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Abstract

The presence of noisy labels has always been a primary factor affecting the effectiveness
of federated learning (FL). Conventional FL approaches relying on Supervised Learning
(SL) tend to overfit the noise labels, resulting in suboptimal Feature Extractor (FE). In
this paper, we exploit models obtained in Self-Supervised Learning (SSL) to mitigate the
impact of noisy labels in FL. In addition, we explore two popular methods to transfer to
downstream tasks: linear probing, which updates only the last classification layers, and
fine-tuning, which updates all model parameters. We empirically observe that, although
fine-tuning typically yields higher accuracy than linear probing, in the presence of noise,
it is very sensitive to noisy labels and will cause performance degradation. To achieve the
best of both worlds (i.e., high accuracy and robustness against noisy labels), we “teach”
fine-tuning to control overfitting. In particular, we leverage SSL to obtain a robust FE
that is unaffected by noisy labels, and employ linear probing to train the classifiers. The
FE and classifiers are integrated to construct a teacher model, which undergoes knowledge
distillation to instruct the fine-tuning process of the student model. Extensive experimental
evaluations conducted on multiple datasets demonstrate the effectiveness and robustness of
our proposed framework against noisy labels in FL, outperforming state-of-the-art methods.
The code is available at https://github.com/ss3b3/FedLTF.
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1. Introduction

Federated Learning (FL), a distributed machine learning paradigm, allows clients to col-
laboratively learn a global model while preserving data privacy. Existing FL approaches
tackling heterogeneity, communication efficiency, and privacy issues (Li et al., 2020) heavily
rely on the assumption of high-quality annotations of client data. However, this noise-free
assumption poses practical challenges due to the difficulty and cost of manual annotation.

In deep neural network (DNN) architectures, the impact of noisy labels is primarily
observed in the representation learning phase rather than affecting the classification pro-
cess (Zhang and Yao, 2020). We have observed similar problem in the context of FL. In
particular, we find out that the noise labels in FL can distort the local models’ representation
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learning, hence undermine the feature extractor (FE). To corroborate this, we conducted
experiments on the CIFAR-10 dataset using the FedAvg settings. We introduced symmet-
ric noise, which involves randomly mislabeled samples with equal probability across classes,
into the datasets of local agents at different rates, i.e., the percentage of mislabeled samples
ranges from 0.3 to 0.7. We show the results in Figure 1 by visualizing output of the FE.
Clearly, Figure 1 shows that, as the noise rate increases, the attainment of a well-clustered
FE poses a formidable challenge for the model.

To alleviate the adverse effects of noisy labels in FL, several studies (Yang et al., 2022a;
Chen et al., 2020) have employed auxiliary datasets with perfectly accurate labels to identify
noisy samples prior to training. However, acquiring such auxiliary datasets is challenging in
practical scenarios. Some other researches (Lu et al., 2023; Fang and Ye, 2022; Fang et al.,
2023; Yang et al., 2022a) assume that noisy labels are confined to a small subset of clients
and aims to identify and handle those clients before incorporating them into the FL process.
However, all these methods are based on supervised learning (SL) and it is impossible to
avoid the continuous influence of noisy labels during network training.

Figure 1: The t-SNE visualization results of the FedAvg under varying noise rates. Left to
right: no noise, noise rates of 0.3 to 0.7, respectively. Clearly, it is challenging for
a model to acquire a well-clustered FE as the noise rate increases.

A few studies (Yao et al., 2021; Zheltonozhskii et al., 2022) have attempted to address
the noisy labels within centralized learning scenarios by applying Self-Supervised Learning
(SSL), especially Contrastive Learning (CL), to initialize representations. Similarly, some
prior studies (Zhuang et al., 2021, 2022) have explored SSL in FL, and these studies verified
the feasibility of using SSL in FL. Additionally, Self-Supervised representations exhibit
improved robustness to class imbalance compared to supervised representations, as they
capture both label-relevant features and intrinsic properties of the input distribution (Liu
et al., 2022). This robustness is particularly suitable for the common non-i.i.d. scenarios
encountered in FL.

Besides obtaining well-performing FE through Self-Supervised Contrastive Learning
(SSCL), the process of transferring FE to downstream tasks is inevitably affected by the
presence of noisy labels. Typically, two widely employed methods are used for further train-
ing the classifier: 1) linear probing, which freezes the FE and only trains the classifier, and
2) fine-tuning, which further trains the entire model, including both the FE and classifier.
We have also observed a significant performance disparity between these two methods in
FL as shown in Figure 2. The former demonstrates higher resilience to noise labeling and
achieves superior performance, while the latter is susceptible to overfitting noise labels, re-
sulting in degraded performance. We thoroughly analyze these approaches and provide the
experimental results in Section 3, demonstrating the aforementioned disparities.
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Targeting the disruptive impact of noise labels on FE performance in SL methods and
considering the varying training outcomes of linear probing and fine-tuning under noise
labels, we propose FedLTF, a simple yet effective multi-Stage FL framework designed to
address the challenges of training on noisy labeled data in FL. Specifically, our framework
divides the training process into three stages. In Stage 1, we employ SSCL to train the FE,
avoiding the performance degradation caused by the traditional SL-based FL framework
where the local model’s FE overfits to noise labels. In Stage 2, we utilize linear probing to
train the classifier, aiming to minimize the influence of noise labels to the greatest extent
possible compared to fine-tuning. Lastly, in Stage 3, we combine the obtained FE and
classifier to create a teacher model. This teacher model is then used to conduct knowledge
distillation on the local student model, controlling the fine-tuning process of it, thereby
ensuring that the student model learns accurate data feature representations and is resilient
to the impact of noise labels. Our approach aims to achieve well-performing local models
and ultimately enhance the overall performance of the global model in FL when dealing
with noisy labeled data. Our contributions can be summarized as follows:

• We conducted preliminary experiments and found empirical evidence that, similar to
centralized learning scenarios, the presence of noisy labels in FL hinders the model’s
ability to perform effective representational learning, resulting in the failure to obtain
a well-performing FE.

• We propose a multi-stage FL framework that ensures privacy preservation without
auxiliary datasets. Our framework leverages SSCL and individually trained classifiers
through linear probing to obtain a teacher model. Subsequently, the local models are
fine-tuned using the teacher model, integrating knowledge distillation and variance
regularization.

• We validate the efficacy of our approach through comprehensive experiments con-
ducted on four benchmark datasets, considering a range of noise levels, and compare
the results with state-of-the-art techniques. Furthermore, we conduct thorough abla-
tion experiments to ascertain the indispensability of the different components in our
proposed method.

2. Related Work

2.1. Noisy Label Learning

Research on noisy label learning has focused on centralized model scenarios. Prior studies
have presented various frameworks and algorithms for the detection of noisy labels. No-
tably, the studies (Hu et al., 2023; Li et al., 2023) introduce a Weibull mixture model-based
approach and apply the Stochastic Featured Averaging (SFA) method to identify noisy sam-
ples. In parallel, Gui et al. (2021); Xiao et al. (2023) propose a Small-Loss Criterion-based
mechanism and a matched high confidence selection technique, respectively, to identify clean
data samples. In addition, various studies have addressed the challenge of noisy labels by
proposing robust loss functions. For instance, Wang et al. (2019); Zhou et al. (2021) propose
modifications or enhancements to the loss function to augment model performance. These
approaches involve introducing regularization techniques or additional terms to reformulate
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the loss function, thereby promoting more accurate and diverse predictions. By doing so,
effectively alleviating the impact of overfitting and insufficient learning induced by noisy
labels. There are also studies that propose methods to correct noisy labels, such as Lu and
He (2022), which proposes updating the original noise labels using the overall prediction
formed by the exponential moving average of the network output. Additionally, Li et al.
(2019) designs a method for generating pseudo-labels for potentially noisy samples. How-
ever, in FL, privacy concerns and limited data per client may hinder the effectiveness of
applying these methods designed for centralized models.

2.2. Federated Noisy Label Learning

Federated Noisy Label Learning (FNLL) is an emerging research topic with pioneering
works that focus on designing training methods for mitigating the impact of noisy labels
in FL. FedCorr, FedNoiL and FedNoRo (Xu et al., 2022; Wang et al., 2022; Wu et al.,
2023), propose to identify the clean clients for training, and relabel the noisy clients with
the obtained model or uses knowledge distillation and a distance-aware aggregation function
together to perform FL model updating. However, such methods depending on the stringent
assumption that the clients can be classified as clean and noisy. In studies as Fang and Ye
(2022); Fang et al. (2023); Yang et al. (2022a), the individual clients of FL are heterogeneous,
and there exists clean label data in the server of FL to cope with the noisy labels present
in the individual clients. However, this scenario is not practical in real-world FL tasks.
FedLSR (Jiang et al., 2022) prevents local models from overfitting noisy labels by minimising
the difference in model outputs on the original and augmented data through self-distillation.
RoFL (Yang et al., 2022b) mitigates noise by exchanging centroids of local class features
and forming clean global class features. Overall, previous studies on noisy labels in FL
have predominantly relied on conventional SL approaches, making it challenging to entirely
mitigate the impact of noisy labels on the model across all methods employed.

3. Proposed Method

In this section, we delineate the problem by providing a formal definition. Subsequently,
we elucidate our underlying motivation by performing a preliminary experiment. Finally,
we expound upon our FedLTF framework in a comprehensive manner, providing detailed
explanations and insights. The FedLTF framework is illustrated in Figure 4.

3.1. Preliminaries

Settings and Notations. We consider a FL system with K clients, equipped with a neural
network (NN) ϕ, having their own datasets denote as D1,D2, ...,DK . We divide ϕ into two
parts: the FE fe and the classifier fc. fe extracts the features of each input sample x and
output a d-dimensional vector while the fc employ such features vectors obtained from fe
to compute logits that represents the class confidence scores. Consequently, ϕ = {fe, fc}.
The model parameters of an arbitrary local client k at round r is represented as W k

r , while
the global model is denoted as Wr.

Basic FedAvg Algorithm. In conventional FedAvg (McMahan et al., 2017),during round
r, the central server disseminates the global model Wr to all participating clients. Each



FedLTF

client subsequently updates their respective local model by applying their local dataset
Dk, k = 1, ...,K

W k
r+1 ←W k

r − η∇W ℓ(Wr;Dk). (1)

Following the local model updates, the clients transmit their respective local models
back to the central server, which conducts model aggregation to obtain the global model
for the subsequent round, i.e., round r + 1

Wr+1 =
∑
k

|Dk|∑
k |Dk|

W k
r+1. (2)
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Figure 2: The performance of linear probing and fine-tuning is evaluated under varying
noise rates in the CIFAR-10 dataset. It becomes evident that as the noise level
increases, linear probing exhibits greater resilience compared to fine-tuning.

3.2. Empirical Finding and Motivation

SSL has garnered significant attention in the domain of addressing noisy labels (Yao et al.,
2023; Ghosh and Lan, 2021). Additionally, SSL-based CL, namely SSCL, has proven to
be equally applicable in the context of FL (Zhuang et al., 2021, 2022). Empirical evidence
substantiates that the SSCL approach can effectively tackle the combined challenge of FL
under noisy labels.

In our preliminary FL setup, we utilize ResNet18 as the FE of the clients’ models fe and
the global model fg

e , and we train them using the BYOL (Grill et al., 2020). The CIFAR-
10 dataset is evenly partitioned among 20 clients for training. We apply SSCL to locally
train fe on the 20 clients and aggregate them for fg

e at the central server. This fg
e is then

broadcasted back to update fe as the initial FEs. Each local model is formed by adding a
classifier, i.e., fc to fe. Afterward, we train ϕ = {fe, fc} using both linear probing (which
trains only the classifier fc) and fine-tuning (which trains the entire model ϕ). Symmetric
noise is introduced to all clients’ data, and we increase the noise level from 0.3 to 0.7.

The experimental findings in Figure 2 demonstrate that when noisy labels are present
in the data, the aggregated global model derived from clients trained with linear probing
shows lower susceptibility to the influence of noise labels compared to the model aggregated
from locally fine-tuned models.

On the contrary, fine-tuning yields better accuracy than linear probing under noise-free
datasets since the FE can learn better feature representation (Kumar et al., 2021). Consid-
ering both the existed conclusion and our experimental results, we argue that the fine-tuning
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Figure 3: The t-SNE visualization results are compared among different approaches under
a noise rate of 0.7 in the CIFAR-10 dataset. The visualizations, from left to
right, depict SSL, fine-tuning with clean data, fine-tuning with noisy data and
the proposed method.

process corrupts the FE acquired by SSL due to noisy labels. Figure 3 further substanti-
ates our argument and demonstrates the superiority of our method’s capability to mitigate
the impact of noisy labels during fine-tuning, resulting in superior feature representations
compared to SSL and direct fine-tuning.

3.3. Stage 1: Federated Contrastive Representation Learning

At this stage, we use SSL for FL training so that no labels are required. In this study, the
BYOL method (Grill et al., 2020) was employed. Following the BYOL settings, the model
consists of two structurally identical branches: the online network and the target network,
whose model parameters are denoted as W k

o and W k
t , respectively. Both the online network

and the target network consist of an FE and a projection head.
Local Update. In every communication round, each client, such as client k, receives the
identical global model W g, which consists of global encoder W g

o and global predictor W g
p ,

respectively, from the server. Each clients initial its W k
o and W k

p to the received W g
o and

W g
p , correspondingly. Each round, the client updates its local W k

o and W k
p . An image

x ∼ Dk sampled uniformly from private dataset Dk. After image augmentation two images
x1 and x2 are obtained. x1 is input to the online network to get output zo and x2 is input
to the target network to get output zt. Then we output a prediction W k

p (zo) of zt and ℓ2-

normalize both W k
p (zo) and zt to W k

p (zo) ≜ W k
p (zo)/∥W k

p (zo)∥2 and zt ≜ zt/∥zt∥2. Finally,
the BYOL loss is defined as,

LBY OL ≜ ∥W k
p (zo)− zt∥22 = 2− 2 ·

⟨W k
p (zo), zt⟩

∥W k
p (zo)∥2 · ∥zt∥2

, (3)

After theW k
o updating, BYOL employs Exponential Moving Average (EMA) on it, updating

theW k
t in each small batch as: W k

t = mW k
o +(1−m)W k

o , wherem represents the momentum
value conventionally set to 0.99.
Model Communication. When clients k finish the local update, the newly obtained W k

o

is uploaded to the central server, alone with the updated W k
p for the global model W g

updating, together with other clients’ models. As W k
t is updated through EMA in BYOL,

there is no necessity to transmit W k
t to the server. Instead, at the commencement of each

round, the parameters of W k
t can be initialized to the new round’s initial model W k

o . Upon
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receiving the online networks and predictors from clients, the server conducts aggregation
using Equation (2) to acquire an updated global model W g

o and W g
p . Subsequently, the

server broadcasts the new W g
o (the new W g

e and W g
h ) and W g

p obtained through aggregation
to the clients for next round of updating.

FedAvg Learnable FrozenForward

𝑾o
𝑘 k-th client’s online network

𝑾t
𝑘 k-th client’s target network

𝑾e
𝑘 k-th client’s feature extractor

𝑾h
𝑘 k-th client’s projection head

𝑾o
𝑔

global online network

𝑾p
𝑔

global predictor

𝒇c
𝑘 k-th client’s classifier

𝒇c
𝑔

global classifier

global feature extractor𝒇e
𝑔

𝝓

𝑾p
𝑘 k-th client’s predictor

Figure 4: The framework of the proposed method. Our method proceeds in the order of
Stage 1, Stage 2, and Stage 3. Irrespective of the Stage, in each round clients send
updated local models to the server, and the server sends the aggregated global
model back to clients.

3.4. Stage 2: Federated Linear Probing

In the second stage, each local client trains a classifier fc using linear probing. Specifically,
after obtaining and broadcasting W g

o to each client, the parameters of W g
e are employed

to initialize the local FE parameters W k
e . Different from fine-tuning, each client freeze the

parameters of the W k
e and randomly initialize a classifier fc, following the linear evaluation

protocol (Kolesnikov et al., 2019; Grill et al., 2020). All local classifiers are consequently
trained using their own datasets separately. And the trained local fcs are aggregated fol-
lowing Equation (2) for obtaining a global fg

c . Note that at this stage, the cross-entropy
loss function is exclusively utilized for the purpose of classifier training. At this time we
obtained a complete network ϕ = {fg

e , f
g
c } .

3.5. Stage 3: Fine-tuning Under Noisy Label

Currenly, we have a usable network ϕ = {fg
e , f

g
c }. However, the self-supervised learning

of FE fg
e in Stage 1 may be sub-optimal in representation learning for clean data, despite

its robustness to noisy labels. Fine-tuning the network is necessary (Mahajan et al., 2021;
Raffel et al., 2019; Xie et al., 2020). Meanwhile, our previous findings (e.g., Figure 2)
show that directly fine-tuning on dataset with noisy labels yields worse results than linear
probing. However, fine-tuning excels in clean data. Such discrepancy arises from overfitting
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to noisy labels, distorting the feature representation, especially in the FE, leading to inferior
performance.

To address this question, we utilize ϕ as the teacher model to facilitate knowledge
distillation on the fine-tuning model ϕ̂, with the aim of mitigating the issue of overfitting
to noisy labels during direct fine-tuning. In detail, the knowledge distillation serves as a
regularization term, preventing the feature representation of ϕ̂ from drifting too far away.

More specifically, we integrate the hard label supervision, knowledge distillation and
variance regularization to form our teacher-student fine-tuning method. It enables the client
to leverage both correctly and noisily labeled data for optimizing the feature representation
of ϕ̂, thereby achieving enhanced performance surpassing that of its teacher model ϕ.

Hard Label Supervision. We apply the standard cross-entropy loss Lce for executing
the hard-label supervision.

Lce(y, ϕ̂(x)) = −
∑
i

yi log(ϕ̂(xi)), (4)

where y is the label (possibly noisy), x is the sample of the image, and ϕ̂ is the student
model being fine-tuned.

Knowledge Distillation. Knowledge distillation (Hinton et al., 2015) is conducted to
transfer knowledge acquired in teacher model ϕ to the student model ϕ̂, giving the right
direction to the fine-tuning, ensuring ϕ̂ is as effective as ϕ.

Soft labels y
(t)
i are derived from the teacher model ϕ by utilizing the output logits,

y
(t)
i =

exp(ϕ(xi)/T )∑
j exp(ϕ(xj)/T )

. (5)

Similarly, the logits output of the student model ϕ̂ undergoes the same process,

y
(s)
i =

ϕ̂(xi)/T )∑
j exp(ϕ̂(xj)/T )

. (6)

The probabilistic prediction vectors y
(s)
i and y

(t)
i are obtained, where T represents the

temperature controlling the softness of the logits, empirically set to 2. The knowledge
distillation loss Lkd can be expressed as:

Lkd(y
(t)
i , y

(s)
i ) = T 2

∑
y
(t)
i log

(
y
(t)
i /y

(s)
i

)
. (7)

Variance Regularization. We employ the variance regularization (Zheng and Yang, 2021)
to determine whether a given sample is noisy or clean by measuring the variance through
estimating the uncertainty in the predictions of the student model ϕ̂ and the teacher model
ϕ. The variance can be approximated as:

V ar(ϕ̂(xi)) ≈ E[(ϕ̂(xi)− ϕ(xi))
2], (8)

where the output of ϕ is applied to replace the true label yi since it is difficult to acquire in
practice FL.
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Furthermore, the KL-divergence between the predictions of the two models is utilized
as the measure of variance,

Dkl = E[ϕ̂(xi) log(
ϕ̂(xi)

ϕ(xi)
)]. (9)

The value obtained from Equation (9) will be large, if a substantial disparity exists between
the predictions of ϕ and ϕ̂, indicating a high likelihood that the sample is noisy.

Next, we apply regularization to the standard cross-entropy loss Lce by incorporating
the approximate variance as:

Lrect = E[exp(−Dkl)Lce +Dkl]. (10)

When Dkl assumes a larger value, we refrain from imposing penalties. To avoid the model
consistently favoring larger Dkl values, we introduce a regularization term to mitigate Dkl.

Ultimately, we construct the overall training loss for the fine-tuning in Stage 3 expressed
as Equation (11):

L = αLrect + βLkd, (11)

where Lrect is the hard label supervision after Variance Regularization, Lkd is vanilla Knowl-
edge Distillation loss, while α and β are hyperparameters used to adjust the weights between
Lrect and Lkd obtained through training.

4. Experiments

4.1. Experimental Setup

Datasets. We conduct experiments on four artificially corrupted datasets MNIST (LeCun
et al., 1998), Fashion-MNIST (Xiao et al., 2017), CIFAR-10/100 (Krizhevsky et al., 2009),
and one real-world dataset Clothing1M (Xiao et al., 2015).
Noise Setting. For artificially corrupted datasets, we incorporate two commonly employed
types of synthetic noise, i.e., symmetric noise and asymmetric noise.
• Symmetric Noise: Each class’s label has an equal probability of flipping to another

class’s label.
• Asymmetric Noise: Labels in some classes are flipped to labels in a set of similar

classes. For MNIST, flipping 2 → 7, 3 → 8, 5 ↔ 6. For Fashion-MNIST, flipping T-SHIRT
→ SHIRT, PULLOVER → COAT, SANDALS → SNEAKER. For CIFAR-10, TRUCK →
AUTOMOBILE, BIRD→ AIRPLANE, DEER→ HORSE, CAT↔ DOG. For CIFAR-100,
each category flips to the next category in the same super-category.
Baselines. We conduct a comparative analysis of our method against the following baseline
approaches: FedAvg (McMahan et al., 2017), Co-teaching (Han et al., 2018), Symmetric
CE (Wang et al., 2019), FedLSR (Jiang et al., 2022), FedCorr (Xu et al., 2022) and Fed-
NoRo (Wu et al., 2023).
Implementation Details. All experiments are implemented, using PyTorch-2.0 , on
Nvidia GeForce RTX4090 GPUs. We use ResNet18 as the base model fe to train and
test on artificially corrupted dataset. To ensure a fair comparison, we also utilize the same
model for the other baseline methods. We set up a total of 20 clients, all of which partici-
pate in training during each communication round. Each client performs local training for
5 epochs per communication round.
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Table 1: Top-1 test accuracy on MNIST dataset and FMNIST dataset with different noise
levels.

Method Test Accuracy(%)
Dataset Noise Type Symmetric Asymmetric

Avg.
Noise Ratio 0.30 0.40 0.50 0.60 0.70 0.20 0.30 0.40

FedAvg (McMahan et al., 2017) 90.83 84.14 78.70 69.55 58.64 96.46 92.47 87.19 82.25
Symmetric CE (Wang et al., 2019) 92.32 86.24 73.20 60.48 47.43 95.89 92.94 86.98 79.44
Co-teaching (Han et al., 2018) 98.97 98.87 98.64 98.10 97.58 98.70 98.42 85.22 96.81

MNIST FedLSR (Jiang et al., 2022) 99.24 99.02 98.77 98.35 98.15 99.39 79.94 79.32 94.02
FedCorr (Xu et al., 2022) 98.57 97.70 97.42 95.96 95.26 99.01 98.46 95.47 97.23
FedNoRo (Wu et al., 2023) 98.84 97.50 96.59 95.45 94.31 99.17 98.68 96.05 97.07

Ours(Stage 2) 98.14 97.13 96.89 96.08 95.54 96.98 95.18 90.37 95.79
Ours(Stage 3) 99.34 99.12 98.81 98.63 98.21 99.42 98.71 96.27 98.56

FedAvg (McMahan et al., 2017) 79.66 75.56 69.58 63.47 53.81 85.54 81.48 74.93 73.00
Symmetric CE (Wang et al., 2019) 81.90 79.03 71.73 62.20 47.95 87.46 83.65 76.94 73.86
Co-teaching (Han et al., 2018) 91.18 90.86 90.05 88.90 87.18 91.98 89.28 86.24 89.46

FMNIST FedLSR (Jiang et al., 2022) 91.39 91.18 90.90 89.99 88.22 83.14 82.45 77.63 86.86
FedCorr (Xu et al., 2022) 91.60 90.34 88.85 86.22 83.61 91.03 89.30 87.77 88.59
FedNoRo (Wu et al., 2023) 91.04 90.24 90.17 86.53 84.73 99.17 98.68 96.05 89.10

Ours(Stage 2) 90.04 89.63 88.46 86.86 82.29 90.44 88.51 82.67 87.36
Ours(Stage 3) 91.91 91.42 91.00 90.24 89.41 92.70 91.28 90.33 91.04

In Stage 1, we set the batch size to 128, utilize an SGD optimizer with an initial
learning rate of 0.03, and employ cosine annealing (Loshchilov and Hutter, 2016) to reduce
the learning rate. For Stage 2 and Stage 3, we set the batch size to 512 and utilize a
simple single linear layer as the classifier fc. Specifically, in Stage 2, we freeze fe and train
the classifier fc in the FL setting, following the Linear evaluation protocol. To prevent
overfitting, we employ a relatively large learning rate of 0.1. In Stage 3, we set the learning
rate to 0.03 to train the entire model ϕ̂(fe, fc).

4.2. IID Results

MNIST & Fashion-MNIST Results. The experimental outcomes are presented in
Table 1, encompassing the MNIST and FMNIST datasets. The findings demonstrate the
effective and robust performance of most methods on these datasets (excluding FedAvg and
Symmetric CE). Notably, our proposed method attains the highest test accuracy. Further-
more, a comparative analysis of Stage 2 results against alternative methods reveals that
solely employing linear probing falls short of surpassing the performance of conventional SL
approaches in the context of simple datasets.
CIFAR Results. Our method was further evaluated on CIFAR-10 and CIFAR-100 datasets,
as shown in Table 2. Notably, we did not conduct experiments with FedLSR on CIFAR-
100 due to its potential limitations with datasets containing numerous categories. When
the noise scenario becomes harder (i.e., Symmetric 50%, and Asymmetric 40%), model
performance inevitably starts to drop, especially for Symmetric CE. However, our method
is still effective and outperforms other methods. And it can be seen that, as the noise
level increases, our method always outperforms other methods by a large margin, which
demonstrated the superiority in the robustness of our method.

4.3. Non-IID Results

We assessed the efficacy of our method on non-IID data setting(CIFAR-10, Clothing), en-
suring comprehensive evaluation. We follow the widely adopted approach (Yurochkin et al.,
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Table 2: Top-1 test accuracy on CIFAR-10/100 with different noise levels.
Method Test Accuracy(%)

Dataset Noise Type Symmetric Asymmetric
Avg.

Noise Ratio 0.30 0.40 0.50 0.60 0.70 0.20 0.30 0.40

FedAvg (McMahan et al., 2017) 52.34 41.32 32.90 25.01 17.68 50.20 47.81 46.95 39.28
Symmetric CE (Wang et al., 2019) 53.75 44.35 36.84 26.26 18.65 73.24 69.41 64.92 48.43
Co-teaching (Han et al., 2018) 62.39 60.77 57.70 36.91 25.20 73.07 70.45 54.04 55.07

CIFAR-10 FedLSR (Jiang et al., 2022) 73.61 70.14 67.02 62.17 54.95 76.50 70.99 61.20 63.95
FedCorr (Xu et al., 2022) 73.26 70.66 66.36 60.44 52.62 78.55 72.24 67.01 67.64
FedNoRo (Wu et al., 2023) 78.12 75.38 72.77 68.05 61.08 81.66 80.29 78.92 74.53

Ours(Stage 2) 83.46 82.40 80.43 76.86 69.81 83.40 80.44 74.92 78.96
Ours(Stage 3) 85.64 85.10 84.09 82.91 80.17 86.15 84.27 79.28 83.45

FedAvg (McMahan et al., 2017) 16.75 14.12 12.78 10.47 8.13 18.85 16.33 13.02 13.81
Symmetric CE (Wang et al., 2019) 16.99 13.97 12.63 10.06 8.53 26.14 21.51 16.64 15.81
Co-teaching (Han et al., 2018) 34.21 31.24 21.87 16.75 11.29 34.19 27.32 22.83 24.96

CIFAR-100 FedCorr (Xu et al., 2022) 32.15 27.81 23.60 18.76 12.01 41.12 35.58 28.45 27.43
FedNoRo (Wu et al., 2023) 38.58 34.93 31.03 24.93 21.85 45.42 40.96 33.17 33.86

Ours(Stage 2) 55.23 53.17 50.41 48.50 43.50 52.63 46.87 38.68 48.62
Ours(Stage 3) 58.43 56.27 53.03 49.87 46.21 57.78 52.75 43.45 52.22

2019) to generate non-IID clients. To maintain consistency with other FL methods (Jiang
et al., 2022; Xu et al., 2022), we set the parameter αDir to 0.5 and use a pre-trained
ResNet50 for Clothing1M. For Clothing1M, we randomly sample a subset of 32K images
from the noisy train dataset and test on 10K images.
CIFAR-10 Results. We employed the linear evaluation protocol (Kolesnikov et al., 2019;
Grill et al., 2020) and conducted a semi-supervised learning evaluation to assess the per-
formance of the model obtained in Stage 1. Specifically, for linear evaluation, we froze the
model obtained in Stage 1 and trained a new linear classifier using the full dataset (data
held by all clients). For the semi-supervised learning evaluation, we fine-tuned the entire
model using only 10% of the full dataset. Additionally, we reported the results of fine-tuning
using the full dataset. For Stage 2 and Stage 3, we assessed the effectiveness of our method
in handling extreme noise environments, including symmetric noise with a noise rate of 0.7
and asymmetric noise with a noise rate of 0.4. The results presented in Table 4 demonstrate
that our method achieves superior performance compared to other baselines when applied
to non-IID data with highly noisy labels.
Clothing1M Results. Table 5 shows the results on real-world datasets Clothing1M and
our method outperforms the other baseline.

Table 3: Top-1 accuracy on CIFAR-10 datasets in different data partitioning
Data Partitioning Linear Probing(%) Semi-supervised(%) Fine-tuning(%)

IID 87.17 76.71 88.24
Non-IID 85.85 74.03 86.35

4.4. Ablation Study

Our ablation study, conducted on the CIFAR-10 dataset with i.i.d partitioning, emphasizes
the assessment of our method’s three core components: 1) Linear probing before fine-tuning,
2) Knowledge distillation, and 3) Variance regularization. By systematically removing each
component individually, we evaluate the consequent performance degradation. Table 6
presents a comprehensive overview of the effects of the components employed in our method.
Subsequently, we consolidate key insights into the factors contributing to the effectiveness
of FedLTF:
• All components help to improve accuracy.
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Table 4: Test accuracy (%) on non-IID CIFAR-10 dataset with extreme noisy labels (Sym-
metric noise at 0.7, asymmetric noise at 0.4).

Method Symmetric 0.7 Asymmetric 0.4

FedAvg 22.16 53.17
Symmetric CE 25.41 61.05
Co-teaching 34.86 67.42
FedLSR 45.63 64.53
FedCorr 47.54 59.11

Ours(Stage2) 68.06 64.97
Ours(Stage3) 77.45 77.90

Table 5: Test Acc on Clothing 1M
Methods FedAvg Symmetric CE Co-teaching FedLSR FedCorr FedNoRo Ours

Test ACC 70.70 71.60 71.52 71.23 72.45 73.21 73.81

• Linear probing preceding fine-tuning is irreplaceable, as there is an extremely large
performance gap between linear probing and fine-tuning in the presence of noisy labels.

• The superior performance of our method stems primarily from knowledge distillation,
which is increasingly critical for performance improvement as noise levels increase.

• The reason why the role of Variance Regularization seems to be insignificant is that
Variance Regularization serves as an additional refinement when used in conjunction with
knowledge distillation. However, in the absence of knowledge distillation(w/o KD), per-
formance improvements can be observed by solely employing Variance Regularization over
Fine-tuning with Cross Entropy Loss.

Table 6: Ablation study results on CIFAR-10
Noise Type Noise Ratio Linear Probing Fine-tuning Ours w/o KD Ours w/o VR Ours

0.3 83.46(-2.18) 71.45(-14.19) 83.52(-2.12) 85.19(-0.45) 85.64
0.4 82.40(-2.7) 62.19(-22.91) 80.10(-5.54) 84.23(-0.87) 85.10

Symmetric 0.5 80.43(-3.66) 49.01(-34.08) 75.96(-8.13) 83.21(-0.88) 84.09
0.6 76.86(-6.05) 40.28(-42.63) 67.37(-15.54) 82.10(-0.81) 82.91
0.7 69.81(-10.36) 28.18(-51.99) 53.21(-26.96) 79.00(-1.17) 80.17

0.2 83.40(-2.75) 82.14(-4.01) 85.72(-0.43) 85.68(-0.47) 86.15
Asymmetric 0.3 80.44(-3.83) 77.93(-6.34) 83.37(-0.9) 83.71(-0.56) 84.27

0.4 74.92(-4.36) 72.52(-6.76) 77.07(-2.21) 78.56(-0.72) 79.28

4.5. Other contrastive learning framworks

Table 7 indicates that our approach is not limited to BYOL methods, but can also use other
contrastive learning frameworks
Table 7: Comparison of different SSL methods on CIFAR-10 with 50% Symmetric Noise

Methods SimCLR SimSiam MoCoV1 MoCoV2 BYOL
Ours(Stage 2) 77.94 76.13 78.42 79.81 80.43
Ours(Stage 3) 83.71 80.03 83.21 83.12 84.09

4.6. Combination with other methods

Furthermore, our method can be combined with label correction techniques used in other
FL methods (Xu et al., 2022; Wang et al., 2022). For example, we use the same basic label
correction strategy as in (Xu et al., 2022), i.e., replacing labels with high confidence model
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predictions, before Our Stage 3. In Tabel 8, we show the improved performance of enabling
simple label correction technique.

Table 8: !/ %indicates the label correction technique is enable/disable
Label Correction

Technique
CIFAR-10

30% 40% 50% 60% 70%

% 85.65 85.10 84.09 82.91 80.17

! 86.01 85.54 84.88 83.79 81.43

5. Conclusion

In this study, we initially conducted a preliminary experiment to demonstrate how noise
labels can impede representation learning and corrupt the FE of local models, consequently
undermining the performance of the aggregated global model in FL. To address this issue,
we proposed a simple yet effective three-stage training framework for FL. Experimental
validation on multiple datasets substantiated the effectiveness of our approach in mitigating
the impact of noisy labels and improving the overall FL performance.
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