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Abstract

Massive deployment of Graph Neural Networks (GNNs) in high-stake applications
generates a strong demand for explanations that are robust to noise and align well
with human intuition. Most existing methods generate explanations by identifying
a subgraph of an input graph that has a strong correlation with the prediction.
These explanations are not robust to noise because independently optimizing the
correlation for a single input can easily overfit noise. Moreover, they are not
counterfactual because removing an identified subgraph from an input graph does
not necessarily change the prediction result. In this paper, we propose a novel
method to generate robust counterfactual explanations on GNNs by explicitly
modelling the common decision logic of GNNs on similar input graphs. Our
explanations are naturally robust to noise because they are produced from the
common decision boundaries of a GNN that govern the predictions of many similar
input graphs. The explanations are also counterfactual because removing the set
of edges identified by an explanation from the input graph changes the prediction
significantly. Exhaustive experiments on many public datasets demonstrate the
superior performance of our method.

1 Introduction

Graph Neural Networks (GNNs) [22, 37, 50] have achieved great practical successes in many real-
world applications, such as chemistry [31], molecular biology [17], social networks [3] and epidemic
modelling [34]. For most of these applications, explaining predictions made by a GNN model is
crucial for establishing trust with end-users, identifying the cause of a prediction, and even discovering
potential deficiencies of a GNN model before massive deployment. Ideally, an explanation should
be able to answer questions like “Would the prediction of the GNN model change if a certain part
of an input molecule is removed?” in the context of predicting whether an artificial molecule is
active for a certain type of proteins [19, 41], “Would an item recommended still be recommended if a
customer had not purchased some other items in the past?” for a GNN built for recommendation
systems [9, 44].

Counterfactual explanations [28] in the form of “If X had not occurred, Y would not have oc-
curred” [26] are the principled way to answer such questions and thus are highly desirable for GNNs.
In the context of GNNs, a counterfactual explanation identifies a small subset of edges of the input
graph instance such that removing those edges significantly changes the prediction made by the
GNN. Counterfactual explanations are usually concise and easy to understand [28, 36] because they
align well with the human intuition to describe a causal situation [26]. To make explanations more
trustworthy, the counterfactual explanation should be robust to noise, that is, some slight changes on
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an input graph do not change the explanation significantly. This idea aligns well with the notion of
robustness discussed for DNN explanations in computer vision domain [11]. According to Ghorbani
et al. [11] many interpretations on neural networks are fragile as it is easier to generate adversarial
perturbations that produce perceptively indistinguishable inputs that are assigned the same predicted
label, yet have very different interpretations. Here, the concepts of “fragile” “robustness” describe
the same concept from opposite perspectives. An interpretation is said to be fragile if systematic
perturbations can lead to dramatically different interpretations without changing the label. Otherwise,
the interpretation is said to be robust.

How to produce robust counterfactual explanations on predictions made by general graph neural
networks is a novel problem that has not been systematically studied before. As to be discussed
in Section 2, most GNN explanation methods [45, 25, 46, 37, 32] are neither counterfactual nor
robust. These methods mostly focus on identifying a subgraph of an input graph that achieves a high
correlation with the prediction result. Such explanations are usually not counterfactual because, due
to the high non-convexity of GNNs, removing a subgraph that achieves a high correlation does not
necessarily change the prediction result. Moreover, many existing methods [45, 25, 37, 32] are not
robust to noise and may change significantly upon slight modifications on input graphs, because
the explanation of every single input graph prediction is independently optimized to maximize the
correlation with the prediction, thus an explanation can easily overfit the noise in the data.

In this paper2, we develop RCExplainer, a novel method to produce robust counterfactual explanations
on GNNs. The key idea is to first model the common decision logic of a GNN by set of decision
regions where each decision region governs the predictions on a large number of graphs, and then
extract robust counterfactual explanations by a deep neural network that explores the decision logic
carried by the linear decision boundaries of the decision regions. We make the following contributions.

First, we model the decision logic of a GNN by a set of decision regions, where each decision region
is induced by a set of linear decision boundaries of the GNN. We propose an unsupervised method to
find decision regions for each class such that each decision region governs the prediction of multiple
graph samples predicted to be the same class. The linear decision boundaries of the decision region
capture the common decision logic on all the graph instances inside the decision region, thus do
not easily overfit the noise of an individual graph instance. By exploring the common decision
logic encoded in the linear boundaries, we are able to produce counterfactual explanations that are
inherently robust to noise.

Second, based on the linear boundaries of the decision region, we propose a novel loss function
to train a neural network that produces a robust counterfactual explanation as a small subset of
edges of an input graph. The loss function is designed to directly optimize the explainability and
counterfactual property of the subset of edges, such that: 1) the subgraph induced by the edges lies
within the decision region, thus has a prediction consistent with the input graph; and 2) deleting the
subset of edges from the input graph produces a remainder subgraph that lies outside the decision
region, thus the prediction on the remainder subgraph changes significantly.

Last, we conduct comprehensive experimental study to compare our method with the state-of-the-art
methods on fidelity, robustness, accuracy and efficiency. All the results solidly demonstrate the
superior performance of our approach.

2 Related work

The existing GNN explanation methods [46, 37, 45, 32, 25] generally fall into two categories: model
level explanation [46] and instance level explanation [37, 45, 32, 25].

A model level explanation method [46] produces a high-level explanation about the general behaviors
of a GNN independent from input examples. This may be achieved by synthesizing a set of artificial
graph instances such that each artificial graph instance maximizes the prediction score on a certain
class. The weakness of model level explanation methods is that an input graph instance may not
contain an artificial graph instance, and removing an artificial graph from an input graph does not
necessarily change the prediction. As a result, model level explanations are substantially different
from counterfactual explanations, because the synthesized artificial graphs do not provide insights
into how the GNN makes its prediction on a specific input graph instance.

The instance level explanation methods [37, 45, 32, 25] explain the prediction(s) made by a GNN
on a specific input graph instance or multiple instances by identifying a subgraph of an input graph

2Other versions of the paper are available at https://arxiv.org/abs/2107.04086
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instance that achieves a high correlation with the prediction on the input graph. GNNExplainer [45]
removes redundant edges from an input graph instance to produce an explanation that maximizes
the mutual information between the distribution of subgraphs of the input graph and the GNN’s
prediction. Following the same idea by Ying et al. [45], PGExplainer [25] parameterizes the genera-
tion process of explanations by a deep neural network, and trains it to maximize a similar mutual
information based loss used by GNNExplainer [45]. The trained deep neural network is then applied
to generate explanations for a single input graph instance or a group of input graphs. MEG [30]
incorporates strong domain knowledge in chemistry with a reinforcement learning framework to
produce counterfactual explanations on GNNs specifically built for compound prediction, but the
heavy reliance on domain knowledge largely limits its applicability on general GNNs. The recently
proposed CF-GNNExplainer [24] independently optimizes the counterfactual property for each
explanation but ignores the correlation between the prediction and the explanation.

Some studies [32, 37] also adapt the existing explanation methods of image-oriented deep neural
networks to produce instance level explanations for GNNs. Pope et al. [32] extend several gradient
based methods [33, 35, 49] to explain predictions made by GNNs. The explanations are prone to
gradient saturation [12] and may also be misleading [1] due to the heavy reliance on noisy gradients.
Velickovic et al. [37] extend the attention mechanism [7, 8] to identify the nodes in an input graph that
contribute the most to the prediction. This method has to retrain the GNN with the altered architecture
and the inserted attention layers. Thus, the explanations may not be faithful to the original GNN.

Instance level explanations from most of the methods are usually not counterfactual because, due
to the non-convexity of GNNs, removing an explanation subgraph from the input graph does not
necessarily change the prediction result. Moreover, those methods [45, 25, 37, 32, 24] are usually
not robust to noise because the explanation of every single input graph prediction is independently
optimized. Thus, an explanation can easily overfit the noise inside input graphs and may change
significantly upon slight modifications on input graphs.

To tackle the weaknesses in the existing methods, in this paper, we directly optimize the counterfactual
property of an explanation along with the correlation between the explanation and the prediction. Our
explanations are also much more robust to modifications on input graphs, because they are produced
from the common decision logic on a large group of similar input graphs, which do not easily overfit
the noise of an individual graph sample.

Please note that our study is substantially different from adversarial attacks on GNNs. The adversarial
attacking methods [51, 53, 42, 43, 20] use adversarial examples to change the predictions of GNNs but
ignore the explainability of the generated adversarial examples [10]. Thus, the adversarial examples
generated by adversarial attacks may not explain the original prediction.

Our method is substantially different from the above works because we focus on explaining the
prediction by directly optimizing the counterfactual property of an explanation along with correlation
of the explanation with the prediction. We also require that the explanation is generally valid for a
large set of similar graph instances by extracting it from the common linear decision boundaries of a
large decision region.

3 Problem Formulation

Denote by G = {V,E} a graph where V = {v1, v2, . . . , vn} is the set of n nodes and E ⊆ V × V is
the set of edges. The edge structure of a graph G is described by an adjacency matrix A ∈ {0, 1}n×n,
where Aij = 1 if there is an edge between node vi and vj ; and Aij = 0 otherwise.

Denote by φ a GNN model that maps a graph to a probability distribution over a set of classes denoted
by C. Let D denote the set of graphs that are used to train the GNN model φ. We focus on GNNs that
adopt piecewise linear activation functions, such as MaxOut [14] and the family of ReLU [13, 15, 29].

The robust counterfactual explanation problem is defined as follows.

Definition 1 (Robust Counterfactual Explanation Problem) Given a GNN model φ trained on a
set of graphs D, for an input graph G = {V,E}, our goal is to explain why G is predicted by the
GNN model as φ(G) by identifying a small subset of edges S ⊆ E, such that (1) removing the set of
edges in S from G that causes the maximum drop in the confidence of the original prediction; and (2)
S is stable and doesn’t change when the edges and the feature representations of the nodes of G are
perturbed by random noise.
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In the definition, the first requirement requires that the explanation S is counterfactual, and the second
requirement requires that the explanation is robust to noisy changes on the edges and nodes of G.

4 Method

In this section, we first introduce how to extract the common decision logic of a GNN on a large
set of graphs with the same predicted class. This is achieved by a decision region induced by a
set of linear decision boundaries of the GNN. Then, based on the linear boundaries of the decision
region, we propose a novel loss function to train a neural network that produces robust counterfactual
explanations. Last, we discuss the time complexity of our method when generating explanations.

4.1 Modelling Decision Regions

Following the routines of many deep neural network explanation methods [33, 48], we extract the
decision region of a GNN in the d-dimensional output space Od of the last convolution layer of
the GNN. The features generated by the last convolution layer are more conceptually meaningful
and more robust to noise than those raw features of input graphs, such as vertices and edges [52, 2].
Denote by φgc the mapping function realized by the graph convolution layers that maps an input
graph G to its graph embedding φgc(G) ∈ Od, and by φfc the mapping function realized by the fully
connected layers that maps the graph embedding φgc(G) to a predicted distribution over the classes
in C. The overall prediction φ(G) made by the GNN can be written as φ(G) = φfc(φgc(G)).

For the GNNs that adopt piecewise linear activation functions for the hidden neurons, such as
MaxOut [14] and the family of ReLU [13, 15, 29], the decision logic of φfc in the space Od is
characterized by a piecewise linear decision boundary formed by connected pieces of decision
hyperplanes in Od [1]. We call these hyperplanes linear decision boundaries (LDBs), and denote
by H the set of LDBs induced by φfc. The set of LDBs in H partitions the space Od into a large
number of convex polytopes. A convex polytope is formed by a subset of LDBs in H. All the
graphs whose graph embeddings are contained in the same convex polytope are predicted as the same
class [4]. Therefore, the LDBs of a convex polytope encode the common decision logic of φfc on all
the graphs whose graph embeddings lie within the convex polytope [4]. Here, a graph G is covered
by a convex polytope if the graph embedding φgc(G) is contained in the convex polytope.

Based on the above insight, we model the decision region for a set of graph instances as a convex
polytope that satisfies the following two properties. First, the decision region should be induced by a
subset of the LDBs inH. In this way, when we extract counterfactual explanations from the LDBs,
the explanations are loyal to the real decision logic of the GNN. Second, the decision region should
cover many graph instances in the training dataset D, and all the covered graphs should be predicted
as the same class. In this way, the LDBs of the decision region capture the common decision logic on
all the graphs covered by the decision region. Here, the requirement of covering a larger number of
graphs ensures that the common decision logic is general, and thus it is less likely to overfit the noise
of an individual graph instance. As a result, the counterfactual explanations extracted from the LDBs
of the decision region are insensitive to slight changes in the input graphs. Our method can be easily
generalized to incorporate prediction confidence in the coverage measure, such as considering the
count of graphs weighted by prediction confidence. To keep our discussion simple, we do not pursue
this detail further in the paper.

Next, we illustrate how to extract a decision region satisfying the above two requirements. The key
idea is to find a convex polytope covering a large set of graph instances in D that are predicted as the
same class c ∈ C.

Denote by Dc ⊆ D the set of graphs in D predicted as a class c ∈ C, by P ⊆ H a set of LDBs that
partition the space Od into a set of convex polytopes, and by r(P, c) the convex polytope induced by
P that covers the largest number of graphs in Dc. Denote by g(P, c) the number of graphs in Dc

covered by r(P, c), and by h(P, c) the number of graphs in D that are covered by r(P, c) but are not
predicted as class c. We extract a decision region covering a large set of graph instances in Dc by
solving the following constrained optimization problem.

max
P⊆H

g(P, c), s.t. h(P, c) = 0 (1)

This formulation realizes the two properties of decision regions because P ⊆ H ensures that the
decision region is induced by a subset of LDBs inH, maximizing g(P, c) requires that r(P, c) covers
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a large number of graphs in Dc, and the constraint h(P, c) = 0 ensures that all the graphs covered by
r(P, c) are predicted as the same class c.

Once we find a solution P to the above problem, the decision region r(P, c) can be easily obtained
by first counting the number of graphs in Dc covered by each convex polytope induced by P , and
then select the convex polytope that covers the largest number of graphs in Dc.

4.2 Extracting Decision Regions

The optimization problem in Equation (1) is intractable for standard GNNs, mainly because it is
impractical to computeH, all the LDBs of a GNN. The number of LDBs inH of a GNN is exponential
with respect to the number of neurons in the worst case [27]. To address this challenge, we substitute
H by a sample H̃ of LDBs from H̃.

A LDB in the space Od can be written as w>x+ b = 0, where is x ∈ Od is a variable, w is the basis
term, and b corresponds to the bias. Following [4], for any input graph G, a linear boundary can be
sampled fromH by computing

w =
∂ (max1(φfc(α))−max2(φfc(α)))

∂α
|α=φgc(G), (2)

and

b = max1(φfc(α))−max2(φfc(α))−wTα|α=φgc(G), (3)

where max1(φfc(α))) and max2(φfc(α)) are the largest and the second largest values in the vector
φfc(α), respectively. Given an input graph G, Equations (2) and (3) identify one LDB fromH. Thus,
we can sample a subset of input graphs uniformly from D, and use Equations (2) and (3) to derive a
sample of LDBs as H̃ ⊂ H.

Now, we substituteH in Equation (1) by H̃ to produce the following problem.

max
P⊆H̃

g(P, c), s.t. h(P, c) ≤ δ, (4)

where δ ≥ 0 is a tolerance parameter to keep this problem feasible. The parameter δ is required
because substitutingH by H̃ ignores the LDBs inH \ H̃. Thus, the convex polytope r(P, c) induced
by subset of boundaries in H̃ may contain instances that are not predicted as class c. We directly set
δ = h(H̃, c), which is the smallest value of δ that keeps the practical problem feasible.

The problem in Equation (4) can be proven to be a Submodular Cost Submodular Cover (SCSC)
problem [18] (see Appendix D for proof) that is well known to be NP-hard [5]. We adopt a greedy
boundary selection method to find a good solution to this problem [40]. Specifically, we initialize P
as an empty set, and then iteratively select a new boundary h from H̃ by

h = argmin
h∈H̃\P

g(P, c)− g(P ∪ {h}, c) + ε

h(P, c)− h(P ∪ {h}, c) , (5)

where g(P, c)−g(P ∪{h}, c) is the decrease of g(P, c) when adding h into P , and h(P, c)−h(P ∪
{h}, c) is the decrease of h(P, c) when adding h into P . Both g(P, c) and h(P, c) are non-increasing
when adding h ∈ H̃ into P because adding a new boundary h may only exclude some graphs from
the convex polytope r(P, c).
Intuitively, in each iteration, Equation (5) selects a boundary h ∈ H̃ such that adding h into P reduces
g(P, c) the least and reduces h(P, c) the most. In this way, we can quickly reduce h(P, c) to be
smaller than δ without decreasing g(P, c) too much, which produces a good feasible solution to the
practical problem. We add a small constant ε to the numerator such that, when there are multiple
candidates of h that do not decrease g(P, c), we can still select the h that reduces h(P, c) the most.

We apply a peeling-off strategy to iteratively extract multiple decision regions. For each class c ∈ C,
we first solve the practical problem once to find a decision region r(P, c), then we remove the graphs
covered by r(P, c) from Dc. If there are remaining graphs predicted as the class c, we continue
finding the decision regions using the remaining graphs until all the graphs in Dc are removed. When
all the graphs in Dc are removed for each class c ∈ C, we stop the iteration and return the set of
decision regions we found.
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4.3 Producing Explanations

In this section, we introduce how to use the LDBs of decision regions to train a neural network that
produces a robust counterfactual explanation as a small subset of edges of an input graph. We form
explanations as a subset of edges because GNNs make decisions by aggregating messages passed on
edges. Using edges instead of vertices as explanations can provide better insights on the decision
logic of GNNs.

4.3.1 The Neural Network Model

Denote by fθ the neural network to generate a subset of edges of an input graph G as the robust
counterfactual explanation on the prediction φ(G). θ represents the set of parameters of the neural
network. For experiments, our explanation network f consists of 2 fully connected layers with a
ReLU activation and the hidden dimension of 64.

For any two connected vertices vi and vj of G, denote by zi and zj the embeddings produced by the
last convolution layer of the GNN for the two vertices, respectively. The neural network fθ takes
zi and zj as the input and outputs the probability for the edge between vi and vj to be part of the
explanation. This can be written as

Mij = fθ(zi, zj), (6)

where Mij denotes the probability that the edge between vi and vj is contained in the explanation.
When there is no edge between vi and vj , that is, Aij = 0, we set Mij = 0.

For an input graph G = {V,E} with n vertices and a trained neural network fθ, M is an n-by-n
matrix that carries the complete information to generate a robust counterfactual explanation as a
subset of edges, denoted by S ⊆ E. Concretely, we obtain S by selecting all the edges in E whose
corresponding entries in M are larger than 0.5.

4.3.2 Training Model fθ

For an input graph G = (V,E), denote by S ⊆ E the subset of edges produced by fθ to explain
the prediction φ(G), our goal is to train a good model fθ such that the prediction on the subgraph
GS induced by S from G is consistent with φ(G); and deleting the edges in S from G produces a
remainder subgraph GE\S such that the prediction on GE\S changes significantly from φ(G).

Since producing S by fθ is a discrete operation that is hard to incorporate in an end-to-end training
process, we define two proxy graphs to approximate GS and GE\S , respectively, such that the proxy
graphs are determined by θ through continuous functions that can be smoothly incorporated into an
end-to-end training process.

The proxy graph of GS , denoted by Gθ, is defined by regarding M instead of A as the adjacency
matrix. That is, Gθ has exactly the same graph structure as G, but the edge weights of Gθ is given by
the entries in M instead of A. Here, the subscript θ means Gθ is determined by θ.

The proxy graph of GE\S , denoted by G′θ, also have the same graph structure as G, but the edge
weight between each pair of vertices vi and vj is defined as

M′ij =

{
1−Mij if Aij = 1

0 if Aij = 0
(7)

The edge weights of both Gθ and G′θ are determined by θ through continuous functions, thus we can
smoothly incorporate Gθ and G′θ into an end-to-end training framework.

As discussed later in this section, we use a regularization term to force the value of each entry in Mij

to be close to either 0 or 1, such that Gθ and G′θ better approximate GS and GE\S respectively.

We formulate our loss function as

L(θ) =
∑

G∈D
{λLsame(θ,G) + (1− λ)Lopp(θ,G) + βRsparse(θ,G) + µRdiscrete(θ,G)} , (8)

where λ ∈ [0, 1], β ≥ 0 and µ ≥ 0 are the hyperparameters controlling the importance of each term.
The influence of these parameters is discussed in Appendix G. The first term of our loss function
requires that the prediction of the GNN on Gθ is consistent with the prediction on G. Intuitively, this
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means that the edges with larger weights in Gθ dominate the prediction on G. We formulate this term
by requiring Gθ to be covered by the same decision region covering G.

Denote byHG the set of LDBs that induce the decision region covering G, and by |HG| the number
of LDBs inHG. For the i-th LDB hi ∈ HG, denote by Bi(x) = w>i x+ bi, where wi and bi are the
basis and bias of hi, respectively, and x ∈ Od is a point in the space Od. The sign of Bi(x) indicates
whether a point x lies on the positive side or the negative side of hi, and the absolute value |Bi(x)| is
proportional to the distance of a point x from hi. Denote by σ(·) the standard sigmoid function, we
formulate the first term of our loss function as

Lsame(θ,G) =
1

|HG|
∑

hi∈HG

σ (−Bi(φgc(G)) ∗ Bi(φgc(Gθ))) , (9)

such that minimizing Lsame(θ,G) encourages the graph embeddings φgc(G) and φgc(Gθ) to lie on
the same side of every LDB in HG. Thus, Gθ is encouraged to be covered by the same decision
region covering G.

The second term of our loss function optimizes the counterfactual property of the explanations by
requiring the prediction on G′θ to be significantly different from the prediction on G. Intuitively,
this means that the set of edges with larger weights in Gθ are good counterfactual explanations
because reducing the weights of these edges significantly changes the prediction. Following the
above intuition, we formulate the second term as

Lopp(θ,G) = min
hi∈HG

σ (Bi(φgc(G)) ∗ Bi(φgc(G′θ))) , (10)

such that minimizing Lopp(θ,G) encourages the graph embeddings φgc(G) and φgc(G′θ) to lie on
the opposite sides of at least one LDB in HG. This further means that G′θ is encouraged not to be
covered by the decision region covering G, thus the prediction on G′θ can be changed significantly
from the prediction on G.

Similar to [45], we use a L1 regularizationRsparse(θ,G) = ‖M‖1 on the matrix M produced by fθ
on an input graph G to produce a sparse matrix M, such that only a small number of edges in G are
selected as the counterfactual explanation. We also follow [45] to use an entropy regularization

Rdiscrete(θ,G) = −
1

|M|
∑

i,j

(Mij log(Mij) + (1−Mij) log(1−Mij)) (11)

to push the value of each entry in Mij to be close to either 0 or 1, such that Gθ and G′θ approximate
GS and GE\S well, respectively.

Now we can use the graphs in D and the extracted decision regions to train the neural network fθ in
an end-to-end manner by minimizing L(θ) over θ using back propagation. Once we finish training
fθ, we can first apply fθ to produce the matrix M for an input graph G = (V,E), and then obtain the
explanation S by selecting all the edges in E whose corresponding entries in M are larger than 0.5.
We do not need the extracted boundaries for inference as the the decision logic of GNN is already
distilled into the explanation network f during the training.

As discussed in Appendix B, our method can be easily extended to generate robust counterfactual
explanations for node classification tasks.

Our method is highly efficient with a time complexity O(|E|) for explaining the prediction on an
input graph G, where |E| is the total number of edges in G. Additionally, the neural network fθ can
be directly used without retraining to predict explanations on unseen graphs. Thus our method is
significantly faster than the other methods [45, 32, 47, 38] that require retraining each time when
generating explanations on a new input graph.

5 Experiments

We conduct series of experiments to compare our method with the state-of-the-art methods in-
cluding GNNExplainer [45], PGExplainer [25], PGM-Explainer [38], SubgraphX [47] and CF-
GNNExplainer [24]. For the methods that identify a set of vertices as an explanation, we use the set
of vertices to induce a subgraph from the input graph, and then use the set of edges of the induced
subgraph as the explanation. For the methods that identify a subgraph as an explanation, we directly
use the set of edges of the identified subgraph as the explanation.
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Figure 1: Fidelity performance averaged across 10 runs for the datasets at different levels of sparsity.

To demonstrate the effectiveness of the decision regions, we derive another baseline method named
RCExp-NoLDB that adopts the general framework of RCExplainer but does not use the LDBs of
decision regions to generate explanations. Instead, RCExp-NoLDB directly maximizes the prediction
confidence on class c for Gθ and minimizes the prediction confidence of class c for G′θ.

We evaluate the explanation performance on two typical tasks: the graph classification task that uses
a GNN to predict the class of an input graph, and the node classification task that uses a GNN to
predict the class of a graph node. For the graph classification task, we use one synthetic dataset,
BA-2motifs [25], and two real-world datasets, Mutagenicity [21] and NCI1 [39]. For the node
classification task, we use the same four synthetic datasets as used by GNNExplainer [45], namely,
BA-SHAPES, BA-COMMUNITY, TREE-CYCLES and TREE-GRID.

Limited by space, we only report here the key results on the graph classification task for fidelity,
robustness and efficiency. Please refer to Appendix E for details on datasets, baselines and the
experiment setups. Detailed experimental comparison on the node classification task will be discussed
in Appendix F where we show that our method produces extremely accurate explanations. The code3

is publicly available.

5.1 Fidelity

Fidelity is measured by the decrease of prediction confidence after removing the explanation (i.e., a
set of edges) from the input graph [32]. We use fidelity to evaluate how counterfactual the generated
explanations are on the datasets Mutagenicity, NCI1 and BA-2motifs. A large fidelity score indicates
stronger counterfactual characteristics. It is important to note that fidelity may be sensitive to sparsity
of explanations. The sparsity of an explanation S with respect to an input graph G = (V,E) is
sparsity(S,G) = 1− |S||E| , that is, the percentage of edges remaining after the explanation is removed
from G. We only compare explanations with the same level of sparsity.

Figure 1 shows the results about fidelity. Our approach achieves the best fidelity performance at all
levels of sparsity. The results validate the effectiveness of our method in producing highly counter-
factual explanations. RCExplainer also significantly outperforms RCExp-NoLDB. This confirms
that using LDBs of decision regions extracted from GNNs produces more faithful counterfactual
explanations.

CF-GNNExplainer performs the best among the rest of the methods. This is expected as it optimizes
the counterfactual behavior of the explanations which results in higher fidelity for the explanations in
comparison to those produced by other methods such as GNNExplainer and PGExplainer.

The fidelity performance of SubgraphX reported in [47] was obtained by setting the features of nodes
that are part of the explanation to 0 but not removing the explanation edges from the input graph. This
does not remove the message passing roles of the explanation nodes from the input graph because the
edges connected to those nodes still can pass messages. In our experiments, we directly block the
messages that are passed on the edges in the explanation, which completely prevents the explanation
nodes in the input graph to participate in the message passing. As a result, the performance of
SubgraphX drops significantly.

3Code available at https://marketplace.huaweicloud.com/markets/aihub/notebook/detail/
?id=e41f63d3-e346-4891-bf6a-40e64b4a3278
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Figure 2: Noise robustness (AUC) averaged across 10 runs for the datasets at different levels of noise.

5.2 Robustness Performance

In this experiment, we evaluate the robustness of all methods by quantifying how much an explanation
changes after adding noise to the input graph. For an input graphG and the explanation S, we produce
a perturbed graph G′ by adding random noise to the node features and randomly adding or deleting
some edges of the input graph such that the prediction on G′ is consistent with the prediction on G .
Using the same method we obtain the explanation S′ on G′. Considering top-k edges of S as the
ground-truth and comparing S′ against them, we compute a receiver operating characteristic (ROC)
curve and evaluate the robustness by the area under curve (AUC) of the ROC curve. We report results
for k = 8 in Figure 2. Results for other values of k are included in Appendix F where we observe
similar trend.

Figure 2 shows the AUC of GNNExplainer, PGExplainer, RCExp-NoLDB and RCExplainer at
different levels of noise. A higher AUC indicates better robustness. The percentage of noise
shows the proportion of nodes and edges that are modified. Baselines such as PGM-Explainer and
SubgraphX are not included in this experiment as they do not output the edge weights that are required
for computing AUC. We present additional robustness experiments in Appendix F where we extend
all the baselines to report node and edge level accuracy.

GNNExplainer performs the worst on most of the datasets, since it optimizes each graph independently
without considering other graphs in the training set. Even when no noise is added, the AUC of
GNNExplainer is significantly lower than 1 because different runs produce different explanations
for the same graph prediction. PGExplainer is generally more robust than GNNExplainer because
the neural network they trained to produce explanations implicitly considers all the graphs used
for training. CF-GNNExplainer also performs worse than RCExplainer, which means it is more
susceptible to the noise as compared to RCExplainer.

Our method achieves the best AUC on all the datasets, because the common decision logic carried
by the decision regions of a GNN is highly robust to noise. PGExplainer achieves a comparable
performance as our method on the Mutagenicity dataset, because the samples of this dataset share a
lot of common structures such as carbon rings, which makes it easier for the neural network trained
by PGExplainer to identify these structures in presence of noise. However, for BA-2motifs and
NCI1, this is harder as samples share very few structures and thus the AUC of PGExplainer drops
significantly. RCExplainer also significantly outperforms RCExp-NoLDB on these datasets which
highlights the role of decision boundaries in making our method highly robust.

Method GNNExplainer PGExplainer PGM-Explainer SubgraphX CF-GNNExplainer RCExplainer

Time 1.2s ± 0.2 0.01s ± 0.03 13.1s ± 3.9 77.8s ± 4.5 4.6s ± 0.2 0.01s ± 0.02

Table 1: Average time cost for producing an explanation on a single graph sample.

Efficiency. We evaluate efficiency by comparing the average computation time taken for inference
on unseen graph samples. Table 1 shows the results on the Mutagenicity dataset. Since our method
also can be directly used for unseen data without any retraining, it is as efficient as PGExplainer and
significantly faster than GNNExplainer, PGM-Explainer, SubgraphX and CF-GNNExplainer.

6 Conclusion

In this paper, we develop a novel method for producing counterfactual explanations on GNNs.
We extract decision boundaries from the given GNN model to formulate an intuitive and effective
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counterfactual loss function. We optimize this loss to train a neural network to produce explanations
with strong counterfactual characteristics. Since the decision boundaries are shared by multiple
samples of the same predicted class, explanations produced by our method are robust and do not
overfit the noise. Our experiments on synthetic and real-life benchmark datasets strongly validate
the efficacy of our method. In this work, we focus on GNNs that belong to Piecewise Linear
Neural Networks (PLNNs). Extending our method to other families of GNNs and tasks such as link
prediction, remains an interesting future direction.

Our method will benefit multiple fields where GNNs are intensively used. By allowing the users to
interpret the predictions of complex GNNs better, it will promote transparency, trust and fairness
in the society. However, there also exist some inherent risks. A generated explanation may expose
private information if our method is not coupled with an adequate privacy protection technique. Also,
some of the ideas presented in this paper may be adopted and extended to improve adversarial attacks.
Without appropriate defense mechanisms, the misuse of such attacks poses a risk of disruption in the
functionality of GNNs deployed in the real world. That said, we firmly believe that these risks can be
mitigated through increased awareness and proactive measures.
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