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Abstract

Reinforcement learning (RL) allows an agent interacting sequentially with an
environment to maximize its long-term return, in expectation. In distributional
RL (DRL), the agent is also interested in the probability distribution of the return,
not just its expected value. This so-called distributional perspective of RL has
led to new algorithms with improved empirical performance. In this paper, we
recall the atomic DRL (ADRL) framework introduced in [1] based on atomic
distributions projected via the Wasserstein-2 metric. Then, we derive two new deep
ADRL algorithms, namely SAD-Q-LEARNING and MAD-Q-LEARNING (both
for the control task). Numerical experiments on various environments compare our
approach against existing deep (distributional) RL methods.

1 Introduction

In reinforcement learning (RL), a decision-maker or agent sequentially interacts with an unknown
and uncertain environment in order to optimize some performance criterion [21]. At each time
step, the agent observes the current state of the environment, then takes an action that influences
both its immediate reward and the next state. In other words, RL consists in learning through trial-
and-error a strategy (or policy) mapping states to actions that maximizes the long-term cumulative
reward (or return): this is the so-called control task. More accurately, this return is a random
variable — due to the random transitions across states — and classical RL only focuses on its
expected value. On the other hand, the policy evaluation task aims at assessing the quality of
any given policy (not necessarily optimal as in control) by computing its expected return in each
initial state, also called value function. For both evaluation and control, when the model (i.e.
reward function and transition probabilities between states) is known, these value functions can
be seen as fixed points of some operators and computed by dynamic programming (DP) under
the Markov decision process (MDP) formalism [17]. Nevertheless, in RL the model is typically
unknown and the agent can only approximate the DP approach based on empirical trajectories.
The TD(0) algorithm for policy evaluation and Q-LEARNING for control, respectively introduced
in [20] and [24], are flagship examples of the RL paradigm. Formal convergence guarantees were
provided for both of these methods, see [10, 22, 11]. In many RL applications, the number of
states is very large and thus prevents the use of the aforementioned tabular RL algorithms. In
such situation, one should rather use function approximation to approximate the value functions, as
achieved by the DQN algorithm [13, 14] borrowing ideas from Q-LEARNING and deep learning.
More recently, the distributional reinforcement learning (DRL) framework was proposed by [3]
(see also [15, 16]). In DRL, the agent is interested in the whole probability distribution of the
return, not just its expectation. In this new paradigm, several distributional procedures where
proposed as extensions of classic (non-distributional) RL methods, leading to improved empirical
performance. In most cases, a DRL algorithm is composed of two main ingredients: i) a parametric
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family of distributions serving as proxies for the distributional returns, and ii) a metric measuring
approximation errors between original distributions and parametric proxies. We recall a few existing
DRL approaches, all of which considering mixtures of Dirac measures as their parametric family of
proxy distributions. Indeed, the Categorical DRL (CDRL) parametrization used in the C51 algorithm
proposed in [3] was shown in [19] to correspond to orthogonal projections derived from the Cramér
distance. [19] later provided the convergence analysis of CDRL. Instead of learning the categorical
probabilities p1(x, a), . . . , pN (x, a) of a distribution

∑N
i=1 pi(x, a)δzi with fixed predefined values

z1, . . . , zN as in C51, the quantile regression approach was proposed in [9], where the support
{Q1(x, a), . . . , QN (x, a)} of the proxy distribution 1

N

∑N
i=1 δQi(x,a) is learned for fixed uniform

probabilities 1
N over the N atoms. In [9], these atoms result from Wasserstein-1 projections, and

correspond to quantiles of the unprojected distribution. Later, [1] proposed a similar atomic method
based on Wasserstein-2 projections, resulting in a more natural generalization of classic RL and
leading to interpretable quantities in terms of robustness, as shown in [2]. From now on, we refer to
this last approach as atomic distributional reinforcement learning (ADRL).

Main contribution Our main contribution is the following. We propose two new deep DRL
algorithms for control (called SAD-Q-LEARNING and MAD-Q-LEARNING) whose updates for all
atoms Qi;θ(x, a) are obtained by minimizing (w.r.t. the deep Q-net parameters θ) the total squared
loss

N∑
i=1

(
Qi;θ(x, a)− AVaRi(ν)

)2
,

where the target atoms AVaRi(ν) are easily computable quantities related to the conditional value-
at-risk or “CVaR” of the unprojected target distribution ν. Additionally, we show that the average
1
N

∑N
i=1 AVaRi(ν) is exactly equal to the Q-LEARNING update in the target network.

The paper is organized as follows. In Section 2, we recall a few standard RL tools and notations
as well as their DRL generalization. Section 3 introduces a new distributional variant of the DQN
algorithm. Finally, numerical experiments are provided in Section 4 for illustration purpose.

Notations We let Pb(R) be the set of probability measures on R having bounded support, and
P(E) the set of probability mass functions on any finite set E , whose cardinality is denoted by
|E|. The support of any discrete distribution q ∈ P(E) is support(q) = {y ∈ E : q(y) > 0};
the supremum norm of any function h : E → R is ‖h‖∞ = maxy∈E |h(y)|. The cumulative
distribution function (CDF) of a real-valued random variable Z is the mapping F (z) = P(Z ≤ z)
(∀z ∈ R), and we denote its generalized inverse distribution function (a.k.a. quantile function) by
F−1 : τ ∈ (0, 1) 7→ inf{z ∈ R, F (z) ≥ τ}. For any probability measure ν ∈ Pb(R) and measurable
function f : R → R, the pushforward measure ν ◦ f−1 is defined for any Borel set A ⊆ R by
ν ◦ f−1(A) = ν({z ∈ R : f(z) ∈ A}). In this article, we only need the affine case fr0,γ(z) = r0+γz
(with r0 ∈ R, γ ∈ [0, 1)) for which ν ◦ f−1r0,γ ∈ Pb(R) and ν ◦ f−1r0,γ(A) = ν({ z−r0γ : z ∈ A}) if
γ 6= 0, or ν ◦ f−1r0,γ = δr0 is the Dirac measure at r0 if γ = 0. Lastly, we recall that a function
mapping a metric space to itself is called a γ-contraction if it is Lipschitz continuous with Lipschitz
constant γ < 1.

2 Background on (distributional) RL

2.1 Markov decision process and RL

Throughout the paper, we consider a Markov decision process (MDP) characterized by the tuple
(X ,A, P, r, γ) with:

• finite state space X ,

• finite action space A,

• transition kernel P : X ×A → P(X ),

• reward function r : X ×A×X → R,

• discount factor 0 ≤ γ < 1.
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If the agent takes some action a ∈ A while the environment is in state x ∈ X , then the next state X1

is sampled from the distribution P (·|x, a) and the immediate reward is equal to r(x, a,X1). In the
discounted MDP setting, the agent seeks a policy π : X → P(A) maximizing its expected long-term
return for each pair (x, a) of initial state and action:

Qπ(x, a) = E

[ ∞∑
t=0

γtr(Xt, At, Xt+1)
∣∣∣ X0 = x,A0 = a

]
,

where Xt+1 ∼ P (·|Xt, At) and At+1 ∼ π(·|Xt+1). Qπ(x, a) and V π(x) =
∑
a∈A π(a|x)Qπ(x, a)

are respectively called the state-action value function and the value function of the policy π. Further,
each of these functions can be seen as the unique fixed point of a so-called Bellman operator [6],
that we denote by Tπ for Q-functions. For any Q : X ×A → R, the image of Q by Tπ is another
Q-function given by:

(TπQ)(x, a) =
∑
x′

P (x′|x, a)

[
r(x, a, x′) + γ

∑
a′

π(a′|x′)Q(x′, a′)

]
. (1)

This Bellman operator Tπ has several nice properties: in particular, it is a γ-contraction in ‖ · ‖∞ and
thus admits a unique fixed point (by Banach’s fixed point theorem), namely Qπ = TπQπ. It is also
well-known from [6] that there always exists at least one policy π∗ that is optimal uniformly for all
initial conditions (x, a):

Q∗(x, a) := Qπ
∗
(x, a) = sup

π
Qπ(x, a) and V ∗(x) := max

a
Q∗(x, a) = V π

∗
(x) = sup

π
V π(x) .

Similarly, this optimal Q-function Q∗ is the unique fixed point of some operator T called the Bellman
optimality operator and defined by:

(TQ)(x, a) =
∑
x′

P (x′|x, a)
[
r(x, a, x′) + γmax

a′
Q(x′, a′)

]
, (2)

which is also a γ-contraction in ‖ · ‖∞. Noteworthy, knowing Q∗ is sufficient to behave optimally:
indeed, a policy π∗ is optimal if and only if in every state x, support(π∗(·|x)) ⊆ arg maxaQ

∗(x, a).

Value-based RL Value-based reinforcement learning consists in approximating the aforementioned
dynamic programming operators when the environment is unknown. More precisely, the agent do not
have direct access to the reward function r or the kernel P but only observes empirical transitions
(x, a, r(x, a, x′), x′) with x′ ∼ P (·|x, a). In this context, the temporal difference (TD) solves the
policy evaluation problem through the TD(0) update [20]:

Qk+1(x, a)← (1− α)Qk(x, a) + α

[
r(x, a, x′) + γ

∑
a′

π(a′|x′)Qk(x′, a′)

]
, (3)

for some step-size α ∈ (0, 1). For the control task, the (k + 1)st Q-LEARNING iterate proceeds as
follows:

Qk+1(x, a)← (1− α)Qk(x, a) + α
[
r(x, a, x′) + γmax

a′
Qk(x′, a′)

]
. (4)

Both TD and Q-learning were proved to converge almost surely to respectively Qπ and Q∗ under
technical conditions borrowed from stochastic approximation theory; see [22, 11].

2.2 Distributional Bellman operators

In distributional RL, we replace scalar-valued functions Q by functions µ taking values that are
entire probability distributions: µ(x,a) ∈ Pb(R) for each pair (x, a). In other words, µ is a collection
of distributions indexed by states and actions. We recall below the definition of the distributional
Bellman operator [3, 19], which generalizes the Bellman operator to distributions.
Definition 1. (DISTRIBUTIONAL BELLMAN OPERATOR). Let π be a policy. The distribu-
tional Bellman operator T π : Pb(R)X×A → Pb(R)X×A is defined for any distribution function
µ = (µ(x,a))x,a by

(T πµ)(x,a) =
∑
x′,a′

P (x′|x, a)π(a′|x′)µ(x′,a′) ◦ f−1r(x,a,x′),γ .
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We know from [3] that T π is a γ-contraction in the maximal p-Wasserstein metric2

Wp(µ1, µ2) = max
(x,a)∈X×A

Wp(µ
(x,a)
1 , µ

(x,a)
2 )

at any order p ∈ [1,+∞]. Consequently, T π has a unique fixed point µπ = (µ
(x,a)
π )x,a equal to the

collection of the probability laws of the returns:

µ(x,a)
π = Law

( ∞∑
t=0

γtr(Xt, At, Xt+1)

∣∣∣∣X0 = x,A0 = a

)
. (5)

Although [3] have also proposed a DRL operator for control, unfortunately it is not a contraction
and does not necessarily admits a fixed point, as stated in their Propositions 1-2. In [1], the author
proposes an alternative, less ambitious, DRL approach that only renders the randomness induced by a
single transition. Interestingly, this 1-step approach allows to define contractive mappings for both
evaluation and control: this will be the basis for deriving one of our new ADRL algorithms.

1-step optimality operator Let us recall the 1-step DRL operator introduced in [1].
Definition 2. (1-STEP DISTRIBUTIONAL BELLMAN OPTIMALITY OPERATOR). The 1-step distri-
butional Bellman optimality operator T : Pb(R)X×A → Pb(R)X×A is defined for any µ by

(Tµ)(x,a) =
∑
x′

P (x′|x, a)δr(x,a,x′)+γmaxa′ EZ∼µ(x′,a′) [Z] .

As illustrated by Example 1 in [2], applying T π may be prohibitive in terms of space complexity:
if µ is discrete, then T πµ is still discrete, but with up to |X ||A| more atoms. The 1-step operator T
leads to a similar issue by producing distributions with a number |X | of atoms, which is also too
demanding in terms of space complexity for a large state space.

Projected operators Motivated by this space complexity issue, projected DRL operators were
proposed to ensure a predefined and fixed space complexity budget N � |X |. A projected DRL
operator Π ◦ T is the composition of a DRL operator T with a projection Π over some parametric
family of distributions. The Cramér distance projection ΠC has been considered in [3, 19, 4]. In
this line of work, given fixed values z1 ≤ · · · ≤ zN , the proxy distributions

∑N
i=1 pi(x, a)δzi

are parametrized by the categorical probabilities p1(x, a), . . . , pN (x, a). In [9], the Wasserstein-1
projection ΠW1

over atomic distributions 1
N

∑N
i=1 δQi(x,a) is used. For this specific projection,

the atoms that best approximate some CDF Fx,a are obtained through quantile regression with
Qi(x, a) = F−1x,a( 2i−1

2N ). In this paper, we also consider such atomic distributions, but we use the
Wasserstein-2 projection ΠW2

. Interestingly, the Wassertein-2 projection preserves the expected
value [1]. Further, [2] has shown that it leads to fixed point quantities having a robust MDP
interpretation. In summary, our approach is based on the projected optimality operator ΠW2 ◦ T.

2.3 The Wasserstein-2 projection

As observed in [1, 2], the Wasserstein-2 projection onto the space of atomic distributions produces
quantities obtained by integrating the quantile function. In this article, we call average value-at-risk
(AVaR) the local average of the quantile function over any interval included in [0, 1]. We point out
that this is an abuse of language as the standard definition of the AVaR (also called conditional
value-at-risk or CVaR, see [18]) integrates the quantile function over some interval of the form [0, β]
or [β, 1], but never [β1, β2] with 0 < β1 < β2 < 1 as we do.
Definition 3. (AVERAGE VALUE-AT-RISK). Let 1 ≤ i ≤ N and F be the cumulative distribution
function (CDF) of a probability distribution ν on R with bounded support. The i-th average value-at-
risk (AVaR) of ν is defined as:

AVaRi(ν) = N

∫ i
N

τ= i−1
N

F−1(τ)dτ ,

2For p ≥ 1, we recall that the p-Wasserstein distance between two probability distributions ν1, ν2 on R

with CDFs F1, F2 is defined as Wp(ν1, ν2) =
(∫ 1

τ=0

∣∣F−1
1 (τ)− F−1

2 (τ)
∣∣p dτ) 1

p . If p =∞, W∞(ν1, ν2) =

supτ∈(0,1) |F
−1
1 (τ)− F−1

2 (τ)|.
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where F−1(τ) = inf{z ∈ R, F (z) ≥ τ} denotes the quantile function.

In this paper, we only consider AVaRs of discrete distributions for which F and F−1 are both
non-decreasing staircase functions. Luckily in this specific case, the AVaR comes with a simple
explicit expression given in the following lemma.
Lemma 4. (AVAR OF A DISCRETE DISTRIBUTION). Let 1 ≤ i ≤ N and ν be a discrete real
distribution

ν =

M∑
j=1

pjδvj ,

with M ≥ 1, p1, . . . , pM ≥ 0, p1 + · · ·+ pM = 1 and sorted values v1 ≤ · · · ≤ vM . Then,

AVaRi(ν) = N

M∑
j=1

Length

[ i− 1

N
,
i

N

]⋂ ∑
j′≤j−1

pj′ ,
∑
j′≤j

pj′

 vj .

From Lemma 4, we can compute exactly these discrete AVaRs by using the following formula for the
length of the intersection of two intervals:

Length ([L1, R1] ∩ [L2, R2]) = [min(R1, R2)−max(L1, L2)]+ , (6)

where [·]+ = max(0, ·) denotes the positive part. Algorithm 1 fully describes the exact computation
of the AVaRs of a discrete distribution; Figure 1 provides a graphic illustration of this procedure.

Algorithm 1 Discrete AVaR computation

Input: N ≥ 1 and discrete distribution ν =
∑M
j=1 pjδvj with M ≥ 1.

Sort atoms:
vσ(1) ≤ · · · ≤ vσ(M) with σ an argsort permutation

Reorder probability-atom pairs:

(pj , vj)← (pσ(j), vσ(j))

Compute AVaRs:

AVaRi(ν) = N ·
M∑
j=1

min

 i

N
,
∑
j′≤j

pj′

−max

 i− 1

N
,
∑

j′≤j−1

pj′


+

· vj

Output: AVaR1(ν), . . . ,AVaRN (ν).

We are now ready to define the Wasserstein-2 atomic projection.
Definition 5. (WASSERSTEIN-2 PROJECTION). Let N ≥ 1 and µ be a collection of bounded distri-
butions µ(x,a).Then, the Wasserstein-2 projection µ̃ = ΠW2µ onto the space of atomic distributions
(having N uniformly weighted atoms) is given by:

µ̃(x,a) =
1

N

N∑
i=1

δAVaRi(µ(x,a)) .

In the next section, we describe our CVaR-based version of DQN derived from the projected operator
ΠW2 ◦ T.

3 CVaR-based DQN

We now introduce our first practical deep DRL algorithm derived from the W2-projected operator
ΠW2

◦ T. Let us denote Q = (Q1, . . . , QN ) and µ(x,a)
Q the atomic distribution made of the N atoms
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Figure 1: Wasserstein-2 projection of a discrete distribution ν (with CDF F ) over N = 4 atoms.
Each AVaR is obtained by multiplying by N the sum of the (signed) areas of some rectangles.

Q1(x, a), . . . , QN (x, a):

µ
(x,a)
Q =

1

N

N∑
i=1

δQi(x,a) .

Based on an empirical transition (x, a, r(x, a, x′), x′), we naturally consider the unbiased stochastic
approximation T̂ of the (unknown) operator T:(

T̂µQ

)(x,a)
= δr(x,a,x′)+γmaxa′ Q(x′,a′) ,

where Q = 1
N

∑N
i=1Qi. Then, as in the CDRL algorithm analysed in [19], we do a mixture update

between our current atomic distribution and this stochastic target:

ν ← (1− α)µ
(x,a)
Q + α

(
T̂µQ

)(x,a)
, (7)

which results in a distribution containing N + 1 atoms. Finally, in order to satisfy our fixed space
complexity budget equal to N , we project ν with ΠW2 by computing the AVaRs:

Qi(x, a)← AVaRi(ν) , for all 1 ≤ i ≤ N . (8)

In a deep RL context, we rather minimize the squared distance between the atoms Qi(x, a) (that are
parameterized by a deep neural network) and the targets AVaRi(ν): we call this method SAD-DQN
(Algorithm 2) as it relies on Eq. 7 that mixes µ(x,a)

Q with a single Dirac measure. Similarly, we
propose the Algorithm 3 called MAD-DQN, using a mixture update with multiple Dirac measures,
which can be derived by approximating the DRL operator T πQ with πQ a greedy policy w.r.t. Q.
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Algorithm 2 SAD-DQN update

Input: (Q1;θ, . . . , QN ;θ) with deep Q-net parameters θ, target network θ−, transition
(x, a, r(x, a, x′), x′), mixing ratio α ∈ (0, 1) and learning rate η > 0.
Target state-action value function:

Qθ− ←
1

N

N∑
i=1

Qi;θ−

Target atomic distribution in (x, a):

µ
(x,a)
θ− ← 1

N

N∑
i=1

δQi;θ− (x,a)

Mixture update:
ν ← (1− α)µ

(x,a)
θ− + αδr(x,a,x′)+γmaxa′ Qθ− (x′,a′)

Perform a gradient descent step w.r.t. θ on the squared Wasserstein-2 loss function:

θ ← θ − η∇θ
1

N

N∑
i=1

(Qi;θ(x, a)− AVaRi(ν))
2

Output: Updated parameters θ.

Algorithm 3 MAD-DQN update

Input: (Q1;θ, . . . , QN ;θ) with deep Q-net parameters θ, target network θ−, transition
(x, a, r(x, a, x′), x′), mixing ratio α ∈ (0, 1) and learning rate η > 0.
Target state-action value function:

Qθ− ←
1

N

N∑
i=1

Qi;θ−

Target atomic distribution in (x, a):

µ
(x,a)
θ− ← 1

N

N∑
i=1

δQi;θ− (x,a)

Mixture update:

ν ← (1− α)µ
(x,a)
θ− +

α

N

N∑
i=1

δr(x,a,x′)+γQi;θ− (x′,a∗) ,

where a∗ ← arg maxa′ Qθ−(x′, a′)
Perform a gradient descent step w.r.t. θ on the squared Wasserstein-2 loss function:

θ ← θ − η∇θ
1

N

N∑
i=1

(
Qi;θ(x, a)− AVaRi(ν)

)2
Output: Updated parameters θ.

In the following lemma, we state that our approach satisfies a very natural property: the average
target of our deep ADRL methods coincide with the standard Q-LEARNING update.
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Lemma 6. (AVERAGING PROPERTY). At the end of Algorithms 2-3, the average of the AVaR targets
is equal to the Q-LEARNING update in the target network:

1

N

N∑
i=1

AVaRi(ν) = (1− α)Qθ−(x, a) + α
[
r(x, a, x′) + γmax

a′
Qθ−(x′, a′)

]
.

Proof. At the end of Algorithms 2-3, we have

1

N

N∑
i=1

AVaRi(ν) =
1

N

N∑
i=1

N

∫ i
N

τ= i−1
N

F−1(τ)dτ =

∫ 1

τ=0

F−1(τ)dτ ,

where F denotes the CDF of ν. Then, recalling that the expectation is equal to the integral of the
quantile function over the interval (0, 1) (see e.g. [7] or Lemma 3 in [2]), the desired result follows:

1

N

N∑
i=1

AVaRi(ν) = (1− α)Qθ−(x, a) + α
[
r(x, a, x′) + γmax

a′
Qθ−(x′, a′)

]
.

Lemma 6 suggests that our methods are natural as they extend classic deep Q-learning. Further,
this averaging property paves the way for future theoretical analysis of the tabular version of our
algorithms (with hard AVaR update in Eq. 8 instead of minimizing the squared distance). Indeed,
a similar property is used in the proof of Theorem 2 in [19] for the convergence of categorical
Q-learning.

4 Numerical experiments

In this section, we report preliminary experimental results. We compare our SAD-DQN and MAD-
DQN algorithms against the classic DQN [13] as well as the distributional QR-DQN method [9]
based on quantile regression. For SAD-DQN, MAD-DQN and QR-DQN, we take N = 10 atoms
(additional plots for N = 3 are provided in the Supplementary Material), and for all of these three
methods, we use the Adam optimzer [12] with learning rate set to 10−3 and batch size equal to 32.
We run our experiments3 on four different OpenAI Gym environments [8]: Acrobot-v1, CartPole-v0,
CartPole-v1 and LunarLander-v2. The discount factor is γ = 0.99 for all environments. Lastly, we
choose our mixture ratio parameter α = 0.8. In Figure 4, we observe convergence for both of our
proposed methods, with even a slight advantage for SAD-DQN on Acrobot-v1 and LunarLander-v2.
From a theoretical perspective, we may expect MAD-DQN to perform better than SAD-DQN
as it learns richer information about the distributions. Nevertheless, MAD-DQN displays a more
oscillating behaviour and takes longer to converge. In addition, Figure 4 shows encouraging results for
SAD-DQN over three different Atari games [5] (Pong, Breakout and Robotank) with the following
parameters: γ = 0.99, N = 51, α = 0.8, Adam with lr = 5 ·10−5 and batch size of 32. We compare
to QR-DQN (N = 51), DQN and DOUBLE DQN [23]. On the three games, we reach almost the
same performance as QR-DQN.

3The code for the experiments is available here: https://gist.github.com/mastane
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Figure 2: Comparison of the SAD-DQN and MAD-DQN algorithms against DQN and QR-DQN.
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Figure 3: Performance on three Atari games.

5 Concluding remarks

We proposed two new deep and distributional RL algorithms that naturally extend DQN. In particular,
they are both based on the squared loss akin to the original DQN loss. Moreover, the atomic targets
satisfy a natural averaging property stated in Lemma 6, which paves the way for future theoretical
convergence analysis. We empirically observed the convergence on various environments. Further
research could investigate the performance gain on challenging environments such as Atari games [5],
as well as the theoretical guarantees of the tabular algorithms described in Section 3.
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