Bera, A. K., King, N. P, and Baker,
D. Robust deep learning—based protein sequence design
using ProteinMPNN. Science, 2022.

Denker, A., Vargas, F.,, Padhy, S., Didi, K., Mathis, S., Bar-
bano, R., Dutordoir, V., Mathieu, E., Komorowska, U. J.,
and Lio, P. DEFT: efficient fine-tuning of diffusion mod-
els by learning the generalised h-transform. Advances in
Neural Information Processing Systems, 2024.

Dhariwal, P. and Nichol, A. Diffusion models beat GANs
on image synthesis. Advances in Neural Information
Processing Systems, 2021.

Domingo-Enrich, C., Drozdzal, M., Karrer, B., and Chen,
R. T. Adjoint matching: fine-tuning flow and diffusion
generative models with memoryless stochastic optimal
control. In International Conference on Learning Repre-
sentations, 2025.

Fan, Y. and Lee, K. Optimizing DDPM sampling with short-
cut fine-tuning. In International Conference on Machine
Learning, 2023.

Fan, Y., Watkins, O., Du, Y., Liu, H., Ryu, M., Boutilier,
C., Abbeel, P, Ghavamzadeh, M., Lee, K., and Lee, K.
DPOK: Reinforcement learning for fine-tuning text-to-
image diffusion models. Advances in Neural Information
Processing Systems, 2023.

Friedman, A. Stochastic differential equations and appli-
cations. In Stochastic Differential Equations. Springer,
1975.

Gancheyv, K., Graga, J., Gillenwater, J., and Taskar, B. Pos-
terior regularization for structured latent variable models.
The Journal of Machine Learning Research, 2010.

10

Girsanov, I. V. On transforming a certain class of stochastic
processes by absolutely continuous substitution of mea-
sures. Theory of Probability & Its Applications, 1960.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. Advances in Neural Information Process-
ing Systems, 2020.

Jalal, A., Arvinte, M., Daras, G., Price, E., Dimakis, A. G.,
and Tamir, J. Robust compressed sensing MRI with
deep generative priors. Advances in Neural Information
Processing Systems, 2021.

Kapfer, C., Stine, K., Narasimhan, B., Mentzel, C., and
Candes, E. Marlowe: Stanford’s GPU-based computa-
tional instrument, 2025.

Karatzas, 1. and Shreve, S. Brownian Motion and Stochastic
Calculus, volume 113. Springer Science & Business
Media, 2012.

Kobak, D., Gonzdlez-Marquez, R., Horvit, E.—A., and
Lause, J. Delving into ChatGPT usage in academic
writing through excess vocabulary. arXiv preprint
arXiv:2406.07016, 2024.

Kofinger, J., Stelzl, L. S., Reuter, K., Allande, C., Reichel,
K., and Hummer, G. Efficient ensemble refinement by
reweighting. Journal of Chemical Theory and Computa-
tion, 2019.

Kool, W., van Hoof, H., and Welling, M. Buy 4 REIN-
FORCE samples, get a baseline for free! In “Deep RL
Meets Structured Prediction” Workshop at the Interna-
tional Conference on Learning Representations, 2019.

Kullback, S. Information Theory and Statistics. John Wiley
& Sons, 1959.

Kullback, S. and Khairat, M. A note on minimum dis-
crimination information. The Annals of Mathematical
Statistics, 1966.

Kunzmann, P. and Hamacher, K. Biotite: a unifying open
source computational biology framework in Python. BMC
Bioinformatics, 2018.

Lavenberg, S. S. and Welch, P. D. A perspective on the use
of control variables to increase the efficiency of Monte
Carlo simulations. Management Science, 1981.

Léonard, C. Some properties of path measures. Séminaire
de Probabilités, 2014.

Lewis, S., Hempel, T., Jiménez-Luna, J., Gastegger, M.,
Xie, Y., Foong, A. Y., Satorras, V. G., Abdin, O., Veeling,
B. S., Zaporozhets, 1., Chen, Y., Yang, S., Schneuing, A.,
Nigam, J., Barbero, F., Stimper, V., Campbell, A., Yim,
J., Lienen, M., Shi, Y., Zheng, S., Schulz, H., Munir, U.,

Calibrating Generative Models

Clementi, C., and Noé, F. Scalable emulation of pro-

tein equilibrium ensembles with generative deep learning.
bioRxiv, 2024.

Lin, Y. and Nguyen, H. C. In-silico Protein Design Pipeline,
2024.

Lin, Y., Lee, M., Zhang, Z., and AlQuraishi, M. Out of
many, one: Designing and scaffolding proteins at the
scale of the structural universe with Genie 2. arXiv
preprint arXiv:2405.15489, 2024.

Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W.,,
Smetanin, N., Verkuil, R., Kabeli, O., Shmueli, Y., dos
Santos Costa, A., Fazel-Zarandi, M., Sercu, T., Candido,
S., and Rives, A. Evolutionary-scale prediction of atomic-
level protein structure with a language model. Science,
2023.

Lombardi, L. E., Marti, M. A., and Capece, L. CG2AA:
backmapping protein coarse-grained structures. Bioinfor-
matics, 2016.

Lu, T., Liu, M., Chen, Y., Kim, J., and Huang, P.-S. Assess-
ing generative model coverage of protein structures with
SHAPES. bioRxiv, 2025.

Mohamed, S., Rosca, M., Figurnov, M., and Mnih, A.
Monte Carlo gradient estimation in machine learning.
Journal of Machine Learning Research, 2020.

Niisken, N. and Richter, L. Solving high-dimensional
Hamilton—Jacobi—Bellman PDEs using neural networks:
perspectives from the theory of controlled diffusions and
measures on path space. Partial Differential Equations
and Applications, 2021.

Oksendal, B. Stochastic Differential Equations: An Intro-

duction with Applications. Springer Science & Business
Media, 2013.

Rafailov, R., Sharma, A., Mitchell, E., Manning, C. D., Er-
mon, S., and Finn, C. Direct preference optimization:
Your language model is secretly a reward model. Ad-
vances in Neural Information Processing Systems, 2023.

Ranganath, R., Gerrish, S., and Blei, D. Black box varia-
tional inference. In Artificial Intelligence and Statistics.
PMLR, 2014.

Richter, L., Boustati, A., Niisken, N., Ruiz, F., and Akyildiz,
O. D. Vargrad: a low-variance gradient estimator for
variational inference. Advances in Neural Information
Processing Systems, 2020.

Rockafellar, R. T. Convex Analysis. Princeton University
Press, 1997.

11

Rout, L., Raoof, N., Daras, G., Caramanis, C., Dimakis,
A., and Shakkottai, S. Solving linear inverse problems
provably via posterior sampling with latent diffusion mod-

els. Advances in Neural Information Processing Systems,
2023.

Rézycki, B., Kim, Y. C., and Hummer, G. SAXS ensemble
refinement of ESCRT-III CHMP3 conformational transi-
tions. Structure, 2011.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Sillitoe, 1., Bordin, N., Dawson, N., Waman, V. P., Ashford,
P, Scholes, H. M., Pang, C. S. M., Woodridge, L., Rauer,
C., Sen, N., Abbasian, M., Le Cornu, S., Lam, S. D.,
Berka, K., Hutafova Varekova, 1., Svobodova, R., Lees, J.,
and Orengo, C. A. CATH: increased structural coverage
of functional space. Nucleic Acids Research, 2021.

Song, J., Meng, C., and Ermon, S. Denoising diffusion
implicit models. In International Conference on Learning
Representations, 2021.

Song, J., Vahdat, A., Mardani, M., and Kautz, J.
Pseudoinverse-guided diffusion models for inverse prob-
lems. In International Conference on Learning Represen-
tations, 2023.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Er-
mon, S., and Poole, B. Score-based generative modeling
through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Song, Y., Shen, L., Xing, L., and Ermon, S. Solving inverse
problems in medical imaging with score-based genera-
tive models. In International Conference on Learning
Representations, 2022.

Tang, W. Fine-tuning of diffusion models via stochastic con-

trol: entropy regularization and beyond. arXiv preprint
arXiv:2403.06279, 2024.

Tohme, T., Sadr, M., Youcef-Toumi, K., and Hadjicon-
stantinou, N. G. MESSY estimation: Maximum-entropy
based stochastic and symbolic density estimation. arXiv
preprint arXiv:2306.04120, 2023.

Trippe, B. L., Yim, J., Tischer, D., Baker, D., Broderick, T.,
Barzilay, R., and Jaakkola, T. Diffusion probabilistic mod-
eling of protein backbones in 3D for the motif-scaffolding
problem. In International Conference on Learning Rep-
resentations, 2023.

Uehara, M., Zhao, Y., Black, K., Hajiramezanali, E., Scalia,
G., Diamant, N. L., Tseng, A. M., Biancalani, T., and
Levine, S. Fine-tuning of continuous-time diffusion

Calibrating Generative Models

models as entropy-regularized control. arXiv preprint
arXiv:2402.15194, 2024.

Wainwright, M. J., Jordan, M. L, et al. Graphical models, ex-
ponential families, and variational inference. Foundations
and Trends in Machine Learning, 2008.

Wallace, B., Dang, M., Rafailov, R., Zhou, L., Lou, A., Pu-
rushwalkam, S., Ermon, S., Xiong, C., Joty, S., and Naik,
N. Diffusion model alignment using direct preference
optimization. In Conference on Computer Vision and
Pattern Recognition. IEEE Computer Society, 2024.

Watson, J. L., Juergens, D., Bennett, N. R., Trippe, B. L.,
Yim, J., Eisenach, H. E., Ahern, W., Borst, A. J., Ragotte,
R. J., Milles, L. F., Wicky, B. I. M., Hanikel, N., Pellock,
S.J., Courbet, A., Sheffler, W., Wang, J., Venkatesh, P.,
Sappington, ., Vazquez Torres, S., Lauko, A., De Bortoli,
V., Mathieu, E., Ovchinnikov, S., Barzilay, R., Jaakkola,
T. S., DiMaio, F., Baek, M., and Baker, D. De novo
design of protein structure and function with RFdiffusion.
Nature, 2023.

Williams, R. J. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine
Learning, 1992.

Wu, J.-L., Kashinath, K., Albert, A., Chirila, D., Xiao, H.,
et al. Enforcing statistical constraints in generative adver-
sarial networks for modeling chaotic dynamical systems.
Journal of Computational Physics, 2020.

Xu, J., Liu, X., Wu, Y., Tong, Y., Li, Q., Ding, M., Tang, J.,
and Dong, Y. ImageReward: Learning and evaluating hu-
man preferences for text-to-image generation. Advances
in Neural Information Processing Systems, 2023.

Yim, J., Trippe, B. L., De Bortoli, V., Mathieu, E., Doucet,
A., Barzilay, R., and Jaakkola, T. SE(3) diffusion model
with application to protein backbone generation. In Inter-
national Conference on Machine Learning, 2023.

12

Calibrating Generative Models

Appendix Contents
* Appendix A: CGM-relax and CGM-reward Algorithms

— A.1: Loss Estimates
— A.2: Unbiased Gradient Estimates

* Appendix B: Maximum Entropy Principle
— B.1: Estimating the Maximum Entropy Solution
» Appendix C: Neural Stochastic Differential Equations

— C.1: Characterization of Maximum Entropy Solution
— C.2: CGM-relax and CGM-reward for Neural-SDEs

* Appendix D: Additional Experimental Details

— D.1: Synthetic Data Experiments
— D.2: Calibrating the Genie2 Protein Design Model
— D.3: Additional Figures from Experiments

13

Calibrating Generative Models

A. CGM-relax and CGM-reward Algorithms

In this section, we provide specifics of the CGM-relax and CGM-reward algorithms. In particular, we will prove that the
estimates for the relaxed and reward losses, Lrelax gpg freward (Section 3.1 and 3.2), are unbiased. We will also discuss in
greater detail how to compute the unbiased gradient estimators for the losses introduced in Section 3.3.

Throughout this section we will make the following regularity assumptions on the calibrated model py and the constraint
functions h. First, we assume that V;p;(x)/pe(x),log ps(x), Vlog ps(x) are uniformly dominated by a function that
is square integrable with respect to pg (), for all 9 belonging to some neighborhood of §. Second, we assume that h(x)
has finite fourth moment under pg(x). These assumptions are necessary to exchange integration and differentiation in
Appendix A.2 via Dominated Convergence. For neural-SDEs, for instance, these assumptions are satisfied when the
controller ug and its gradient Vuy satisfy a linear growth condition (see Appendix C).

A.1. Loss Estimates

We begin by proving that our estimates for £ and £%4 are, on average, correct. We acknowledge that unbiasedness
is not the end all be all. For instance, for the term £V°! = ||E,, [h(z)] — h*||? that appears the relaxed loss, there exists a

biased estimator, namely max{ﬁv“’1 0}, that strictly dominates our estimator £ in terms of risk (in particular, its variance
is smaller). Nonetheless, the notion of unbiasedness is a useful one.

Proposition A.1. L7 js unbiased for the relaxed loss L,

Proof. Following our presentation in Section 3.1, we prove unbiasedness of Lrelax by showing that LKL is unbiased for

LX = Dyt (pg || pe,,..) and that £V is unbiased for £, the squared norm difference between the expectation of b under
py and the target expectation h™.

As for £KL its expectation is
po(Tm) 1 &
E[ﬁ‘ﬂ: §E log | = — 3D =D .
Do pe |108 Do (xm) M Pt KL (p9 ” pebase) KL (p(‘) H pebm)

In the first equality we invoke the linearity of expectation and in the second we use our assumption that {z,, }}_, are

sampled from py. And for LAV“’I, we first recall the bias-variance decomposition for a real-valued random variable Z and
scalar constant c:

E[(Z — ¢)?] = (E[Z] — ¢)? + Var(Z).

By applying this result to each dimension of ﬁ Zf\le B = e Z%:I (h(x,,) — h™) with ¢ = 0, we obtain

M
1 . .
|77 D B = B (@I + By, () — By ()] (13)
m=1
where h(xz) = h(z) — h*. Next, we replace the final term E,,|h(x) — pe [h(x)]||? in the above expression with

Ep, [m S 1R — 2 32 By |2, The quantity M(M 5 Z [— 2 3,10 By ||? is simply the sample variance
of {h, }M_,, summed across each dimension and scaled by - +7- The sample variance of {hm}M_, is unbiased for Var[h).
Rearranging the above expression yields

2

1 < * 1 < R
E 2 — N hpl| - =E,, | —— -=>Y h
IEpo [a(@)]]1* = Ey, Mm§::1 7 B0 (M,l)mZzl MWZ:1
This proves that £V is unbiased for ||E,, [h(z)] — h* /2. O

Likewise, we demonstrate that our estimator for the reward loss is unbiased.
Proposition A.2. £ is unbiased for the reward loss L.

Proof. In the proof of Proposition A.1 we already demonstrated % Z%Zl log prf;)) is unbiased for £XL. By an identical
base \ 7T
argument, — - 2%21 r& (%) is unbiased for L' = E,, [—r5(x)] (again, it is a Monte Carlo estimate). O

14

Calibrating Generative Models

A.2. Unbiased Gradient Estimates

Of greater relevance to the CGM-relax and CGM-reward algorithms is computing unbiased estimates of the gradients of
L and £revard rather than of the losses themselves. However, as we detailed in Section 3.3, the naive idea of taking the
unbiased loss estimators Erelax Lrevard angd differentiating them with respect to 6 will not yield unbiased gradient estimates.
This is because the probability distribution with respect to which the expectation is taken also depends on 6, which needs to
be taken into account in the gradient estimate.

For CGM-reward, we propose using the gradient estimator

M
~ 1 pG(wm))
Grewad — _— Vo lo T (10 ———— —rg(@x,,) — LOO,,
M mZ::l(ologpy(xm))| log Do (@) (Tm) "

LOO,, = ﬁ > <log p“’(wm')) - Ta(mm/)) ,

m’ #m pabase (m’fﬂl

where LOO,,, is the leave-one-out baseline (Kool et al., 2019) corresponding to sample m. The first term in the sum (14) is
known as the score-based gradient estimate or, in the terminology of reinforcement learning, the REINFORCE gradient
estimate (Williams, 1992). This is because the term Vg log pg(x,,,) is known as the “score” of the calibrated model at x.,,.
In Section 3.3 we derived the score-based gradient estimate by rewriting £**¢ as an expectation with respect to another
distribution py-, differentiating the Monte Carlo estimate to the expectation under py-, and evaluating the gradient at the
choice 0’ = 0. We formalize this argument in Proposition A.3.

Observe that by independence of the samples {z,, }}/_,, it holds that for each m # m/,

pe(wm’)

—ra(@m)| =0.
pebase(mm/) a()

9 [(W log o (@) {1og m - ra<wm/)H —E,, [Vologps(@)| Epy |log

Consequently, when proving that Grevard g unbiased for Vo Lrevad we can safely ignore the leave-one-out averages. As we
suggested in Section 3.3, we observe that the inclusion of the baseline is important for reducing the variance of our gradient
estimate.

Proposition A.3. Grevard is unbiased for the gradient of the reward loss, Vg L.

Proof. We start by writing out the gradient of £"¥¢ directly:

v ACreward 9) = V,E |:1 p@(w) —ra :|
0 () 05pg 0g pﬁhme(m) T (33)

=Vy /pg(:c) {logm — ra(x)} dx
D [Wapaten frog L2 sy Lo+ [pat@)Votog ez

Pbace (:E)
po(x)
Pbpuse (m)

, [(@atogpoten o ~ra(a) || + B, Vo logpo(a)]

For the equality (x), exchange of the gradient and derivative is permissible by the conditions we stated at the beginning of
the section via Dominated Convergence. The second term is the gradient is the expected score, which is zero. And so the
gradient of the reward loss is

VoL0) = By, |(Tatogpa(a)) {1og L24E o) }]. as)

Looking at our gradient estimator Grevard i (14) and ignoring the leave-one-out averages, we see that it is exactly the Monte
Carlo estimate of the gradient of £°%4(15). O

15

Calibrating Generative Models

Deriving an unbiased gradient estimate for the relaxed loss is more challenging, since the loss cannot be simply expressed as
the expectation under py of some objective. It is clear that, in the same as we did for the reward loss, one can compute an
unbiased estimate for the gradient of LX in the relaxed loss

1 M

GrL = —
KL Mm:1

Do (mm)) 1 Do (wm’)
Vo lo T, log ———— - LOO,, |, LOO,,, = — log ————2—.
(Vo log pof ”(i (@) M1 2 % e (o)

m’'#m
And so it only remains to compute an unbiased gradient estimate for £V, To do so, we first recall the unbiased estimator
£Vl for £V that we introduced in Section 3.1

2 2

M
EViOl({il M) — i Z iL)
mfm=1 M m

m=1

. 1 M
hmfﬂfmlzzlhm’

1 M
7M(M—1)mz::1

We then replace {h,, }M_, by {wmhm,}M_,, where w, = % are weights defined by another probability distri-
bution pe. In statistics, {w,, }_, are referred to as importance sampling weights with proposal distribution pg: and
target distribution pg. To estimate the gradient of ||E,,[h] — h*||*> = ||E,,[h]||*>, we propose computing the gradient

of £V ({w,, b, }M_) with respect to 6 and then evaluating the result at ¢’ = 6. This is equivalent to first evaluating
LY {wpmhy, YM_,) at 0" = stop—-grad(#) and then computing the gradient, where Pstop-graa(s) is equal in distribution
to pg but does not track gradients. This yields the overall gradient estimator for the relaxed loss

M
érelax = éKL +)\V92const <{ bo (mm) ﬁm}) .

Pstop-grad(9) (xm) m=1

The intuition behind this gradient estimate is that, from Proposition A.1, we know £V ({h,,}*_,) (i.e. without the
importance sampling weights) is unbiased for ||E,, [h] — h*||%. The only reason we cannot directly differentiate this estimate
is that {z,, }}_, depend on @ since they are sampled from py. To address this issue, we instead sample {x,, }}_; from
a different probability distribution, py-, that does not depend on 6. In our approach, we take 8/ = stop—-grad(f). To
address the fact that we are no longer sampling from py, we multiply each . by the respective importance sampling weight

Wy, = %. The most important piece of our argument involves showing that, when we sample {x,,, }}_, i.i.d. from py
and replace {R,, }M_; by {wp,hpy 2| in the estimator £Y°), it remains unbiased for ||E,, [h]||2. Then, since, the samples

{Zm }M_, no longer depend on 6, we can differentiate the estimate £¥°' to obtain an unbiased gradient estimate.

We make this argument mathematically precise in the following proposition:
Proposition A.4. Grelax is unbiased for the gradient of the relaxed loss, ¥ g L%,

Proof. From Proposition A.l, we know that @KL is unbiased for V£XL, and so it only remains to verify that the second
term is unbiased for AV L' = A\V,||E,, [h] — h*||. To this end, by repeating the proof of Proposition A.1 (i.e. using the
bias-variance decomposition), it is straightforward to show that

E,,, lfml ({mﬁm}f_lﬂ B

In other words, £Y° ({wy, h,y, }M_,) is unbiased for £ However, since the samples {@,, }}_, are drawn from py/, a
probability distribution that does not depend on 6, then we can exchange the gradient and expectation by appealing to
Dominated Convergence under the assumptions stated at the beginning of the section. In particular, we have

2 ~
= |y, [R]]1*.

o |pntany™]

E v, [Vl { Po(Tm) b }M v, E [viol { po(Tm) 3 }M
’ 0 N m = 9 ’ N m
be Do’ (mm) m=1 be Do’ (w'rn) m=1
_ VQEV“’],
where the final line follows from the unbiasedness of £V ({wy,, huyn }M_,) for £Y°!, O

16

Calibrating Generative Models

As we discussed, the key insight from the proof of Proposition A.4 is that, by introducing importance weights, we can
compute an unbiased estimate to ||E,,[R] — h*||> = ||E,,[h]| without sampling directly from py. Notice that in our
argument, the only step that relied upon the choice of 8/ = st op—grad(f) was when appealing to Dominated Convergence

to exchange the gradient and the expectation. One could also sample {x,,, }*_, i.i.d. from another distribution py.."

B. Maximum Entropy Principle
In this section, we provide a precise statement of the maximum entropy principle as it is related to the calibration problem.

We begin by stating a more general form of Theorem 3.1, which will be necessary for our discussion of neural-SDEs:

Theorem B.1 (Kullback (1959); Kullback & Khairat (1966)). Let X := (X, X) be a measurable space and P be a
probability measure defined on X. Moreover, let S be the collection of probability measures on X that have densities
with respect to P and satisfy the calibration constraint Eglh(x)] = h*, for Q € S. Here h : X — R% is assumed to be
X -measurable.

Suppose there exists a probability measure Q* belonging to S with density of the form Z=1 exp (ro+(x)) , Z € Ry, a* €
R%. Then QF is the solution to

argmin Dg; (Q || P) (16)
QES
Moreover, Q* is unique up to P-null sets.

Proof. Let @ € S be an arbitrary measure, and denote the densities of) and Q* with respect to P by f(x) = dQ/dP and
f*(x) = dQ*/dP, respectively. Then

D (Q" | P) = [£(@)log f*@dP = [f*(@){(@) k(@) ~log 2}dP = (")Th" ~log 2 = [f(z)log " (@)dP

Then decomposing Dy, (@ || P) and substituting in our above expression yields

Dk (Q || P) @ /f(m)logf*(x)dp+/f(w) log f(=) qP

(@)
D (Q" | P+ [f(@)log ﬂ(z)dp.

()

In equality (), we were allowed to add and subtract | f(x)log f*(z)dP since it is finite (and equal to (a*)Th* — log Z
from above). And so it suffices to show (**) is nonnegative with equality if and only if f(x) = f*(x) P-a.e.. Since f* is
strictly positive a.e. P, then Q* and P are mutually absolutely continuous, and () has a density with respect to Q*. By the
chain rule for Radon-Nikodym derivatives,

d
flx) = dg* f*(x) P-ae..
Substituting this result into (%*), we obtain
Dio (Q || P) =Dxe (Q || QF) +Dxe (@7 || P) . (17)
Since Dgp, (Q || @) > 0 with equality iff f(x) = f*(x) P-a.e., the result follows. O

Notably, since Theorem B.1 is stated for a general (measurable) space, it applies to Euclidean space R? as well as to
the space of continuous paths on [0, 1] (endowed with the supremum norm). Once again, we point out the constraint
set S of the maximum entropy problem (5) is strictly larger than that of the calibration problem (1), since it consists
of all probability distributions defined on X that have a density with respect to P and satisfy the calibration constraint,
some of which lie outside the family py. Consequently, the optimum of (5) will be strictly smaller than that of the
calibration problem (1). Specifically, equation (17) tells us that the gap between the calibration and KL solution is

Dke (Po+ || Poy) — DKL (Pa= || Poue) = DxL (Po+ || Pax).

"For the case of a general distribution pg-, the integrability conditions with respect to py stated at the beginning of the section must be
modified to integrability conditions with respect to py.

17

Calibrating Generative Models

B.1. Estimating the Maximum Entropy Solution

Next, we discuss our estimator (8) for the parameters a* of the reward o~ and how it relates to the maximum entropy
problem. First, we make the important observation that the constraint set S of the maximum entropy problem is convex (as a
subset of the space of measures on X), as is the objective. And so, via convex duality (Wainwright et al., 2008, Theorem
3.4), solving the constrained maximum entropy problem over the space of probability distributions (16) is equivalent to
solving the unconstrained problem in Euclidean space

argmax a' h* — log (/exp{ra(m)}dP), (18)

[e 2

where the objective can potentially take on the value —co if log([exp{ra(z)}dP) = occ. This is the same as saying strong
duality holds for the maximum entropy problem (16) and its dual (18). We detail the assumptions necessary to invoke strong
duality in the formal statement of Proposition B.2. Moreover, the optimal value of (18) coincides with the KL distance of the
maximum entropy solution (16) to pg. We verify in our proof of proposition B.2 that the objective (18) is strictly concave
under weak assumptions.

Since the integral in (18) is typically intractable, the estimator we propose in (8) involves first sampling from the base
model py and then solving (18), with the integral replaced by the empirical average from our samples. The estimator &
is well-defined if and only if (i) h* lies in the convex hull of {h(z,,) %:1 and (ii) the empirical covariance matrix of
{h(xm) %:1 has full rank. If (i) does not hold (but (ii) does), then the primal problem is infeasible. This means that
although the objective (18) is strictly concave, the objective grows without bound to 4+-co. Conversely, if (ii) does not hold
(but (i) does), then there will exist infinitely many solutions to (8). However, under the assumptions of Proposition B.2,
as M — oo, the probability that either (i) or (ii) does not hold approaches zero. Intuitively, since for each fixed «, the
empirical averages approach the integral with probability one, we would expect that the solution to (16) would approach the

solution to (18). We formalize this intuition in the following proposition:

Proposition B.2. Assume that the components of h(x) are linearly independent as vectors in L (py,,,). Assume also for all
a € RY belonging to an open neighborhood N (a*) of o*,

/exp {a"h(z)} py,, (z)dz < .

Let {x,, }M_, be i.i.d. samples from the base generative model p,,,. Then for any € > 0,

\a({wm}%:l) —a*||>€) =0 as M — .

]Pp Obase (

In other words, the estimator & is consistent for o*.

Proof. Our argument relies upon the result that, under the assumptions stated in the proposition, a* is also the unique
solution of the dual problem (18) (Wainwright et al., 2008, Theorem 3.4).

Our proof will proceed as follows: we first demonstrate that on a closed, bounded subset of N(«*) containing a*,
the approximation aTh* — M~ "M exp{aTh(z,,)} to the dual objective aTh* — log([exp{aTh(x)}pe,. (x)dz)
converges uniformly with probability one. Then, since the dual objective is strictly concave and achieves its unique maximum
at o, with high probability, the minimizer to the approximate objective will be close to a*.

First, we recognize that the dual objective is a strictly concave function on N (a*). Indeed, it is straightforward to show

=0

) . [(h(@) — ma)(h(x) — ma)T explaT h(a)}pa. (@)de
Valog </ b h(m’}“bﬂ“(m)d@ - T expla™h(@)) pa, (@)dx
[@) exp{aTh(@)}po. (@)da
= T oxplah(@) e (@)de

Since a"h* is concave in «, this implies that the dual objective is strictly concave on N(a*). Likewise, since the
composition of a linear and convex function is convex, and log-sum-exp is a convex function, then the approximation to the
dual objective is also concave in o € RY, for each fixed z € R,

18

Calibrating Generative Models

Next, by the Strong Law of Large Numbers (SLLN), we can construct a Borel set N C R such that N has probability zero
under py,,. and on its complement,

1 M
17 2 ewlaTh@n)} - [ewlaTh@)m,. @)z
m=1

holds for each o € N(a*) N QY (apply SLLN for an individual o € N(a*) N QY then take a union over probability zero
sets). Hence, on the complement of IV,

M
a'h* —log (]\14 Z eXp{aTh(a:m)}> — a'h* —log (/ eXp{aTh(:B)}pgbase(a:)dac)

holds for each o € N(a*) N QY.

A classical result in convex analysis (Rockafellar, 1997, Theorem 10.8) states that if a sequence of finite concave functions
defined on an open, convex subset C converges pointwise on a dense subset of C to a limiting function, then the limiting
function is concave on C, and the convergence is uniform on closed and bounded subsets of C. Applying this result to our
setting, we have that on the complement of NV

sup
acK

@ S eplah(en) — {ath tox [esptaTh@) i @)is) }’ 50

m=1
for K a closed and bounded subset of N (a*). Note that K can be chosen to have positive diameter since N (a*) is open.

Fix € > 0 sufficiently small such that the Euclidean ball centered at a* of radius € is contained in /. We claim there exists
some x € R such that for all || — a*|| =€

a™h ~1og ([explah@)m.(@)in) < w < (@) Th ~lox [expl(a)Th(e))m..(a)iz).

The existence of such a k € R follows from (i) the fact that the left-hand side of the above inequality attains its maximum
on the compact set ||a — a*|| = € and (ii) by strict concavity of the dual objective, this maximum must be strictly less than
the right-hand side. Fix 6 > 0. By the uniform convergence previous proved, there exists M, s € N such that VM > M, s
and for all || — a*|| = ¢,

Th**ii Th *\T *7ilw *\T
a 2 exp{a h(@n)} < (&) A" — - > exp{(@”) h(znm)}

m=1

with probability at least 1 — J under py,,... But since the approximate dual objective is concave, this implies that, on this
event, its maximum occurs within the Euclidean ball of radius e.

In other words, we have proven that for every ¢ > 0,§ > 0, there exists M, s such that for every M > M, s,

Ppo,,. ([@{@m}ni) —a’| >) <.

C. Neural Stochastic Differential Equations

Consider the measurable space (C[0,1]%, Beio,1)¢) of d-dimensional continuous paths on the interval 0 < ¢ < 1, where
Beo,17¢ is the Borel sigma-field corresponding to the supremum norm on C'[0, 1]%. Next, we discuss neural stochastic
differential equations, which model (2(t))o<:<1 as the solution to a stochastic differential equation

dx(t) = bg(x(t), t)dt + o(t)dw(t), x(0) ~ pinit, (19)

where (w(t))o<t<1 is a standard d-dimensional Brownian motion, by is modeled by a neural network, and pjp;; is a known
distribution from which sampling is tractable. When the drift by : R? x [0,1] — R< and diffusion o : [0,1] — Ry

19

Calibrating Generative Models

coefficients are bounded and by satisfies the Lipschitz continuity condition ||bg(x,t) — bg(y,t)|| < C1(1 + ||z — y||) for
some C; € Ry andallt € [0,1], @,y € R4, the SDE (19) admits a unique, strong solution (Oksendal, 2013, Theorem
5.2.1). We denote the solution, which is a probability law on (C[0, 1], Bog 1j4), by pe.

We will be interested in solving the calibration problem when the base model pg,,.. and calibrated model pg are neural-SDEs.
For our proof of Theorem 4.1, we will also need to assume that the SDE (19) is uniformly elliptic, meaning o (t) > k > 0
forall 0 < ¢ < 1 and some k > 0, and that by, (x,t), o(t) are uniformly Lipschitz on R¢ x [0, 1] (rather than for each
fixed t). It will be convenient to represent the calibrated model as a controlled diffusion process

po :da(t) = (bo,,. (z(t),1) + o (t)ug(a(t),1))dt + o (t)dw(t), 2(0) ~ Pini,
up(x(t),t) = o(t) ™' (bo(@(t), 1) — b, (%(2), 1))

In this formulation ug(x(t), t) is called the controller. Intuitively, an identically zero controller uy = 0 recovers the base
model py whereas a nonzero controller perturbs the generative model away from the base model.

(20)

An important consequence of our assumptions is Girsanov’s Theorem (Cameron & Martin, 1944; Girsanov, 1960), which
tells us that the probability measures py and pg, . have densities with respect to one another.

Theorem C.1 (Girsanov’s Theorem). Suppose the SDEs

vi(z) s de(t) = bi(x(t), t)dt + o(t)dw(t), 0<t<1
vo(x) : dx (b1 (x(t),t) + o(t)ba(x(t),t))dt + o(t)dw(t), 0<t<1

satisfy o(t) > 0, 0 < t < 1, have the same initial law vi(x¢) = v2(xo), and admit unique, strong solutions, vy and vs.

Suppose also
va(@ v
[1/1(:1: } exp{ E / ba(x)idw* (t) — f/ [1b2(2(t),)]l dt}

is a v1-martingale, where (W (t))o<t¢<1 is a v1-Brownian motion and dw}*(t), i = 1,...,d denotes the Ito stochastic
integral. Then the probability measure vo has a density with respect to v1. In particular, for any bounded functional ®
defined on C[0,1],

Under our assumptions, ([pg(x)/pa,.. ()]+)o<i<1 is a martingale with respect to pg,,... Consequently, Girsanov’s Theorem
implies that the density of the controlled diffusion process py with respect to pg,,.. is given by

= s, eXp{Z/ ol ())"t / e szt} o

This expression for the density of py with respect to pg, . allows us to compute the KL divergence between the probability
measures py and py, . according to

1 1
Dic. (o |) =5 | Epallun(e(0).)P

The stochastic integral term vanishes since it has expectation zero.

We point out that we have been notationally imprecise insofar as py(x) and pg,, () represent probability measures on
the space of d-dimensional continuous paths, rather than densities with respect to a measure on d-dimensional Euclidean
space. Still, Girsanov’s Theorem tells us how to compute the density of py with respect to py,,.. The importance weights
po(x)
Pstop-graa(9) ()
exactly the two quantities we need in order to compute our unbiased gradient estimates for £7%* and £rVard,

can likewise be computed via Girsanov’s Theorem. We will demonstrate in Appendix C.2 that these are

20

Calibrating Generative Models

C.1. Characterization of Maximum Entropy Solution

Next, we address why optimizing the reward loss £**“ approximately solves the calibration problem, which aims to

find the controller for which py is closest in KL distance to py,,... In particular, we demonstrate that when the calibration
constraint is a function of the terminal state (1) only, and when (0) L «(1) are independent under py,, ., then the solution
to the maximum entropy problem (5) is, in fact, a controlled diffusion process of the form (20). Moreover, we give a
closed-form expression for the optimal controller in this case.

proof of Theorem 4.1. By Theorem B.1, the solution to the maximum entropy problem (16) has density

Po () _ exp{ro-(x(1))}
Poue (@) Epy [exp{ra-(x(1))}]

with respect to py,,... The denominator here is a normalizing constant i.e. it ensures the probability density integrates to one.
We point out that by the properties of conditional expectation (Léonard, 2014),

Pa-(®) _ Par(2(1) pa-(x(1)) e w Pa-(z(1)) Pa- ()
P (@) P (D) pa (@) PO IS (1)) e [pemm

However, since the density of p,~ is a function of @(1) only, this implies % = 1, pg,,.-a.c. In other words, to
base

(22)

w(l)} s Pop-d-€.. (23)

obtain the distribution pq+, one only needs to reweight the paths from pg,, . according to their terminal value.

From here, we proceed by determining a controller u for which the solution to the controlled diffusion process (20) is equal
in law to the solution of the maximum entropy problem (22). Within the stochastic differential equation literature, our
proof technique is referred to as the Doob h-transform argument (Karatzas & Shreve, 2012; Oksendal, 2013; Denker et al.,
2024). To this end, consider the Backward Kolmogorov Equation (BKE): the solution g € C%(R? x [0, 1]) (i.e. twice
continuously differentiable in &, one continuously differentiable in ¢) to the BKE satisfies the partial differential equation

8tg(33,t) + %UQ(t)Amg(wvt) + bebass(w7 t)Tng(:c,t) =0, g(:c7 1) = exp{?‘a* (:E(l))}, te [07 1]'

where, from our assumptions, g(x, 1) is bounded and continuous. Under the assumptions stated at the beginning of the
section, there exists a unique solution to the BKE, which is given by

9(@,t) = Ep, _lexp{ra-(@(1))}z(t) = z].

See Karatzas & Shreve (2012, Chapter 5) as well as Friedman (1975, Chapter 6). By 1t6’s Lemma applied to the function
g(x,t) and the base process (x(t))o<t<1,

d

d
dg(a(0)1) = Dug (1), 1) + D (Vagl@(0),)0 + 3 D (Vaglat),0):i(do (1))’
d
= {atg(m(t)a t) + %O—(t)ZAmg(w(t)7 t) + bia,e (m(t)v t)Tvmg(m(t)a t)} dt +J(t) Z(Vmg(m(t)v t))ldw(t)7

, =0
Z))idw(t);.

The dt term vanishes since g is the solution to the BKE. Since ¢ is bounded, then the right-hand side, in addition to being a
local martingale, is a bona fide martingale with respect to pg,,.

Moreover, since log(z) is continuous on the set in which g(«, t) is contained, we may invoke Ito’s Lemma once more

dlog g(a(1) 1) = (m(ltm e ()t)—W(dg@(t),t))?
Z (Vg log g(x(t), t))sdw(t); — % o (t)Va log g(z(t),)| dt. (24)

21

Calibrating Generative Models

Exponentiating both sides yields
t
S e { [3 o) (Tatogatats). awis); ~ 5 [o)V logata o)) ds} .
Again, since the left-hand side is bounded, then the right-hand side is a martingale with respect to pg,,.. .
From here, we make two important observations. First, since (0) L «(1) under py,,, then
9(x(0),0) = Ep,__lexp{ra-(x(1))}x(0) = 2] = By, [exp{ra-(x(1))}]

is a constant with respect to pg,,... This is exactly the normalizing constant appearing in po~. In particular, if we evaluate the
above expression (24) at time ¢ = 1 and plug in our expression for g(x(0), 0), we obtain

xr xr ! 2
Pa-(z(1)) _ g(=(1),1) _exp{/) (Vg log g(x(s), s))idw(s)if%/o llo(s)Valog g(x(s),s)|| ds}.

Pore (®(1)) - 9(2(0),0

(25)
Second, by Girsanov’s Theorem (Theorem C.1), (25) represents the density of the controlled SDE
» s dx(t) = {bg,,. (2(t),t) + o(t)u" (x(t),t) }dt + o(t)dw(t), (0) ~ ppir, u* = o(t)Vg log g(x, t)
with respect to py,,.. Combining these two facts, we obtain

Pax (1}(1)) _ Dux (x))
P @) pan (@)

Finally, by (23), we conclude

pa*(.’li) — pu*(w) pe _
Do (T) Pl ()7

Equivalently, po~ is equal in law to the controlled diffusion process p,« with controller u* = o (t)V 4 log g(x, t). O

a.c..

C.2. CGM-relax and CGM-reward for Neural-SDEs

In this section, we discuss how we implement CGM-relax and CGM-reward in the setting of a neural-SDE pre-trained
model and a controlled diffusion process calibrated model. As we mentioned in Appendix C, since pyg,,, and py represent
probability measures rather than densities, we cannot directly compute the gradient estimates we proposed for V., £ and
V., L% in Appendix A.2.

We start with our gradient estimate for the reward loss (9). Define sg(-) := stop-grad(-). In particular, rather than

introducing the score, we can work with the importance weights 5 P fe(ﬁ)m) , which are well-defined via Girsanov’s Theorem.
sg

The gradient of the reward loss is

VoL(9) = Vo, {log po(@) ra(az)}
pebase()

= Vo [fio 28— 1o i)

w Ve/p@(){log po(@) —ra(w)}psg(a)(dw)

Psqg(6) (33) Pbyyse (.’13)

=P [(W’iﬁ?@) {1om 05 —rate }| + 5y [oton 2T

In equality (x) we invoked Girsanov’s Theorem to change measure from pp to psy(g). Just as in Appendix A.2, the second
term is zero. One can see this by rewriting

po(x) _ po(x) psg(e)(ﬂc)
pebasc(w) Psq(6) (:B) pebasc(w)

Po-a.c..

22

Calibrating Generative Models

As for the first term, we have from Girsanov’s Theorem

VoL 0) =E,, [(Vepe(m)> {log Po(®) —7’&(“’)}]

Psg(0) pebase()

d 1
(;)]Epsg(e) [(Z . Voug(x(t),t);dw psq(G)) (Z/ ug(x pebﬂse / [|ug (2 || dt —ra(z)>‘| .

=1

Here, (x) follows from differentiating the density of py with respect to ps4(g):

d 1 1
V¥””)=V%@m{§j wdwa»—umwmuwinwwﬁ@uw—il|dew¢»—%«m@u»me}

170

Moreover, by Girsanov’s Theorem, it holds
dw; ™ (t) = dw!™ () + usy(py (2 (t), 1)dt,

which yields

Veﬁreward(e psg(s) [(Z/ Voug(x(t),t);dw psg(e) (t)) }79,&(33)] (26)
Ye ol Z (/ t)idwi’sq(e)(t) N /1

0

oo (@ (1), E)suo ((t), dQ—/nw DIPdt — ro(a).

We compute an unbiased estimate to (26) by drawing M i.i.d. samples {z,, }}_, from Psq(p) and computing a Monte Carlo
estimate. When sampling from pg gy according to an SDE solver (e.g., Euler-Maruyama), we also store the Brownian
motion that we sample {wp;*” }M_ . Just as we did in Appendix A.2, we can also include a baseline to reduce the variance
of our gradient estimate. Altogether we get the following unbiased estimate for Vg L%

—Z <Z / Voug(@n(t)idw””(“(t)> Yoa(@m) — Ml—l > Yoalww) | o (27)

As pointed out by Richter et al. (2020), our gradient estimator (27)—the score-based gradient estimator with a baseline—
coincides up to a constant multiplicative factor with the gradient estimate for the log-variance loss (Niisken & Richter, 2021).
The log-variance loss is defined as

)

Vary,__ (log
where pg () is defined such that pf; “(’2) = Z lexp{@"h(x)} (this is also we defined pg () in the proof of Theorem 4.1).
base

In practice, one estimates the log-variance loss by computing

1 M 2
M_lz<}/9amm_ Z}/Gamm>

for {x,,, }M_, drawn i.i.d. from Psq(p)- And by differentiating this expression, one obtains an unbiased gradient estimate for
the log-variance loss.

As for the relaxed loss (2), we can estimate the gradient of the KL term in an identical way i.e. by computing

Wi Z {(Z/ Voug(xm(t),t):d wpsg(g) (t)) (?9@(;1:7”) +ra(Tm) — 7]\/[171 Z {}N/(;’a(:cm/) +ra(wm/)}) }

m’'#m

23

Calibrating Generative Models

And for the squared norm difference between the expectation of h under py and the target expectation h*, we use the

same estimate ng"i"l({%ﬁm}%zl) as in Appendix A.2. Now, though, the density % is determined by

Girsanov’s Theorem (Theorem C.1).

D. Additional Experimental Details

D.1. Synthetic Data Experiments

For each of our synthetic data experiments, we represent py,, . as the solution to

Do © dx(t) = {J(t)28($(t), 1—t)— f(x(t),1 —t)}dt + o(t)dw(t), 0 <t <1, (0) ~ Dinit,

bshasc

where s(z(t), t) = Vg log p (z(t)) is the score of the forward noising process defined by drift f(z, t) and diffusion o'(1—¢).
The forward process satisfies the SDE

B da(t) = fla(t),t)dt + o(1 - t)dw(t), 2(0) £ o, (2(1)).

When f(x(t),t) = rix(t) for some (x¢)o<i<1 (i.e. the forward noising process is defined by a linear SDE / Orn-

stein-Uhlenbeck process) and p (2(0)) is a Gaussian mixture model, s(a(t), t) admits a closed form. See Song et al. (2020)
for further details on diffusion processes and their reversals.

We parameterize the drift of the calibrated model as by, (x,t) + o (t)ug(x,t), where ug(x, t) is a neural network with two
hidden layers of dimension 256 with SiLU activations. In addition to x(t), we also input to the neural network a sinusoidal
time embedding of dimension 32.

When performing our synthetic data experiments with the CGM-reward algorithm, we estimate the parameters a* of the
maximum entropy solution (6) using 10 samples from the base model py. In the Gaussian mean experiments, where
the dimension of « is equal to the dimension of the problem, we observe that the error in estimating o* grows with the
dimensionality of the problem. Theoretically characterizing the dependence of the estimator & on the dimension of the
constraint remains future work.

For each of our synthetic data experiments, we perform the CGM updates described in Algorithms 1 and 2 using Adam
with a cosine learning rate schedule. For the GMM experiments we perform 2.5 - 10 iterations and for the Gaussian
mean experiments we perform 102 iterations. These values were chosen by inspecting each term of the relax and reward
losses (see equations (2) and (9)). For each set of experiments, we assessed the stability and convergence speed of the
CGM algorithm for various values of minimum and maximum learning rate. Namely, for the GMM experiments we chose
maximum learning rate 10~3 and minimum learning rate 10~ for both CGM-relax and CGM-reward. For the Gaussian
moment calibration experiments, we chose maximum learning rate 10~* for both algorithms and minimum learning rates
1079 and 10~7 for CGM-relax and CGM-reward, respectively.

In both synthetic data experiments, we use M = 10* samples to perform each gradient update (evaluating the neural network
is inexpensive for these problems). Samples are drawn on a time-grid of size 100.

D.2. Calibrating the Genie2 Protein Design Model

For our protein diffusion model experiments, we use the Genie2 encoder-decoder architecture to define pg,, (see details
in Lin et al. (2024)), which is constructed to be SE(3)-equivariant. We then directly fine-tune the base Genie model by
initializing py at pg,,., -

Since Genie?2 is trained as the reversal of a discrete-time noising process (a DDPM, see Ho et al., 2020), we first convert the
discrete-time denoising diffusion model to a (continuous-time) neural-SDE. We do this by redefining the final timestep 7" of
the original denoising process to be time 1 of the continuous-time process. To define the drift function, we take the DDPM
transition mean defined at each time ¢ in the discrete-time process, divide it by 1/7 = T, and define the drift function to
be equal to the resulting value in between times ¢/T and (¢ + 1) /7. The diffusion coefficient is similarly defined by the
DDPM transition standard deviation at each time ¢ in the discrete-time process, but is instead scaled by 7'*/2. This approach
of converting the DDPM into a neural-SDE ensures that when the SDE is solved under the Euler-Maruyama scheme using a
grid of T" timesteps (i.e. the original time grid used to define the DDPM), one samples from the original DDPM.

24

Calibrating Generative Models

Again for the Genie2 experiments, we perform the CGM-relax updates using Adam with a cosine learning rate schedule.
The calibrated models displayed in Figure 2 and Figure 4 are each trained with maximum learning rate 10~° and minimum
learning rate 10~7. Across all experiments, we run 100 CGM-relax training iterations, each of which samples M = 64
structures to perform the gradient update. Gradient computation is parallelized across 4 NVIDIA H100 GPUs. In future
work, we intend to consider alternative parameterizations of the controller in order to make generating samples with Genie2
more memory efficient.

For Genie2, we perform sampling using 100 timesteps and a non-uniform time grid: we sample the first 50 steps on the
interval [0, 0.05] and the remaining steps on the interval [0.05, 1]. We point out that the original Genie2 model was trained
with 10% denoising steps; reducing the number of sampling steps substantially decreases the runtime of CGM calibration.
Our sampling scheme is possible since we redefined the base generative model to be a neural-SDE. From computing
self-consistency metrics for the base Genie2 model sampled on the original time grid (with 103 steps) and on our proposed
grid (with 100 steps), we did not observe any difference in sample quality.

Self-consistency RMSD and designability. To assess the quality of our generations, we compute the root mean-square
deviation (RMSD) between C', atoms resulting from unfolding our generated structures into predicted amino sequences
and then refolding each of these predicted sequences into a protein structure. The self-consistency RMSD (scRMSD) is
defined as the smallest RMSD between the given structure and one of the corresponding predictions. We use ProteinMPNN
(Dauparas et al., 2022) for our inverse folding model and ESMFold (Lin et al., 2023) for our folding model; we compute
scRMSD from 8 sequences. The pipeline we employ was developed by Lin & Nguyen (2024). Once we have determined
the scRMSD of a generated structure, we classify it as “designable” if its ScSRMSD is at most 2A. Intuitively, designability is
a binary measure of whether or not a structure could have been plausibly produced by folding an amino acid sequence.

D.3. Additional Figures from Experiments

25

Calibrating Generative Models

Figure 3. Contour plot of the joint distribution of alpha-helical and beta-strand composition for the base Genie2 model (i.e. without scaling

the noise).

1.0 _
N Genie2o =1
N (no noise adjustment)
© A S
o N\
P AN
Q. \
£ N
3 0.5 1 \\\
3 N\
2 .
(7] N\
o N\
= \
o N
e N\
a RN
N
N
A .
0.0 T ‘
0.0 0.5 1.0

Prop residues in a-helix

26

Calibrating Generative Models

DR Y EBE L
W FHYREH
o dy w84 4

by e G B

%%%&@m%%
" B BRERE
§>ﬁ%%§§ 3%’{%%@
Ak AR

Figure 4. Protein backbones colored by secondary structure type sampled from A: Genie2 base model with reduced noise scale o = 0.5.
B: Genie2 base model with original noise scale o = 1.0. C: Genie2 model fine-tuned by CGM-relax with N = 9 univariate constraints
and A = 10%/(2N) ~ 5. D: Genie2 model fine-tuned by CGM-relax with N = 9 univariate constraints and A = 10*/(2N) = 500.
Structures are visualized with pymol. To allow pymol annotation of secondary structure, N, C, and O backbone atoms are inferred from
the C only Genie2 samples with CG2AA (Lombardi et al., 2016).

27

