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ABSTRACT

Real-time navigation in urban road networks requires making sequential routing
decisions with incomplete and noisy information. Recent advances in IoT infras-
tructure and vehicle-to-everything (V2X) technologies enable connected vehicles
to communicate with roadside units and traffic signals in real time. However, in
practice, communication bandwidth and deployment budgets severely restrict the
number of intersections that can be queried at each decision step, creating a par-
tially observable environment for real-time navigation. Existing pipelines which
separately train predictors of traffic states and then apply non-differentiable rout-
ing solvers struggle under such conditions, as they assume access to dense and
complete sensing. In this paper, we present an end-to-end differentiable frame-
work that jointly addresses vehicle-to-infrastructure(V2I) information acquisition,
traffic state inference, and dynamic routing optimization. In the proposed frame-
work, a learnable selection module proactively determines which intersections to
query under communication constraints, followed by a spatio-temporal aware en-
coder that infers network-wide travel costs from the resulting sparse signals, and
a differentiable soft shortest-path decision decoder computes re-routing strategies
while allowing gradients of downstream travel cost to flow back through the entire
pipeline. This tight coupling aligns model training with the true system objective
of minimizing vehicle travel time. Experiments on microscopic simulation with
city-scale networks demonstrate that our approach outperforms comparable base-
lines in travel efficiency while requiring only minimal communication. By inte-
grating selective information acquisition and differentiable decision-making, our
framework advances real-time urban navigation under partial observability and
provides a scalable path toward deployment in intelligent transportation systems.

1 INTRODUCTION

Real-time navigation at urban intersections is a cornerstone of intelligent transportation systems,
enabling vehicles to traverse complex road networks with minimal delay and improved safety. With
the rapid deployment of connected vehicles and roadside units, both infrastructure and vehicles are
increasingly capable of transmitting rich information about traffic states and driving intentions.

Challenge. A fundamental obstacle remains: at current stage, only partial information can be
made available at every decision step. Due to budget, bandwidth, and computation constraints,
the system can only query a limited subset of vehicles or roadside sensors at a time (Fabris et al.,
2025; Almutairi & Owais, 2025). This limitation creates a partially observable environment where
navigation decisions must be made with incomplete knowledge.

Limitations of existing methods. The dominant paradigm in the described real-world decision-
making system is predict-then-optimize: a predictive model is first trained to estimate traffic
states—such as link travel times, densities, or queue lengths—from historical and current measure-
ments, and the resulting estimates are then passed to an optimization module such as a shortest-path
solver or dynamic traffic assignment (Tian et al., 2023; Jiang et al., 2025; Huang et al., 2025). While
this pipeline has been widely adopted, it critically relies on the assumption that the traffic state is
either fully observable or can be reconstructed from dense sensor coverage. For example, most
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spatio-temporal graph models for traffic prediction assume access to complete network-level speed
and flow measurements (Li et al., 2018b; Yu et al., 2018; Guo et al., 2019; Wu et al., 2019; Zhao
et al., 2019; Zheng et al., 2020; Cao et al., 2020), and many routing studies treat link travel times
as exogenous inputs (Sun et al., 2021; Liu & Han, 2020; Bast et al., 2016b; Levering et al., 2022).
In practice, however, connected and automated vehicle (CAV) networks with vehicle-to-everything
(V2X) communication operate under stringent bandwidth, infrastructure budget, and penetration
constraints. As a result, only a subset of vehicles or roadside sensors can actively transmit informa-
tion at each decision step, leading inevitably to partial observability of the network state (Campolo
et al., 2017; Feng et al., 2021; Li et al., 2021; Sun & Ban, 2023). Under such conditions, conven-
tional predict-then-optimize pipelines may yield suboptimal routing recommendations.

Our approach. To deal with this challenge, we argue that partial information acquisition, global
travel cost inference, and navigation optimization must be addressed jointly rather than as isolated
stages. We propose an end-to-end framework that integrates:

• Proactive Information Acquisition. A learnable vehicle-to-infrastructure(V2I) acquisi-
tion module that proactively determines which roadside sensors to query under strict com-
munication and budgetary constraints, realized via a principled differentiable discrete se-
lection network.

• Full Travel Cost Inference. A spatio-temporal aware module that infers global traffic
states from partial and noisy observations acquired, exploiting both road network topology
and temporal traffic dynamics to infer edge travel costs.

• Differentiable Routing Head. A soft Bellman-based decision layer that transforms the
non-differentiable shortest-path optimization into a smooth surrogate, producing differen-
tiable estimates of cost-to-go and routing distributions. This allows downstream travel-time
objectives to directly supervise upstream state inference and information acquisition in an
end-to-end manner.

This joint formulation departs from conventional predict-then-optimize pipelines by explicitly cou-
pling sensing, prediction, and control within a single learning objective. In doing so, it aligns model
training directly with the ultimate system goal: minimizing travel time and delay. Through extensive
microscopic simulation on real-world road networks, we show that our framework consistently out-
performs comparative baselines while achieving near-oracle efficiency with minimal communication
cost. Moreover, the differentiable optimization layer enables millisecond-level decision updates and
inference, making the approach feasible for real-world deployment at scale.

Contributions. In summary, our contributions are threefold:

1. We formalize real-time intersection navigation under communication-constrained partial
observability, highlighting proactive information acquisition as a core component of the
re-routing decision problem.

2. We propose an end-to-end differentiable framework that unifies selective sensing, full state
reconstruction, and learnable navigation optimization.

3. We empirically validate the framework across diverse traffic scenarios, demonstrating per-
formance in travel efficiency. Codes will be made public to facilitate research in this area.

2 RELATED WORKS

2.1 DYNAMIC VEHICLE NAVIGATION

Dynamic vehicle navigation can be naturally framed as a dynamic shortest path (DSP) problem,
where edge costs evolve over time or are updated in response to real-world events such as con-
gestion, incidents, or environmental conditions (Baum et al., 2015; Meuser et al., 2019). Unlike
static shortest path formulations (Jiang et al., 2024), where link weights are fixed and deterministic,
dynamic navigation must account for time-varying or stochastic costs and adapt to incomplete ob-
servations (Madkour et al., 2017; Rı́os et al., 2021). A common specialization is the time-dependent
shortest path (TDSP) problem, in which travel times are modeled as functions of the departure
time, typically under the first-in-first-out assumption. In contrast, general DSP formulations capture
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abrupt or unpredictable disruptions that require continuous re-optimization. Classical approaches
extend Dijkstra- or A*-based algorithms to time-dependent networks (Dijkstra, 1959; Hart et al.,
1968), and include techniques such as dynamic discretization discovery and formulations of the
time-dependent traveling salesman problem (TDTSP) (Hansknecht et al., 2021; He et al., 2022).
While these methods can provide optimality guarantees under specific assumptions, they face chal-
lenges in terms of scalability and efficiency when applied to large urban road networks subject to
uncertainty. To address these limitations, the literature has advanced toward online and stochastic
variants, including dynamic vehicle routing problems (Rı́os et al., 2021; Adamo et al., 2024), robust
shortest paths (Filippi et al., 2025), and stochastic travel-time models (Sever et al., 2018).

In parallel, learning-based approaches have emerged as a promising paradigm. Reinforcement learn-
ing methods treat navigation as a sequential control task, enabling vehicles to adaptively react to
evolving traffic states (Koh et al., 2020; Li et al., 2024; Sun et al., 2023). Graph neural networks
have been leveraged to approximate routing policies or shortest-path computations directly on large-
scale networks, offering scalability and generalization across unseen topologies (Liu & Meidani,
2025; Chen et al., 2024). Furthermore, A complementary perspective comes from frameworks that
explicitly integrate learning-based prediction with optimization, which explicitly couple predictive
modeling with downstream decision-making (Vanderschueren et al., 2022; Shah et al., 2022).

2.2 PREDICT-THEN-OPTIMIZE PARADIGM

Recent advances in machine learning for decision-making, especially in transportation, logistics, and
energy, largely adopt a predict-then-optimize (PtO) paradigm: learning predictive models for costs or
states and applying these predictions as inputs to routing, scheduling, or control optimization. In ve-
hicle navigation problems, PtO methods are widely adopted, where predicted traffic states feed into
shortest path solvers, dynamic traffic assignment (DTA) models, or signal control strategies (Tian
et al., 2023; Jiang et al., 2025; Huang et al., 2025). While effective with dense sensing, this pipeline
critically relies on the assumption that traffic states are fully observed, and may degrade under par-
tial observability. More importantly, although this decoupled prediction and optimization simplifies
system design, it introduces a mismatch between predictive objectives (e.g., minimizing prediction
MSE) and optimization objectives (e.g., minimizing travel time). Recent decision-focused learning
methods (Vanderschueren et al., 2022; Shah et al., 2022) address this limitation by aligning model
training directly with downstream decision quality, offering a more principled integration of learn-
ing and optimization. However, the effect of selectively leveraging partial information within this
paradigm, as well as its impact on downstream routing performance in urban networks, have not
been systematically studied.

2.3 TRAFFIC STATE ESTIMATION UNDER PARTIAL OBSERVABILITY

Traffic state estimation (TSE) aims to infer spatio-temporal traffic conditions—such as speeds, flows,
densities, or queues—from sparse, noisy, and often heterogeneous observations (Seo et al., 2017;
Wang et al., 2025). Recent advances in physics-informed deep learning (PIDL) embed conservation
laws into neural architectures, improving estimation quality under limited sensing and enhancing
physical consistency (Shi et al., 2021; Di et al., 2023). At the intersection level, connected vehicle
(CV) trajectories have been leveraged to estimate volumes and queues even under low penetration
rates (Zheng & Liu, 2017; Jia et al., 2025), while uncertainty-aware models provide confidence
bounds for such inferences (Sun & Ban, 2023; Wang et al., 2024). These developments highlight
the progress in robust state inference under partial observability, yet most approaches still assume a
fixed observation set and stop short of linking estimation with downstream decision-making. These
advances underscore the importance of robust inference under partial observability. However, ex-
isting methods are largely designed for accurate reconstruction or uncertainty quantification, and
the observation set itself is typically assumed fixed. In contrast, the effect of selectively acquiring
partial observations on downstream decision quality has received little attention.

3 PRELIMINARIES

We model the urban transportation network as a directed graphG = (V,E), where each node v ∈ V
denotes an intersection and each edge e = (u, v) ∈ E represents a directed road segment. We en-
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Figure 1: Overall framework of our proposed method.

code the structural layout of the road network through its adjacency matrix A ∈ {0, 1}|V |×|V |,
where Aij = 1 if intersection i and j are directly connected by an edge. Each edge is associ-
ated with a time-dependent travel cost we(t) that reflects dynamic traffic conditions such as con-
gestion, incidents, or control signals, but are not directly available. At time t, a vehicle seeks a
path π = (e1, . . . , ek) from a source edge to a destination edge. The total travel time of π is
C(π, t) =

∑k
i=1 wei(ti), where ti is the entry time into edge ei. The dynamic re-routing problem is

to adaptively update π as traffic conditions evolve, in order to minimize C(π, t).

In our setup, dynamic re-routing is enabled by V2I communication: vehicles can exchange infor-
mation with traffic signals at selected intersections to obtain local traffic states. Due to practical
limitations such as bandwidth and communication constraints, a vehicle cannot query the entire net-
work at each step. Instead, at each decision step, the vehicle selects a subset of k intersections with
which to communicate, under communication constraints. Formally, let St ⊆ V with |St| = k
denote the selected intersections at time t. Through V2I interactions with each s ∈ St, the vehicle
receives partial observations Ot of local conditions, such as signal phases, queue lengths, and local
vehicle trajectories. This observation acquisition step determines which parts of the network are
visible to the vehicle, while the rest remain hidden.

Based on the partial observation Ot and its current position vt, as well as its destination goal, the
vehicle then makes a re-routing decision at ∈ A(vt), where A(vt) is the set of feasible outgoing
edges. The decision-making policy thus involves two stages at each step: (1) choosing informative
intersections to query under the top-k constraint, and (2) selecting the next edge to traverse so as to
avoid congestion and minimize the overall travel cost. This setup couples information acquisition
with dynamic routing, highlighting the importance of observation selection in achieving efficient
navigation under partial observability.

4 METHODOLOGY

We design an end-to-end framework for dynamic re-routing under partial observability in connected
intersections. Our method, as shown in Figure 1, integrates three critical components: (1) learning
V2I Informativeness under strict constraints, (2) inferring travel costs from partial observability, (3)
computing routes with a soft differentiable Bellman layer. This section describes each part in detail.

4.1 LEARNING V2I INFORMATIVENESS UNDER CONSTRAINTS

Vehicle context. The state of the querying vehicle is represented by a set of categorical embed-
dings that capture both its instantaneous position and its navigation objective. Specifically, we en-
code (i) its current intersection vt, (ii) the incoming approach direction at vt, (iii) the destination
intersection d, and (iv) the approach direction of the destination edge. These one-hot representa-
tions, when combined, provide a compact but expressive characterization of the vehicle’s situational
context, aligning the scoring process with its intended routing goal.
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Intersection selection. Selecting k intersections for V2I communication under budget constraints
is inherently a combinatorial optimization problem:

z∗ = argmax
z∈Ck

⟨θ, z⟩, Ck = {z ∈ {0, 1}|V | |
|V |∑
i=1

zi = k}, (1)

where z is a binary indicator vector encoding the queried intersections. The feasible set Ck grows
combinatorially with |V |, and the argmax operator is discrete and non-differentiable. This breaks
the gradient flow required for end-to-end training, and naı̈ve relaxations (e.g., soft top-k (Jang et al.,
2017; Maddison et al., 2017; Kool et al., 2019)) typically fail to preserve the combinatorial structure
and yield poor alignment with routing objectives.

To address this challenge, we frame intersection selection as sampling from a structured exponen-
tial family distribution over Ck, parameterized by the utility scores θ. This probabilistic perspective
transforms the hard argmax into a stochastic decision process while strictly preserving the top-k
cardinality constraint. Inspired by recent work on implicit likelihood matching for discrete distribu-
tions (Niepert et al., 2021), we adapt the underlying principle to our setting: rather than optimizing
for generic sampling fidelity, we construct a surrogate loss-informed target distribution q(z; θ′) that
places more probability mass on intersection subsets leading to lower routing cost, and update the
model distribution p(z; θ) accordingly. Practically, this is realized through perturb-and-MAP sam-
pling, where structured noise is added to θ, a top-k MAP selection is performed, and a second target
sample is obtained after shifting θ toward the task-loss gradient. The gradient estimator, given by
the difference between these two MAP solutions,

∇θL ≈ MAP(θ + ϵ)−MAP(θ′ + ϵ), (2)

provides a low-variance update direction that allows end-to-end optimization of the utility scoring
network. In this way, the discrete intersection selection policy is directly trained with respect to its
impact on downstream navigation performance. This design has two key advantages: (i) it respects
the combinatorial nature of the top-k constraint without resorting to crude continuous relaxations,
and (ii) it directly aligns the intersection query policy with downstream routing regret, ensuring
that communication choices are optimized not for generic information gain but for their impact on
decision quality.

Context-Aware Utility Estimation. Given the problem formulated as above, we compute utilities
via vehicle-intersection cross-attention so that the vehicle context selectively attends to informative
intersections. Let xi denote the static node features of intersection i (e.g., positional encoding) and
let ct encode the vehicle context at time t, we form node embeddingsX =

[
x1; . . . ;x|V |

]
∈ R|V |×d

and a context embedding ct ∈ Rd, then compute:

Q = ctWQ ∈ R1×dh , K = XWK ∈ R|V |×dh , V = XWV ∈ R|V |×dh ,

and the masked cross-attention weights is obtained by:

a = softmax
(
QK⊤
√
dh

+ λr

)
∈ R1×|V |, (3)

where λr(1, i) = −∞ prohibits intersections outside the communication radius, and 0 otherwise.
We define the utility vector by the attention scores, i.e., θ = aWθ ∈ R|V |. This design yields
utility scores θ that (i) respect communication constraints, (ii) capture long-range relevance through
attention, and (iii) remain fully differentiable for end-to-end training.

4.2 ESTIMATING TRAVEL COSTS GIVEN PARTIAL OBSERVABILITY

At each decision step t, multiple vehiclesNt are simultaneously active in the network. Each vehicle
n ∈ Nt and selects a subset S(n)

t ⊆ V for V2I communication based on the context-aware utility
estimation as introduced above. For each queried pair (n, s) with s ∈ S

(n)
t , the traffic signal at

intersection s returns a local observation o(n)t,s ∈ Rdobs (i.e., signal phase encoding, queue length at
incoming and outgoing edges, average speed at incoming and outgoing edges).

At each decision step t, every active vehicle n ∈ Nt obtains its own partial observation set O(n)
t

along with the mask M (n)
t from queried intersections. We treat these partial views as independent

5
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samples in a batched forward pass of a spatio-temporal encoder, producing vehicle-specific global
state estimation X̂(n)

t . This batched formulation exploits parameter sharing to handle all vehicles
simultaneously, substantially reducing the overhead compared to executing distinct networks for
each vehicle. Each X̂(n)

t provides a dense estimate of edge-level travel costs tailored to the querying
vehicle’s perspective.

To obtain global traffic dynamics X̂t from such sparse and irregular inputs, we employ a spatio-
temporal aware transformer encoder (Yun et al., 2019; Dwivedi & Bresson, 2021). Conventional
graph convolutional networks are limited by their local message-passing nature, requiring many lay-
ers to capture long-range dependencies and thus suffering from over-smoothing (Li et al., 2018a;
Oono & Suzuki, 2020). Similarly, recurrent sequence models are biased toward short-term cor-
relations and struggle to represent non-stationary traffic patterns such as periodic rush-hour peaks
or abrupt incidents (Bai et al., 2018; Vaswani et al., 2017). In contrast, the transformer encoder
integrates structural priors with attention-based aggregation, enabling intersections to attend selec-
tively to both nearby and distant nodes while respecting road connectivity via adjacency-derived
masks (Veličković et al., 2018). Temporal context is incorporated directly into the attention com-
putation (Zhou et al., 2021; Wu et al., 2020), allowing the model to align present observations with
relevant historical states. By stacking L such layers, we obtain latent embeddings H(n)

t ∈ R|V |×dst

that summarize observed signals, structural dependencies, and temporal dynamics for each vehicle
n. A lightweight decoder gψ then maps these embeddings into dense edge-level travel cost estimates,
yielding vehicle-conditioned predictions of link travel costs ŵ(n)(t). These estimates feed directly
into the differentiable routing head, ensuring that the encoder is trained not merely for predictive
accuracy but for decision-aligned performance in downstream re-routing.

4.3 DIFFERENTIABLE ROUTING DECISION-MAKING

Given the estimated, time-varying edge costs ŵ(t) ∈ R|E|, we seek a decision layer that maps
these costs into routing actions while remaining compatible with gradient-based training. The key
challenge is to replace the discrete shortest-path argmin with a smooth, causality-aware operator,
so that gradients can propagate back to upstream modules such as V2I acquisition and full state
inference. This design follows the broader principle of differentiable structured optimization, where
discrete combinatorial decisions are relaxed into continuous surrogates to align predictive learning
with downstream task objectives.

Time-expanded soft shortest path. A central challenge in dynamic re-routing is that path costs
can only be evaluated sequentially over time: the total travel time of a path depends on both edge
weights and their temporal evolution. Classical dynamic programming formulations address this via
Bellman recursions on a time–expanded graph, but the use of hard min operators renders the value
function non-differentiable and thus incompatible with gradient-based training (Amos & Kolter,
2017; Bast et al., 2016a). To overcome this limitation, we adopt a smooth relaxation of the Bellman
operator that retains structural and causal constraints while enabling end-to-end learning.

Specifically, we build a time–expanded graph with node snippets (v, t) for t = 0, . . . , T , and define
a temperature-smoothed value function Vτ (v, t) by the soft Bellman recurrence

Vτ (v, t) = −τ log
∑

u∈N+(v)

exp
(
− ŵ(v,u)(t)+Vτ (u,t+∆)

τ

)
, t = 0, . . . , T −∆,

with terminal boundary conditions
Vτ (d, t) = 0, ∀t, Vτ (v ̸= d, T ) = +∞.

Here N+(v) denotes out-neighbors, and masking ensures that attention respects road topology and
causal ordering. As τ → 0, this formulation converges to the classical shortest-path value; for
τ > 0, it yields a smooth fixed-point operator that admits stable differentiation, closely related to
the maximum entropy control and linearly solvable MDP frameworks (Ziebart et al., 2008; 2010;
Todorov, 2007).

Policy and soft costs. The induced maximum-entropy routing distribution at (v, t) is

πτ
(
(v→u) | v, t

)
=

exp
(
− (ŵ(v,u)(t) + Vτ (u, t+∆))/τ

)∑
u′∈N+(v) exp

(
− (ŵ(v,u′)(t) + Vτ (u′, t+∆))/τ

) .
6
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This distribution defines a differentiable surrogate for next-hop choices and a soft path cost for an
origin (s, t0):

Lroute := Vτ (s, t0) + γH
(
{πτ (· | v, t)}

)
,

whereH is an optional entropy regularizer and γ≥0 balances exploration and stability.

Gradient propagation. Since Vτ is the fixed point of a smooth Bellman map, we backpropagate
through the layer by implicit differentiation of the fixed-point equation, yielding stable gradients
∇ŵLroute that flow into the routing head and further upstream into the spatio-temporal transformer
and the utility learning module. This mirrors the principle of turning discrete structured decisions
into differentiable surrogates so that training aligns predictors with downstream decision objectives.

With such design, the routing head provides a principled, differentiable surrogate to dynamic
shortest-path optimization: (i) the structural–causal mask used in the Bellman updates matches the
topology and causality masks in the encoder, ensuring consistency across modules; (ii) the tem-
perature τ serves as a bias–variance knob, where smaller τ produces sharper, near-discrete paths
while larger τ yields smoother gradients; (iii) the computational complexity scales with the size of
the time-expanded frontier and the sparsity of N+(v), thereby preserving scalability on large urban
networks; and (iv) most importantly, the entire module is decision-aligned, enabling gradients from
downstream routing performance to flow backward into state inference and query selection. This
integration ensures that proactive observation acquisition, global travel cost inference, and routing
decisions are jointly optimized under a unified end-to-end learning objective.

5 EXPERIMENTS

5.1 DATASETS AND SIMULATION

We evaluate on two city-scale networks widely used in urban traffic control studies: Jinan and
Hangzhou (Wei et al., 2019; Sun et al., 2023; Zhou et al., 2024), with 12 and 16 intersections.
Each network is imported into the SUMO simulator (Krajzewicz et al., 2002) with network geome-
try, default signal plans, and realistic speed limits. We generate vehicular flows at the start of the
simulation with 50 vehicles, randomly assigning each vehicle with an Origin–Destination (OD) pair
to simulate real-world traffic. During the simulation, once a certain vehicle completes its trip, a new
vehicle is simulated to enter the network. The decision steps are ∆plan = 10s. At each decision
step, k = 4 intersections are to be selected via V2I. For both networks, the communication radius is
restricted to 2L where L is the maximum edge length over the road network.

5.2 TRAINING DETAILS

The model is trained end-to-end by minimizing the differentiable routing loss described previously.
Specifically, the soft Bellman operator provides a smooth surrogate of the remaining travel time
Vτ (v, t) for each active vehicle, and the route loss, i.e.,

Lroute(t0) =
1

|At0 |
∑
n∈At0

Vτ (sn, t0) + γ
∑
n∈At0

∑
t≥t0

mn,tH
[
πτ (· | v(n)t , t)

]
,

is computed at each decision step, where At0 denotes active vehicles, sn their current nodes, mn,t

is a mask indicating whether vehicle n is still active at time t, and γ = 0.01 balances the entropy
regularizer. Gradients are backpropagated through the routing head by implicit differentiation of the
soft Bellman fixed point, ensuring updates propagate to both the spatio-temporal encoder and the
V2I selection module.

Data format. Each half-hour SUMO episode simulation generates a sequence of decision steps,
at which vehicles actively query intersections via V2I. At each step t, an active vehicle n produces:

• Partial observation O
(n)
t = {o(n)t,s }s∈S(n)

t
, containing queried local features including

queue lengths, approach speeds, and signal phases;

• Visibility mask M (n)
t ∈ {0, 1}|V |, marking which intersections are observed at time t;

7
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• Vehicle context, including its current node v(n)t and destination d(n), as well as corre-
sponding approaching directions.

• Estimated travel cost, the predicted edge travel costs ŵ(n)(t), from which the routing head
computes the policy πτ (· | v(n)t , t) and value Vτ (sn, t) used in the loss.

It is important to note that our framework does not rely on ground-truth travel cost labels. Unlike
conventional predict-then-optimize pipelines that train predictors against MSE targets, our supervi-
sion comes directly from the decision objective: the soft Bellman operator defines a differentiable
surrogate of the remaining travel time, which naturally serves as the training signal. This design
eliminates the need for dense cost annotations, which are often unavailable in real deployments, and
aligns learning with the ultimate goal of minimizing travel time.

Hyperparameters. The spatio-temporal transformer is configured with L = 2 encoder layers,
hidden dimension dmodel = 64, and H = 4 attention heads. The temperature parameter τ in the soft
Bellman operator is annealed from 0.8 to 0.2 over training epochs to gradually sharpen the value
function approximation. The entropy regularization coefficient is fixed to γ = 0.01. The Adam
optimizer is used with learning rate 2 × 10−4. The model is trained for 100 epochs. All reported
results are averaged over 5 random seeds.

5.3 COMPARABLE METHODS

We compare our end-to-end approach against select-predict-navigate baselines as described below,
which first select intersections, then predict edge-level travel costs, and then solve a shortest-path
problem with a non-differentiable solver.

Selection strategies. We implement two heuristic strategies for V2I query selection: (1) Random-
k, where k intersections are sampled uniformly at random; (2) Proximity-k, selecting the k intersec-
tions closest to the current vehicle location.

Prediction models. Given selected observations, we compare several representative spatio-
temporal predictors trained with MSE loss: (1) STGCN (Yu et al., 2018), a spatio-temporal convolu-
tional network; (2) DCRNN (Li et al., 2018b), a diffusion convolutional recurrent network. For these
baselines, ground-truth supervision is obtained from SUMO by querying edge-level travel times via
the TraCI API (traci.edge.getTraveltime(edgeID)), which provides per-step labels for training pre-
dictive models. These predictors estimate edge-level travel times that are subsequently fed into a
routing solver.

Optimization solvers. We adopt classical shortest-path solvers as the optimization back-end to
compute vehicle routes from predicted edge costs:

(1) Dijkstra’s (Dijkstra, 1959), a label-setting method that incrementally expands the frontier of
nodes in order of increasing tentative distance from the source. (2) A* search (Hart et al., 1968),
generalizes Dijkstra by incorporating a heuristic function h(v) that estimates the remaining cost
from node v to the target.

Decision-aware methods. For a stronger PtO baseline, we additionally include the Smart Predict-
then-Optimize (SPO+) baseline (Elmachtoub & Grigas, 2022). Specifically, SPO+ defines a convex
surrogate that upper-bounds the routing regret c⊤y(ĉ)−c⊤y(c), and whose subgradient with respect
to ĉ depends only on these optimal solutions. In our implementation, the routing solver A* remains
fully discrete and is used as a black-box oracle inside the SPO+ loss, while gradients are backprop-
agated through the prediction model.

Together, these components yield a spectrum of nine baselines that serve as natural comparison
methods for our end-to-end framework.
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Table 1: Main results on Jinan and Hangzhou Networks. AvgTT = Average Travel Time, Delay =
Average Delay, AvgWT = Average Waiting Time, all in seconds.

Method Jinan Hangzhou
AvgTT↓ Delay↓ AvgWT↓ AvgTT↓ Delay↓ AvgWT↓

Random-STGCN-Dijkstra 191.41 57.83 39.65 290.70 79.56 56.00
Random-STGCN-A* 191.41 57.83 39.65 290.70 79.56 56.00
Random-DCRNN-Dijkstra 189.56 56.43 38.27 286.31 77.02 54.32
Random-DCRNN-A* 189.56 56.43 38.27 286.31 77.02 54.32
Proximity-STGCN-Dijkstra 184.29 55.01 38.11 283.09 73.99 51.34
Proximity-STGCN-A* 184.29 55.01 38.11 283.09 73.99 51.34
Proximity-DCRNN-Dijkstra 185.71 55.78 38.19 283.81 74.52 51.89
Proximity-DCRNN-A* 185.71 55.78 38.19 283.81 74.52 51.89
NN-STTransformer-SPO 181.72 54.09 37.00 282.41 73.78 50.82

E2E (ours) 180.96 53.41 36.74 281.79 73.11 50.20

5.4 EXPERIMENTAL RESULTS

Overall performance. Across both cities and all metrics, the end-to-end (E2E) framework
achieves consistent significant improvements. On Jinan, E2E reduces AvgTT, Delay, and AvgWT
by 1.81%, 2.91%, and 3.59%, respectively, over the strongest PtO baseline (Proximity–STGCN).
On Hangzhou, the corresponding relative gains are 0.46% (AvgTT), 1.19% (Delay), and 2.22%
(AvgWT). These gains are obtained under the same per-step query budget and horizon, indicating
that improvements stem from how information is acquired and used, rather than from more infor-
mation. The decomposition of baselines makes clear which design choices matter: (i) Selection
dominates predictor and solver. Moving from Random to Proximity selection already improves
the PtO pipeline (e.g., for Jinan, STGCN: 191.41→184.29, 3.72% better in terms of AvgTT; for
Hangzhou, STGCN: 290.70→283.09, 2.62% improvements). This confirms that which intersec-
tions are queried matters substantially under partial observability. Our E2E model then further
improves over the best heuristic selection (e.g., Jinan AvgWT: 38.11 improves 3.59%), validating
the advantage of learning the selection policy jointly with downstream objectives. (ii) Predictor
choice (STGCN vs. DCRNN) has a secondary effect relative to selection. Under Random selection,
DCRNN is slightly better than STGCN on Jinan (189.56 vs. 191.41 in terms of AvgTT), but with
Proximity selection STGCN becomes the strongest PtO baseline (184.29 vs. 185.71). This interac-
tion suggests that our model is robust against different choices of spatial-temporal modules for the
predictor. (iii) Solver choice (Dijkstra vs. A*) does not change outcomes—numbers are identical by
construction—because both compute the same optimal path under the same edge costs.1 This con-
trols away confounds in the routing layer and isolates the effect of information acquisition and cost
inference. (iv) Finally, for the NN-STTransformer-SPO baseline, on Jinan, it improves over Proxim-
ity–STGCN by about 1.4%, 1.7%, and 2.9% in terms of AvgTT, Delay, and AvgWT, respectively,
while on Hangzhou it brings additional gains of roughly 0.2% (AvgTT), 0.3% (Delay), and 1.0%
(AvgWT). However, E2E still yields a further 0.4% (AvgTT), 1.3% (Delay), and 0.7% (AvgWT)
improvement over NN-STTransformer-SPO on Jinan, and about 0.2% (AvgTT), 0.9% (Delay), and
1.2% (AvgWT) on Hangzhou. The above experimental results indicate that SPO-based PtO already
constitutes a strong decision-aware baseline that substantially improves over classical PtO, yet our
proposed decision-focused pipeline still provides additional gains.

Further Experiments. Due to space limitations, we attach ablation studies and parameter sensi-
tivity analysis of k in the Appendix.

1With a consistent heuristic, A* expands fewer nodes but returns the same shortest path cost as Dijkstra;
our metrics depend only on path costs, not on search efficiency.
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6 CONCLUSION

In this work, we introduced a fully differentiable framework for real-time urban navigation under
partial observability. By unifying V2I information acquisition, travel cost inference from partial ob-
servations, and differentiable routing optimization, our method directly aligns model training with
the downstream objective of minimizing travel time. The learnable selection module adaptively
queries the most informative intersections under strict communication constraints, while the spatio-
temporal encoder reconstructs network-level travel costs from sparse signals. A differentiable rout-
ing layer then computes efficient re-routing strategies and enables end-to-end gradient flow. Exper-
iments on large-scale traffic simulations demonstrated consistent improvements in travel efficiency
over various baselines, despite relying on limited communication bandwidth. Beyond advancing
algorithmic performance, our framework highlights the importance of jointly modeling sensing,
prediction, and decision-making for intelligent transportation systems. We believe this approach
provides a scalable pathway toward deployment in collaborative vehicle-infrastructure systems.

7 LLM USAGE

The Use of Large Language Models (LLMs) in this paper includes to aid or polish writing, and for
paper retrieval and discovery such as finding related work.
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A ABLATION STUDIES

We conduct ablation studies on both city networks to quantify the contribution of each component
of our framework, using the following model variants.

w/o learnable selection (Random). This variant replaces the IMLE-based top-k selector with a
uniform random strategy that selects k intersections at each decision step. The encoder and differ-
entiable routing layer are kept unchanged and are still trained with the decision-focused loss.

w/o learnable selection (Proximity). Here we use a hand-crafted heuristic that always queries
the k spatially closest intersections to the vehicle. This serves as a strong PtO-style heuristic for
selection while sharing the same encoder and routing head as the full model.

w/o vehicle context. This variant removes vehicle-specific context. It evaluates the importance of
vehicle-level intent for effective V2I querying and routing.

w/o spatio-temporal reconstruction. To study the effectiveness of dense V2I information recon-
struction, we replace the spatio-temporal encoder with a single layer MLP.

Table 2: Ablation studies on Jinan and Hangzhou networks. AvgTT = Average Travel Time, Delay
= Average Delay, AvgWT = Average Waiting Time, all in seconds.

Method Jinan Hangzhou
AvgTT↓ Delay↓ AvgWT↓ AvgTT↓ Delay↓ AvgWT↓

Ours 180.96 53.41 36.74 281.79 73.11 50.20

w/o learnable selection (Random) 188.32 55.52 38.19 292.16 75.84 52.02
w/o learnable selection (Proximity) 186.39 55.14 38.15 284.61 73.43 50.70
w/o vehicle context 210.83 63.17 43.86 311.02 81.57 55.01
w/o spatio-temporal reconstruction 200.07 58.91 40.72 311.22 80.57 55.81
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Figure 2: Sensitivity of average travel time to the V2I query budget k.

Table 2 shows that our full model consistently achieves the best performance on both city networks.
On Jinan, replacing the learned selector with Random-k increases AvgTT from 180.96 s to 188.32 s
(about +4.1%), while Proximity-k leads to a smaller but still noticeable increase to 186.39 s (about
+3.0%). A similar trend is observed on Hangzhou, where Random-k and Proximity-k increase
AvgTT by roughly 3.7% and 1.0%, respectively. These results indicate that simple heuristics al-
ready provide competitive query locations, but the IMLE-based selector still yields consistent im-
provements (about 1–4% across metrics), confirming the benefit of learning V2I acquisition rather
than fixing it a priori.

Additionally, removing vehicle context or spatio-temporal reconstruction leads to substantially
larger performance degradations. On Jinan, dropping vehicle context increases AvgTT, Delay, and
AvgWT by approximately 16.5%, 18.3%, and 19.4%, respectively, while removing spatio-temporal
reconstruction yields around 10–11% degradation across all three metrics. The pattern is consistent
on Hangzhou: AvgTT worsens by about 10.4% for both ablations, and Delay/AvgWT also degrade
by roughly 10–12%. Overall, these results highlight that (i) vehicle-level intent and local context
are crucial for choosing informative V2I queries and making effective routing decisions, and (ii) re-
constructing dense spatio-temporal information from sparse queries is a key driver of performance,
beyond what can be achieved by a shallow MLP over raw observations.

B PARAMETER SENSITIVITY ANALYSIS

We further examine the sensitivity of our method to the per-step V2I query budget k by varying
k ∈ {2, 4, 6, 8} and reporting the resulting AvgTT metric, as shown in Figure 2.

On the Hangzhou network, increasing k from 2 to 4 reduces AvgTT from 292.79±4.57 s to 281.79±
3.36 s (about 3.8% improvement), while further enlarging the budget to k = 6 and k = 8 only yields
marginal gains (281.02 ± 3.38 s and 280.73 ± 3.32 s, respectively). A similar trend is observed
on Jinan: AvgTT drops markedly from 202.15 ± 4.27 s at k = 2 to 180.96 ± 3.15 s at k = 4
(around 10.5%), whereas increasing k to 6 and 8 gives smaller improvements to 179.08±3.23 s and
178.02±3.24 s. Overall, these results indicate that the proposed framework is not overly sensitive to
the precise choice of k once a moderate budget is available: most of the performance gain is already
achieved at k = 4, with only diminishing returns beyond this point. This justifies our choice of
k = 4 in the main experiments as a reasonable trade-off between communication cost and routing
performance.
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C PSEUDOCODE

Algorithm 1: End-to-end training for proactive V2I selection with a routing deci-
sion–informed soft Bellman loss
Input: Directed graph G = (V,E); adjacency A ∈ {0, 1}|V |×|V |; planning step ∆; horizon T ;
OD setRT = {(sn, dn, tdepn )}Nn=1; Top-k budget k;
Simulator Env with V2I query Query(·) and step Step(∆).
Output: Scoring network parameters θ; spatio-temporal encoder parameters ψ.

1 Hyperparameters: soft-Bellman temperature τ > 0; entropy weight γ=0.01; history length
Thist.

2 Buffer: Xhist∈RThist×|E|×d, Mhist∈{0, 1}Thist×|V |.
3 Params init: selector network hϕ (utilities θ), spatio-temporal encoder gψ (edge costs ŵ).
4 for each episode do
5 Env.Reset(RT ); t← 0
6 while t ≤ T −∆ do
7 Define active vehicle set At; Ct ← {c(n)t }n∈At

∈ R|At|×dctx
; static node encoding

X ∈ R|V |×dnode
; feasibility mask λr ∈ {−∞, 0}|At|×|V |.

// Context-aware utility estimation via cross-attention
between vehicle contexts and node features.

8 K ← XWK ∈ R|V |×dh ; V ← XWV ∈ R|V |×dh ; Q← CtWQ ∈ R|At|×dh ;

9 a← softmax
(
QK⊤
√
dh

+ λr

)
∈ R|At|×|V |; θ ← aWθ ∈ R|At|×|V |.

// V2I selection by perturb-and-MAP (shared noise) under a
strict hard-k budget.

10 Sample ϵ ∼ Gumbel(0, 1)|At|×|V |;
11 St ← TopK(θ, k) ∈ N|At|×k; Mt ←

(
I[ v ∈ S(n)

t ]
)
n∈At, v∈V

∈ {0, 1}|At|×|V |;

12 S̃t ← TopK(θ + ϵ, k) ∈ N|At|×k; M̃t ←
(
I[ v ∈ S̃(n)

t ]
)
n∈At, v∈V

∈ {0, 1}|At|×|V |;

13 Ot ←
{
{o(n)t,s }s∈S(n)

t

}
n∈At

; // Context-aware V2I views at time t

// Batched spatio-temporal encoding of sparse and
irregular observations.

14 Ht ← ST-Encoderψ
(
Xhist,Mhist, Ot,Mt, A

)
;

// Decode full edge-level travel cost estimates.

15 Ŵt ← gψ(Ht) ∈ R|E|×1;
// Soft dynamic shortest-path on a time-expanded graph.

16 foreach n ∈ At do
17 V

(n)
τ , π

(n)
τ ← SoftBellmanRouting

(
ŵ(n)(·), A, τ

)
;

a
(n)
t ← SampleOrGreedy

(
π
(n)
τ (· | s(n)t , t)

)
; // Next-hop choice at

current node s
(n)
t

18 end
19 at ← {a(n)t }n∈At

;
// Apply routing actions, advance simulation, and

accumulate differentiable routing loss.
20 (rt, statet+∆)← Env.Step(at);

21 Lroute(t)← 1
|At|

∑
n∈At

V
(n)
τ

(
s
(n)
t , t

)
+ γ

∑
n∈At

∑
t′≥tmn,t′ H

[
π
(n)
τ (· | v(n)t′ , t′)

]
;

22 Lroute += Lroute(t);
23 t← t+∆;
24 end

// Backpropagation.

25 LIMLE ←
∑
t LIMLE

(
St, S̃t

)
;

26 L ←
∑
t Lroute(t) + λIMLE LIMLE;

27 Update parameters {WK ,WQ,WV ,Wθ, ψ} by one gradient step on L;
28 end
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