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Abstract

Adversarial attacks on Graph Neural Networks aim to perturb the performance of the
learner by carefully modifying the graph topology and node attributes. Existing methods
achieve attack stealthiness by constraining the modification budget and differences in graph
properties. However, these methods typically disrupt task-relevant primary semantics di-
rectly, which results in low defensibility and detectability of the attack. In this paper,
we propose an Adversarial Attack on High-level Semantics for Graph Neural Networks
(AHSG), which is a graph structure attack model that ensures the retention of primary
semantics. By combining latent representations with shared primary semantics, our model
retains detectable attributes and relational patterns of the original graph while leveraging
more subtle changes to carry out the attack. Then we use the Projected Gradient De-
scent algorithm to map the latent representations with attack effects to the adversarial
graph. Through experiments on robust graph deep learning models equipped with defense
strategies, we demonstrate that AHSG outperforms other state-of-the-art methods in at-
tack effectiveness. Additionally, using Contextual Stochastic Block Models to detect the
attacked graph further validates that our method preserves the primary semantics of the
graph.

Keywords: Adversarial attacks, Graph Neural Networks, Semantics preservation

1. Introduction

GNNs Kipf and Welling (2017); Velickovié et al. (2018); Hamilton et al. (2017)have achieved
significant success in graph representation learning. Due to their excellent performance,
GNNSs have been applied to various analytical tasks, including node classification Wu et al.
(2021b), link prediction Xiong et al. (2022), and graph classification Gao et al. (2021).
Recent studies have shown that similar to traditional deep neural networks, GNNs suffer
from poor robustness when facing specially designed adversarial attacks. Attackers can
generate graph adversarial perturbations to deceive GNNs by manipulating graph structures
and node features Dai et al. (2018); Xu et al. (2019); Ziigner and Giinnemann (2019); Ziigner
et al. (2018); Liu et al. (2022), or generating new nodes and adding them to the original
graph Fang et al. (2024); Chen et al. (2022). By understanding the ways in which models
are vulnerable to attacks, a range of defence methods are designed that perform better when
confronted with adversarial samples Zhu et al. (2019); Wu et al. (2019); Jin et al. (2020,
2021); Entezari et al. (2020).
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Figure 1: The primary semantics of graph are disrupted under the constraints of degree
distribution.

A core principle of attacking neural networks is that the attacker should preserve the
primary semantics of the original data after adding perturbations. This semantic invariance
ensures the practical significance of the attack. To achieve this, adversarial attacks usually
require the attacker to make only minimal perturbations. Therefore, most existing research
on graph adversarial attacks Dai et al. (2018); Xu et al. (2019); Ziigner and Gilinnemann
(2019); Ziigner et al. (2018); Liu et al. (2022) restricts attackers to modifying a limited
number of edges or nodes. However, it remains uncertain whether such attack models can
effectively preserve the primary semantics. For example, real-world graphs typically have
many low-degree nodes, and a small attack budget can completely remove their original
neighbors. Once the edges of low-degree nodes are disrupted, their semantics are often lost.
Therefore, preserving the primary semantics requires more than just managing the attack
budget.

To further constrain semantic changes, existing methods introduce metrics beyond at-
tack budget limitations. Ziigner et al. (2018); Chen et al. (2022) suggest using different
global graph properties as proxies for semantics, such as degree distribution and homophily.
However, even under such constraints, the primary semantics can still be disrupted. Figure
1 illustrates this phenomenon with a binary classification task. Assume we select two edges
e1 = (i,7) and e = (u,v) from the edge set of an undirected graph, and replace them with
é1 = (i,v) and é3 = (u,j). Since deg(i), deg(j), deg(u), and deg(v) remain unchanged,
this process preserves the degree distribution of the graph. We can continue to modify the
edges according to this rule until the attack budget is exhausted. Finally, we successfully
modifies the semantics of nodes 3 and 8 while maintaining the overall graph distribution,
demonstrating the infeasibility of method Ziigner et al. (2018). Therefore, neither the at-
tack budget nor the additional constraints on graph properties can effectively preserve the
primary semantics of the graph. Current research lacks a fundamental constraint aimed at
maintaining primary semantics.

To address the above question, we propose a method that generates attack graph pre-
serving primary semantics within limited attack budget. First, we need to find tools that
represent semantics. Existing attack methods Dai et al. (2018); Xu et al. (2019); Ziigner
and Giinnemann (2019); Ziigner et al. (2018); Liu et al. (2022) often treat graph neural
networks as black boxes, focusing only on the input and output, while ignoring the rich
semantic information contained in the hidden layers. The semantics of the graph are con-
sidered to be contained in the latent representations Wu et al. (2021a), so we control the
change of the latent representations to control the semantic change of the attacked graph.
Although the hidden layer representations in common tasks often encapsulate the primary
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semantics of the analyzed objects, task-irrelevant secondary semantics are not completely
filtered out. These secondary semantics may play an inappropriately role in the model pre-
dictions. In this context, the construction of adversarial examples should lead the model
to misjudge through exploring and exploiting the secondary semantics while keeping the
primary semantics unchanged.

Subsequently, how can we get latent representations where primary semantics remain
unchanged while secondary semantics change? Inspired by Wang et al. (2021), the entities
within the same category share similar primary semantics while exhibiting diverse secondary
semantics. Therefore, their linearly combined representations can preserve the majority of
the consensus primary semantics, while the deviations in secondary semantics can serve as
the basis for crafting attacks. We use the latent representations after linear combination as
input to the deeper network layers, then use gradient ascent to find latent representations
with attack effects. To generate adversarial samples, a first-order optimization algorithm is
employed to map the perturbed latent representations with attack effects to the attacked
graph. Finally, this secondary-semantics-targeted attack method achieves lower defensibility
and detectability.

Our main contributions are as follows:

e We propose a novel adversarial attack framework AHSG based on the graph semantics,
which utilizes the class-shared latent representations with similar primary semantics
as the perturbation tools.

e We introduce a technique for reconstructing adversarial samples from perturbed repre-
sentations by extracting deviations in secondary semantics from the linear combination
of class-shared representations, while preserving the primary semantics.

e We validate AHSG on multiple acknowledged benchmark datasets, demonstrating
substantial improvements under different attack settings. Semantic detection experi-
ments confirm that AHSG preserves the primary semantics of graph data.

2. Related Work
2.1. Adversarial Attack on GNNs

In graph attacks, Nettack Ziigner et al. (2018) introduces the first adversarial attack method
on graphs. Meta Ziigner and Giinnemann (2019) treats the input graph as a hyperparam-
eter to be learned and modifies one edge per iteration. PGD Xu et al. (2019) overcomes
the challenge of attacking discrete graph structure data. Dai et al. (2018) employ reinforce-
ment learning, gradient-based greedy algorithms, and genetic algorithms to attack GNNs
in various scenarios. EpoAtk Lin et al. (2020) improves the effectiveness of the attack by
bypassing potential misinformation from the maximal gradient. GraD Liu et al. (2022)
generates unweighted gradients on the graph structure, unaffected by node confidence, fully
utilizing the attack budget. Recent node injection attacks Zheng et al. (2021); Zou et al.
(2021); Yuan et al. (2024) have been shown to be more effective than structure modification
attacks. However, the issue of altering graph semantics during an attack remains under-
explored. Although the attack budget is minimal relative to the entire graph, it can still
lead to significant changes in the semantics of the attacked graph. Some works, such as



YUAN ZHANG PEI WANG

Nettack Ziigner et al. (2018) and HAO Chen et al. (2022), maintain certain graph properties
to achieve imperceptibility. However, these constraints are necessary but not sufficient to
preserve semantics.

2.2. Adversarial Defense on GNNs

Some studies develop corresponding defense strategies based on the characteristics of the
attacks. Jaccard Wu et al. (2019) calculates the Jaccard similarity of connected node pairs
and retains only those links with high similarity. Svd Entezari et al. (2020) utilizes low-
order approximations of the graph to enhance the performance of GCN against adversarial
attacks. ProGNN Jin et al. (2020) jointly learns the graph structure and a robust GNN
model from the perturbed graph. The SImPGCN Jin et al. (2021) framework enhances GCN
robustness by effectively preserving node similarity. RGCN Zhu et al. (2019) proposes that
latent representations based on Gaussian distributions can effectively absorb the impact
of adversarial attacks. Recent works Yuan et al. (2024); Zhang et al. (2022) can defend
against both graph modification attacks and node injection attacks. In the experiment, we
use AHSG along with baseline methods to attack the aforementioned defense models.

3. Preliminary

Given an undirected attributed graph G = (A, X) with n nodes, where A € {0,1}™*"
represents the adjacency matrix, and X € R™*? represents the node feature matrix. Here,
d represents the feature dimension, and n represents the total number of nodes. We focus
on an undirected attributed graph in this work. Formally, we denote the set of nodes as
V = {v;} and the set of edges as E C V x V. Each node v; is associated with a corresponding
node label y; € Y = {0,1,--- ,c — 1}, where ¢ is the total number of labels.

3.1. Graph Neural Networks

GNNs are specifically designed to handle graph-structured data. They leverage the mes-
sage passing mechanism to aggregate information from nodes and their neighbors, thereby
learning feature representations for nodes, edges, and the graph as a whole. The formula
for message passing can be described as follows:

h{) = uDp® (th—U, ht) . (1)

The representation of node v at the I-th layer, denoted as hq()l) , is computed by applying an

)

update function UDW to its previous representation h,g,l_l and the aggregated information

h; from its neighbors.
hy = AGO ({MG@ (hg—D, th—“) lue N(v)}) : 2)

The aggregation function AG® collects messages generated by the message function MG,
which computes the message from each neighboring node u to node v based on their re-
spective representations h&lil) and hs,lfl). Here, N(v) represents the set of neighboring
nodes of v. The initial node representation () is set to the node features X. The learned
representations are used as inputs for downstream tasks.
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3.2. Graph Adversarial Attack

Graph adversarial attack aims to make graph neural networks produce incorrect predictions.
It can be described by the following formulation:

max L ( For (G(A, X)), Y)
Ged(G) (3)

s.t.0" = argnbinﬁ (fo(G'(A", X")),Y).

Here, f can be any learning task function on the graph, such as node-level embedding, node-
level classification, link prediction, graph-level embedding, or graph-level classification. In
this paper, we primarily focus on node-level classification. ®(G) represents the perturbation
space on the original graph G. The distance between the adversarial graph and the original
graph is typically measured using the attack budget or other properties. The graph G (A, X )
represents the adversarial sample.

When G’ is equal to G , Equation (3) represents poisoning attack. Poisoning attack
occurs during model training. It attempts to influence the model’s performance by injecting
adversarial samples into the training dataset. On the other hand, when G’ is the unmodified
original G, Equation (3) represents evasion attack. Evasion attack occurs after the model
is trained, meaning that the model’s parameters are fixed when the attacker executes the
attack. The attacker aims to generate adversarial samples specifically for the trained model.
AHSG attacks the target model after its training, which categorizes it as an evasion attack.

4. Methodology

In this part, we first derive the formulation of the proposed model and then present its
optimization algorithm.

4.1. Architecture of AHSG
As shown in Figure 2, AHSG can be divided into three stages.

1) Extract semantics from graph: The hidden layers of an unperturbed surrogate
GNN encapsulate both the information of the node itself and that of its surrounding neigh-
borhood after training. Therefore, we select the output of the [ layer as the semantics of
each node. This process can be formally described as follows:

H,=GNNy.y (A,X, W(*L.._,l))

) : (4)
s.6. W 1) = arg o min L (fW(l,m,L) (G (A, X)) ,Y) ,

(1,---,L)

where L (.,.) is the loss function, commonly the cross-entropy loss. W(; .. 1) are weight
matrices. GN Ny refer to the first [ layers of the GNN.

2) Construct adversarial latent representation that preserve the primary se-
mantics: Wang et al. (2021) address the challenge of imbalanced datasets by extracting
the feature shifts of frequent-class entities and applying them to rare-class entities. In this
approach, the latent representation is assumed to be h = P + T, where P denotes the data
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Step 1: Extract semantics from graph Step 2: Construct adversarial latent representation
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Step 3: Map adversarial latent representation to attacked graph

Figure 2: The framework of AHSG. It consists of three steps: extracting semantics from
graph, constructing adversarial latent representations, and mapping adversarial
latent representation to attacked graph.

distribution center (i.e., the similar primary semantics of same-class entities under the fixed
task), and T represents the feature shift (i.e., the secondary semantics of the entities in the
task). Inspired by this, we make the following assumption about the composition of the
latent representation in our work:

s = dP(i) + eT(j), (5)

where h; denotes the latent representation vector of the j-th node in class i. It is composed
of two parts: the primary semantics dP(i), which is crucial for the classification task, and
the secondary semantics eT'(j), which is less decisive. All nodes of the same class share the
same primary semantic base P(i), but may have different secondary semantic bases 7'(j).
Since each class contains some nodes, there exists a set where the primary semantics are
preserved while the secondary semantics change. When perturbing the latent representation
hz- of each node, we assign a weight «y to each representation of the same class. Summing

these weighted representations yields the perturbed representation il;

’ Zi:l ag
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Using Equation (5), the representation iL; in Equation (6) can be derived as follows:

Bi Zi:@ aghj, >y (diP(2) + exT(k))
! Ei:l Ok Z‘]]{,‘ 1 %% )
_ Zi:l akdk?(i) + onee T (k) (Zk 1 @kdk) P(i) + Zk 1 O‘kekT(k)
2 1 Ok k1 ot o

As derived above, ﬁ; still maintains the form dP + eT', where the secondary component is
composed of various secondary semantics, and the primary component remains but with a
modified coefficient for the primary semantics base. To ensure that the perturbed latent
representation o 1 has adversarial effect on the GNN, o ; is fed into the downstream network
layers of the GNN. The optimal « is then determined based on the loss function loss;. [h]
refers to arranging h in the same order as before.

£1 = —L(Y,GNNy.y (4 Hi(a), W, 1)) = Bdis(Hi, Hi(), (8)

where dis(.,.) denotes KL divergence. Now we can obtain f{\l(a) as follows:

To use a smaller attack budget when reconstructing adversarial samples with perturbed
representations, we introduce a penalty term dis(H;, H;(«)). This term controls the simi-
larity between the perturbed hidden layer and the original hidden layer, thereby limiting
the perturbations to a certain range. Notably, it also prevents the coefficient of the primary
semantics base from becoming too small. S > 0 is a hyperparameter that controls the
strength of the penalty.

3) Map adversarial latent representation to adversarial sample: To construct an
adversarial sample, we need to map the perturbed latent representation to the graph. Let
A denote the attacked graph. We introduce a binary perturbation matrix S € {0,1}V*N to
encode whether an edge in G is modified. Specifically, an edge (i, ) is modified (added or
removed) if S;; = Sj; = 1. Otherwise, if S;; = Sj; = 0, the edge (7, j) remains undisturbed.
Given the adjacency matrix A, its complement matrix A is defined as A = 117 — T — A,
where I is the identity matrix, and 1 is a column vector of all ones. The term (117 — I)
corresponds to a fully connected graph. Using the edge perturbation matrix S and the
complement matrix A, Equation (10) provides the perturbed topology A of the graph A.

A=A4+C06S, C=A-A, (10)

where ® denotes the element-wise product. In the above expression, the positive entries of
C indicate edges that can be added to the graph A, while the negative entries of C indicate
edges that can be removed from A. Due to the difficulty in solving the problem under the
binary constraint {0, 1}, this constraint is relaxed to the continuous interval [0, 1]. Based on
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Equation (4), the latent representation is computed by using the modified graph structure
A, which is similar to H;. Hence, we give the mapping loss as follows:

£y = —dis (GNNuy (A4 X W, ) ) st s €5, (11)

where S = {s | 17s < ¢, s € [0,1]V}. The function dis(.,.) computes the distance between
matrices, commonly using KL divergence. After determining s based on L5, the values in s
are used to sample from A, resulting in the perturbed graph A.

4.2. Model Optimization

We solve AHSG step by step. In the first step, we solve for W by using a conventional
gradient descent algorithm. In the second step, when solving the a problem, the number
of elements in « corresponding to each node is variable because the number of same-class
nodes for each node is not fixed. It is challenging to solve for unknowns of variable length
in a unified manner. However, the maximum length of « is fixed, which is the total number
of nodes. We set each o to the maximum length, and after each gradient descent iteration,
we perform clipping according to the following formula:

1, if (i = 7 and y; is unknown)
T(ij) = § @iy, if (y; =y; and y; and y; are known) (12)
0, else.

For the s subproblem, we scale the hard constraints {0,1} to [0,1]. However, under the
constraint 17s < e, we still need to project the gradient-descent result of s by Equation
(13). For solving p, we use the bisection method.

Py q1lal, if > Pyoqlal <e
Mo (a) = f0,1][a] ‘ > Poylal (13)
Poyla —p], if 4 >0, Poyla—p] =,
where Py qj() is defined as:
z, ifze|0,1]

0, ifz <0,

Sampling A using s produces the attacked graph A. The overall procedure of AHSG is
shown in Algorithm 1.

5. Experiment

In this section, we validate the effectiveness of AHSG through comprehensive experiments.
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Algorithm 1 The procedure of AHSG
Input: Original graph G = (A4, X)
Parameter: E\,3,T.m,K h
Output: A

: Train GNN to obtain W(*1,2

1 .
2: Calculate H; via Equation(il).
3: for e <~ 1 to F do
4:  Calculate H; via Equation(9).
5 Gradient descent:
ale) =ale—1) = AVLy (ale — 1)).
6:  Calculate a via Equation(12).
7: end for
8 fort <+ 1toT do
9 Gradient descent:
a(t) =s(t—1) = VLa(s(t — 1))
10:  Call projection operation in Equation(13).
11: end for
12: for k + 1 to K do
13:  Generate p of the same size as s that follows a uniform distribution.
14:  Draw binary vector d*) following

4P 1, ifs>p;
! 0, ifs; <p;
15: end for
16: Choose a vector s* from d*) which yields the smallest lossy under 17s < e.
17: Calculate A via Equation(10).

5.1. Experimental Settings

We evaluated AHSG on five well-known datasets: Cora, Citeseer, Cora-ML, Ogbn-arxiv, and
Amazon-Photo. Cora, Citeseer, and Cora-ML are citation networks where nodes represent
papers with bag-of-words features and edges represent citations. Ogbn-arxiv is a large-
scale citation network from arXiv with nodes representing papers and edges representing
citations. Amazon-Photo is a co-purchase graph where nodes represent products and edges
indicate frequent co-purchases. The statistical results are shown in Table 1.

The baselines include Random, Meta Ziigner and Giinnemann (2019), GradAM Dai et al.
(2018), PGD Xu et al. (2019), EpoAtk Lin et al. (2020), GraD Liu et al. (2022), EBAG
Chanda et al. (2025). We choose GCN as the surrogate model, where the total number of
layers L in the neural network is 2, and [ is 1. We conduct comparative experiments with
advanced graph attack and defense methods. For Svd and Jaccard, we adjust the order of
high-order approximations and the threshold for removing low-similarity links to achieve
optimal defense performance. Other attack methods use default parameters.

In our method, the default settings are as follows: the number of iterations E for
perturbation is set to 300, with a learning rate A of 0.3. The regularization coefficient f is
0.2. For reconstruction, the number of iterations 7" is 300, and the dynamic learning rate
Mg is \/%, where ¢ denotes the iteration count and g is set to 20. The number of selections

K for the probability matrix is 20. When using a two-layer GCN as the victim model, the
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Datasets Nodes Links Features Classes Binary
Cora 2708 5278 1433 7 Y
Citeseer 3327 4552 3703 6 Y
Cora-ML 2995 8158 2879 7 N
Ogbn-arxiv 169343 1166243 128 40 N
Amazon-Photo 7650 143663 745 8 Y

Table 1: Statistics of datasets. The last column indicates whether the dataset has binary
features.

dimension h of the first layer is 128, and the second layer’s dimension corresponds to the
number of classes.

5.2. Attack Performance on GNNs

Except for ProGNN, other GNNs use the evasion attack setting. ProGNN performs both
graph structure purification and parameter learning simultaneously, so the attack occurs
before training. The attack results on different GNNs by modifying 10% of the edges are
shown in Table 2. We observe that all baseline methods lead to a performance drop in the
victim models. AHSG outperforms all other attackers on all datasets. Furthermore, AHSG
achieves the best attack performance on GCN among different GNN models, since GCN is
the corresponding surrogate model, indicating a white-box attack scenario. Furthermore,
even against the five defensive GNNs, AHSG still demonstrates strong attack performance,
highlighting its robust generalization capability derived from the surrogate model.

Dataset Method Clean Random Meta GradAM PGD EpoAtk GraD EBAG AHSG
GCN 0.823 0.809 0.809 0.716 0.708 0.685 0.673 0.657 0.646
Jaccard 0.786 0.784 0.736 0.712 0.759 0.693 0.703 0.712 0.676
Cora SVD 0.729 0.711 0.665 0.673 0.686 0.689 0.715 0.705 0.648
ProGNN 0.809 0.794 0.659 0.737 0.703 0.673 0.665 0.698 0.654
SimPGCN  0.790 0.782 0.784 0.703 0.728 0.703 0.695 0.713 0.682
RGCN 0.801 0.748 0.753 0.690 0.678 0.671 0.664 0.675 0.651
GCN 0.666 0.655 0.650 0.578 0.593 0.549 0.542 0.558 0.528
Jaccard 0.665 0.632 0.645 0.617 0.623 0.591 0.622 0.604 0.576
SVD 0.601 0.593 0.573 0.588 0.565 0.589 0.574 0.573 0.558

Citeseer  p. GNN 0.683 0.625 0.531 0.566 0.603  0.597 0.582  0.577  0.530
SimPGCN  0.656 0.646 0.648 0.585 0.615  0.613  0.602 0.613  0.581

RGCN 0.610 0.579 0.569 0.576 0.573 0.559 0.552 0.559 0.534
GCN 0.859 0.851 0.827 0.743 0.791 0.741 0.738 0.742 0.733
Jaccard 0.860 0.839 0.807 0.770 0.828 0.801 0.813 0.784 0.762

Cora-ML SVD 0.820 0.799 0.794 0.759 0.816 0.763 0.808 0.797 0.757
ProGNN 0.840 0.805 0.791 0.749 0.823 0.783 0.769 0.778 0.735
SimPGCN  0.846 0.836 0.817 0.743 0.818 0.774 0.758 0.760 0.740
RGCN 0.859 0.842 0.831 0.754 0.828 0.785 0.771 0.809 0.755

Table 2: Accuracy of GNNs with 10% edge modifications. The best result in each row is
highlighted in bold.

5.3. Attack Performance w.r.t Attack Budget

Table 3 presents the accuracy on the test sets on five datasets as the proportion of perturbed
edges increases from 5% to 20%. For example, in the case of the Cora dataset, as anticipated,
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Dataset Attack Ratio Random Meta GradAM PGD EpoAtk GraD EBAG AHSG
5% 0.814 0.814 0.765 0.756 0.731 0.725 0.712 0.698

Cora. 10% 0.809 0.809 0.716 0.708 0.685 0.673 0.657 0.646
15% 0.795 0.805 0.685 0.681 0.634 OOM  0.625 0.615

20% 0.787 0.798 0.652 0.645 0.607 OOM  0.593 0.585

5% 0.657 0.651 0.608 0.610 0.585 0.578 0.585 0.565

Citescer 10% 0.655 0.650 0.578 0.593 0.549 0.542 0.558 0.528
15% 0.653 0.631 0.539 0.564 0.523 OOM  0.512 0.495

20% 0.641 0.628 0.507 0.529 0.501 OOM 0.495 0.487

5% 0.853 0.841 0.791 0.843 0.795 0.789 0.792 0.776

Cora-ML 10% 0.851 0.827 0.743 0.791 0.741 0.738 0.742 0.733
15% 0.846 0.821 0.721 0.751 0.711 ooM  0.723 0.700

20% 0.837 0.809 0.695 0.708 0.698 ooM  0.701 0.685

5% 0.715 0.703 0.686 0.695 0.674 0.681 0.669 0.651

Ocbn-arxiv 10% 0.703 0.697 0.653 0.663 0.653 OOM  0.643 0.623
& 15% 0.686 0.693 0.632 0.641 0.627 ooM  0.627 0.597
20% 0.673 0.685 0.614 0.611 0.602 OoOM  0.593 0.563

5% 0.797 0.783 0.774 0.776 0.751 0.757 0.765 0.732

Amazon-Photo 10% 0.794 0.775 0.751 0.742 0.714 0.701 0.713 0.692
15% 0.786 0.751 0.734 0.721 0.683 0.672 OOM  0.653

20% 0.775 0.732 0.709 0.714 0.664 0.653 OOM 0.624

Table 3: Accuracy of GCN under different attack budgets. The best result in each row is
highlighted in bold. OOM represents Out of Memory.

the test accuracy consistently decreases with a higher number of perturbed edges, although
the rate of decline slows down. Moreover, the proposed AHSG achieves the best attack
performance across all perturbation ratios. Similar conclusions are drawn for the Citeseer,
Cora-ML, Ogbn-arxiv, and Amazon-Photo datasets.

5.4. Semantic Detection

In the fields of computer vision (CV) and natural language processing (NLP), humans can
effectively perform semantic checks. However, in the domain of graph, it is challenging for
humans to inspect the semantics of large-scale graphs. To address this, Gosch et al. (2023)
attempt to define semantic boundaries by introducing a reference classifier g to represent
changes in semantic content. The reference classifier g can be derived from knowledge about
the data generation process. According to the data generation process of CSBMs, Gosch
et al. (2023) use a Bayes classifier as g.

Data generation process: synthetic graphs with analytically tractable distributions are
generated using the Contextual Stochastic Block Models (CSBMs). It defines the edge
probability p between same-class nodes and ¢ between different-class nodes. Node features
are extracted using a Gaussian model. Sampling from CSBMs can be described as an
iterative process for node ¢ € n:

1. Sample the label y; ~ Ber(1/2) (Bernoulli distribution).
2. Sample the feature vector z; | y; ~ N'((2y; — 1), 1), where 1 € R? and o € R.

3. For all j € n, if y; = y;, then sample A;; ~ Ber(p); otherwise, sample A;; ~ Ber(q)
and set Ai7j = Ajﬂ‘.
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We denote this as (X, A,y) ~ CSBM(n, p, q, i, 02).
We reclassify the nodes in the attacked graph G(X’, A’), which is generated by Equation
(15).
G(X' A') = attack(G(X, A)). (15)

As shown in Equation (16), if the reference classifier g gives the same prediction for node
v in both the original and attacked graph, and the prediction is correct, then Gosch et al.
(2023) consider that the primary semantics of node v have not been altered by the attack.

g(XlaA,)v = g(X, A)v = Yov,

) (16)
(X, A,y) ~ CSBM(n,p, q, p,07).

In Equation (17), the reference classifier g consists of a feature-based Bayesian classifier and
a structure-based Bayesian classifier. The structure-based Bayesian classifier considers four
scenarios: whether nodes of the same class are connected and whether nodes of different
classes are connected.

g(X7 A)v = argmax (Bayes(X, A’ v, y)) ;
Yy

Bayes(X, A7 v, y) = lOg(p (Xv‘yv) +
n . . 17
Log ([ 10~ =D (1 — )= 1ol (17)
=0
qA[i»U](\yi—yv\)(l _ q)(l_A[ivv])(lyi_va)‘

The number of nodes with consistent classification results before and after the attack can be
regarded as the degree of graph semantics preservation. We denote this by Bayes_maintain,
as shown in Equation (18), where I is an indicator function.

> i
=0 Q(X’7A/)U=Q(X7A)v=yv
n

Beyes_maintain = (18)
As shown in Table 4, the Bayes reference classifier achieves 92.4% accuracy on clean graphs,
validating its effectiveness as a semantic proxy. Comparison with other attack methods
reveals that AHSG alters the Bayesian classification results the least, thereby maintaining
the majority of the primary semantics in the classification task while achieving the best
attack performance.

Attack Method Clean Meta GradAM PGD EpoAtk GraD EBAG AHSG

GCN 0.724  0.653 0.632 0.607 0.597 0.593 0.614 0.586
Beyes_maintain  0.924  0.810 0.802 0.832 0.774 0.783 0.804 0.903

Table 4: Accuracy of GCN and the degree of primary semantic preservation under different
attack methods.

Note that in CSBMs, We use the original default settings. The number of generated
nodes n is 1000. Node feature mean p is calculated as QM—\/%,
W =21, and M = 0.5. Smaller value of M causes the reference classifier to rely more

with variance ¢ = 1, d =
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on structural information. Since AHSG focuses on structural attacks, it is essential for the
reference classifier to analyze the semantics within the structure. The edge probability p
between same-class nodes is 0.6326%, while the edge probability ¢ between different-class
nodes is 0.1481%.

5.5. Ablation Study

To further validate the effectiveness of AHSG, we conduct an ablation study to analyze the
impact of its various components. Since AHSG consists of a perturbation module, a recon-
struction module, and a regularization module, we performed ablation study by removing
one of these modules to assess their influence on AHSG’s performance. The regulariza-
tion module is discussed in the hyperparameter analysis. The specific combinations for the
ablation study are as follows: AHSG-rec refers to the version where we retain the pertur-
bation module of AHSG but choose random connections during the reconstruction process.
AHSG-hid refers to the version where we retain the reconstruction module of AHSG but
apply random perturbations during the perturbation process. As shown in Table 5, the best
attack performance is achieved only when both perturbation and reconstruction steps are
present simultaneously. This result is reasonable. Without the guidance of the latent rep-
resentation, the reconstruction step cannot capture the correct perturbation information.
Conversely, without the reconstruction step, the perturbed latent representation cannot be
transformed into an effective attack graph.

Modules Cora  Citeseer Cora-ML

Clean 0.823 0.666 0.859
AHSG-rec  0.809 0.655 0.852
AHSG-hid  0.804 0.650 0.842
AHSG 0.698 0.565 0.776

Table 5: Accuracy of GCN with 10% edge modifications on different modules and datasets.

5.6. Parameter Analysis

Finally, we performed a hyperparameter analysis on the regularization term coefficient 8 and
the hidden layer dimension h. AHSG achieves optimal performance when [ is around 0.1,
as this value effectively balances the contributions of the attack loss and the regularization
term. Large [ restricts the range of perturbation in the hidden layers, preventing the attack
from fully utilizing the attack budget. Conversely, small 5 can result in an excessively large
distance between the perturbed representation and the original representation, making it
difficult to reconstruct the perturbed representation within a given attack budget. When
changing the hidden layer dimension A of the surrogate model, AHSG’s performance shows
considerable fluctuation. Particularly, when the hidden layer dimension is small, the attack
effectiveness decreases significantly. Because the hidden layers with a small dimension can
not adequately capture the information of each node (including both primary and secondary
semantics) for AHSG to utilize. However, it is worth noting that an attack graph generated
using a surrogate model with a large hidden layer dimension can still be effective when
applied to a target model with a small hidden layer dimension.
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Figure 3: Hyperparameter analysis on the regularization term coefficient 5 and the hidden
layer dimension h.

6. Conclusion

We investigate graph structure attacks on GNNs under the evasion setting and propose
AHSG, which preserves primary semantics in hidden layers to prevent significant seman-
tic disruption. By exploiting the similarity of primary semantics among nodes with the
same class, AHSG constructs representations that cause GNN failure while maintaining
semantic consistency. Adversarial graphs are generated using the PGD algorithm, with a
regularization term added to ensure semantic invariance. Experiments on various datasets
show AHSG’s superior attack performance against multiple GNNs, including defense mod-
els. Semantic detection confirms that AHSG effectively preserves task-relevant primary
semantics.
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