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Abstract 

 

Face anonymization requires effectively hiding 

identities while preserving essential features, yet existing 

models often show racial bias, particularly in representing 

Asian faces. We propose "Ano-Face-Fair" an approach 

for race-fair face anonymization based on Stable 

Diffusion-v2 Inpainting with three key contributions: (1) 

Focused Feature Enhancement (FFE) loss ℒ𝐹𝐹𝐸 , for 

detailed facial feature generation across diverse racial 

groups, (2) Difference (DIFF) loss ℒ𝐷𝐼𝐹𝐹 , to prevent 

catastrophic forgetting by maintaining distinct racial 

characteristics, and (3) Simple Preference Optimization 

(SimPO) for enhanced synthetic image consistency. Our 

method enables flexible control through both mask and 

text-based prompting, achieving robust anonymization 

while maintaining high image quality and accuracy in 

Asian face generation. We validate our method's 

effectiveness through extensive experiments on facial 

image generation across diverse racial groups. This work 

advances face anonymization by addressing racial biases 

in image generation, demonstrating robust and realistic 

face editing across diverse racial groups through mask and 

text-based prompting, thus contributing to more ethical 

generative model.  

Code: https://github.com/i3n7g3/Ano-Face-Fair  

1. Introduction 

Facial images contain detailed personal information, 

requiring a trade-off in the face anonymization process, as 

identities must be effectively anonymized while 

minimizing data loss. Traditional image processing for 

facial anonymizing identities typically involves applying 

masks to facial regions or blurring features; however, these 

methods often result in significant loss of facial detail. 

Recently, generative models for face editing have enabled 

the preservation of certain parts of the face while 

simultaneously synthesizing the rest to appear realistic. For 

 
* Corresponding Author. 

example, parts of the face, such as the eyes or nose, remain 

unchanged, while the rest is synthesized using inpainting 

methods.  

In essence, the key to facial anonymization is achieving 

minimal data loss within facial images while 

simultaneously enabling the synthesis of natural-looking 

faces, which can be utilized in various fields, such as social 

or medical domains. This facial preservation allows users 

and researchers to conduct meaningful analyses without 

compromising individual privacy. For instance, our 

method in the medical domain enables the anonymization 

of preserving disease-specific features while protecting 

patient identity, thereby achieving a balancing between 

privacy and clinical utility. 

Figure 1: Ano-Face-Fair represents results of anonymized Asian 

faces under multiple conditions. The third row shows results 

generated from mask-based and text-based prompts. 
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However, although face generation and editing can be 

used for anonymization, issues related to AI fairness still 

remain. Much of the work on face synthesis and editing has 

relied on public datasets, such as CelebA [1] and FFHQ [2], 

which include a limited range of Asian faces. Consequently, 

these models fail to accurately represent Asian facial 

features, such as generally smaller eyes, among other 

characteristics. 

Therefore, our model, Ano-Face-Fair, is designed to 

achieve both goals. First, it protects privacy by keeping key 

facial regions intact while editing other parts as needed 

based on prompts. We used the Stable Diffusion v2 

Inpainting [3] model as the baseline for mask-based and 

text-based prompting to guide the specific regions of the 

face and set conditions for face editing. To recognize each 

mask-prompt within the face automatically, we trained the 

PointRend [4] for facial segmentation using own facial 

dataset. The results of the segmentation model are used as 

a mask-prompt to determine which parts to edit, helping to 

keep certain facial regions unchanged and thereby ensuring 

anonymity. 

Second, we proposed two types of loss functions to 

ensure the model performs well, even with a small dataset 

of Asian images for training. We trained the baseline model 

using the DreamBooth [5] and applied Focused Feature 

Enhancement (FFE) loss, ℒ𝐹𝐹𝐸 , which is designed for 

precise training across a variety of facial features. This 

method works particularly well in inpainting applications, 

helping the model focus on important features, including 

detailed parts of the face. The ℒ𝐹𝐹𝐸  complements the 

existing DreamBooth loss by refining details. It is 

implemented through two key components: a critical 

feature mask that focuses on regions of high importance for 

training, and an FFE loss weight that adjusts the impact of 

ℒ𝐹𝐹𝐸  on the overall loss function. 

Next, we proposed a Difference loss, ℒ𝐷𝐼𝐹𝐹, to prevent 

catastrophic forgetting [6]. When we applied the proposed 

ℒ𝐹𝐹𝐸  , we observed that the model began to forget 

information about certain racial representations, such as 

Caucasians, which it had previously synthesized well. By 

using ℒ𝐷𝐼𝐹𝐹 during the fine-tuning phase with an Asian 

image dataset, we ensure that the model retains the trained 

information of specific contrast (preservation) classes, 

thereby recognizing and preserving the differences 

between the class being fine-tuned and the contrast classes. 

Lastly, this study has improved the face editing model 

using Simple Preference Optimization (SimPO) [7], a 

technique that aligns with user preferences. SimPO 

enhances computational efficiency by eliminating the need 

for a separate reward model, instead using a simple 

preference function to compare two generated samples. 

This approach enables the model to reflect user preferences 

more efficiently and in a more personalized manner. By 

applying SimPO to a diffusion model, we can train on 

complex data distributions through denoising, thereby 

better capturing user-preferred image styles and details. 

While Direct Preference Optimization (DPO) [8] has 

recently made significant contributions in language models, 

our comparison of DPO and SimPO showed that SimPO is 

more suitable for our image-based task. 

Our approach to face editing, which employs masks and 

text prompts, consistently generates robust results across 

different races, as demonstrated in Figure 1. The main 

contributions of our paper are summarized as follows: 

 We employed the Stable Diffusion v2 Inpainting model 

as our baseline and for implementing mask-based and 

text-based prompting. We trained a facial segmentation 

model on our own dataset for mask-prompting to 

automatically designate fixed regions of the face, and we 

controlled the generated facial areas using text-

prompting. 

 We trained the model using a curated Asian dataset with 

the proposed two types of loss functions: (1) Focused 

Feature Enhancement (FFE) loss, ℒ𝐹𝐹𝐸 , which 

effectively reproduces typical Asian facial features. 

Additionally, we enhanced the training process by 

incorporating a (2) Difference loss, ℒ𝐷𝐼𝐹𝐹 , to preserve 

the quality of generation for other ethnicities where the 

model had previously shown good performance. 

 By using Simple Preference Optimization (SimPO) on 

diffusion models, we trained the model to achieve more 

consistent synthetic images. Using this SimPO in text-

to-image tasks, particularly for inpainting, significantly 

improved the quality of generated images, especially for 

Asian faces, thereby enhancing the model's performance 

in terms of race fairness. 

2. Related Work 

Face Anonymization.  In traditional image processing, 

facial anonymization is mainly categorized into three main 

methods: pixelation and blurring [9], masking [9], and 

morphological transformations [10]. Firstly, pixelation and 

blurring [9] is common techniques, but they often 

anonymize images, reducing their utility. This heavy 

editing can obscure important details, making the images 

less valuable for analysis. Next, Masking [10], which 

conceals facial regions such as the eyes or nose using 

opaque overlays, can effectively obscure identities but 

faces challenges in preserving finer details, thereby 

complicating customization. Lastly, morphological 

transformations [10], which change the size or position of 

facial regions, require manual adjustments. This 

requirement significantly slows down the standardization 

of anonymization across different images. On the other 

hand, generative model-based approaches to facial 

anonymization [11-14] have emerged due to their ability to 

produce a wide variety of results. However, accurately 

training on complex facial features remains challenging, 

often resulting in generative outputs that lack fidelity. To 



 

 

address this issue, this study presents a method to 

overcome the fidelity limitations of current generative 

models. 

 

Face Generation and Editing.  Previous studies on facial 

generation have employed GAN-based methods such as 

StyleGAN [2], which improve facial synthesis quality and 

enable style control within an interpretable latent space. 

Additionally, methods like VQGAN [15], which transform 

input images into a lowdimensional feature space for 

codebook training, have also been utilized. More recently, 

diffusion-based models [4, 16, 17] have been applied to 

text-to-image generation, producing high quality results. 

However, they encounter challenges in achieving detailed 

control over generated images and face issues with fairness 

across different races. In face editing, various methods 

have been proposed, including GAN-based image 

inpainting [18, 19], text-to-image editing [20-22], and 

conditional facial generation [23, 24]. Recent 

advancements have introduced more versatile methods 

using diffusion models, which are categorized into text-

based [20-22] and mask-based [27, 28] approaches. While 

these methods aim to preserve original identity and achieve 

precise editing, they often lack support multi-condition and 

seamless blending with surroundings. Textual inversion 

[29] and DreamBooth have attempted to fine-tune models 

for new classes or concepts, but they often result in biased 

outputs and catastrophic forgetting. In contrast, our 

proposed diffusion-based model supports multi-condition 

and addresses the forgetting issue, thereby enhancing 

image editing capabilities. 

 

Preference Optimization in Diffusion Models.   Aligning 

diffusion models with human preferences has been less 

explored compared to language models. Initially, 

supervised fine-tuning using curated datasets [27, 30] was 

the primary approach. The introduction of Reinforcement 

Learning from Human Feedback (RLHF) [31-33] marked 

a significant advancement, introducing reward models to 

fine-tune diffusion models via policy gradient techniques. 

Notable examples include ReFL [34], DRaFT [35], and 

AlignProp [36], which specifically align text-to-image 

diffusion models to human preferences. However, these 

methods often encounter challenges such as memory 

constraints and potential biases from the learned reward 

models. Diffusion-DPO [37] adapted Direct Preference 

Optimization to diffusion models, eliminating the need for 

reward models unlike previous RLHF methods. However, 

its reliance on reference models can limit flexibility, 

especially when there is a significant difference between 

the characteristics of the preference data and those of the 

reference model. Recent trends have shifted towards 

reference model-free approaches, such as Margin-aware 

Preference Optimization (MaPO) [38]. MaPO eliminates 

the need for reference models, offering advantages like 

memory efficiency and faster training, but it introduces 

complexity in margin calculations and requires careful 

hyperparameter tuning. In contrast, our Simple Preference 

Optimization (SimPO) for diffusion models provides a 

simple optimization process without the need for reward 

models, reference models, complex calculations, while 

maintaining efficiency. 

3. Method 

In this section, we first explain how we prepare semantic 

facial mask to control multiple condition. Next, we discuss 

the fine-tuning of the diffusion model using the proposed 

Focused Feature Enhancement Loss ℒ𝐹𝐹𝐸  and Difference 

Loss ℒ𝐷𝐼𝐹𝐹 . Finally, we detail the optimized of the 

proposed model for user preferences. 

3.1. Facial Segmentation 

The facial segmentation model used is PointRend [4], 

Figure 2: The overview of Ano-Face-Fair. The facial mask from the facial segmentation model was utilized to prompt edits in specific 

facial regions. The Stable Diffusion v2 Inpainting model used as our baseline, trained on the curated Asian dataset. We applied 𝓛𝑭𝑭𝑬 to 

enhance performance even with limited data and used 𝓛𝑫𝑰𝑭𝑭 to address the catastrophic forgetting issue of the pre-trained model. Finally, 

we employed a model trained with Simple Preference Optimization (SimPO), using LoRA Adapter for efficient fine-tuning, to generate 

more refined and enhanced images. 

      

            

            

    

       

     

                   

           

       

               

           

               

                

    

       

                     

         

          

                    

                

               

                     

           

    

       



 

 

which employed an efficient point-based approach for 

high-quality semantic segmentation. PointRend adaptively 

selects points to render, focusing on challenging regions 

that require fine detail. We employed the model and trained 

it on 17,697 facial images from A hospital.  

The trained model precisely segments facial features such 

as the eyes, nose, lips, and facial contours. Its performance 

was evaluated using the mean Intersection over Union 

(mIoU) metric, achieving a score of 0.92 on the test set. 

These accurate facial region segmentations are then used 

as detailed mask-prompts for the baseline model's input, 

allowing precise control over areas to edit or preserve 

during anonymization. 

3.2. Fine-tuning Stable Diffusion Models 

Focused Feature Enhancement (FFE) Loss.  We propose 

a novel loss function called Focused Feature Enhancement 

(FFE) loss ℒ𝐹𝐹𝐸, designed to enhance Asian facial features 

often underrepresented in standard datasets. We fine-tuned 

the Stable Diffusion v2 Inpainting model using both 

instance loss ℒ𝑖  and prior-preserving loss ℒ𝑝𝑝  from 

DreamBooth. 

While ℒ𝑖  focuses on training set features and ℒ𝑝𝑝 

preserves pre-trained knowledge, using only these losses 

often results in overfitting and fails to capture detailed 

features. Unlike traditional gradient-based approaches that 

naturally emphasize regions with large errors, our ℒ𝐹𝐹𝐸  

provides more precise control over feature enhancement 

through a dynamic critical feature mask. 

The computation of ℒ𝐹𝐹𝐸  begins with an error mapping 

function 𝐸𝑥  that quantifies the pixel-wise differences 

between predicted output 𝑥𝑝 and target image 𝑥𝑡: 

 

𝐸𝑥 = |𝑥𝑝 − 𝑥𝑡| (1) 

 

where 𝑥𝑝 represents the model's current prediction and 𝑥𝑡 

is the ground truth target image. Based on this error map, 

we generate a critical feature mask, 𝑀𝑐  that identifies 

regions requiring focused enhancement: 

 

𝑀𝑐 = (𝑥𝑝 − 𝑥𝑡) > 𝜃 ∗ 𝑀𝐴𝑋 ((𝑥𝑝 − 𝑥𝑡)) (2) 

 

where 𝜃 is a threshold parameter that determines which 

regions receive enhanced attention. Regions with 

  ff                h   θ        h                        

to 1, indicating areas requiring focused enhancement. 

The final ℒ𝐹𝐹𝐸  is formulated as: 

 

ℒ𝐹𝐹𝐸 = 𝜆
1

𝑁
∑ 𝑀𝑐

𝑖(𝑂𝑖 − 𝑇𝑖)2𝑁
𝑖=1                (3) 

 

where 𝑂𝑖 represents the feature representations at position 

i in the output image (extracted from intermediate layers of 

our model), 𝑇𝑖 denotes the corresponding target features, 

𝑀𝑐
𝑖  modulating their contribution based on the importance 

of each region's feature enhancement needs. Based on 

            y   , w      θ = 0.5     λ     h         f 0.01    

0.1 to achieve optimal performance. 

 

Difference Loss.  In our experiments, applying ℒ𝐹𝐹𝐸  led to 

 h   b   v       h            b    ‘          ’, wh  h w    

pre-trained in the baseline model, were being forgotten. 

This issue, similar to the language drift problem observed 

in language models, arose when fine-tuning a layer based 

on text embeddings. We also noted that this forgetting 

occurred more frequently with longer training epochs.  

Traditional contrastive learning loss, ℒ𝑐  aims to bring 

similar subjects closer together in the embedding space 

while pushing dissimilar samples apart. However, this 

approach does not specifically address the catastrophic 

forgetting of racial features during fine-tuning. To address 

this limitation, we propose the Difference Loss ℒ𝐷𝐼𝐹𝐹 , 

which extends ℒ𝑐 by strategically maximizing the angular 

separation between different racial class embeddings: 

 

ℒ𝐷𝐼𝐹𝐹  =
1

|𝑃|
∑ (1 −

𝑧𝑖⋅𝑧𝑗

|𝑧𝑖||𝑧𝑗|
)(𝑖,𝑗)∈𝑃                (4) 

 

Where 𝑧𝑖  and 𝑧𝑗  are embedding vectors from different 

racial classes, 𝑧𝑖 ⋅ 𝑧𝑗  represents their dot product, and 

|𝑧𝑖|, |𝑧𝑗| are their respective magnitudes. 𝑃 represents the 

set of all embedding vector pairs from different classes. By 

minimizing this loss, we maximize the angle between 

embeddings of different races, preserving distinct racial 

characteristics through clear boundaries. 

To prevent embedding space collapse during 

optimization, we introduce constraints: 

 

||𝑧𝑖|| =  ||𝑧𝑗||  = 1, 𝜃𝑖𝑗  ≥  𝜃𝑚𝑖𝑛 (5) 

 

where unit normalization ensures consistent scaling, and 

minimum angular separation ( 𝜃𝑚𝑖𝑛 ) maintains distinct 

representation of different racial characteristics, preventing 

ambiguous or mixed features. 

 

Integration of 𝓛𝑭𝑭𝑬  and 𝓛𝑫𝑰𝑭𝑭. These two losses form a 

complementary optimization framework: ℒ𝐹𝐹𝐸   enhances 

local facial details, ensuring precise retention of race-

specific features, while ℒ𝐷𝐼𝐹𝐹 maintains global distribution 

separation in the embedding space, preventing overfitting 

to any particular racial group. 

We integrate these losses into a balanced total objective 

that combines instance-level supervision with distribution-

level constraints: 

 

ℒ𝑇𝑜𝑡𝑎𝑙  = ℒ𝑖  +  𝜆𝑝𝑝 ∗ ℒ𝑝𝑝  +  𝜆𝐹𝐹𝐸 ∗ ℒ𝐹𝐹𝐸  +  ℒ𝐷𝐼𝐹𝐹  (6) 

 



 

 

This formulation allows our model to simultaneously 

improve Asian facial feature generation while preserving 

high-quality generation for other ethnicities, as 

demonstrated in Figure 3. 

Simple Preference Optimization for Diffusion model. 

We propose adapting Simple Preference Optimization 

(SimPO) to diffusion models for text-to-face editing tasks. 

SimPO builds upon Direct Preference Optimization (DPO) 

while addressing its limitations, particularly the need for a 

reference model and high computational costs. 

Unlike DPO, which requires computing gradients 

through a reference model creating substantial overhead, 

SimPO uses a reference model-free reward formulation: 

 

𝑟SimPO(𝑥, 𝑦) =
𝛽

|𝑦|
∑ 𝑙𝑜𝑔 𝜋𝜃 ( 𝑦𝑖 ∣∣ 𝑥, 𝑦<𝑖 )         (7) 

 

where 𝜋𝜃  represents the policy of the model (the noise 

prediction network), x is the input, y is the output, and β is 

a scaling factor. This directly utilizes the model's own 

likelihood estimates as rewards. 

To quantify preferences between outputs, we extend this 

formulation with a margin           γ: 

 

𝑙𝑜𝑔𝑖𝑡𝑠 =  𝑟_𝑆𝑖𝑚𝑃𝑂(𝑥, 𝑦𝑤)  −  𝑟_𝑆𝑖𝑚𝑃𝑂(𝑥, 𝑦𝑙)  −  𝛾 (8) 

 

where 𝑦𝑤  and 𝑦𝑙  represent preferred and non-preferred 

outputs respectively. These logits determine probabilistic 

preference judgments through a Bradley-Terry objective. 

 For adaptation to diffusion models, which operate in 

continuous latent space through iterative denoising (unlike 

discrete language models), we compute preference logits 

directly from noise prediction losses. The final SimPO loss 

is expressed as: 

 

ℒSimPO = − 𝑙𝑜𝑔 𝜎 (𝛽(ℒ𝑙 − ℒ𝑤 − 𝛾))           (9) 

 

where ℒ𝑙 and ℒ𝑤 represent noise prediction losses for less 

and more preferred outputs. 

We implement SimPO using Low-Rank Adaptation 

(LoRA), enabling efficient fine-tuning by modifying only 

a small number of parameters. In face anonymization, this 

approach provides three key advantages: (1) Direct 

optimization of visual quality without reference constraints, 

(2) Consistent feature preservation through length 

normalization, and (3) Efficient training through simplified 

optimization. 

4. Experiments 

4.1. Experimental Settings 

Baselines.  We compare our model with DreamLike 

Inpainting [40], Stable Diffusion XL Inpainting [41], and 

Stable Diffusion v2 Inpainting (Baseline model) [42]. 

 

Datasets and Models.  We demonstrate the effectiveness 

of our method using a combination of models and datasets. 

We employ PointRend [4] for facial segmentation, trained 

on 17,697 facial images from a hospital dataset (divided in 

7:2:1 ratio for training, validation, and testing) with 

institutional review board (IRB) approval. Patient 

demographics, including age, sex, and history of plastic 

surgery, were assessed. 

We fine-tuned our approach on two primary datasets: (1) 

an Asian Face Dataset of 4,515 images manually curated 

from AI Hub [43], selected from six public datasets where 

facial features are well-       : ‘            ’, ‘       

       w  h    w  f    y          h   ’, ‘       K      

f                ’, ‘                                   ’, 

‘L       -based image editing     ’,     ‘          

       f   K                         ’,  2   h      -a-Pic 

dataset [44] for SimPO fine-tuning, comprising 583,747 

training pairs with preference labels from 4,375 users. The 

model used in this study is Stable Diffusion v2 inpainting 

as the baseline. 

For comprehensive evaluation across diverse face 

distributions, we additionally test on CelebA-HQ [1], 

containing 30,000 high-quality celebrity images, and 

FFHQ [2], consisting of 70,000 diverse facial images 

varying in age, ethnicity, and background. 

 

Hyperparameters for Simple Preference Optimization. 

We use SimPO for training with a batch size of 8 and 

gradient accumulation steps of 2, implemented with LoRA 

(rank=4, alpha=4) requiring 24GB VRAM. Our 

hyperparameter search revealed critical relationships: (1) 

                               v     y w  h β following α = 

c/β where c ∈ [1e-3, 1e-2], (2) training destabilizes when 

γ/β exceeds 1.5, and (3) gradient explosion occurs at β

>2000 due to sigmoid function's exponential scaling. After 

extensive experimentation, we established our final 

configuration (β=200, learning rate=1e-5, γ/β=0.5 .      

detailed results from this configuration are analyzed in our 

ablation study. 

 

                                                

  
  
 
  
 

 
  
 
  
 

Figure 3: The results of applying the proposed 𝓛𝑭𝑭𝑬  and 𝓛𝑫𝑰𝑭𝑭. 

(Top) When only 𝓛𝑭𝑭𝑬  was applied, the generation quality 

improved for the Asian race, but it declined for other races (e.g., 

Caucasian), which had previously shown well with the pre-trained 

model. (Bottom) When both 𝓛𝑭𝑭𝑬  and 𝓛𝑫𝑰𝑭𝑭  were applied, the 

quality was consistently maintained across all races. 



 

 

Prompting.  There are two methods for conditioning in 

face editing. First, single or multiple masks can be applied 

within facial regions, such as the eyes and nose, allowing 

for the editing of surrounding areas. Second, specified 

mask regions can be generated using text-based prompts. 

 

Evaluation Metrics.  To evaluate face editing, we used 

FID, SSIM, LPIPS, CLIP-I, and PSNR metrics.  

To evaluate anonymization, we used a face recognition 

model based on InsightFace [45]. This model compared the 

original images with the generated anonymized images by 

calculating the cosine distance between their facial 

embeddings. We defined the Anonymization Success 

Accuracy as the accuracy of generated images successfully 

anonymized, determined by a distance greater than a set 

threshold from the original image. The Average Distance 

quantifies the overall dissimilarity, while the Min and Max 

Distances provide the range of anonymization 

effectiveness. 

To evaluate racial fairness, we employed the VGG-Face 

model [46] across all datasets. We analyzed the racial 

characteristics of generated images using various prompts 

related to different ethnicities. The racial accuracy metrics 

represent the model's ability to maintain appropriate racial 

characteristics while anonymizing faces. These metrics are 

crucial for assessing our model's race fairness capabilities 

across diverse datasets. We compared the baseline models 

with our proposed method and conducted a comprehensive 

evaluation, including an ablation study and multi-dataset 

analysis, to verify both performance and generalization 

capability. 

4.2. Ablation Study of Ano-Face-Fair 

In this study, the proposed fine-tuning methods and SimPO 

were applied, and their performance was compared 

through an ablation study. Table 1 presents both the racial 

feature preservation accuracy and image quality metrics 

across different configurations. While Configuration B 

shows improved Asian face generation, it exhibits some 

performance trade-offs for other racial features. 

Configuration C demonstrates ℒ𝐷𝐼𝐹𝐹 effectively maintains 

performance across all ethnicities. Finally, Configuration 

D with SimPO achieves the highest overall performance in 

both feature preservation and image quality metrics. 

Figure 4 illustrates the qualitative results of the ablation 

study. The effectiveness of our method across different 

races is further demonstrated through comprehensive 

visual examples in Figure 5 shows consistent high-quality 

results across diverse ethnic groups. 

Figure 6 demonstrates the training dynamics of our final 

model configuration (β=200, learning rate=1e-5, gamma 

ratio=0.5), showing balanced optimization across key 

metrics. Rather than aiming for extreme values, we achieve 

an optimal trade-off: raw model loss steadily decreases 

while reward accuracies remain stable (0.6-0.8), indicating 

effective preference learning without overfitting. The loss 

ratio and reward consistency stabilize after initial 

convergence, validating our balanced approach.  

Configuration 
Racial Feature Preservation Accuracy ↑ Anonymization  

Accuracy ↑ 
FID ↓ PSNR ↑ 

Asian Caucasian African Latino Middle Eastern 

A. Baseline  0.862 0.949 0.921 0.901 0.912 1.00 111.5 25.41 

B. A. + ℒ𝐹𝐹𝐸 0.958 0.912 0.889 0.878 0.882 1.00 108.783 26.53 

C. B. + ℒ𝐷𝐼𝐹𝐹 0.958 0.945 0.919 0.899 0.913 1.00 109.128 26.97 

D. C. + SimPO 0.9583 0.945 0.922 0.899 0.915 1.00 72.60 27.91 

Table 1: Ablation study of Ano-Face-Fair. 

 
SimPO training hyperparameters. 
 

 

 

Figure 4: Qualitative results from the ablation study of  

Ano-Face-Fair. 
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Figure 5: Qualitative results across diverse ethnic groups. The grid 

shows our method's performance across five racial groups (Asian, 

Caucasian, African, Latino, and Middle Eastern) for both genders. 

All images were generated with the prompt "A photo of a 

[ethnicity] [gender]." 
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Figure 6: Training dynamics of the final model. The graphs show 

the progression of raw model loss, reward accuracy, loss ratio, and 

reward consistency during training. 



 

 

Comparison of Preference Optimization Methods.   

We compared SimPO with DPO, SPO [47] and MAPO to 

evaluate its effectiveness. Table 2 presents the results of 

this comparison.  

 

 

4.3. Comparison with the Baselines 

The performance of the proposed method was compared 

with baseline models. Figure 7 illustrates the qualitative 

image synthesis results, comparing the proposed method 

with the baseline models. We also compared the image 

editing results generated by mask-based and text-based 

prompting, demonstrating diverse and realistic image 

generation outcomes across various combinations. These 

comparisons are illustrated in Figure 8.  

Table 3 presents the average quantitative evaluation 

results, where our model demonstrated the highest 

performance across key metrics including anonymization 

accuracy, feature preservation, and image quality. 

 

 

Models PS ↑ HPS ↑ CLIP Aes ↑ IR ↑ 

DPO 0.5031 0.5031 9.7644 0.5183 

SPO 0.5034 0.4955 10.199 0.4999 

MAPO 0.4963 0.4904 10.157 0.503 

SimPO 0.5047 0.5107 10.851 0.5043 

Table 2: Comparison of preference optimization methods. 

 PS: PickScore, HPS: Human Preference Score, CLIP Aes: CLIP Aesthetics, IR: 

Image Reward 

 
Figure 7: Qualitative comparison between baseline models. 
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Figure 8: Q         v           f  h              h  ’  f                        -based and text-based prompts. The results show how 

different combinations of mask-based and text-based prompts affect changes in facial features. 

  
  
  
  

 
  
 
  
 

                     

                

                                   

                                           

                                                                                  

                                           

                                

  
  
  
  

 
  
 
  
 



 

 

4.4. Multi dataset Evaluation  

To verify the generalization capability of our approach 

across diverse face distributions, we applied our proposed 

method (ℒ𝐹𝐹𝐸+ℒ𝐷𝐼𝐹𝐹+SimPO) to two standard benchmark 

datasets: CelebA-HQ [1] and FFHQ [2]. This evaluation 

allows us to assess whether our race-fair anonymization 

approach is effective beyond our Asian Face Dataset. 

Following the same training protocol described in 

Section 4.2, we independently trained our method on Asian 

Dataset, CelebA-HQ and FFHQ. We maintained identical 

hyperparameters and loss configurations across all 

experiments to ensure fair comparison. We compared our 

trained models with the pretrained Stable Diffusion XL 

Inpainting model, which serves as a strong baseline. Tables 

4-5 present the detailed results. 

As shown in Table 4, our method demonstrates 

consistent race fairness improvements across all datasets. 

Most notably, our approach significantly enhances Asian 

facial feature preservation accuracy regardless of training 

data while maintaining excellent preservation of other 

racial characteristics. Table 5 shows that our method 

achieves optimal FID scores on the Asian Dataset, while 

maintaining competitive image quality on CelebA-HQ and 

FFHQ.  

The consistent performance across these diverse datasets 

confirms that our method's race fairness improvements are 

not specific to our training distribution but generalize well 

to standard benchmark datasets. This demonstrates the 

robustness of our combined approach in addressing racial 

bias in face anonymization. 

5. Conclusion 

In this paper, we propose Ano-Face-Fair, a race-fair text-

to-face synthesis model, particularly effective for Asian 

face. The proposed method utilizes mask-based and text-

based prompting to generate natural-looking faces while 

anonymizing them, regardless of race. Our approach 

introduces two types of loss functions to enhance the Stable 

Diffusion v2 Inpainting model: (1) the Focused Feature 

Enhancement (FFE) loss, designed to achieve high 

performance with a limited training set of Asian face 

images, and (2) the Difference (DIFF) loss, which prevents 

catastrophic forgetting across races. Additionally, we 

applied Simple Preference Optimization (SimPO) to 

diffusion models for the first time, significantly enhancing 

image quality and racial fairness while reducing 

computational costs, outperforming previous methods such 

as DPO. Experimental results demonstrate the robust 

generation of anonymized facial images across diverse 

racial groups, advancing the development of ethical and 

fair AI for facial image generation and editing.  

 

 

 

 

Models 
Anonymization ↑ 

Asian Acc ↑ FID ↓ SSIM ↑ LPIPS ↓ CLIP-I ↑ PSNR ↑ 
Acc Avg. Dist. Max. Dist. Min. Dist. 

SD-v2-I 1.00 1.0061 1.1479 0.8509 0.8620 111.5 0.2004 0.7860 0.6521 25.41 

DL-I 1.00 1.0029 1.1863 0.7952 0.8932 98.51 0.2910 0.7596 0.6781 27.89 

SD-XL-I 1.00 1.0181 1.2045 0.8267 0.9494 75.03 0.2912 0.7596 0.6531 27.91 

Ours 1.00 1.0367 1.2294 0.8703 0.9583 72.60 0.3149 0.7341 0.7565 27.91 

Table 3: Quantitative comparison on the Asian facial dataset. 

 

 

 
 

Models 
Training 

Datasets 

Anonymization ↑ Racial Feature Preservation Accuracy ↑ 

Acc Avg. Dist. Max. Dist. Min. Dist. Asian Caucasian African Latino 
Middle 

Eastern 

SD-XL-I (pretrained) 1.00 1.0181 1.2045 0.8267 0.949 0.940 0.921 0.901 0.912 

Ours 

FFHQ 1.00 1.0215 1.2037 0.8426 0.905 0.941 0.922 0.900 0.912 

CelebA-HQ 1.00 1.0249 1.2103 0.8501 0.913 0.949 0.923 0.897 0.910 

Asian Dataset 1.00 1.0367 1.2294 0.8703 0.958 0.945 0.922 0.912 0.915 

Table 4: Quantitative comparison on Multi dataset. Anonymization and Racial Feature Preservation 

 

SD-v2-I: Stable Diffusion-v2 Inpainting, DL-I: DreamLike Inpainting, SD-XL-I: Stable Diffusion XL Inpainting 

Models 
Training 

Datasets 
FID ↓ SSIM ↑ LPIPS ↓ CLIP-I ↑ PSNR ↑ 

SD-XL-I (pretrained) 75.03 0.2912 0.7596 0.6531 27.91 

 

Ours 

FFHQ 73.13 0.3082 0.7385 0.7295 28.05 

CelebA-HQ 73.34 0.3047 0.7402 0.7328 28.10 

Asian Dataset 72.60 0.3149 0.7341 0.7565 27.91 

Table 5: Quantitative comparison on Multi dataset. Image Quality 
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We propose a novel framework, Ano-Face-Fair, a text-

to-face synthesis using a Stable Diffusion Model that 

emphasizes race fairness. The main script details the 

editing mechanism and presents comparisons with state-of-

the-art methods for anonymization, specifically race fair-

ness. In this section, we provide the practical details of the 

proposed model. The code is available at 

https://github.com/i3n7g3/Ano-Face-Fair 

 

A. Implementation Details 

Focused Feature Enhancement (FFE) Loss. The error 

mapping function 𝐸𝑥  measures the difference between 

predicted output, 𝑥𝑝 and target image, 𝑥𝑡: 

 

𝐸𝑥 = |𝑥𝑝 − 𝑥𝑡| (1) 

 

Based on this error map, we generate a critical feature mask, 

𝑀𝑐 that identifies regions requiring focused enhancement: 

 

𝑀𝑐 = (𝑥𝑝 − 𝑥𝑡) > 𝜃 ∗ 𝑀𝐴𝑋 ((𝑥𝑝 − 𝑥𝑡)) (2) 

 

We optimize 𝜃  through a constrained optimization 

problem: 

 

𝜃 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃 (ℒ𝐹𝐹𝐸(𝜃)  +   𝜆𝑅(𝜃)) (3) 

 

To maintain a balance between local feature enhancement 

and global image coherence, we incorporate a 

regularization term 𝑅(𝜃)  that controls feature density 

through entropy regularization: 

 

𝑅(𝜃) = − ∑ (
𝑀𝑐

|𝑀𝑐|
⋅ 𝑙𝑜𝑔

𝑀𝑐

|𝑀𝑐|
)                    (4) 

 

 

 

 

 

 

 

Algorithm 1 Focused Feature Enhancement (FFE) 

loss, ℒ𝐹𝐹𝐸 

Input: output, target, 𝜃, ℒ𝐹𝐹𝐸 weight 

Output: ℒ𝑡𝑜𝑡𝑎𝑙 

 

function generate 𝑀𝑐 (output, target, 𝜃): 

 error map = compute absolute difference (output, 

target) 

 max error = find maximum (error map) 

 critical areas = error map > max error * 𝜃 

 𝑀𝑐 = convert to float (critical areas) 

 return 𝑀𝑐 

 

function ℒ𝐹𝐹𝐸(output, target, generate random mask, 

𝑀𝑐 , ℒ𝐹𝐹𝐸 weight): 

 ℒ𝑏𝑎𝑠𝑒= ℒ𝑚𝑠𝑒 (output * random mask, target * 𝑀𝑐) 

 ℒ𝐹𝐹𝐸= ℒ𝑚𝑠𝑒 (output * 𝑀𝑐, target * 𝑀𝑐) 

 ℒ𝑡𝑜𝑡𝑎𝑙 = ℒ𝑏𝑎𝑠𝑒 + ℒ𝐹𝐹𝐸 weight * ℒ𝐹𝐹𝐸 

 return ℒ𝑡𝑜𝑡𝑎𝑙 

 

Difference Loss.  To address catastrophic forgetting, we 

maximize angular separation between different racial class 

embeddings: 

 

ℒ𝐷𝐼𝐹𝐹  =
1

|𝑃|
∑ (1 −

𝑧𝑖⋅𝑧𝑗

|𝑧𝑖||𝑧𝑗|
)(𝑖,𝑗)∈𝑃                (5) 

 

where 𝑃 represents embedding vector pairs from different 

classes within a batch. We enforce unit normalization 

constraints: 

 

||𝑧𝑖|| =  ||𝑧𝑗||  = 1, 𝜃𝑖𝑗  ≥  𝜃𝑚𝑖𝑛 (6) 

 

The minimum angular separation 𝜃𝑚𝑖𝑛  prevents 

embedding collapse and ensures distinct representation of 

racial characteristics, maintaining clear boundaries 

between features in the embedding space. 
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Algorithm 2 Difference loss, ℒ𝐷𝐼𝐹𝐹 

Input: latents, latents for ℒ𝐷𝐼𝐹𝐹 

Output: ℒ𝐷𝐼𝐹𝐹 

 

function ℒ𝑑𝑖𝑓𝑓 (latents, latents for ℒ𝐷𝐼𝐹𝐹): 

 similarity = compute cosine similarity (latents, 

latents for ℒ𝐷𝐼𝐹𝐹) 

 ℒ𝐷𝐼𝐹𝐹 = 1 - similarity 

 ℒ𝐷𝐼𝐹𝐹  = compute mean (ℒ𝐷𝐼𝐹𝐹) 

 return ℒ𝐷𝐼𝐹𝐹 

 

Integration of 𝓛𝑭𝑭𝑬  and 𝓛𝑫𝑰𝑭𝑭. The overall loss function 

combines instance-level supervision with distribution-

level constraints: 

 

ℒ𝑇𝑜𝑡𝑎𝑙  = ℒ𝑖  +  𝜆𝑝𝑝 ∗ ℒ𝑝𝑝  +  𝜆𝐹𝐹𝐸 ∗ ℒ𝐹𝐹𝐸  +  ℒ𝐷𝐼𝐹𝐹  (7) 

 

The prior-preserving weight 𝜆𝑝𝑝 is maintained between 0.1 

and 1.0, empirically determined to ensure essential 

knowledge retention while allowing adaptation to new 

features. This formulation enables ℒ𝐹𝐹𝐸 to enhance critical 

facial features locally while ℒ𝐷𝐼𝐹𝐹  prevents overfitting to 

any particular racial group. 

 

Simple Preference Optimization for Diffusion model. 

Our SimPO approach eliminates the reference model 

through a direct reward formulation: 

 

𝑟SimPO(𝑥, 𝑦) =
𝛽

|𝑦|
∑ 𝑙𝑜𝑔 𝜋𝜃 ( 𝑦𝑖 ∣∣ 𝑥, 𝑦<𝑖 )          (8) 

 

where 𝜋𝜃   represents the policy of the model (the noise 

              w    , β is a scaling factor, and |𝑦| 
normalizes for output length. For preference optimization, 

logits are calculated as: 

 

𝑙𝑜𝑔𝑖𝑡𝑠 =  𝑟_𝑆𝑖𝑚𝑃𝑂(𝑥, 𝑦𝑤)  −  𝑟_𝑆𝑖𝑚𝑃𝑂(𝑥, 𝑦𝑙)  −  𝛾 (9) 

 

For diffusion models specifically, we adapt this 

formulation to noise prediction tasks: 

 

𝜋𝑙𝑜𝑔𝑟𝑎𝑡𝑖𝑜𝑠 =  ℒ𝑚𝑜𝑑𝑒𝑙𝑙
−  ℒ𝑚𝑜𝑑𝑒𝑙𝑤

            (10) 

 

𝑙𝑜𝑔𝑖𝑡𝑠 =  𝜋𝑙𝑜𝑔𝑟𝑎𝑡𝑖𝑜𝑠 −
𝛾

𝛽
                    (11) 

 

Model losses are computed as the Mean Squared Error 

between predicted and target noise: 

 

𝑀𝑆𝐸𝑘 = |𝜖𝜃(𝑥𝑘𝑡
, 𝑡) − 𝜖|2                  (12) 

 

 

 

 

 

Algorithm 3 SimPO Loss Calculation 

Input: model πθ, input x, output y, scaling factor β, 

margin γ 

Output: ℒSimPO 

 

function  𝐿SimPO (πθ,  , y, β, γ : 
1. Calculate model loss functions: 

ℒ𝑚𝑜𝑑𝑒𝑙𝑤
 = MSE (𝜋𝜃(𝑦𝑤), 𝑡𝑎𝑟𝑔𝑒𝑡𝑤) 

ℒ𝑚𝑜𝑑𝑒𝑙𝑙
 = MSE (𝜋𝜃(𝑦𝑙), 𝑡𝑎𝑟𝑔𝑒𝑡𝑙) 

 
2. Compute log ratios: 

𝜋𝑙𝑜𝑔 𝑟𝑎𝑡𝑖𝑜𝑠 =  ℒ𝑚𝑜𝑑𝑒𝑙𝑙
− ℒ𝑚𝑜𝑑𝑒𝑙𝑤

  

 
3. Calculate logits: 

Logits = 𝜋𝑙𝑜𝑔 𝑟𝑎𝑡𝑖𝑜𝑠 – γ 

 
4. Compute SimPO Loss: 

if loss type == "sigmoid": 

           ℒSimPO =  −𝑚𝑒𝑎𝑛(𝑙𝑜𝑔(𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝛽 ∗

 𝑙𝑜𝑔𝑖𝑡𝑠))) 

       else if loss type == "hinge": 

           ℒSimPO =  𝑚𝑒𝑎𝑛(𝑚𝑎𝑥(0, 1 –  𝛽 ∗  𝑙𝑜𝑔𝑖𝑡𝑠)) 

return ℒSimPO 

 

 

B. Experiments Details 

Dataset.  We trained the model using a public Asian facial 

dataset from AI Hub, consisting of 4,515 datasets, based on 

the Stable Diffusion v2 inpainting model. For Simple 

Preference Optimization (SimPO) fine-tuning, we utilized 

the Pick-a-Pic dataset, which includes 583,747 training sets 

and 500 validation-test sets, curated from user interactions 

with the Pick-a-Pic web application for text-to-image pairs. 

 
Focused Feature Enhancement (FFE) Loss.  The core of 

ℒ𝐹𝐹𝐸  is the 𝑀𝑐 , which identifies regions where the 

difference between 𝑥𝑝 and 𝑥𝑡 exceeds a specific 𝜃. In our 

initial experiments, we found 𝜃  = 0.5 to be the optimal 

balance between capturing important features and 

preventing overfitting to noise. This loss function assigns 

greater weight to critical regions identified by 𝑀𝑐. Through 

further experimentation, we refined our parameters, setting 

𝜃 to 1.0 and ℒ𝐹𝐹𝐸  weight to 0.01. To select the optimal 

ℒ𝐹𝐹𝐸  weight, we tested values ranging from 0.001 to 0.1, 

discovering that 0.01 provides the best balance between 

enhancing detailed features and maintaining overall image 

coherence. This value significantly improved the model's 

ability to capture fine facial features without compromising 

the global image structure. 

 



 

 

 
Figure A1: Experiments of 𝓛𝑭𝑭𝑬 weight and threshold effects on 

FID 

 

Difference Loss.  To implement ℒ𝐷𝐼𝐹𝐹, we created a set 

of images using a specific Difference prompt. we used "a 

photo of the white man" as the Difference prompt, 

generating 300 images. These generated images were then 

combined with the training data to compute ℒ𝐷𝐼𝐹𝐹. 

 

Hyperparameters for Simple Preference Optimization. 

We conducted extensive hyperparameter tuning 

experiments to optimize SimPO implementation for text-

to-face synthesis. Our experiments demonstrated that 

SimPO's performance is highly dependent on 

hyperparameter configurations, particularly the 

interactions b  w      w                       β ,        

       γ/β ,                       h     f             z      

process. These interactions substantially influence gradient 

flow, optimization landscape, and training stability during 

the model training process. 

 For SimPO fine-tuning process, we set the batch size of 

8 with gradient accumulation steps of 2, requiring 24GB of 

VRAM. We implemented Low-Rank Adaptation (LoRA) 

with rank 4 and alpha value 4 to optimize computational 

efficiency while preserving model performance. The 

complete hyperparameter configuration for our 

experiments is presented in Table A1. 

Our experimental methodology proceeded through four 

sequential stages. First, we established baseline 

   f                    v   v          β: 200-250, 

learning rate: 1e-5 to 3e-5  w  h   f     γ/β        f 0.5.    

shown in Figure A2, these initial experiments 

demonstrated stable convergence across all metrics.   

      , w            h                     β v            

1000 and learning rates up to 1e-4, revealing a crucial 

         h   b  w    β                  : α =  /β wh      

∈ [1e-3, 1e-2]. 

Third, we validated reproducibility using multiple 

random seeds (42, 123) and compared different learning 

rate schedulers. As demonstrated in Figure A3, training 

patterns remained consistent across different initialization 

conditions. Fourth, we investigated stability boundaries 

                        v       β: 1500-2000, γ/β: 0.2-

1.5), which revealed critical stability thresholds: gradient 

                      β>2000                               

the sigmoid function, and trai          b   z   wh   γ/β 

exceeded 1.5. 

Based on these comprehensive experiments, we 

    b   h       f        f           β=200,          

rate=1e-5, γ/β=0.5 .  h      f            h  v      b   

optimization across key metrics, with raw model loss 

showing steady decrease while reward accuracies 

maintained stability between 0.6 and 0.8. The loss ratio and 

reward consistency stabilized after initial convergence, 

validating our parameter selection. 

Configuration Parameter  Value 

Training Settings 

Batch Size 8 

Gradient accumulation Steps 2 

Max Training Steps 8,000 

Validation Steps 100 

Mixed Precision fp16 

Optimizer Settings 

Learning Rate 1e-5 

LR Scheduler Constant with warmup 

Warmup Steps 800 

Optimizer8-bit Adam 

SimPO Parameters 
β (Reward Scaling) 200 

γ/β Ratio (gamma ratio) 0.5 

LoRA Settings 
Rank 4 

Alpha 4 

Model settings Memory Required 24GB VRAM 

Table A1: SimPO training hyperparameters. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A2: Training Dynamics Visualization: Parameter Sensitivity Analysis and Optimization. Results of initial parameter exploration 

                      y                   v   v          β=200-250, learning rate=1e-5 to 3e-5). Evaluation metrics show the 

effe   v       f b           f           β=200,               =1 -5), where reward accuracies and loss curves exhibit stable convergence. 

    h                 y          f                       h   b  w    β                    α =  /β,   ∈ [1e-3, 1e-2]), determining optimal 

ranges for stable training. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A3: Training Dynamics Visualization: Reproducibility Validation and Stability Boundaries. Stability boundary analysis and 

reproducibility tests. Training patterns remain consistent across different random seeds (42, 123), confirming method reliability. 

   f                  v             b    y  h   h    :                              β>2000,                   b   z   wh   γ/β         1.5. 

 h    f            b   h             b          f        b                 ,                f        f                     β=200, learning 

rate=1e-5, γ/β=0.5 . 



 

 

More Qualitative Results.  We provide more results of 

Ano-Face-Fair through various experiments and 

comparisons. First, Figure A4-A5 demonstrates the 

effectiveness of our method compared to DPO for Asian 

face anonymization, with Figure A4 showing results for 

Asian men and Figure A5 for Asian women. Figure A6-A7 

shows the qualitative results of face anonymization for 

Asian race. Figure A8-A9 presents the comparison of face 

anonymization results across different races (Female and 

Male). Figure A10-A11 illustrates the qualitative results of 

face anonymization using mask-based, mask and text-

based prompting. 

 

 

               

                     

       

Figure A4: Comparison of face male face anonymization results (DPO vs Ours) 



 

 

 

 

 

               

                        

       

Figure A5: Comparison of face female face anonymization results (DPO vs Ours) 



 

 

  
Figure A6: Qualitative results of face anonymization for Asian race 

 

               

                                             



 

 

 
Figure A7: Qualitative results of face anonymization for Asian race 



 

 

 
Figure A8: Comparison of face anonymization results across different races (Male) 



 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A9: Comparison of face anonymization results across different races (Female) 

 

 

 

 

 



 

 

 

Figure A10: Qualitative results of face anonymization using mask-based prompting 

                       

                         

                     

                   

                

                          

                          

                                    



 

 

 
Figure A11: Qualitative results of face anonymization results using mask-based and text-based prompting 


