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ABSTRACT

The application of language models (LMs) to molecular structure generation using
line notations such as SMILES and SELFIES has been well-established in the field
of cheminformatics. However, extending these models to generate 3D molecular
structures presents significant challenges. Two primary obstacles emerge: (1)
the difficulty in designing a 3D line notation that ensures SE(3)-invariant atomic
coordinates, and (2) the non-trivial task of tokenizing continuous coordinates for
use in LMs, which inherently require discrete inputs. To address these challenges,
we propose Mol-StrucTok, a novel method for tokenizing 3D molecular structures.
Our approach comprises two key innovations: (1) We design a line notation for
3D molecules by extracting local atomic coordinates in a spherical coordinate
system. This notation builds upon existing 2D line notations and remains agnostic
to their specific forms, ensuring compatibility with various molecular representation
schemes. (2) We employ a Vector Quantized Variational Autoencoder (VQ-VAE)
to tokenize these coordinates, treating them as generation descriptors. To further
enhance the representation, we incorporate neighborhood bond lengths and bond
angles as understanding descriptors. Leveraging this tokenization framework, we
train a GPT-2 style model for 3D molecular generation tasks. Results demonstrate
strong performance with significantly faster generation speeds and competitive
chemical stability compared to previous methods. Further, by integrating our
learned discrete representations into Graphormer model for property prediction
on QM9 dataset, Mol-StrucTok reveals consistent improvements across various
molecular properties, underscoring the versatility and robustness of our approach.

1 INTRODUCTION
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Figure 1: Converting continuous molecular
structures into discrete token sequences.

The utilization of language models (LMs) for molec-
ular generation has gained significant traction ow-
ing to their demonstrated success across various
tasks (Irwin et al., 2022; Frey et al., 2023; Livne
et al., 2024). Typically, molecules are represented
as one-dimensional (1D) text strings using different
line notation methods, such as SMILES (Weininger,
1988) and SELFIES (Krenn et al., 2020). These
notations provide compact and discrete representa-
tions, which are well-suited to the discrete input
requirements of language models. However, repre-
senting three-dimensional (3D) molecular structures
presents challenges, and current approaches predominantly rely on graph-based representations (Luo
et al., 2022; Hoogeboom et al., 2022). Graph-based methods are preferred because they effectively
capture the intricate spatial relationships between atoms, which are crucial for accurately modeling
3D molecular structures.

Extending LMs to accommodate 3D molecular structures presents two primary challenges. First,
there is a difficulty of sequentially defining SE(3)-invariant atomic coordinates based on line notations.
SE(3) invariance ensures that the molecular structure remains consistent under translation and rotation.
Second, the continuous nature of atomic coordinates is inherently incompatible with LMs, which are
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Figure 2: (a) Overview of the Mol-StrucTok pipeline. Taking SMILES notation as an example,
the process begins with tokenizing the SMILES string to extract atom tokens. Each atom token
is subsequently appended with its corresponding spherical coordinates. The coordinate extraction
process for the i-th step is illustrated in (b). In (c), additional understanding descriptors are introduced,
and a quantizer discretizes the concatenated continuous descriptors. For clarity, hydrogen atoms (H)
are omitted.

designed to process discrete inputs. Previous works have attempted to tokenize continuous scalar
values into discrete digits for coordinate modeling (Zholus et al., 2024; Li et al., 2024), but such
tokenization methods often struggle with capturing numerical semantics and generalizing to unseen
values (Golkar et al., 2023).

To address these challenges, we propose a novel method for 3D molecular structure tokenization,
called Mol-StrucTok. Our approach involves constructing a spherical line notation and subse-
quently discretizing the continuous atomic coordinates. In the first step, we develop a spherical
line notation tailored to 3D molecular structures. Similar to autoregressive models in 3D molecule
generation (Gebauer et al., 2019; Simm et al., 2020; Daigavane et al., 2023), we sequentially place
atoms in 3D space, defining their distances, bond angles, and torsion angles through a local spherical
coordinate system. However, we diverge by constructing this spherical coordinate system indepen-
dently, without relying on a predictive model to determine reference points. By appending each
atom’s local spherical coordinates to its corresponding token in the original line notation, we preserve
both the molecular graph topology and the SE(3)-invariant 3D structural information.

In the second step, we utilize a vector quantized variational autoencoder (Van Den Oord et al., 2017)
to discretize the continuous coordinates, as continuous vectors must be transformed for autoregressive
language modeling approaches (Vaswani, 2017; Radford et al., 2019; Ramesh et al., 2021). Drawing
inspiration from the work of van Kempen et al. (2022), we treat each atom as a data point and use
its spherical coordinates as generation descriptors. Additionally, to enrich the representation of
the atomic environment, we introduce supplementary descriptors, including bond lengths and bond
angles of neighboring atoms, which provide a more comprehensive understanding of the local atomic
structure.

Building on this framework, we train a GPT-2 model (Radford et al., 2019) and achieve strong
performance in 3D molecular generation tasks. Prior autoregressive models (Gebauer et al., 2019;
Simm et al., 2020; Daigavane et al., 2023) often resulted in molecules with low chemical stability,
while diffusion models (Hoogeboom et al., 2022; Xu et al., 2023; You et al., 2023), though more
effective, incurred high computational costs due to the extensive number of diffusion steps. Our
method strikes a balance by delivering competitive chemical stability while significantly reducing
generation time. Additionally, the powerful conditional generation capabilities of language models en-
able our approach to excel in tasks demanding conditional molecular generation, yielding substantial
improvements in both efficiency and accuracy.

Furthermore, we show that the learned discrete representations are also beneficial for molecular
understanding tasks. By incorporating the learned structure tokens as additional embeddings in
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the Graphormer model (Ying et al., 2021), we observe consistent performance enhancements in
property prediction tasks, as evidenced by results on the QM9 dataset. This underscores the broader
applicability and effectiveness of our Mol-StrucTok framework across generation and prediction
tasks.

2 RELATED WORK

3D Molecule Generation. Early works such as G-Schnet (Gebauer et al., 2019), MolGym (Simm
et al., 2020), and G-SphereNet Luo & Ji (2022) focus on autoregressively predicting atom types
and their connectivity in sequence. Alternative generative models, such as Variational Autoencoders
(VAE) (Nesterov et al., 2020) and Normalizing Flow models (Garcia Satorras et al., 2021), have
explored single-shot generation strategies. With the rise of diffusion models, numerous studies
have demonstrated their remarkable strength in 3D molecular modeling (Hoogeboom et al., 2022;
Xu et al., 2023; You et al., 2023; Song et al., 2023), consistently outperforming autoregressive
counterparts. However, recent autoregressive approaches, such as Symphony (Daigavane et al., 2023)
and Geo2Seq (Li et al., 2024), have also shown promising results, bridging the performance gap and
suggesting continued relevance of this methodology in molecular generation.

Structure Tokenization. Recent advancements in tokenizing 3D structures for biomolecules, par-
ticularly proteins, have gained considerable attention. FoldSeek (van Kempen et al., 2022) first
used VQ-VAE to tokenize protein structures for improving structure alignment. Building on this,
researchers applied this structure alphabet to models like ESM (Su et al., 2023) and T5 (Heinzinger
et al., 2023), providing discrete structural embeddings that aid in protein understanding. ESM3 (Hayes
et al., 2024) and FoldToken (Gao et al., 2024) have further explored the use of VQ-VAE’s discrete
representations to predict protein structures. However, similar approaches have not been developed
for small molecules, as their lack of a well-defined sequence makes tokenization into ordered repre-
sentations more challenging. Some studies have attempted to tokenize the continuous coordinates of
small molecules into digits (Zholus et al., 2024; Li et al., 2024), but this approach renders models
highly sensitive to numerical length, impairs their ability to capture semantic relationships between
similar values, and hinders generalization to unseen data.

3 METHODS

Our proposed Mol-StrucTok consists of two key components: constructing a spherical line notation
and discretizing continuous atomic coordinates. This approach aims to preserve both molecular
topology and SE(3)-invariant structural information.

3.1 PRELIMINARY: AUTOREGRESSIVE GENERATION OF 3D MOLECULES

Molecular Notation. A molecule is modeled as a graph G = (V, E), where V represents the set of
atoms, and E represents the set of chemical bonds between them. Additionally, we use R to denote
the conformation of G, forming a complete 3D molecular structure M = (G,R) = (V, E ,R). Each
atom vi ∈ V is associated with a 3D spatial coordinate xi ∈ R3, and its atom type is represented by
zi ∈ Z, where zi is the atomic number (nuclear charge) of the i-th atom.

In earlier tasks of 2D molecular graph generation, many works have modeled this problem in an
autoregressive manner (Popova et al., 2019; Shi et al., 2020; Luo et al., 2021). They iteratively
predicting new atom types and bond formations until no new atoms can be added or no bonds can be
formed with the current molecule. Similarly, autoregressive generation of 3D molecules follows a
process where new atoms are sequentially placed in 3D space (Simm et al., 2020; Luo & Ji, 2022;
Zhang et al., 2023). At the i-th step, denote the intermediate 3D molecular geometry generated from
the preceding i − 1 steps as Mi = (Gi,Ri), consisting of i atoms. This process can be described
as constructing a sequence of increasingly larger structures: M = {M0,M1, . . . ,M|V|}, where at
step i, the i-th atom type zi and its spatial coordinates xi are generated. A local coordinate system is
established at each stage Mi, predicting the atom’s local coordinates, which are then transformed
into global spatial coordinates. The process is divided into three main steps:

1. Predict next atom type based on the partial molecular structure.
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2. Establish a local spherical coordinate system. A coordinate system is defined by selecting three
reference atoms. Typically, a focal atom f is chosen, along with its closest and second-closest
atoms, c1 and c2, respectively 1.

3. Define the new atom coordinates. In the spherical coordinate system, the model predicts the
descriptors di, θi, and φi. Here, di ∈ R+ is the distance between the new atom and f , while
θi ∈ [0, π] and φi ∈ (−π, π] are angular coordinates. Some later works, like Daigavane et al.
(2023), avoid spherical coordinates in favor of orientation prediction to better handle symmetry.

The order of the first and second steps can vary in some works (Simm et al., 2020). Each step involves
specific model predictions, described as follows:

zi = fz(Mi−1) f = fp(Mi−1, zi)

di = fd(Mi−1, pf , zi) θi = fθ(Mi−1, pf , zi) φi = fφ(Mi−1, pf , zi).
(1)

In this work, we iteratively construct a spherical coordinate system to develop a spherical line notation,
without introducing any parameterized models—marking a key distinction from prior approaches.

3.2 3D SPHERICAL LINE NOTATION

A Generalized Line Notation. To represent a molecule in a linear format, we tokenize the molecular
graph into a sequence of atom tokens A and non-atom tokens B. Let T = A ∪ B be the set of all
possible tokens. The sequence is constructed as follows:

• Atom Tokens. Each atom vi ∈ V is mapped to an atom token ti ∈ A. These tokens typically
correspond to the atomic type of the atoms in the molecule 2.

• Non-Atom Tokens. Non-atom tokens correspond to chemical bonds between atoms or other
structural features such as branching or ring closure. Each bond eij ∈ E is mapped to a non-atom
token tij ∈ B, indicating the bond type (e.g., single, double, or triple bond).

Thus, for a molecule M, the tokenized sequence s can be expressed as:

s = (t1, t2, . . . , tm), (2)

where each ti is either an atom token ti ∈ A or a non-atom token ti ∈ B, m is the total number of
tokens in the sequence.

Augmented Atom Tokens with Spherical Features. As demonstrated in Section 3.1, by appropri-
ately constructing the spherical coordinate system in a sequential manner, the complete structure
of a molecule can be accurately reconstructed. The local spherical coordinates of each atom can
themselves form a sequence when arranged in a specific order. In this context, we can adopt the
sequence of the line notation s as the ordering scheme.

For each atom token ti ∈ A , in addition to being labeled by its atomic type, will also carry its
position in 3D space. The position of each atom is described using spherical coordinates: (di, θi, φi)
as described in Section 3.1. Thus, the augmented atom token for each atom token ti becomes:

ri = (ti, di, θi, φi). (3)

Establish the Spherical Coordinate System. The only remaining question is how to construct the
spherical coordinate system for each atom. Previous autoregressive methods rely on models to predict
a focal atom and select two reference atoms based on spatial Euclidean distance. However, since our
approach is model-free, we explore three alternatives for selecting reference atoms when establishing
the local coordinate system, as shown in Figure 3. When constructing the coordinate system for
atom vi, we consider the following approaches to determine the indices of the focal atom and two
references, denoted as f, c1, c2:

• 1D Sequence-Based Reference Selection. In this approach, we select the focal atom and reference
atoms based on their sequential order in the line notation. The preceding atoms in the sequence
are chosen as the reference points:

f = i− 1, c1 = i− 2, c2 = i− 3. (4)
1Different approaches may vary slightly; for instance, in G-SphereNet (Luo & Ji, 2022), c1 is selected as the

atom closest to f , and c2 is the atom closest to c1.
2In SELFIES (Krenn et al., 2020), the atom tokens may also contain bond information, such as “[=C]”.
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(a) 1D Sequence-Based (b) 2D Topology-Based (c) 3D Spatial Distance-Based 
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Figure 3: Three types of reference atom selection.

However, this method poses a significant issue: sequentially adjacent atoms may be spatially
distant, resulting in descriptor outliers, which degrade the model’s predictive performance.
Additionally, atoms that are adjacent in the molecular topology but distant in the sequence
can lead to accumulated errors in the autoregressive generation, causing bond lengths between
connected atoms to become overly stretched or compressed.

• 2D Topology-Based Reference Selection. To mitigate the aforementioned issues, we propose
selecting the focal atom as the closest atom in sequence that is also topologically connected.
This ensures that the focal atom and reference atoms are spatially close, reducing the likelihood
of prediction outliers. The reference points are selected as follows:

f = F (i) = argmaxj(N (i, j)), s.t. j < i,

c1 = F (f), c2 = F (c1).
(5)

where N (i, j) denotes the topological neighbors of atom vi with respect to atom vj . This
method ensures that vi, vf , vc1 and vc2 are adjacent in the molecular topology, reducing the
likelihood of generating distant, unpredictable atom placements.

• 3D Spatial Distance-Based Reference Selection. Inspired by previous works (Simm et al.,
2020; Luo & Ji, 2022; Zhang et al., 2023), we further explore an alternative approach in which
reference atoms are selected based on their spatial distance to the focal atom. After selecting the
focal atom topologically, the closest reference atoms are determined using Euclidean distance.
The reference selection process is formalized as:

f = argmaxj(N (i, j)), s.t. j < i,

c1 = argmaxk ||xf − xk||, s.t. k ̸= f and k < i,

c2 = argmaxk ||xf − xk||, s.t. k ̸= f, k ̸= c1, and k < i,

(6)

where || · || represents the Euclidean distance. Although this method leverages spatial proximity
for reference selection, our analysis in Section 5 reveals that when multiple atoms are equidistant
from the focal atom, small coordinate perturbations can lead to incorrect selections of c1 and c2.
This, in turn, may cause the reconstructed molecular structure to collapse in the wrong direction,
leading to significant distortions.

We ultimately adopt the 2D topology-based selection, as it balances topological and spatial proximity,
reducing prediction errors. Further analysis can be found in Section 5.

3.3 DISCRETIZATION WITH STRUCTURAL ALPHABET

Spherical coordinates are inherently continuous vectors. To apply autoregressive modeling for next-
token prediction, these vectors must be quantized into discrete tokens through vector quantization
techniques. VQ-VAE (Van Den Oord et al., 2017), as a widely used method, transforms an image
into a set of discrete codes within a learnable latent space. We adopt this approach for our task.

Descriptors for 3D Structural Alphabet. For i-th atom in a molecular structure, we have its local
spherical coordinates as (di, θi, φi). Since θi lies in [0, π] and φ in (−π, π], to normalize their ranges,
we decompose φi into its sign and absolute value. Thus, the generation descriptor is defined as:

gi = (di, θi, abs(φi), sign(φi)). (7)

5
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In addition to the generation descriptors gi, we also consider understanding descriptors based on the
local atomic environment. For each atom vi, these include the bond lengths and pairwise bond angles
with its four nearest neighbors, depicted in Figure 2. Let the understanding descriptors for atom vi be:

ui = (lj1 , lj2 , lj3 , lj4 , αj1ij2 , αj1ij3 , αj1ij4 , αj2ij3 , αj2ij4 , αj3ij4), (8)
where ljk represents the bond length between atom vi and its k-th closest neighboring atom vjk , and
αjkijl denotes the bond angle formed by the bond between vi and vjk and the bond between vi and
vjl , for 1 ≤ k < l ≤ 4.

We concatenate the generation and understanding descriptors to form a combined descriptor zi for
each atom:
zi = [xi;ui] = [di, θi, abs(φi), sign(φi),lj1 , lj2 , lj3 , lj4 , αj1ij2 , αj1ij3 , αj1ij4 , αj2ij3 , αj2ij4 , αj3ij4 ].

(9)
This concatenated descriptor zi ∈ R14 contains the 3D spatial information and the local atomic
environment for atom vi. The SE(3)-invariance of the descriptors is proven in the Appendix B.

Vector Quantization. Each descriptor zi is first encoded by an encoder E , yielding an embedding
f = E(zi), which is then mapped by a quantizer Q to a discrete token qi. The quantizer typically
includes with a learnable codebook C = {ci}Ki=1, containing K vectors. During quantization, the
feature vector is mapped to the closest code in the codebook based on the nearest code index qi, as
defined by:

qi = argmin ||E(zi)− cj ||. (10)
Intuitively, ci serves as the estimation of f . The ci is subsequently passed through a decoder D
to generate the reconstructed descriptor. To train this quantized autoencoder, we aim to achieve
both accurate reconstruction and precise estimation of f by ci. The overall objective is described in
Equation 11. The operator sg represents a stop-gradient operation, which prevents gradients from
being backpropagated through its argument (Van Den Oord et al., 2017), and β is a hyperparametr
that regulates the resistance to modifying the code corresponding to the encoder’s output.

LTokenizer = ||zi −D(ci)||22 + ||sg[E(zi)− ci]||22 + β||sg[ci]− E(zi)||22. (11)
Additionally, We replace the codebook loss (the second loss term in Equation 11) with updates
using an exponential moving average for the codebook (Razavi et al., 2019). Thus, each continuous
descriptor zi is assigned to a discrete token ck from the codebook.

3.4 AUTOREGRESSIVE MODELING WITH GPT-2

Expanding Vocabulary. As describe in Section 3.2, expanding the atom token set A involves
generating the Cartesian product of the structural alphabet set S and the atom type set A.

Aexpand = A× S = {(ai, sj)|ai ∈ A, sj ∈ S}. (12)
For instance, the atom type C combined with its corresponding structural alphabet 32 forms the
token ⟨C 32⟩. This concept, originating from the work of Su et al. (2023), aims to establish a
structure-aware vocabulary that integrates both structural and atomic identifiers. For the non-atom
token set B, we assign a structural token value of −1 to simplify its representation.

Bexpand = {(bi,−1)|bi ∈ B}. (13)
The final vocabulary is then constructed as:

V = Aexpand ∪ Bexpand = {(ai, sj)|ai ∈ A, sj ∈ S} ∪ {(bi,−1)|bi ∈ B}. (14)

Autoregressive Modeling. Based on the defined sequence s = (t1, t2, . . . , tm) for ti ∈ V, we can
model the molecular generation process using an autoregressive language model. Specifically, we use
GPT-2 (Radford et al., 2019), a powerful and widely available model, to verify the capacity of this
approach. The objective is to minimize the expected prediction error over the entire sequence:

LLM = −
m∑
i=1

log p(ti|t1, t2, . . . , ti−1). (15)

Controllable Generation. To enable controllable generation, we introduce a condition scalar, which
is tokenized into a sequence of digits. For example, for condition c = −1.34: tok(−1.34) =
(−, 1, ., 3, 4). This condition is prepended to the sequence s to form s′ = (tok(c), t1, t2, . . . , tm),
allowing the model to generate molecules based on the provided condition.
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Table 1: Validity and uniqueness (among valid) percentages of molecules with different bond
assignment methods, with best and second-best models highlighted. Results of * are obtained by our
experiments. Other results are borrowed from Daigavane et al. (2023).

Metric ↑ QM9 Symphony EDM G-SchNet G-SphereNet GeoLDM* LDM-3DG* Mol-StrucTok

Validity via xyz2mol 99.99 83.50 86.74 74.97 26.92 91.32 98.68 96.67
Validity via OpenBabel 94.60 74.69 77.75 61.83 9.86 88.85 91.64 92.16
Validity via Lookup Table 97.60 68.11 90.77 80.13 16.36 93.76 94.89 98.02
Uniqueness via xyz2mol 99.84 97.98 99.16 96.73 21.69 98.85 98.22 85.35
Uniqueness via OpenBabel 99.97 99.61 99.95 98.71 7.51 99.93 98.13 84.71
Uniqueness via Lookup Table 99.89 97.68 98.64 93.20 23.29 98.18 97.03 85.11

Atom Stability 99.0 - 98.7 95.7 - 98.91 97.57 98.54
Molecule Stability 95.2 - 82.0 68.1 - 89.79 86.87 88.30

4 EXPERIMENTAL RESULTS

We evaluated Mol-StrucTok across several aspects to assess its ability to capture valid 3D struc-
ture distributions, demonstrate strong conditional generation performance, and provide informative
structural tokens that serve as robust 3D representations.

4.1 SETUP

Vector Quantization. To achieve atom-level quantization, we trained a vector quantized variational
autoencoder on the PCQM4Mv2 dataset (Nakata & Shimazaki, 2017), which contains 3.4 million
organic molecular structures and approximately 99 million atomic descriptors. We opted for a
lightweight architecture, inspired by the simplicity of the Foldseek (van Kempen et al., 2022).
Specifically, we implemented a 3-layer MLP encoder and a 2-layer MLP decoder, totaling 74k
parameters. The hidden dimension was set to 128, and the latent space embedding dimension was
chosen as 5. The structural vocabulary size was defined as 256. A larger vocabulary leads to lower
reconstruction error, but presents greater challenges in downstream tasks. Further configurations of
the quantizer can be found in the Appendix Section C.1.

Dataset. Leveraging the learned structural alphabet, we conducted comprehensive evaluations on
downstream tasks, primarily focusing on the QM9 dataset (Ramakrishnan et al., 2014). QM9 is a
widely used quantum chemistry dataset that provides one equilibrium conformation and 12 geometric,
energetic, electronic, and thermodynamic properties for 134,000 stable organic molecules composed
of CHONF atoms. If not stated, the data split follows standard settings, with 110,000 samples for
training, 10,000 for validation, and the remaining 10,831 samples used for testing.

Generation. For the molecular generation tasks, we adopted the GPT-2 (Radford et al., 2019)
architecture with 12 layers and a hidden dimension of 768. Using the SELFIES line notation, we
generated a vocabulary of 2,331 tokens 3. Mol-StrucTok was evaluated in both unconditional and
conditional generation settings to assess its ability to generate valid molecular structures. Unless
explicitly stated otherwise, the decoding strategy utilizes multinomial sampling with a top-k value of
50 and a temperature setting of τ = 0.7. The implementation details are provided in the Appendix.

Understanding. In the molecular understanding tasks, we used Graphormer (Ying et al., 2021) as
the base model, with 12 layers and a hidden size of 768. No modifications were made to the model
architecture aside from augmenting the atom-type embedding with the Mol-StrucTok embedding.
We then evaluated its performance on the QM9 property prediction tasks to assess its effectiveness in
capturing molecular properties. The detailed model configurations are provided in the Appendix C.3.

4.2 UNCONDITIONAL GENERATION

Although our method generates both topology and structure 4, similar to LDM-3DG (You et al.,
2023) but unlike other previous works, we can still treat the generated structure as a point cloud
and apply bond order assignment tests. These tests ensure that the atomic distances are physically

3atomic types × structural vocabulary + non-atom token types.
4This capability is crucial for downstream tasks such as molecular editing and reaction prediction.
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Table 2: Percentage of valid (as obtained from xyz2mol) molecules passing each PoseBusters test.
Results of * are obtained by our experiments. Other results are borrowed from Daigavane et al.
(2023). We highlight best and second-best results.

Test ↑ Symphony EDM G-SchNet G-SphereNet GeoLDM* LDM-3DG* MOL-STRUCTOK

All Atoms Connected 99.92 99.88 99.87 100.00 99.95 100.00 100.00
Reasonable Bond Angles 99.56 99.98 99.88 97.59 99.97 99.83 100.00
Reasonable Bond Lengths 98.72 100.00 99.93 72.99 99.96 99.89 99.99
Aromatic Ring Flatness 100.00 100.00 99.95 99.85 100.00 99.99 99.91
Double Bond Flatness 99.07 98.58 97.96 95.99 99.20 99.35 99.87
Reasonable Internal Energy 95.65 94.88 95.04 36.07 96.89 97.75 97.77
No Internal Steric Clash 98.16 99.79 99.57 98.07 99.65 99.94 99.97

Table 3: Conditional generation on six quantum prop-
erties evaluation. A lower number indicates a better
controllable generation result.

Property α ∆ε εHOMO εLUMO µ Cv

Units Bohr3 meV meV meV D cal
mol K

QM9 0.10 64 39 36 0.043 0.040

Random 9.01 1470 645 1457 1.616 6.857
EDM 2.76 655 356 584 1.111 1.101
GeoLDM 2.37 587 340 522 1.108 1.025
GeoBFN 2.34 577 328 516 0.998 0.949
MOL-STRUCTOK 0.33 89 64 62 0.285 0.169

Table 4: Mean Absolute Error for QM9
property prediction.

Property εHOMO εLUMO ∆ε
Units meV meV meV

SchNet 41 34 63
NMP 43 38 69
EDM 34 38 61
Graphormer 46 47 66

+ MOL-STRUCTOK 42 39 62

reasonable. We follow Daigavane et al. (2023) to carry out bond assignment with multiple tools,
including xyz2mol (Kim & Kim, 2015), OpenBabel (O’Boyle et al., 2011), and a simple lookup
table (Hoogeboom et al., 2022). A generated molecule is considered valid if an algorithm in xyz2mol
or OpenBabel successfully assigns bonds without causing charge imbalances. In the Lookup Table,
validity means the molecule can be converted to SMILES strings. The additional stability metric
ensures no charge imbalances occur via Loopup Table 5. We also evaluate the uniqueness of valid
molecules by calculating the proportion of duplicate structures in SMILES notation. The results of
these evaluations, based on 10,000 generated molecules, are presented in Table 1.

Diffusion-based methods, such as EDM (Hoogeboom et al., 2022), GeoLDM (Xu et al., 2023),
and LDM-3DG (You et al., 2023), have demonstrated superior performance in modeling molecular
validity and uniqueness compared to autoregressive approaches like G-SchNet (Gebauer et al., 2019),
G-SphereNet (Luo & Ji, 2022), and Symphony (Daigavane et al., 2023). Our method exhibits highly
competitive results in terms of validity and stability. However, its performance in the uniqueness
metric is relatively limited, as diffusion models utilize a stepwise process that introduces controlled
noise, enabling greater variability in the generated outputs. Additionally, the decoding temperature τ
has a significant impact on the trade-off between diversity and quality. A detailed analysis of this
trade-off is provided in Section 5.

Beyond bond assignment, we employed the PoseBusters test suite (Buttenschoen et al., 2024), which
provides multiple sanity checks for evaluating the validity of protein-ligand complexes. Although
designed for complexes, we applied the small molecule-specific metrics to assess the validity of our
generated molecules. As shown in Table 2, our method performs well across all evaluated criteria.

4.3 CONDITIONAL GENERATION

Apart from evaluating the validity of generated molecules, a more practical challenge is the ability to
generate molecules conditioned on specific target properties. In this section, we focus on six critical
quantum mechanical properties from the QM9 dataset: polarizability (α), orbital energies (εHOMO,
εLUMO), their energy gap (∆ε), dipole moment (µ), and heat capacity (Cv). Following Hoogeboom
et al. (2022), the generator is trained on half of the training set, where it generates 3D molecular
structures conditioned on specific target properties. The remaining half is used to train a classifier
that scored the quality of the generated molecules. To ensure fairness, we employed the EGNN
classifier (Satorras et al., 2021) trained by Hoogeboom et al. (2022) and use the non-overlapping data

5This convoluted definition follows Symphony, as it conflates validity and stability in the lookup table.
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Table 5: Fraction of RMSD<1Å reconstructions
under specific noise scale for three types of ref-
erence frame selection.

Noise Scale 1D-based 2D-based 3D-based

0.01 81.74 82.37 33.29
0.05 77.15 81.01 19.00
0.10 65.38 78.94 13.16

Table 6: Unconditional generation comparisons
between SMILES and SELFIES.

Metric ↑ SMILES SELFIES

Validity 97.48 98.02
Uniqueness 81.52 85.11
Atom Stability 98.64 98.54
Molecule Stability 89.71 88.30

to train the generative model. The primary evaluation metric was the Mean Absolute Error (MAE)
between the given property ξ and the predicted property ξ̂ of the generated molecule. A lower MAE
reflects the model’s ability to accurately generate molecules with the desired quantum properties.

Our results in Table 3 demonstrate significant improvements over the previous state-of-the-art method,
GeoBFN (Song et al., 2023). The QM9 row represents the mean absolute error (MAE) of the
classifier’s prediction on ground truth properties, indicating oracle performance. We attribute this
improvement to Mol-StrucTok’s use of a language model, which offers greater determinism compared
to diffusion models. This enhanced determinism allows for more accurate reliance on scalar properties.
Additionally, by linearizing molecular structures through a sequential representation, the language
model simplifies the complexity of the problem, contributing to the observed performance gains.

4.4 QM9 PROPERTY PREDICTION

Additionally, we investigate how the learned discrete representations from Mol-StrucTok enhance
molecular understanding, such as predicting molecular properties. To assess the model’s under-
standing capability, we integrated the learned structure tokens as additional embeddings into a 2D
Graph-based model, Graphormer (Ying et al., 2021). The model was then evaluated on predicting
three key properties from the QM9 dataset: ϵHOMO, ϵLUMO, and their gap δϵ. These properties are
crucial for analyzing the electronic behavior of molecules.

The main baseline for this evaluation is the vanilla Graphormer without the Mol-StrucTok struc-
tural embeddings. We also report several baseline 3D molecular understanding models, including
SchNet (Schütt et al., 2018) and NMP (Gilmer et al., 2017), for references. This task requires complex
model designs, making it difficult to compare with state-of-the-art models. The primary evaluation
metric used was the Mean Absolute Error (MAE) of the predicted molecular properties.

The results show that incorporating Mol-StrucTok embeddings enables the 2D-based Graphormer to
reach the performance of baseline 3D models. This highlights the effectiveness of the learned discrete
representations in bridging the gap between 2D and 3D molecular property prediction, confirming
that the structure tokens provide valuable insights into molecular understanding tasks.

5 FURTHER ANALYSIS

Robustness of Reference Node Selection. To assess the robustness of the three reference frames
defined in Section 3.2 under noise, we design the following evaluation: First, the ground truth
coordinates are transformed into corresponding descriptors. Noise is then introduced at varying mag-
nitudes (0.05, 0.01, 0.1) to the descriptors, after which they are reconstructed back into coordinates
for comparison. We report the fraction of reconstructions with an RMSD of less than 1Å between
the ground truth and reconstructed coordinates in Table 5. Our analysis reveals that the 3D spatial
distance-based reference frame performs the worst under noisy conditions due to the ambiguous
selection of c1 and c2. In contrast, the 2D topology-based reference frame shows the highest tolerance
to noise, even outperforming the sequence-based approach. Notably, with noise scaled to 0.1, the 2D
reference frame still achieves a 78.94% rate of reconstructions with RMSD < 1Å.

Properties of Structural Alphabet. We seek to explain some of the data distributions captured
by our structural alphabet, such as bond length. Specifically, we decoded each alphabet, with the
vocabulary size set 256, into its corresponding descriptor space, where bond length d is the first
element of the generation descriptor. We plotted the bond length distribution of the 256 tokens, also
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Figure 4: Analysis of structural alphabet and temperature.

highlighting the six most common bond types (calculated from all PCQM4Mv2 samples). The results
demonstrate that our vocabulary provides broad coverage of bond lengths. Moreover, we observed
that among the six bond types, the local structure containing H-O exhibited the least variability,
whereas C-H structures were the most diverse. Additionally, C in combination with other heavy
atoms formed a wide variety of structures.

Line Notation Variants. In our experiments, we used the SELFIES representation as it is better
suited for language model. Here, we compared it with SMILES variants under the same settings.
Both can produce syntax errors: SMILES may produce unbalanced brackets, incorrect ring closures,
or valence violations, while SELFIES can generate meaningless atom tokens. For well-converged
models, syntax errors occur in fewer than 10 out of 10,000 samples, making them negligible. Table 6
shows that the validity, uniqueness, and stability of error-free molecules are similar between the two
notations, indicating that our spherical line notation is generalizable to any line notation.

Analysis of Temperature in Decoding. The temperature parameter τ in the decoding strategy
significantly affects model performance, balancing diversity and quality. In Figure 4b, we plotted the
curves of validity and uniqueness against varying temperature values in unconditional generation
setting. Lower temperatures yield more valid molecules but with less diversity, making them
preferable when generating valid molecular structures is the priority.

Inference Speed. An important advantage of our approach is the significantly higher sample
efficiency. Language models inherently support much faster sampling rates compared to diffusion
models, and advanced techniques like KV-cache (Radford et al., 2019) further accelerate this process.
In our experiments, we observed that sampling 10,000 molecular structures achieved an average speed
of 39.8 samples per second on a single A100 GPU with a batch size of 16. In contrast, diffusion-based
models such as EDM (Hoogeboom et al., 2022) and GeoLDM (Xu et al., 2023) reached only 1.4
samples per second, representing a nearly 28× speedup.

6 CONCLUSION AND DISCUSSION

In this work, we introduced Mol-StrucTok, a novel method for tokenizing 3D molecular structures
using spherical line notation and a vector quantizer. Our approach not only demonstrated competitive
chemical stability but also exhibited significantly stronger conditioning capabilities and much faster
generation speeds compared to existing methods.

The first future direction is to improve the quality of the quantizers to enhance both reconstruction
accuracy and downstream modeling performance. Second, as a general framework for linearizing 3D
molecules and enabling language-based modeling, Mol-StrucTok opens up the potential for exploring
hybrid representations. One promising direction is to integrate molecular generation with natural
language, supporting joint modeling of 3D molecular structures and text, paving the way for truly
native multimodal models. Another exciting potential lies in expanding the scope of 3D molecular
design, where language models can facilitate more advanced conditional generation tasks, such
as pocket-guided ligand design, 3D molecule editing, etc. Such advancements would enable the
generation of molecules tailored to specific biological or chemical environments.
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A CALCULATION OF THE LOCAL SPHERICAL COORDINATES

Consider the current atom vi with the coordinates xi and its corresponding focal atom and reference
atoms with the coordinates xf ,xc1 ,xc2 . We assume that xf is the origin of the local frame. The
distance di is calculated as follows:

di = ∥xif∥ = ∥xi − xf∥. (16)

The vectors xc1f = xc1 − xf and xc2f = xc2 − xf define a plane. Since these vectors are not
necessarily orthogonal, we will use the Gram-Schmidt process to orthogonalize the basis.

Let:
e1 =

xc1f

∥xc1f∥
, (17)

e2 =
xc2f − (xc2f · e1)e1
∥xc2f − (xc2f · e1)e1∥

. (18)

This gives us two orthogonal unit vectors e1 and e2 in the plane spanned by xc1f and xc2f . The
angle θi is the angle between the vector xif = xi − xf and the normal to the plane. The normal to
the plane can be obtained as:

n = e1 × e2. (19)
Then θi is computed as:

θi = arccos

(
xif · n
∥xif∥

)
. (20)

The angle φi is the azimuthal angle in the plane spanned by xc1f and xc2f . First, project xif onto
the plane:

xproj
if = xif − (xif · n)n. (21)

Then compute φi as the angle between xproj
if and e1:

φi = arccos

(
xproj
if · e1
∥xproj

if ∥

)
. (22)

B PROOF OF THE SE(3)-INVARIANCE

B.1 TRANSLATION INVARIANCE

Translation invariance means that if we shift all points in space by the same vector, the values of di,
θi and φi should not change.

x,x

Let’s define a translation by a vector t. Under translation, all position vectors xi, xf , xc1 , and xc2
are shifted as:

x′
i = xi + t, x′

f = xf + t, x′
c1 = xc1 + t, x′

c2 = xc2 + t. (23)

Invariance of di Under translation, The distance di becomes:

d′i = ∥x′
i − x′

f∥ = ∥(xi + t)− (xf + t)∥ = ∥xi − xf∥ = di. (24)

So, di is invariant under translation.

Invariance of θi Since translation shifts all vectors by t, we have:

x′
c1f = x′

c1 − x′
f = xc1 − xf , x′

c2f = x′
c2 − x′

f = xc2 − xf . (25)

Therefore, the plane defined by xc1 ,xc2 remains the same, and the normal vector n (which is
computed using the cross product) is unchanged under translation:

n′ = n. (26)
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The vector xif is also unchanged by translation:

x′
if = x′

i − x′
f = xi − xf = xif .

Therefore, the angle θ′i, which is the angle between x′
if and n′, is unchanged.

Invariance of φi φ′
i is the azimuthal angle between the projection of x′

if onto the plane and e1
′.

Since x′
if , e1′, and n′ are all unchanged under translation, the projection of x′

if onto the plane and
the angle between x′proj

if and e1
′ remains unchanged.

B.2 ROTATION INVARIANCE

Suppose we apply a global rotation R to all points. Under this transformation, each vector transforms
as:

x′
i = Rxi, x′

f = Rxf , x′
c1 = Rxc1 , x′

c2 = Rxc2 . (27)

Invariance of di Under rotation, we have:

d′i = ∥x′
i − x′

f∥ = ∥R(xi − xf )∥. (28)

Since the magnitude of a vector is invariant under rotation (rotation matrices preserve lengths):

d′i = ∥xi − xf∥ = di. (29)

Therefore, di is invariant under rotation.

Invariance of θi Under rotation, xif transform as:

x′
if = x′

i − x′
f = Rxi −Rxf = Rxif . (30)

The normal vector transform as:

e1
′ =

x′
c1f

∥x′
c1f

∥
=

Rxc1f

∥xc1f∥
= Re1. (31)

e2
′ =

x′
c2f

− (x′
c2f

· e1′)e1′

∥x′
c2f

− (x′
c2f

· e1′)e1′∥
=

Rxc2f − (Rxc2f ·Re1)Re1
∥Rxc2f − (Rxc2f ·Re1)Re1∥

. (32)

Given R is a unitary matrix, which RRT = I . Then,

x′
c2f · e1′ = x′T

c2fe
′
1 = x′

c2fR
TRe′1 = x′

c2fe
′
1 = xc2f · e1. (33)

Thus, we can obtain that:
e2

′ = Re2. (34)
n′ = e1

′ × e2
′ = Rn. (35)

cos θ′i =
x′
if · n′

∥x′
if∥

=
Rxif ·Rn

∥xif∥
=

xif · n
∥xif∥

. (36)

Hence, θ′i = θi is invariant under rotation.

Invariance of φi Under rotation, both the projection x′proj
if transform as:

x′proj
if = x′

if − (x′
if · n′)n′ = Rxif − (Rxif ·Rn)Rn′ = Rxproj

if . (37)

Thus,

cosφ′
i =

x′proj
if · e1′

∥x′proj
if ∥

=
Rxproj

if ·Re1

∥xproj
if ∥

=
xproj
if · e1
∥xproj

if ∥
. (38)

Therefore, φ′
i = φi is invariant under rotation.
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C IMPLEMENTATION DETAILS

C.1 VECTOR QUANTIZATION

After obtaining the descriptors, we applied normalization to all of them. For the length descriptors,
we used log normalization, while for the angle descriptors, we normalized them to a 0 − 1 range
within the 0 − π space. This normalization proved beneficial for training the quantizer. During
training, we used a batch size 512, learning rate of 1e− 4 with a 5-epoch warm-up, and the learning
rate schedule remained constant throughout.

C.2 GENERATION

For training, we set the batch size to 64 and trained for 200 epochs with a learning rate of 4e − 4.
We applied a warm-up phase of 3000 steps, followed by a linear decay schedule. The generation
configuration used a default temperature of 0.7, top-k sampling with k = 50, and a maximum
sequence length of 100, while the longest sequence in the dataset was 77 tokens. We applied a
repetition penalty of 1 to avoid redundant generations.

During the reconstruction of coordinates, since the molecular topology is generated simultaneously,
we employed a topology-aware optimization algorithm to refine the 2D structure. This optimization
follows the approach used in LDM-3DG (You et al., 2023).

C.3 UNDERSTANDING

In Graphormer, there are two input embeddings: an atom type embedding and a degree embedding.
In our implementation, we additionally incorporate Mol-StrucTok’s embedding while keeping the
other components unchanged. During training, we set the learning rate to 1.5e− 4 with a linear decay
schedule, using a batch size of 16 and a weight decay of 0.01.

D FURTHER ANALYSIS ON STRUCTURAL ALPHABETS.
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(a) Polar angle distribution.
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(b) Azimuth angle distribution.

Figure 5: Decoding generation descriptor distributions.

Decoding on angular descriptors. In addition to the distance, the spherical coordinate system also
includes the polar and azimuthal angles. We computed the same distribution as in Figure 4a for the
polar and azimuthal angles, as shown in Figure 6 5. We decoded the distribution of the 256 tokens
with respect to these two features. Although the exact meanings of the tokens in the vocabulary are not
readily interpretable, it is evident that both the polar and azimuthal angles exhibit clear peaks. This
suggests that the angle representations derived from our local spherical coordinates are concentrated.
Furthermore, VQVAE is able to adaptively learn this concentration, allocating more tokens to regions
with higher density.

Atom type and shared alphabets. A key feature of our VQVAE design is the decoupling of atom
types and local structural environments. Some vocabulary indices are capable of representing the
local environments of all atom types, while others are specific to a single atom type. This design

16
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Figure 6: Heatmap of atom type hit ratios across shared alphabets. The darker the color, the higher
the occurrence probability (log P).

RMSD Gen-Length Gen-Polar Gen-Azimuth
Mol-StrucTok 0.01 0.06 0.06
- w.o. feature normalization 0.03 0.12 0.11
- w.o. sign prediction 0.01 0.08 0.84

Table 7: Performance comparison of Mol-StrucTok and its ablations.

enables different atom types to share the same local structural descriptors, resulting in a more compact
representation. To evaluate this property, we analyzed the distribution of different atom types across
each token ID in the PCQM4Mv2 dataset. The results are visualized in the heatmap (Figure 6).
The heatmap reveals that the learned vocabulary is highly utilized, with nearly all token IDs being
assigned to meaningful local structures. Furthermore, the majority of local structures are shared
among different atom types, demonstrating the generalization capability of our approach. Only
a small number of token IDs, such as 19, 30, and 33, are specific to the local environments of
particular atom types. This suggests that our design effectively balances compactness and specificity
in structural representation.

Ablation study. In our implementation, the model architecture adopts an MLP structure similar to
FoldSeek (van Kempen et al., 2022) but incorporates fine-tuned hyperparameters and an additional
head dedicated to predicting the sign of the azimuthal angle. This enhancement plays a critical role
in improving the reconstruction of azimuthal angles. Furthermore, we normalize length features to
the log space and angle features to the range of [0, 1]. Such normalization ensures that the model
learns descriptors with consistent scales, thereby facilitating the VQ-VAE training process. To
further validate our approach, we conducted additional ablation studies on the generation descriptors.
Specifically, we evaluated reconstruction errors using RMSD for length, polar angle, and azimuthal
angle predictions in 7.
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