
ALGORITHMIC HEAP LAYOUT MANIPULATION IN THE LINUX KERNEL

MAX J. UFER

Fraunhofer FKIE
max.jens.ufer@fkie.fraunhofer.de

DANIEL BAIER

Fraunhofer FKIE
daniel.baier@fkie.fraunhofer.de

Abstract
To evaluate the severity of a security vulnerability a se-

curity researcher usually tries to prove its exploitability by
writing an actual exploit. In the case of buffer overflows on
the heap, a necessary part of this is manipulating the heap
layout in a way that creates an exploitable state, usually by
placing a vulnerable object adjacent to a target object. This
requires manual effort and extensive knowledge of the target.
With a target as complex as the Linux kernel, this problem be-
comes highly non-trivial. At the current time, there has been
little research in terms of employing algorithmic solutions for
this. In this work, we present Kernel-SIEVE, a framework for
evaluating heap layout manipulation algorithms that target the
SLAB/SLUB allocator in the Linux kernel. Inspired by previ-
ous work that targets user-space allocators [33–35] it provides
an interface for triggering allocations/deallocations in the ker-
nel and contains a feedback loop that returns the resulting
distance of two target objects. With this, we create the (to
our knowledge) first performance benchmarks for heap layout
manipulation algorithms in the Linux kernel. We present and
evaluate two algorithms: A pseudo-random search, whose
performance serves as a baseline, and KEvoHeap, a genetic
algorithm based on Heelan’s EvoHeap [33,35]. We show that
KEvoHeap is successful at creating the desired heap layout in
all test cases and also surpasses the user-space performance
benchmarks of EvoHeap. Finally, we discuss the challenges
of applying these kinds of algorithms in real-world scenarios
and weigh different possible approaches to tackle the prob-
lems that arise. Our research results are publicly available on
GitHub [43].

1 Introduction

From a normal user’s perspective, Linux seems to fall far be-
hind other operating systems. In May of 2021, only 2.38% of
desktop computers used Linux as an operating system, in con-
trast to the overwhelming lead of Windows with 73.54% [6].
One might think that it is only used by programmers or other
computer enthusiasts. But if you take a look behind the cur-
tain, it becomes apparent what a dominant role Linux plays
for almost everyone. While not being dominant on desktops,
according to W3Tech 75.6% of the top 10 million websites
use Unix-based operating systems, of which 56.1% are Linux
systems [55]. In 2015, of the top 25 most popular websites

according to Alexa [5], only two did not use Linux. Coin-
cidentally, these two websites were live.com and bing.com,
which are both owned by Microsoft [54]. In addition to the
web, Linux is also very prevalent on mobile devices. Android,
which uses a modified Linux kernel, has by far the biggest
market share on smartphones with 72.72% [10] and is also
the overall leading operating system across all devices [11].
With such a large and distributed usage naturally comes the
attention of malicious actors such as black-hat hackers or even
Nation-State actors who try to find and exploit vulnerabilities
in the operating system itself. These kinds of Linux kernel
vulnerabilities are especially dangerous as they can lead to
full control over the device with root access on a variety of
different kinds of devices like phones, desktop computers,
servers, and today even IOT devices or cars. They are also
very valuable: Zerodium pays up to $50.000 for an exploitable
local privilege escalation bug [14].

As the kernel is an incredibly complex piece of code, con-
sisting of over 27 million lines of code [17], security-related
bugs are being reported regularly. Because of the sheer
number of bugs being reported every day, they can not all
be addressed immediately. Instead, they have to be priori-
tized [53]. One factor when evaluating a security-related bug
is if it is actually exploitable. For this, the analyst has to
create a working exploit using the presented vulnerability to
prove its exploitability. As this can be a very difficult and
time-consuming process (especially when it comes to ker-
nel exploitation), ways to automate parts of this task were
researched.

While some parts in exploit development like shellcode
creation have been successfully automatized, many tasks still
require manual effort by the exploit developer. One challenge
which one often faces when dealing with memory corruption
vulnerabilities regarding the heap is interacting with the target
in a way that brings the heap into an exploitable state. This
is often referred to as Heap Layout Manipulation [34] or
Heap Feng Shui [50]. While not much work has been done
regarding automating this process, it gained some attention
in the last years in the context of fully automatic exploit
generation [22, 23, 33–35, 56, 61].

In this paper, we will evaluate the performance of algo-
rithms designed to solve the heap layout manipulation al-
gorithm in the kernel. For this, we created Kernel-SIEVE,
a framework inspired by previous work from Sean Heelan
[33–35] to create heap layout manipulations in the Linux

https://orcid.org/0000-0002-9136-6168
https://orcid.org/0000-0001-8920-0014
live.com
bing.com

Journal of Systems Research (JSys) 2023

kernel and provide an interface for algorithms to solve them.
With this, we evaluated two algorithms: A pseudo-random
search that serves as a benchmark for further experiments,
and KEvoHeap, a genetic algorithm based on Heelan’s Evo-
Heap algorithms. In the end, we provide an outlook on the
challenges that have to be overcome to apply these kinds of
algorithms to real-world vulnerabilities and possible ways to
overcome them.

The solution we present is aimed towards a security re-
searcher that found a heap-overflow or underflow bug in the
kernel and wants to prove its exploitability. In the process of
finding a solution for the heap layout manipulation problem
we rely on tools like bpftrace [48] that require root access, but
these privileges are not needed to execute the final solution
(cf. 11).

In summary, this paper makes the following contributions:

• We present Kernel-SIEVE, a framework for evaluat-
ing heap layout manipulation algorithms that target the
SLAB/SLUB allocator in the Linux kernel.

• We propose and evaluate two algorithms for creating
desired kernel heap layouts: A pseudo-random search,
whose performance serves as a baseline, and KEvoHeap,
a genetic algorithm based on Heelan’s EvoHeap.

• We provide scripts to visualize candidate solutions in an
animated fashion.

• We provide a vulnerable kernel module that serves as a
case study containing a heap buffer overflow vulnerabil-
ity to demonstrate these types of algorithms in real-world
scenarios and their application in the exploit develop-
ment process.

Following our belief in open research, we provide everything
as open source on GitHub [43].

2 Related Work

The task of automatically adjusting heap layouts into an ex-
ploitable state is a sub-task of automatic exploit generation.
This is a relatively novel field of research, with most publi-
cations dating back only 5-10 years. In this section, we will
give an overview of the current state of research that is either
relevant to this work or give otherwise beneficial context for
the broader field of exploit automation.

2.1 Automation of Exploitation Sub-tasks
In 2018 Wu et al. proposed FUZE [59], a framework that aims
to facilitate the exploitation of use-after-free vulnerabilities
in the Linux kernel. It uses a combination of kernel fuzzing
and symbolic execution to identify system calls that can be
useful for exploiting a given kernel use-after-free vulnera-
bility. These primitives are also evaluated according to their

usefulness for actual exploitation. Building upon this they pre-
sented KEPLER [58], a framework that takes a control-flow
hijacking primitive in the kernel and generates a bootstrap-
ping payload for kernel-ROP based shellcodes. Continuing
their work, Chen et al. proposed SLAKE [23], a system that
uses a combination of static and dynamic analysis to identify
allocation and deallocation primitives in the Linux kernel. It
creates a database of kernel objects useful for exploitation and
the system calls which cause their (de-)allocation. With this,
it can also try to adjust the SLAB layout to allow exploitation
of a given Use-After-Free, Double Free, or Out-Of-Bounds-
Write vulnerability. Their most recent publication in this line
of work is KOOBE [22], a framework that aims to assist a re-
searcher while analyzing out-of-bounds write vulnerabilities
in the kernel. Given a PoC, it evaluates the vulnerability’s
capabilities and checks if they are sufficient for successful
exploitation. If yes, it tries to generate a full exploit, incorpo-
rating existing Heap Feng Shui techniques. If not, it uses a
novel kind of fuzzing to explore new capabilities of the given
vulnerability.

In 2018 Heelan et al. published a paper called "Auto-
matic heap layout manipulation for exploitation" which they
claimed to be the first one to address the topic of automatic
heap layout manipulation [34]. In their paper they presented
two evaluation frameworks for heap layout manipulation algo-
rithms: SIEVE, a framework for creating synthetic challenges
on different allocator implementations, and SHRIKE, a heap
layout manipulation system for the PHP interpreter. In addi-
tion to providing an interface for algorithmic solutions, it also
solves some real-world problems like extracting primitives
for heap layout manipulation. They used the pseudo-random
search to automatically create heap layouts and provide a
benchmarking baseline for future work.

One of the most recent works regarding the automatic ad-
justment of heap layouts is MAZE [56], a framework created
by Wang et al. It models the heap and the available interac-
tions with the allocator as a Linear Diophantine Equation and
solves it deterministically to find an interaction sequence that
results in the desired heap state. It also can discover heap
manipulation primitives through static analysis.

2.2 Automatic Exploit Generation

The automatic exploit generation challenge can be defined
in two different ways. The "easy" formulation which is used
most of the time, where the system gets a vulnerability, e.g.
in the form of a PoC program, and should output a full exploit
that (usually) spawns a shell, or the "hard" formulation, in
which the system also has to find the vulnerability by itself.
AEG [19] claims to be the first system that solves the hard
version of this challenge. It uses source code analysis and
symbolic execution to identify vulnerabilities and then gener-
ates a payload under consideration of input constraints. AEG
only targets stack overflow and format string vulnerabilities.

2

Journal of Systems Research (JSys) 2023

In 2020 Sean Heelan published his Ph.D. thesis about
"Greybox Automatic Exploit Generation for Heap Overflows
in Language Interpreters" [33]. He presented a greybox ap-
proach for generating exploits for existing heap overflow vul-
nerabilities without relying on symbolic execution or other
whitebox methods. It builds upon GOLLUM [35], a previous
publication of his which claimed to be the first framework for
automatically generating heap overflow exploits in language
interpreters. They employ a modular approach, using the
previously presented SHRIKE [34] system for solving the
heap layout manipulation problem and a new approach for
identifying new exploit primitives from tests. Their system
relies on multiple assumptions made about the target, e.g.
that a break for ASLR is available and control-flow integrity
protection is not deployed.

In 2018 Eckert, Moritz, et al. proposed HEAPHOPPER
[26], an automated approach, based on model checking and
symbolic execution, to analyze the exploitability of heap im-
plementations in the presence of memory corruption. Using
HEAPHOPPER, they were able to perform systematic analy-
sis of different, widely used heap implementations, finding
surprising weaknesses in them.

HAEPG [61] is an automatic exploit generation framework
proposed by Zhao et al. in 2020. It utilizes symbolic execution
to exploit heap-based vulnerabilities using provided exploit
templates. It takes a crashing input as an input and outputs
a complete exploit, which e.g. spawns a shell. In contrast to
other works, HAEPG can bypass NX [45] and Full RELRO
[49].

2.3 Kernel Exploitation

One of the most referenced resources for kernel exploitation
is the book “A Guide to Kernel Exploitation: Attacking the
Core” [46] by Enrico Perla and Massimiliano Oldani. It
provides a broad overview of kernel exploitation techniques
and their application on Mac OS X, Windows, and operating
systems of the UNIX family. In terms of Linux, it also gives
an introduction to the inner workings of the SLAB/SLUB
allocator. In the article “Linux kernel heap feng shui in 2022”
[44], the authors provide an overview of the Linux kernel
slab allocator implementation and its exploitation challenges
associated with kernel heap-related vulnerabilities. Major
changes in the Linux kernel that affect the exploitability of
heap-related vulnerabilities and their exploitation strategies
are discussed. Besides this, there is a large number of articles
and blog posts available going into detail on the exploitation
of Linux kernel vulnerabilities [51,62] and the exploitation of
variants like the Linux kernel fork used in Android [18, 52].

In 2022 Zeng, Kyle, et al. “Playing for K (H) eaps: Un-
derstanding and Improving Linux Kernel Exploit Reliabil-
ity.” [60] the authors provide a systematic study of the kernel
heap exploit reliability problem. Through this a generic heap
exploit model is presented. This model explains the pro-

cess of kernel heap exploitation, spanning from the moment
that an exploit starts to interact with a vulnerable system to
the moment that the exploit successfully triggers an attacker-
controlled payload.

3 Exploiting Heap Overflows

While allocating on the stack may be sufficient for variables
of static size and that are only used in the scope of a function,
it is not suited for allocations of dynamic size or allocations
that should persist after the function returns [47]. For these
cases, space can be allocated on the heap.

Data is written in
this direction

overflow source func data

Figure 1: Heap-layout for corrupting an example structure
containing a function pointer and some data.

The heap is a memory region that is controlled by a heap al-
locator. Its behavior is not defined in the ANSI C standard [16]
but depends on its implementation. The most common inter-
face used for allocating memory in user space is the malloc
function. In the Linux kernel its counterpart kmalloc is used.
When called, it allocates a contiguous block of memory of
the requested size and returns its address. More details on
the internals of kernel heap allocation will follow in the next
section.

char* copy_to_buffer_heap(char *input){
char buffer = kmalloc(16 * sizeof(char),

GFP_KERNEL);
strcpy(buffer, input);
return buffer;

}

Above you can see a simple function that allocates a 16-byte
buffer on the heap, copies the string that input points to to
that buffer, and returns its address. Here we have a potential
buffer overflow. However, now we can not overwrite the
return address like we would in case of a stack overflow,
as we overflow into the heap. On its own, this function is
not exploitable. However, this vulnerability can be used to
overwrite data in an adjacent allocated object. The listing
below illustrates how such a target may look like.

typedef struct target {
void* (*func)();
char *data;

} target_t;

This struct contains a function pointer as its first element.
If we can force the program (in this case, the kernel) to

3

Journal of Systems Research (JSys) 2023

allocate this structure on the heap and also manipulate the
heap allocator in a way that this allocation will be placed
directly next to our overflow source, as illustrated in Figure
1, we could overwrite the function pointer and also the data
pointer in the adjacent object. Now execution flow can be
redirected after triggering a call of func.

The above-described exploitation approach is only one of
many. Other ways include meta-data corruption or overwrit-
ing useful fields in different kinds of structs which may not
be function pointers but could lead to different kinds of primi-
tives like arbitrary read-write. What all these approaches have
in common is the need to place a target object next to a vulner-
able object. The process of creating an exploitable heap state
is usually called Heap Feng Shui [50], heap grooming [29] or
heap layout manipulation. Finding a solution for this problem
is not trivial and becomes even harder in the kernel because
of multiple factors:

• Indirect allocator access: While the heap allocator has
a direct interface, from an exploit writer’s perspective we
can not directly access it. The standard way to interact
with the kernel is via system calls. So what we have to
do is use those system calls that will trigger allocations
which will be beneficial to our goal. Unfortunately, as
the kernel is an incredibly complex piece of software,
triggering a system call might make multiple allocations
of the same or different objects, which cause side effects
to the heap, making it harder to achieve a useful heap
layout. These side effects will be referred to as noise for
the remainder of this work. For example, let’s assume we
have found primitives which can cause the following al-
locations: We have one primitive which solely allocates
the overflow source, and a second one, which allocates
the target, but always first allocates another object. Ad-
ditionally, we are able to trigger a deallocation of the
overflow source. If we simply call both allocation primi-
tives sequentially, the additional allocation of the second
primitive will be placed between the overflow source
and the target (we assume that for successful exploita-
tion they have to be directly adjacent)1. To solve this
problem, we can use the primitives we have to carefully
craft a heap layout which still results in the overflow
source and the target being adjacent. There are multiple
solutions for this example, but one may look like this:
We first allocate the overflow source two times, and then
trigger a free of the first one. This creates a "hole" in
memory before the overflow source. Now we trigger the
allocation of the target. The additional object, which is
created by the primitive, will now be placed in said hole,
while the target results adjacent to the overflow source.
Figure 2 illustrates this process.

1In this scenario we assume that we already have an unfragmented heap
state with a linear free list. In Section 5 we will show that this can be achieved

Data is written in
this direction

Not working:

overflow source object target

Working:

overflow source overflow source

overflow source

object overflow source target

Figure 2: Example illustration for how sub-optimal primitives
can still be used to create a desirable heap layout.

• Unknown initial heap state: When we start our exploit
and thus our manipulation of the heap layout, we do
not know the current heap state. When you execute
a user space program twice, we can at least expect to
get the same heap layout twice (assuming the use of a
deterministic heap allocator). In the kernel, it is even
worse due to multiple factors. First, when we start our
exploit, the kernel is already running. Because of the
massive complexity of the kernel and many background
threads/processes which also influence the kernel heap,
this makes it impossible to guess the initial heap state.
Secondly, executing the exploit multiple times can also
alter the heap in a way that the first execution influences
the second one. As we will see in the next section, the
kernel heap allocator keeps free objects in a free list.
For example, if the exploit triggers multiple allocations
and frees, this free list will be in a different state when
we execute the exploit the second time. As a result, the
allocator will behave differently. In Section 5 we will
show how to solve these problems methodically.

• Indeterministic behavior of the heap allocator: The
Linux kernel contains a configuration option called
CONFIG_SLAB_FREELIST_RANDOM. When enabled, this
will randomize a cache’s free list on initialization. This
option is out of scope for this work, as it is disabled in
the Linux default configuration and the approach we are
taking to solve the heap layout manipulation problem
requires a workaround for the free list randomization.
Adding a free list de-randomizer to the algorithm would
be a great starting point for further research.

4 Memory allocation in the Linux kernel

The Linux kernel is the core of many modern operating
systems. This includes Linux-based operating systems like

methodically.

4

Journal of Systems Research (JSys) 2023

Ubuntu [21] and Debian [15], but also e.g. the Android op-
erating system, as they use a modified Linux kernel at its
core [31]. While it works mostly in the background, a user
can interact with it via system calls. In this section, we will
describe how memory is managed in the Linux kernel and
which heap allocator implementations are available.

Directly on the physical memory sits the "Buddy Alloca-
tor" [32, 36] that maps physical memory pages into virtual
memory. The different user space allocators receive pages
directly from the buddy allocator and implement different
allocation strategies on these. In kernel space, on top of the
buddy allocator sits the "Slab Layer" that exposes the general-
purpose allocation interface kmalloc. There are different
implementations for the Slab Layer, but almost all modern
distributions use the SLUB allocator, which is the modern
default.

4.1 Slab-Allocation
The slab allocator is Linux’s general-purpose allocator and
sits on top of the buddy allocator [25, 32]. Slab allocation
was first used in OpenSolaris, and the Linux version of it is
heavily based on theirs [25, 39, 46]. The main purpose of the
slab allocator is to provide a way of allocating small objects in
an efficient way and cache commonly used objects to improve
allocation, initialization, and destroy timings. Over the last
30 years, slab allocation in Linux has evolved and changed
drastically. Today there are three different allocators between
which the user can decide before building the kernel: SLAB,
SLUB, and SLOB.

Cache Slab

Slab

Slab

Pages

Pages

Pages

Obj.

Obj.

Full
slab

Partial
slab

Empty
slab

Figure 3: The structure of caches and slabs.

Before we start discussing slab allocation, we need to dif-
ferentiate between a few somewhat ambiguous terms:

• slab allocation: General memory management strategy

• slab: Contiguous physical memory pages, which can
store data associated with objects

• SLAB, SLUB, SLOB: Different slab allocator imple-
mentations

One of the main data structures of a slab allocator is the cache.
A cache in terms of slab allocation manages memory for a
specific object type. One cache consists of multiple slabs,

which themselves are blocks of contiguous physical pages
of memory. The pages managed by a slab are cut into equal
chunks of the size of the target object. Figure 3 illustrates this
structure.

Internally, there are three classes of slabs in a cache:
slabs_full (containing all slabs without free chunks),
slabs_partial (containing slabs with free and non-free
chunks), and slabs_free (containing only free chunks). In-
formation about the different caches can be retrieved via
/proc/slabinfo, as shown in Figure 4. For the sake of
simplicity, we will only focus on the first five numbers that
/proc/slabinfo gives for each cache, as these are also
the most relevant for the later sections. The figure below
shows an example output for the task_struct cache. The
task_struct structure is the kernel representation of a user
space process [41]. The first two numbers show how many ac-
tive objects are held in the cache and how many are available
in total. In this example, four more task_struct objects can
be allocated, before the allocator has to create a new slab. The
third number gives the size of the chunks which are available
from that cache, so in this case 7872, which equals the size of
one task_struct. The fourth number tells how many objects
fit into one slab, and the fifth tells how many pages one slab
consists of. The relation of numbers three to five is obvious:
The total space available in the cache for task_struct is:

8 ·PAGE_SIZE = 8 ·4096 = 32768

⌊ 32768
sizeo f (task_struct)

⌋= ⌊32768
7872

⌋= 4

So, if four more task_struct objects were allocated, there
would be no partial or empty slabs left, so new slabs need to
be allocated for further task_struct allocations.

Generally speaking, there are two types of caches: Caches
of commonly used objects and sized caches. The first kind
is particularly useful as the kernel has many structures
which are allocated and deallocated many times. One
example would be the previously mentioned task_struct
structure. By keeping these objects in caches, allocation and
deallocation times can be reduced by leaving an object in its
initialized state when it is freed. When this object is allocated
again, there is no need to initialize it again. The sized caches
are not reserved for dedicated objects, but keep objects of
certain sizes. These sizes are all powers of two. When an
allocation is requested via kmalloc (the kernel’s general
allocation interface), a chunk from the next best fitting cache
is returned. For example, when we try to allocate 33 bytes,
we will actually get a 64 bytes chunk [25, 32]. The slab layer
can also be circumvented by using the vmalloc interface.
vmalloc accesses the buddy allocator directly and allocates
memory that is virtually contiguous but can be physically
scattered. As it comes with additional overhead and is slower
than kmalloc, its usage is discouraged [24].

5

Journal of Systems Research (JSys) 2023

Nowadays the SLUB allocator is used, which replaced the
original SLAB allocator as the modern default in Linux. A
description of its implementation can be found in appendix
A.

From an exploit writer’s perspective, SLUB opens up new
perspectives to heap exploitation:

• As the free list is stored as a linked list in the free chunks,
this enables possibilities for metadata-corruption via
overflowing into a free block and overwriting the pointer
to the next object.

• As the slab pages are now only packed with objects,
overflowing between page frame borders [46] could un-
der certain circumstances be easier, as no metadata is
corrupted in the process.

• One interesting property of SLUB is that it can combine
slabs that contain different objects of the same size. This
can open up new attack vectors for heap overflows, as
we are less restricted in the kind of target we overflow
into.

5 Kernel-SIEVE: Evaluating HLM Algo-
rithms in the Kernel

The main goal of this work is to evaluate the usefulness of
algorithmic solutions for the heap layout manipulation prob-
lem in the Linux kernel. For this, we developed a framework
called Kernel-SIEVE, which enables us to create artificial
heap layout manipulation challenges and provides an API for
candidate algorithms to solve these challenges. This frame-
work is inspired by SIEVE, the framework Heelan proposed
for evaluating heap layout manipulation algorithms on dif-
ferent allocators in user space [33]. The base challenge this
framework provides is to place two designated objects at a
certain distance in the kernel heap. These objects represent an
overflow source and a target. In this section, we will present
the aforementioned framework and go into detail on the archi-
tecture and design decisions we made due to the challenges
that arise when working in kernel space.

The architecture of Kernel-SIEVE is illustrated in Figure 5.
It consists of two components:

• Kernel Module: The kernel module is Kernel-SIEVE’s
way of interacting with the kernel heap. It can be used
to trigger the standard memory allocation operations
kmalloc, kfree, kcalloc, and krealloc. It can be
controlled via the ioctl system call. The kind of oper-
ation to perform is selected via the request parameter.
Additional information about the allocation/deallocation
to be performed are given via the struct slab_params:

struct slab_params {
size_t size;
id_t ID;
size_t nmemb;
id_t oldID;
addr_t addr;

};

The members of this struct have the following purposes:

– size: The size of the allocation to make.

– ID: An ID to associate the allocation with, for later
reference.

– nmemb: Only relevant for kcalloc: The number
of elements to allocate.

– oldID: Only relevant for krealloc: The ID of the
allocation that should be reallocated.

– addr: The resulting address of the requested al-
location. This will be filled by the kernel module
and used by the client to get information about the
heap state.

• Client: The client is a program that performs interac-
tions with the kernel module and provides an API to
candidate algorithms. The main requirement when de-
veloping the client was that it must not have any un-
foreseen side effects to the kernel heap, which would
falsify the results of candidate solutions. Modern pro-
gramming languages like Python proved not to be viable
options, as the runtime communicates with the kernel in
unpredictable ways for garbage collection, forking, etc.
Because of this, we chose to implement the client in pure
C. This gave us direct control over all interactions the

$ cat /proc/slabinfo
name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab> : tunables \

<limit> <batchcount> <sharedfactor> : slabdata <active_slabs> <num_slabs> \
<sharedavail>

[...]
task_struct 836 840 7872 4 8 : tunables 0 0 0 : slabdata 210 \

210 0
[...]

Figure 4: Example output of /proc/slabinfo.

6

Journal of Systems Research (JSys) 2023

K
er

ne
lS

pa
ce

U
se

r
Sp

ac
e

Kernel Module Kernel Heap

Client Candidate Algorithms

Interaction
Sequences

Distance

Requests Heap
State

Interacts

Figure 5: Architecture of Kernel-SIEVE.

client performs with the kernel. An algorithm can pro-
vide the client candidate solutions via files, where each
file represents one candidate solution. This indirect form
of communication comes with the advantage, that the
programmer is free in his choice of language in which
he wishes to implement the candidate algorithm in, as
implementing complex algorithms in pure C can be quite
exhausting. The client and the algorithm are executed in
a loop via a script. The algorithm places his candidates
in a dedicated directory. The client executes the candi-
date solutions and writes the resulting distances into a
separate directory. By separating the execution of the
algorithm from the client we prevent the algorithm from
having side effects to the kernel heap from background
processes during the execution of the client.

The files, that the algorithm has to create for the client
are made of directives that are almost identical to the
ones Heelan used for communicating with his SIEVE
driver:

1. <kmalloc size ID>

2. <kcalloc nmemb size ID>

3. <kfree ID>

4. <krealloc oldID size ID>

5. <fst size>

6. <snd size>

The first four directives directly correspond to the stan-
dard allocation/deallocation interface of the kernel which
was already described in Section 4.1. All allocations are
assigned an ID, which is necessary to reference allo-
cations for frees. The last two directives are used to

allocate the two objects that eventually should be placed
at a certain distance. The client takes a file consisting
of those directives, translates them to parameters for the
kernel module, and executes them sequentially. Finally,
it calculates addr(fst) - addr(snd) and writes it to
a result file.

While implementing this framework in kernel space, we
faced certain problems that appear due to the nature of the
kernel:

• Unknown heap state: One problem everyone faces in
kernel heap exploitation is that you do not know the ini-
tial state of the heap when starting your exploit. This
problem was already outlined in Section 3. Luckily,
there is a methodical way around this called heap de-
fragmentation [23, 46]. As stated in Section 4.1, we can
use the /proc/slabinfo utility to collect information
about the current state of the cache we target. Most im-
portantly, it tells us how many active objects are in the
target cache, and how many objects are available in it
in total. When all available objects in the target cache
are exhausted, the slab allocator has to map a new page
frame into memory and create a new slab, which will
have no active objects in it. So, if we allocate enough
objects (specifically at least num_objs - active_objs),
we can fill up all partial slabs and force the allocator
to allocate a new one. If we do this every time before
executing a candidate, we can create a predictable heap
layout.

• Unstable results and reproducibility: When trying to
solve the heap layout manipulation problem algorithmi-
cally, it is essential that we can rely on the results of our

7

Journal of Systems Research (JSys) 2023

candidates to be correct and reproducible, so that if we
execute the same candidate twice, we will get the same
result twice. Unfortunately, this is easier said than done
when it comes to the kernel. The kernel runs many dif-
ferent threads in parallel, which all access the same heap.
This means that there is always the chance that another
thread performs operations on the same cache that we
target just when we execute our candidate, falsifying the
result. This is not the only problem: To not eventually
run out of memory, the client frees all allocations we
made again, clearing the slab. Due to the execution of
the candidate, we now have a free slab with a reordered
free list. This is a huge problem: The result of a candi-
date now depends on the previously executed candidates!
Our way around this is to simply create our own cache,
on which we now run our experiments. This cache will
behave the same way as any other cache would, but will
not be subject to random side effects by the kernel. There
is a simple interface to manage caches [27]:

// "include/linux/slab.h"
struct kmem_cache *kmem_cache_create();
void kmem_cache_destroy();
void *kmem_cache_alloc();
void kmem_cache_free();

The kernel module has two modes of operation: It can
either be configured to use the default kmalloc interface
or to implement our "custom cache" strategy. Here, we
create a dedicated cache for each candidate, which is
destroyed after execution. Algorithms should use the
"custom cache" mode, as this prevents the aforemen-
tioned instability problems. To be absolutely sure about
the produced solution, you can switch into the "real"
mode and check the solution with the default allocation
interface. In our experiments, the results from the "real"
mode did not differ from the "custom cache" mode, if
no other candidates were executed before.

This framework enables us to create arbitrary challenges for
candidate algorithms just like in Heelan’s SIEVE. While the
available directives allow very direct access to the allocator,
the difficulty of the challenge can be adjusted in the imple-
mentation of the algorithm, for example by only allowing
the algorithm to choose between certain combinations of di-
rectives to simulate the "indirect allocator access" problem
which was explained in Section 3. The code is available on
GitHub [43].

6 Candidate Algorithms

In this section, we will describe the algorithms that we chose
to implement and evaluate. To create a baseline to com-
pare other algorithms against, we first implemented the same

pseudo-random search that Heelan also used as a baseline [33].
This serves the additional purpose to compare the difficulty
of the problem in kernel space to the different user space allo-
cators Heelan evaluated. The second algorithm is KEvoHeap,
a genetic algorithm that is a modified version of Heelan’s
EvoHeap algorithm. We made some modifications to adjust
it to the special characteristics of the slab allocator. In the fol-
lowing sections, we will explain both algorithms in detail. A
comprehension of Heelans work can be found in in appendix
B.

6.1 Pseudo-Random Search
The algorithm we use to create a baseline for comparison is
a pseudo-random search similar to the one used in Heelan’s
work [33, 34]. It is outlined in Algorithm 6. A description of
the algorithm and its adjustments can be found in the appendix
C.

6.2 KEvoHeap
The previously described algorithm mostly serves as a base-
line, as it does not implement any real strategy. As described
before, we consider the heap layout manipulation problem
as an optimization problem regarding the distance of the
two target objects. There are many approaches for numeri-
cally solving optimization problems. One of them is genetic
algorithms. Genetic algorithms are a kind of evolutionary
algorithms, which itself is a class of optimization algorithms
that make use of basic evolutionary principles [20]. They
start with an initial set of candidate solutions (called popula-
tion), in which each is assigned a fitness value that represents
the quality of the solution. The population iteratively passes
multiple iterations (generations) in which first the offspring
is generated from the population through mutation and/or
crossover operations. The offspring then gets evaluated and
assigned a fitness value each. From the evaluated offspring
the new population is selected based on some principle aimed
towards minimizing/maximizing the fitness value. [20]. In
the following part, we will describe KEvoHeap, a genetic
algorithm based on Heelan’s EvoHeap [33] for solving the
heap layout manipulation problem in the Linux kernel.

While KEvoHeap is based on Heelan’s EvoHeap, we made
some adjustments to it to better fit it to the SLAB/SLUB
allocator. Also, the structure is different, as our Kernel-SIEVE
framework has a different execution loop than SIEVE. Here
we will explain the algorithm and point out similarities and
differences to Heelan’s EvoHeap. Algorithm 1 shows the
main routine of KEvoHeap.

Usually, a genetic algorithm consists of a main loop that
resembles the generational cycle of creating offspring, evalua-
tion and selection. In Section 5 we explained that we decided
to separate the execution of the client from the execution of
the algorithm to get rid of side effects to the kernel heap. In-

8

Journal of Systems Research (JSys) 2023

Input: target, µ, λ, mxpb, cxpb
Output: A winning individual or nothing

1 Function EvoStep(target, µ, λ, mxpb, cxpb):
2 pop← ReadPopulation()
3 dist← ReadDistances()
4 if len(pop = 0) then
5 pop← InitPopulation(µ+λ)
6 WritePopulation(pop)
7 return
8 else
9 f it← Evaluate(pop, dist)

10 for i← 0 to len(pop)−1 do
11 if f it[i] =abs(target) then
12 return pop[i]
13 end
14 survivors← Select(pop, f it,µ)
15 o f f spring← GetChildren(pop, λ,

mxpb, cxpb)
16 pop← survivors+o f f spring
17 WritePopulation(pop)
18 return

Algorithm 1: The main routine of KEvoHeap.

stead, the client and the algorithm are run alternating with
a runner script. So, although there is no main loop, it exists
implicitly. When the routine starts, the algorithm first reads
the existing population and the resulting distances of the tar-
get objects from the dedicated directories (lines 2 and 3). If
there is no existing population, that means we are in the first
iteration and have to generate a new population and write it
(lines 5 and 6). If there is, that means we are in the main cycle.
First, we evaluate the population (line 9). Then we check if
we found a solution, and if yes, return it (line 12). If not, we
first select the survivors of the current generation (line 14).
Then, we generate the offspring from the original population
and write the new population, consisting of the survivors of
the previous generation and the newly generated offspring.
The GetChildren method is listed in Algorithm 18.

GetChildren creates λ children from pop. In each itera-
tion it first selects a random individual from pop as a parent
(line 4). Then it decides based on the mutation probability
mxpb and the crossover probability cxpb whether to mutate
the parent (line 7), perform a crossover with a random dif-
ferent individual (line 12) or to simply keep it as it is (line
17). As you can see the method is identical to the one used in
EvoHeap with the small difference that we use both offspring
created from the crossover in 12, while in EvoHeap only one
is used (cf. B.1).

A detailed explanation how the algorithm represents its
individuals and how each of the genetic operators was imple-

1 Function GetChildren(pop, λ, mxpb,
cxpb):

2 children← []
3 while λ > 0 do
4 parentA←

pop[Random(0, len(pop))]
5 r← Random(0, 1)
6 if r < mxpb then
7 new← Mutate(parentA)
8 children.append(new)
9 λ← λ−1

10 else if r < mxpb+ cxpb then
11 parentB←

pop[Random(0, len(pop))]
12 newA,newB←

Crossover(parentA, parentB)
13 children.append(newA)
14 children.append(newB)
15 λ← λ−2
16 else
17 children.append(parentA)
18 λ← λ−1
19 end
20 return children

Algorithm 2: Method to generate offspring for the next
generation.

mented can be found in appendix D.

7 Evaluation

In this section, we will lay out how we evaluated the pre-
viously described algorithms. First, we describe a set of
challenges that we designed to test the effectiveness of the
different approaches. Then we show how the algorithms per-
formed on the challenges and compare them.

7.1 Synthetic Benchmarks

To evaluate the algorithms we created a set of challenges for
the algorithms to solve. We chose a similar design for the
challenges as Heelan did [33], so we can compare the results
between the different targets. In general, there are two kinds
of challenges: Natural allocation order and reverse allocation
order. In both challenges, the target object mimicking the
overflow source has to be allocated first before the allocation
of the target object. In the "natural" challenge, a normal buffer
overflow situation is simulated, where the target allocation
must follow the overflow source. In the "reverse" challenge,
we simulate an underflow instead. Recall that the underflow
source still has to be allocated first, so already in the simplest

9

Journal of Systems Research (JSys) 2023

of cases where the algorithm has direct control about the
allocation of the target objects it has to find a slightly more
complicated solution. An example solution is shown in Figure
6. Here we first allocate a placeholder object, followed by
the allocation of the underflow source. Then, we free the
placeholder object, which places the memory slot in front of
the underflow source to the beginning of the free list of the
slab. Lastly, we allocate the target object, placing it in front
of the underflow source. The algorithms will have four kinds

Data is written in
this direction

placeholder

Allocate placeholder object

placeholder underflow source

Allocate underflow source

underflow source

Free placeholder object

underflow sourcetarget

Allocate the target object

Figure 6: A solution for the reverse allocation order challenge
without any noise.

of allocation sequences to choose from in all the challenges:

1. Allocate an object of the target caches size

2. Free a previously allocated object

3. Allocate the first target object (overflow/underflow
source)

4. Allocate the second target object (overflow/underflow
target)

For both of these kinds of challenges, we scale the difficulty by
adding a certain number of noise allocations. For each "noise",
when triggering the allocation of the overflow/underflow
source additional objects are allocated before and after the
overflow/underflow source. These noise allocations can not
be freed by the algorithms, so it has to find a way to manip-
ulate the heap surface in a way that circumvents them. We
chose to always enable the algorithm to trigger allocations
of a single object of the target cache size without any noise,
as this is also almost always possible in real-world scenarios.
For example, the add_key system call, which adds a new key
to a specified key ring, will trigger an allocation of the size
of the payload parameter on the kernel heap, so it can be
used for defragmentation and manipulation of all sized caches
without accompanying noise allocations [7, 28].

We ran the experiments on a virtual machine running
Ubuntu 20.04, kernel version 5.9.7 with free list random-
ization disabled, a 16 core Intel Xeon Gold 6130 processor,

Data is written in
this direction

placeholder placeholder

Allocate two placeholder objects

placeholder

Free first placeholder object

underflow sourcenoise allocation noise allocationplaceholder

Allocate the noisy underflow source

underflow sourcenoise allocation noise allocation

Free the second placeholder object

underflow sourcenoise allocation noise allocationtarget

Allocate the target object

Figure 7: A solution for the reverse allocation order challenge
with one noise.

and 64 gigabytes of RAM. We ran our experiments against
the SLUB allocator, as it is the modern default. While be-
ing different internally the SLAB allocator would behave the
same way in the context of our experiments, as its properties
which are relevant for the manipulation process (sorting of
objects into caches, usage and behavior of the free list etc.)
are identical.

7.1.1 Pseudo-Random Search

To evaluate the pseudo-random search we ran it on the
previously described challenges with increasing noise. For
each challenge, we ran it 100 times, with an upper limit
of 200000 candidates being generated. While a larger
number of candidates may lead to more successful runs, with
one run taking up to 10 minutes, this was the maximum
possible number given our computational resources. The
allocation-free ratio was set to 0.5. This value was determined
experimentally, as it showed the best results across all noise
levels. We created benchmarks for noise values from ranging
0 to 5, resulting in 12 experiments (two per noise value,
natural allocation order and reverse allocation order). The
results are listed in table 1. As we can see in the challenges
without noise, the "natural" challenge poses fewer problems
to the algorithms than the "reverse" challenge. While this
is as expected, it is interesting to see that with the addition
of noise, the "reverse" challenge actually becomes easier
than the "natural" challenge. The reason for this becomes
apparent if we take a look at an example solution for the
"reverse" challenge with one noise, which is shown in Figure
7. First, we allocate two placeholder objects. Then, we free
the first one, placing that slot at the beginning of the free
list. Then we trigger the allocation of the underflow source.
This results in the first noise allocation being placed in the
previously freed slot, and the placeholder object in front

10

Journal of Systems Research (JSys) 2023

Noise
Solved
Natural

Solved
Reversed

Avg. Tries
Natural

σ

Natural
Avg. Tries
Reversed

σ

Reversed
0 100% 100% 3 1.99 9 7.73
1 100% 100% 195 192.6 60 54.88
2 100% 100% 2601 1957.6 375 366.86
3 100% 100% 29648 29087.47 2795 2615.93
4 32% 100% (73900) (46873.98) 28408 27671.43
5 1% 47% - - (90961) (60256.65)

Table 1: Results of the synthetic benchmarks of pseudo-random search. For each number of allocation noise, the percentage
of successful solves is given for both the natural allocation order and the reverse allocation order. Additionally, we listed the
average number of tries needed in case of success and the standard deviation of the number of tries. The statistics in brackets are
those where not all tries succeeded, so they have to be treated with care as they only represent the successful runs.

of the underflow source. By freeing the placeholder object
afterward, we can again put this slot at the beginning of the
free list. By triggering the allocation of the target object
now, we achieve the desired layout. This is the shortest
possible solution for this specific challenge. Looking at
the "natural" version of this challenge, it requires at least
one more allocation of a placeholder object to successfully
manipulate the free list for the desired heap layout. Therefore,
the algorithm has to find a somewhat more specific solution
for this problem. This feature of the natural challenge
(requiring more allocations/frees for a minimal solution)
remains when we add more noise, and this is also reflected in
the experiment results. While pseudo-random search starts to
fail at four noise in the "natural" challenge, it still solves the
"reverse" version of it 100% of the time.

In general, pseudo-random search performs reasonably
well. In our setting, it solved all problems with up to three
noise within the 200000 tries 100% of the time. However, we
can see that the average number of tries it needs to succeed
as well as the standard deviation of tries needed grows expo-
nentially. To give some perspective regarding the execution
time, running the experiment with five noise, which was only
solved once in 100 tries, took about 10.5 hours to finish.

7.1.2 KEvoHeap

To evaluate KEvoHeap we ran it on the same set of challenges
as the pseudo-random search. To generate an initial popu-
lation we used the same pseudo-random generation method
that pseudo-random search uses to generate its candidates.
We used an initial population size of 400, µ, and λ values
of 200 each, a mutation probability of 0.9, and a crossover
probability of 0.1. These values are identical to the ones
used in the evaluation of EvoHeap [33] (besides the initial
population size) and proved to be reasonable in our exper-
iments. The maximum number of mutations was set to 5.
When choosing the kind of mutation to be performed, Mutate
was chosen with a probability of 0.7, while Spray, Hole
Spray, and Shorten were all assigned a probability of 0.1

each. These values were determined by strategic experimenta-
tion and proved to perform best. After some experiments, we
also decided to disable the "Allocate in a loop" directive (see
Section D.1), as in our scenario it seemed to rather bloat up
the candidates (especially in combination with the Spray mu-
tation) and would not reasonably contribute to finding a better
solution. As the algorithm has only one allocation directive
to choose from, there is only one size group, sub group, and
selector. The upper generation limit was set to 1000. The
results are listed in table 2.

As you can see, KEvoHeap’s performance is a big improve-
ment over pseudo-random search. As one generation consists
of 400 candidates that are evaluated, the performance for
noise values of 0 and 1 can be seen as identical to pseudo-
random search, both for the "natural" and "reverse" challenge.
This is not surprising, as the initialization routine is identical
to pseudo-random search, and pseudo-random search found
solutions for these problems with fewer attempts than the
initial population size. As the noise grows, the number of
average generations needed to solve the problem grows with
it. What is interesting to see is that in the natural challenge,
the average generations and the standard deviation grow ex-
ponentially, however, the average tries and standard deviation
of the reverse challenge seem to grow linearly, with a slightly
bigger jump at 6 noise. This could indicate that it is also
an exponential rise, but with a very low base. KEvoHeap
proceeds to solve all challenges up to 6 noise with way fewer
candidates generated than pseudo-random search. This is also
reflected in the runtime: While pseudo-random search needed
about 10.5 hours for 100 runs with five noise and natural allo-
cation order (without solving the problem most of the time),
it took KEvoHeap only about 2 hours for the same problem,
with a 100% success rate.

8 Analysis and Discussion

As stated before, KEvoHeap proved to be a vast improvement
over pseudo-random search. Figure 8 illustrates the difference
in terms of candidates being generated by both algorithms.
While both algorithms perform equally at low noise levels,

11

Journal of Systems Research (JSys) 2023

Noise
Solved
Natural

Solved
Reversed

Avg. Generations
Natural

σ Natural
Avg. Generations
Reversed

σ Reversed

0 100% 100% 1 0 1 0
1 100% 100% 1.09 0.35 1 0
2 100% 100% 3 2.09 1.24 0.77
3 100% 100% 6.87 4.3 3.05 1.83
4 100% 100% 11.62 7.24 4.75 2.32
5 100% 100% 22.85 13.97 6.37 3.29
6 100% 100% 43.25 29.78 8.2 5.8

Table 2: Results of the synthetic benchmarks of KEvoHeap. For each number of allocation noise, the percentage of successful
solves is given for both the natural allocation order and the reverse allocation order. Additionally, we listed the average number
of generations needed in case of success and the standard deviation of the numbers of generations.

0 1 2 3 4 5 6
0

20,000

40,000

60,000

80,000

100,000

Noise

C
an

di
da

te
s

KEvoHeap Pseudo-random search

0

50

100

150

200

250

G
en

er
at

io
ns

0 1 2 3 4 5 6
0

20,000

40,000

60,000

80,000

100,000

Noise

C
an

di
da

te
s

KEvoHeap Pseudo-random search

0

50

100

150

200

250

G
en

er
at

io
ns

Figure 8: Bar chart showing the average tries/generations needed in both algorithms with respect to the level of noise. The left
chart shows the results for the "natural" challenge, the right one shows results for the "reverse" challenge.

the number of candidates needed by pseudo-random search
starts to skyrocket at three noise in the "natural" challenge
and four noise in the "reverse" challenge. The number of gen-
erations also increases, but way slower. While in the "natural"
challenge pseudo-random search only needs approximately
twice as many candidates as KEvoHeap at two noise, it al-
ready needs almost 16 times as many candidates at four noise,
and as only 37% of the experiments succeeded and we only
look at the successful cases, the actual number is probably
even higher. Another difference between both algorithms is
the difference in the standard deviation. For pseudo-random
search the standard deviation is always approximately equal
to the mean, showing that the actual number of tries needed
to solve a problem can vary a lot2. For KEvoHeap, the stan-
dard deviation is always about half the mean, which indicates

2The results of the experiments where pseudo-random search failed at
some tries do not reflect this property, as the failed cases were not taken into
account when calculating the mean/standard deviation, so these results are
not representative for the actual performance.

that it is more stable runtime-wise. This difference between
the two algorithms is also illustrated by example for the "re-
verse" challenge with three noise in Figure 9. The box plots
clearly show the difference in stability regarding the number
of candidates that have to be generated. While the number
of candidates has its median at 1933.5 for pseudo-random
search, numbers go even up to 12042, and from the quartiles,
you can see that the results are widely distributed. In contrast,
the results from KEvoHeap are way closer together, and there
are no extreme outliers. The superior results of KEvoHeap
outline the advantages of a structured approach as opposed
to a (pseudo-)random approach. The fact that candidate so-
lutions can be improved in small steps by changing small
parts of it makes the fitness function very smooth, which is a
good property for a successful genetic algorithm [20]. While
the algorithm still contains plenty of random components,
their design and the selection process guide the algorithm
towards better solutions. This results in the improved results,
execution time, and stability.

12

Journal of Systems Research (JSys) 2023

KEvoHeap PRS
0

5,000

10,000

C
an

di
da

te
s

0

10

20

30

G
en

er
at

io
ns

Figure 9: Box plot illustrating the distribution of numbers of
candidates generated for the "reverse" challenge with three
noise.

When comparing our results to the benchmarks created by
Heelan for heap layout manipulation in user space [33–35]
we can see that both algorithms perform way better when
targeting the kernel heap. In our setting even pseudo-random
search can solve all problems up to three noise with reason-
able effort. In user space, pseudo-random search was able to
solve the problems without noise most of the time, but perfor-
mance dropped rapidly when any noise was introduced. In the
kernel, we can see that the introduction of noise increases the
number of candidates that have to be generated exponentially,
but real problems only occur if multiple noise allocations are
present. EvoHeap drastically improved the success in user
space with an average 95.3% success rate across all synthetic
benchmarks and all targeted allocators with up to four noise.
In the kernel, KEvoHeap, our variant of EvoHeap, even sur-
passed the user space results with a 100% success rate with up
to six noise. We did not run experiments with more than six
noise allocations as we evaluated this as an unrealistic setting
to appear in the real world, but the rate of increase in required
generations suggests that more noise can theoretically still be
added before we have to increase the generation limit. The
success of KEvoHeap can be attributed to certain properties
of slab allocation. The process of sorting objects of certain
sizes in assigned memory regions (or caches) can make it
harder to pair a vulnerable object with a suitable target, as
both have to be allocated in the same cache. However, in
terms of heap layout manipulation, it enables the previously
described defragmentation, which is a big advantage from
an attacker’s point of view. With defragmentation, we can
disregard all allocations that were performed previously to
our attack by forcing the creation of a new empty slab. This
is in many ways advantageous, as the problem is reduced
to circumventing the accompanying noise allocations of the
overflow source and target. When tackling problems in real-
world scenarios in the future it will also be a big advantage
that it is almost always possible to trigger single allocations in
a targeted cache, e.g. with add_key as previously described
(see Section 7.1). Due to this simplification, the question

arises if an optimization approach like a genetic algorithm
might be unnecessarily sophisticated. Even for user space
targets, Heelan mentioned that he considered simulated an-
nealing as an alternative to genetic algorithms but disregarded
it as genetic algorithms according to the literature proved to
create better results at the cost of higher computational ef-
fort [33]. As the problem in kernel space seems to be easier
to solve, it might be good to reconsider simulated annealing
to further reduce the computational effort.

9 Application in Realistic Settings

As we saw in the evaluation on the synthetic benchmarks,
KEvoHeap can be very effective at crafting desired heap lay-
outs. However, there are still some challenges to overcome
to make it applicable to real-world scenarios. In this section,
we will present some of them and propose possible solutions
for them. Finally, we present the exploitation of a vulnera-
ble kernel module that serves as a case study for real-world
scenarios.

9.1 Accessing Distance of Target Objects

In the Kernel-SIEVE framework, the kernel module gives
us access to information about the current state of the ker-
nel heap. We use this to calculate the distance of the two
target objects, which serves as feedback to KEvoHeap or
any other potential algorithm. In a realistic scenario, where
our candidates consist of several subsequent system calls, we
do not have this feedback, and without this, an optimization
algorithm can not work. Additionally, a system call might
allocate not one, but multiple different objects in one or mul-
tiple caches, so initially it is not even clear which object is
the relevant one, be it overflow source or target. To tackle
this, we have to specify which is our object of interest and
find a way to extract the information needed for the feedback
loop. After some experiments we concluded that this problem
can be solved by using one of the several tracing mechanisms
the Linux kernel provides. In particular kprobes [2], bpf-
trace [48], and ftrace [3] seem to be viable tools for this, and
we successfully implemented solutions using both kprobes
and bpftrace respectively.

9.2 Instability of Results after Multiple Execu-
tions

In Section 5 we explained that additional problems arise when
we try to execute multiple manipulation attempts in a row.
One of the main problems is that subsequent attempts influ-
ence each other because they reorder the free list of the target
slab. In Kernel-SIEVE we deal with this by creating a sepa-
rate cache that we have full control over, so we can destroy
and recreate it between each candidate execution. When we

13

Journal of Systems Research (JSys) 2023

deal with a real vulnerability we do not have this kind of con-
trol, as the target objects (and the accompanying noise) will
be placed in the designated caches. The main problem that we
have is that the kernel is in a different state when we executed
one candidate than it was before, and this state influences the
following candidates. So what if we could execute one candi-
date, and then reset the state of the kernel to the way it was
previous to the execution? This would solve all our problems,
as now each candidate gets executed with an identical starting
state. In reality, something similar is possible. QEMU [12] is
a widely adopted open-source emulator and virtualizer that
among other things can be used to run an operating system
as a virtual machine. It comes with a feature to create snap-
shots that not only save the current disk state, but also the
RAM and CPU state, which can be used to restore the com-
plete state of a system at a specific point in time [4]. Using
this we could reset the VM after each candidate. Of course,
this brings some performance drawbacks, but as KEvoHeap
proved to be very efficient in the synthetic benchmarks it is
fair to assume that performance should still be acceptable. We
see this approach as very promising, as it does not require
additional per-case analysis and works equally for each target.
However, it requires some structural changes. As the entire
virtual machine gets reset in the process of evaluating the
candidates, the algorithm has to be run outside of the virtual
machine. The framework would have to trigger the execu-
tions of the candidates from the outside and extract the results
before reset. We implemented a proof-of-concept prototype
using this approach that confirmed our assumptions. Figure
10 illustrates how we decoupled the algorithm from the virtual
machine that runs the candidates.

A runner script first sets up the QEMU virtual machine.
This includes starting the virtual machine, loading the kernel
module, and starting a simple bind shell using netcat [8]
that we use later to issue commands, transfer candidates and
extract results. Then we enter the main loop of the genetic
algorithm. We first query KEvoHeap to generate a batch of
candidates (either the initial population, or, on subsequent
calls, the next generation). Then we transfer the whole batch
to the VM using scp [9]. Now that everything is in place
for the execution, we use QEMU-Monitor [13], a tool for
managing running QEMU instances, to save the state of the
virtual machine. To finally run the candidates, we use our
bind shell to run each candidate individually. We extract
the result in a similar way, and then reload our saved state
for the next execution. With this approach we were able to
solve heap layout manipulation problems with the actual sized
caches, not relying on the custom cache mode. This came
with a performance drop: While the number of generations
needed to solve a problem did not change, executing one
generation of 400 candidates took about 3 minutes. For the
challenge with five noise and natural allocation order this
results in an expected runtime of 69 minutes to solve a single
problem. Running a benchmark like we did in Section 7.1.2

Runner KEvoHeap QEMU

Initialize

Create
candidates

Transfer candidates

Save state

Execute candidate

Extract distance

Restore saved state

Reset loopReset loop

Generation LoopGeneration Loop

Figure 10: Sequence diagram for the prototypical solution
utilizing QEMU’s savevm feature.

with 100 runs would result in an estimated 115 hours. This
is an enormous increase in runtime in contrast to the 2 hours
it took with the custom cache mode, but one hour to find a
valid solution is still within reason. Also it might be possible
to further boost the performance, but this is beyond the scope
of this work.

Figure 15 (cf. appendix D.5) provides a comparison of
the runtimes of running 100 experiments using KevoHeap,
pseudo-random search, and fast-reset-KEvoHeap. Notice
that we used a logarithmically scaled y-axis, as fast-reset-
KEvoHeap’s runtime is significantly longer due to the signifi-
cant performance drop that comes with the fast reset method.
This makes it hard to visually compare to the other runtimes
without scaling. Because of the very long execution times,
we only estimated the runtimes of fast-reset-KEvoHeap using
the average generations needed and the measured runtime per
generation. From the plot, you can see that while the perfor-
mance drop is large, because of the superiority of KEvoHeap

14

Journal of Systems Research (JSys) 2023

the runtime of pseudo-random search approaches the runtime
of fast-reset-KEvoHeap rapidly with rising noise levels. The
measurements of pseudo-random search lose meaning start-
ing at four noise, as not all runs are successful, so the runtime
to solve the 100 problems is actually higher. Keeping this in
mind, the runtime of pseudo-random search probably super-
sedes the runtime of the fast-reset-KEvoHeap at five or six
noise.

9.3 Application of KEvoHeap in real-world
vulnerabilities

In order to prove the usage of our approach we created a vul-
nerable kernel module which contains a heap buffer overflow
vulnerability. This kernel module serves as a case study for a
real vulnerability in the Linux kernel.

Its behaviour is quite simple: It can be queried to allocate a
buffer and to write/print data to/from said buffer. Before and
after the buffer gets allocated noise allocations will be made
to make exploitation non-trivial.

Our exploit performs heap layout manipulation to shape
the heap into an exploitable state utilizing KEvoHeap.
Internally KEvoHeap uses kmalloc and kfree to create
the desired kernel heap layout. In order to find a solution
for this, we or respectively an attacker need an identical
vulnerable Linux kernel version with root privileges. This lab
environment is running KEvoHeap to identify appropriate
allocations and deallocations to bring the Linux kernel heap
into an exploitable state. This means that the target objects
are placed next to each other. To identify these allocations,
bpftrace is used, which requires root privileges. Figure 11a

illustrates this in a simplified manner. The fact that the target
kernel as well as the KEvoHeap kernel module and bpftrace
are executed within QEMU is omitted on behalf of simplicity.

An attacker or respectively a security researcher can use
these allocations and deallocations via various system calls.
We use the shmget/shmctl system calls to allocate objects in
the kmalloc-256 cache. These calls trigger (de)allocations
of objects, which are of appropriate size. A suiting series of
allocations and deallocations are then found with KEvoHeap.
KEvoHeap will generate candidates consisting of calls to
the kernel module and shmget/shmctl, which will then be
inserted into a general corpus program which takes care of
setup and teardown. The generated candidates are then build
and executed.

Once KEvoHeap has found a solution, it can be used as
part of the exploitation process to manipulate the heap into
an exploitable state. Figure 11b outlines this.

By doing this, we have shown that KEvoHeap is able to
automatically convert the kernel heap to a suitable state even
in the case of real-world vulnerabilities. This exploit and
the vulnerable kernel module can be found in our GitHub
repository [43].

10 Conclusion

In this paper, we presented Kernel-SIEVE, a framework for
evaluating heap layout manipulation algorithms that target
the SLAB/SLUB allocator in the Linux kernel. With this,
we created the (to our knowledge) first performance bench-
marks for heap layout manipulation algorithms in the Linux

Ke
rn

el
 Sp

ac
e

KEvoHeap
Client

syscalls

candidate solutions

bpftrace

monitor
distances

Us
er

 Sp
ac

e

KEvoHeap
Kernel Module

Kernel
Heap

(a) Generate solutions for heap layout manipulations

Ke
rn

el
 Sp

ac
e

syscalls

Us
er

 Sp
ac

e

Kernel
Vulnerability

Defragmentation

Trigger Overflow

KEvoHeap solution

Heap Massage

kernel heap layout
manipulation

syscalls

Exploit

Kernel
Heap

(b) Applying results from KEvoHeap in an exploit

Figure 11: Application KEvoHeap in real-world vulnerabilities

15

Journal of Systems Research (JSys) 2023

kernel. Moreover, we proposed and evaluated two algorithms:
A pseudo-random search, whose performance serves as a
baseline, and KEvoHeap, a genetic algorithm based on Hee-
lan’s EvoHeap [33, 35]. We have shown that KEvoHeap is
successful at creating the desired heap layout in all test cases
and also surpasses the user-space performance benchmarks
of EvoHeap. Besides that, we discussed the challenges of
applying these kinds of algorithms in real-world scenarios
and weigh different possible approaches to tackle these prob-
lems. Finally we have shown the application of KEvoHeap in
a real-world scenario utilizing our case study.
While further research into this topic is necessary we believe
that this research has taken the art of automating kernel ex-
ploits one step further.

References

[1] Avr libc: Standard c library for avr-gcc. https://
nongnu.org/avr-libc/. Accessed: 17.06.2021.

[2] Kernel probes (kprobes). https://www.kernel.org/
doc/html/latest/trace/kprobes.html. Accessed:
22.03.2022.

[3] The linux kernel documentation: ftrace.
https://www.kernel.org/doc/html/latest/
trace/ftrace.html. Accessed: 20.07.2021.

[4] Qemu documentation: Disk images. https:
//qemu.readthedocs.io/en/latest/system/
images.html, 2020. Accessed: 02.07.2021.

[5] Alexa: The top 500 sites on the web. https:
//www.alexa.com/topsites, 2021. Accessed:
22.05.2021.

[6] Desktop operating system market share world-
wide. https://gs.statcounter.com/os-market-
share/desktop/worldwide, 2021. Accessed:
22.06.2021.

[7] Linux manual page: add_key(2). https://man7.org/
linux/man-pages/man2/add_key.2.html, 2021. Ac-
cessed: 12.07.2021.

[8] Linux manual page: nc(1). https://linux.die.net/
man/1/nc, 2021. Accessed: 23.07.2021.

[9] Linux manual page: scp(1). https://www.man7.org/
linux/man-pages/man1/scp.1.html, 2021. Ac-
cessed: 23.07.2021.

[10] Mobile desktop operating system market share world-
wide. https://gs.statcounter.com/os-market-
share/mobile/worldwide, 2021. Accessed:
22.06.2021.

[11] Operating system market share worldwide. https://
gs.statcounter.com/os-market-share, 2021. Ac-
cessed: 22.06.2021.

[12] Qemu. https://www.qemu.org/, 2021. Accessed:
02.07.2021.

[13] Qemu-monitor documentation. https:
//qemu.readthedocs.io/en/latest/system/
monitor.html, 2021. Accessed: 23.07.2021.

[14] Zerodium exploit acquisition program. https://
www.zerodium.com/program.html, 2021. Accessed:
22.05.2021.

[15] The Debian-Project . Debian: The universal operating
system. https://www.debian.org/, 2021. Accessed:
20.07.2021.

[16] American National Standards Institute. Ansi x3.159-
1989 "programming language c.", 12 1990.

[17] Tim Anderson. Linux in 2020: 27.8 million
lines of code in the kernel, 1.3 million in sys-
temd. https://www.theregister.com/2020/01/06/
linux_2020_kernel_systemd_code/, 2020. Ac-
cessed: 22.05.2021.

[18] Ashfaq Ansari. Android kernel exploitation.
https://cloudfuzz.github.io/android-kernel-
exploitation/, 2020. Accessed: 24.05.2021.

[19] Thanassis Avgerinos, Sang Kil Cha, Alexandre Rebert,
Edward J Schwartz, Maverick Woo, and David Brumley.
Automatic exploit generation. Communications of the
ACM, 57(2):74–84, 2014.

[20] David Beasley, David R Bull, and Ralph Robert Martin.
An overview of genetic algorithms: Part 1, fundamentals.
University computing, 15(2):56–69, 1993.

[21] Canonical. Ubuntu: Enterprise open source and linux.
https://ubuntu.com/, 2021. Accessed: 20.07.2021.

[22] Weiteng Chen, Xiaochen Zou, Guoren Li, and Zhiyun
Qian. Koobe: Towards facilitating exploit generation
of kernel out-of-bounds write vulnerabilities. In 29th
USENIX Security Symposium (USENIX Security 20),
pages 1093–1110, 2020.

[23] Yueqi Chen and Xinyu Xing. Slake: Facilitating slab
manipulation for exploiting vulnerabilities in the linux
kernel. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Secu-
rity, pages 1707–1722, 2019.

[24] Jonathan Corbet. On the proper use of vmalloc().
https://lwn.net/Articles/57800/, 2003. Ac-
cessed: 30.06.2021.

16

https://nongnu.org/avr-libc/
https://nongnu.org/avr-libc/
https://www.kernel.org/doc/html/latest/trace/kprobes.html
https://www.kernel.org/doc/html/latest/trace/kprobes.html
https://www.kernel.org/doc/html/latest/trace/ftrace.html
https://www.kernel.org/doc/html/latest/trace/ftrace.html
https://qemu.readthedocs.io/en/latest/system/images.html
https://qemu.readthedocs.io/en/latest/system/images.html
https://qemu.readthedocs.io/en/latest/system/images.html
https://www.alexa.com/topsites
https://www.alexa.com/topsites
https://gs.statcounter.com/os-market-share/desktop/worldwide
https://gs.statcounter.com/os-market-share/desktop/worldwide
https://man7.org/linux/man-pages/man2/add_key.2.html
https://man7.org/linux/man-pages/man2/add_key.2.html
https://linux.die.net/man/1/nc
https://linux.die.net/man/1/nc
https://www.man7.org/linux/man-pages/man1/scp.1.html
https://www.man7.org/linux/man-pages/man1/scp.1.html
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share
https://gs.statcounter.com/os-market-share
https://www.qemu.org/
https://qemu.readthedocs.io/en/latest/system/monitor.html
https://qemu.readthedocs.io/en/latest/system/monitor.html
https://qemu.readthedocs.io/en/latest/system/monitor.html
https://www.zerodium.com/program.html
https://www.zerodium.com/program.html
https://www.debian.org/
https://www.theregister.com/2020/01/06/linux_2020_kernel_systemd_code/
https://www.theregister.com/2020/01/06/linux_2020_kernel_systemd_code/
https://cloudfuzz.github.io/android-kernel-exploitation/
https://cloudfuzz.github.io/android-kernel-exploitation/
https://ubuntu.com/
https://lwn.net/Articles/57800/

Journal of Systems Research (JSys) 2023

[25] Andrea Di Dio. The slab allocator in the linux
kernel. https://hammertux.github.io/slab-
allocator, 2020. Accessed: 25.05.2021.

[26] Moritz Eckert, Antonio Bianchi, Ruoyu Wang, Yan
Shoshitaishvili, Christopher Kruegel, and Giovanni Vi-
gna. {HeapHopper}: Bringing bounded model check-
ing to heap implementation security. In 27th USENIX
Security Symposium (USENIX Security 18), pages 99–
116, 2018.

[27] Christoph Lameter et al. Linux kernel v5.9.7: Source
code of slab.h. https://elixir.bootlin.com/
linux/v5.9.7/source/include/linux/slab.h,
2022. Accessed: 21.03.2022.

[28] Linus Torvalds et al. Linux source code
v5.9.7. https://cdn.kernel.org/pub/linux/
kernel/v5.x/linux-5.9.7.tar.xz. Accessed:
12.05.2021.

[29] Chris Evans. What is a "good" mem-
ory corruption vulnerability? https:
//googleprojectzero.blogspot.com/2015/06/
what-is-good-memory-corruption.html, 2015.
Accessed: 12.05.2021.

[30] Sanjay Ghemawat and Paul Menage. Tcmal-
loc: Thread-caching malloc. http://goog-
perftools.sourceforge.net/doc/tcmalloc.html,
2000. Accessed: 17.06.2021.

[31] Google. Android open source project: Ker-
nel. https://source.android.com/devices/
architecture/kernel/, 2020. Accessed:
20.07.2021.

[32] Mel Gorman. Understanding the Linux virtual memory
manager. Prentice Hall Upper Saddle River, 2004.

[33] Sean Heelan. Greybox Automatic Exploit Generation
for Heap Overflows in Language Interpreters. PhD
thesis, University of Oxford, 2020.

[34] Sean Heelan, Tom Melham, and Daniel Kroening. Au-
tomatic heap layout manipulation for exploitation. In
27th USENIX Security Symposium (USENIX Security
18), pages 763–779, 2018.

[35] Sean Heelan, Tom Melham, and Daniel Kroening. Gol-
lum: Modular and greybox exploit generation for heap
overflows in interpreters. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 1689–1706, 2019.

[36] Kenneth C Knowlton. A fast storage allocator. Commu-
nications of the ACM, 8(10):623–624, 1965.

[37] Christoph Lameter. The slub allocator. https:
//lwn.net/Articles/229984/, 2007. Accessed:
28.05.2021.

[38] Christoph Lameter. Slub: The unqueued slab allo-
cator. https://lwn.net/Articles/223411/, 2007.
Accessed: 28.05.2021.

[39] Christoph Lameter. Slab allocators in the
linux kernel: Slab, slob, slub. https:
//events.static.linuxfound.org/sites/events/
files/slides/slaballocators.pdf, 10 2014.
Accessed: 25.05.2021.

[40] Doug Lea. A memory allocator. http:
//gee.cs.oswego.edu/dl/html/malloc.html, 2000.
Accessed: 17.06.2021.

[41] Robert Love. Linux kernel development. Pearson
Education, 2010.

[42] Sean Luke and Liviu Panait. Fighting bloat with non-
parametric parsimony pressure. In International Con-
ference on Parallel Problem Solving from Nature, pages
411–421. Springer, 2002.

[43] Daniel Baier Max Ufer. Github repository containing
kernel-sieve, pseudo-random search and kevoheap.
https://github.com/fkie-cad/Algorithmic-
Heap-Layout-Manipulation-in-the-Linux-
Kernel, 2022. Accessed: 19.01.2023.

[44] Vitaly Nikolenko Michael S. Linux kernel heap feng
shui in 2022. https://duasynt.com/blog/linux-
kernel-heap-feng-shui-2022, 2022. Accessed:
29.07.2022.

[45] PaX-Team. Pax non-executable pages design & im-
plementation. https://pax.grsecurity.net/docs/
noexec.txt, 2003. Accessed: 04.01.2021.

[46] Enrico Perla and Massimiliano Oldani. A Guide to Ker-
nel Exploitation: Attacking the Core. Elsevier Science,
2010.

[47] Dennis M Ritchie, Brian W Kernighan, and Michael E
Lesk. The C programming language. Prentice Hall
Englewood Cliffs, 1988.

[48] Alastair Robertson. bpftrace. https://github.com/
iovisor/bpftrace, 2022. Accessed: 25.07.2022.

[49] Huzaifa Sidhpurwala. Hardening elf binaries
using relocation read-only (relro). https:
//www.redhat.com/en/blog/hardening-elf-
binaries-using-relocation-read-only-relro,
2019. Accessed: 04.01.2021.

17

https://hammertux.github.io/slab-allocator
https://hammertux.github.io/slab-allocator
https://elixir.bootlin.com/linux/v5.9.7/source/include/linux/slab.h
https://elixir.bootlin.com/linux/v5.9.7/source/include/linux/slab.h
https://cdn.kernel.org/pub/linux/kernel/v5.x/linux-5.9.7.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v5.x/linux-5.9.7.tar.xz
https://googleprojectzero.blogspot.com/2015/06/what-is-good-memory-corruption.html
https://googleprojectzero.blogspot.com/2015/06/what-is-good-memory-corruption.html
https://googleprojectzero.blogspot.com/2015/06/what-is-good-memory-corruption.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
https://source.android.com/devices/architecture/kernel/
https://source.android.com/devices/architecture/kernel/
https://lwn.net/Articles/229984/
https://lwn.net/Articles/229984/
https://lwn.net/Articles/223411/
https://events.static.linuxfound.org/sites/events/files/slides/slaballocators.pdf
https://events.static.linuxfound.org/sites/events/files/slides/slaballocators.pdf
https://events.static.linuxfound.org/sites/events/files/slides/slaballocators.pdf
http://gee.cs.oswego.edu/dl/html/malloc.html
http://gee.cs.oswego.edu/dl/html/malloc.html
https://github.com/fkie-cad/Algorithmic-Heap-Layout-Manipulation-in-the-Linux-Kernel
https://github.com/fkie-cad/Algorithmic-Heap-Layout-Manipulation-in-the-Linux-Kernel
https://github.com/fkie-cad/Algorithmic-Heap-Layout-Manipulation-in-the-Linux-Kernel
https://duasynt.com/blog/linux-kernel-heap-feng-shui-2022
https://duasynt.com/blog/linux-kernel-heap-feng-shui-2022
https://pax.grsecurity.net/docs/noexec.txt
https://pax.grsecurity.net/docs/noexec.txt
https://github.com/iovisor/bpftrace
https://github.com/iovisor/bpftrace
https://www.redhat.com/en/blog/hardening-elf-binaries-using-relocation-read-only-relro
https://www.redhat.com/en/blog/hardening-elf-binaries-using-relocation-read-only-relro
https://www.redhat.com/en/blog/hardening-elf-binaries-using-relocation-read-only-relro

Journal of Systems Research (JSys) 2023

[50] Alexander Sotirov. Heap feng shui in javascript. Black
Hat Europe, 2007:11–20, 2007.

[51] "sqrkkyu", "twzi". Attacking the core: Kernel exploit-
ing notes. http://phrack.org/issues/64/6.html,
2007. Accessed: 12.05.2021.

[52] Maddie Stone. Bad binder: Android in-the-wild exploit.
https://googleprojectzero.blogspot.com/2019/
11/bad-binder-android-in-wild-exploit.html,
2019. Accessed: 24.05.2021.

[53] Ward Thomas. How to triage bugs. https://
wiki.ubuntu.com/Bugs/Triage, 2017. Accessed:
22.05.2021.

[54] Steven J. Vaughan-Nichols. Can the internet exist with-
out linux? https://www.zdnet.com/article/can-
the-internet-exist-without-linux/, 2015. Ac-
cessed: 22.05.2021.

[55] W3Techs. Usage statistics of operating systems for
websites. https://w3techs.com/technologies/
overview/operating_system, 2021. Accessed:
22.06.2021.

[56] Yan Wang, Chao Zhang, Zixuan Zhao, Bolun Zhang,
Xiaorui Gong, and Wei Zou. Maze: Towards automated
heap feng shui. In 30th USENIX Security Symposium
(USENIX Security 21), 2021.

[57] Karsten Weicker. Evolutionary algorithms and dynamic
optimization problems. Der Andere Verlag Berlin, 2003.

[58] Wei Wu, Yueqi Chen, Xinyu Xing, and Wei Zou. Ke-
pler: Facilitating control-flow hijacking primitive evalu-
ation for linux kernel vulnerabilities. In 28th USENIX
Security Symposium (USENIX Security 19), pages 1187–
1204, 2019.

[59] Wei Wu, Yueqi Chen, Jun Xu, Xinyu Xing, Xiaorui
Gong, and Wei Zou. Fuze: Towards facilitating exploit
generation for kernel use-after-free vulnerabilities. In
27th USENIX Security Symposium (USENIX Security
18), pages 781–797, 2018.

[60] Kyle Zeng, Yueqi Chen, Haehyun Cho, Xinyu Xing,
Adam Doupé, Yan Shoshitaishvili, and Tiffany Bao.
Playing for {K (H) eaps}: Understanding and improving
linux kernel exploit reliability. In 31st USENIX Security
Symposium (USENIX Security 22), pages 71–88, 2022.

[61] Zixuan Zhao, Yan Wang, and Xiaorui Gong. Haepg: An
automatic multi-hop exploitation generation framework.
In International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment, pages 89–
109. Springer, 2020.

[62] Jordy Zoma. An introduction to kernel exploita-
tion. https://pwning.systems/posts/an-
introduction-to-kernel-exploitation-part1/,
2021. Accessed: 24.05.2021.

18

http://phrack.org/issues/64/6.html
https://googleprojectzero.blogspot.com/2019/11/bad-binder-android-in-wild-exploit.html
https://googleprojectzero.blogspot.com/2019/11/bad-binder-android-in-wild-exploit.html
https://wiki.ubuntu.com/Bugs/Triage
https://wiki.ubuntu.com/Bugs/Triage
https://www.zdnet.com/article/can-the-internet-exist-without-linux/
https://www.zdnet.com/article/can-the-internet-exist-without-linux/
https://w3techs.com/technologies/overview/operating_system
https://w3techs.com/technologies/overview/operating_system
https://pwning.systems/posts/an-introduction-to-kernel-exploitation-part1/
https://pwning.systems/posts/an-introduction-to-kernel-exploitation-part1/

Journal of Systems Research (JSys) 2023

Appendix

In the following, we first briefly describe the implementation
of the SLUB allocator. Then the algorithms of Heelan’s work
are summarized. After that, we give detailed information
about the different algorithm implementations used in this
paper.

A The SLUB Allocator

We will quickly go over the implementation of the SLUB
allocator, which replaced the original SLAB allocator as the
modern default in Linux.

Christoph Lameter developed the SLUB in 2007 out of
frustration over the SLAB implementation [37, 38]. His two
main complaints were:

1. The many different queues used in the SLAB implemen-
tation made the code quite complex.

2. In larger systems, the number of queues and objects
in these queues can grow exponentially, which wastes
memory which is only tied up in control structures.

The goals of SLUB were to provide better scalability and
performance, while at the same time simplifying the general
slab structure. Additionally, SLUB also vastly extended the
debugging capabilities of the slab allocator. Today, SLUB has
replaced SLAB as the default allocator in the Linux kernel.

SLUB indeed simplified the general slab structure. In
SLUB, a slab only consists of allocated and/or free memory
chunks, without any metadata at the beginning. This reduces
the need for padding for alignment.
The free chunks form a linked list which is used to keep
track of them. On allocation, the first element in this list is
simply returned and removed from the list. The kernel stores
a pointer to the free list together with information about the
number of blocks in use and the total number of objects in the

page frame in the struct page. This is a control structure
that the kernel assigns to each physical memory page. It
provides general information about the context in which the
page is used. SLUB also keeps an array of slabs that are
associated with single CPUs to avoid cache line bouncing.
If these are not being used, they are simply put back into
the partial list. In contrast to SLAB, there is only one list
that manages slabs per cache, the partial list. Full slabs
are simply forgotten until they become partial again. This
reduces the aforementioned memory complexity which could
become problematic in SLAB. Figure 12 illustrates these
structures [25, 37, 38].

B Heelans work

The main work we build on is Sean Heelan’s Ph.D. thesis
about "Greybox Automatic Exploit Generation for Heap Over-
flows in Language Interpreters" [33]. Heelan breaks the prob-
lem of automatic exploit generation into several sub-problems,
one of them being the Heap Layout Problem, which he also al-
ready addressed in previous publications [34,35]. For this, he
developed a framework for evaluating heap layout manipula-
tion algorithms on different allocators called SIEVE. SIEVE
consists of a driver that can be linked in combination with any
allocator that exposes the standard allocation interface from
the ANSI C standard [16], which are most importantly the
functions malloc, free, calloc, and realloc. The driver
takes a file as input that consists of a set of directives that
instruct the driver to perform certain allocation operations.
The directives are of the following form:

1. <malloc size ID>

2. <calloc nmemb size ID>

3. <free ID>

4. <realloc oldID size ID>

FP FP FPFree Free FreeObject Object Object Padding

Page Frame

NULL

kmem_cache
cpu_slab

node
...

kmem_cache_node
partial_list

list_lock
...

page

slab_list
objects

inuse
freelist

...

Figure 12: Structure of a slab used by the SLUB allocator.

19

Journal of Systems Research (JSys) 2023

5. <fst size>

6. <snd size>

The first four directives are used to trigger the standard mem-
ory allocation functions. The ID parameter assigns an ID to
the allocations, which can be used to reference them again
in a free or a realloc. The last two directives trigger the
allocation of an object of a given size, which can be used to
simulate an overflow/underflow source and a target. After
executing the given directives, the driver returns the distance
of the target allocations. With this, you can create challenges
with the objective to place the target objects relative to each
other at a certain distance. Allocation noise can be simulated
by creating interactions from multiple directives that cause
side effects. For example, instead of letting an algorithm
simply allocate the overflow source, we can add an allocation
of an object right after the source, which the algorithm then
has to circumvent for being successful. The SIEVE frame-
work also offers a Python API that helps with the creation of
different kinds of challenges.

Heelan provided two algorithms for solving the heap lay-
out manipulation problem: A pseudo-random search, and a
genetic algorithm called EvoHeap. Algorithm 3 shows how
the pseudo-random search generates candidates and executes
them.

In each iteration of the loop in the Search function, the
algorithm assembles a new candidate and executes it. If the
distance returned equals the target distance, the candidate is
returned. If after a set number of iterations no solution can be
found, it returns None. The ConstructCandidate function
takes care of the pseudo-random generation of candidates.
It takes two arguments: The maximum length of a candi-
date m and a parameter r that probabilistically weights the
number of allocations and frees performed in the candidate.
First, the length of the candidate is determined by taking a
random number between 1 and m (line 11) and a random
index for the allocation of the first target object (line 12).
Then it iterates the indices of the candidate. At the previously
picked f stIdx the algorithm inserts the provided sequence
to allocate the overflow source (line 15). On any other in-
dex, the algorithm either appends an allocation sequence
or a free sequence, depending on a probability-based on
r. The AppendAllocSequence and AppendFreeSequence
pick one of the available allocation/free sequences with equal
probability. The AppendFreeSequence function redirects to
AppendAllocSequence if no allocation is available for free-
ing. At last, the algorithm appends the sequence for allocating
the target object (line 21) and returns the candidate.

While this algorithm performs almost no search strategy, it
still produces some good results. Heelan evaluated it on three
different allocators (avrlibc [1], dlmalloc [40] and tcmalloc
[30]) with synthetic challenges. The core of the challenges
was to place the two objects directly adjacent, either normal
or reversed. Additional experiments were performed with

1 Function Search(g, d, m, r):
2 for i← 0 to g−1 do
3 cand←Init(ConstructCandidate(m,

r))
4 dist← Execute(cand)
5 if dist = d then
6 return cand
7 end
8 return None

9 Function ConstructCandidate(m, r):
10 candidates←

Init(GetStartingState())
11 len← Random(1, m)
12 f stIdx← Random(0, len−1)
13 for i← 0 to len−1 do
14 if i = f stIdx then
15 AppendFstSequence(cand)
16 else if Random(0, 100) ≤ r then
17 AppendAllocSequence(cand)
18 else
19 AppendFreeSequence(cand)
20 end
21 AppendSndSequence(cand)
22 return cand

Algorithm 3: Pseudo-random search algorithm to find a
solution that places two target objects at a certain distance
in memory. g is the number of candidates to try, d the
target distance, m the maximum size of the candidates,
and r the allocation-free ratio [33].

the addition of allocation noise in the form of allocations
before and after the allocation of the first target object, i.e. the
overflow source. The starting state of the candidates was taken
from the initialization routines of Python, PHP, and Ruby.
The pseudo-random search was actually able to solve the
majority of challenges as long as no noise was added with g =
500.000, r = 98, and m = 1000 . For avrlibc, it even solved
all challenges without noise (normal and reversed), and 99%
of the challenges using dlmalloc. The success rate dropped
drastically when noise was introduced. When adding 4 noise
allocations before and after the overflow source, the success
rate averaged at 37% and went down to 17% at dlmalloc for
the reversed challenge.

As an alternative to a simple pseudo-random search, Heelan
proposed EvoHeap, a genetic algorithm for the heap layout
manipulation problem.

B.1 EvoHeap

The main routine of EvoHeap is shown in Algorithm 4. First,
an initial population is generated randomly (line 2) and gets

20

Journal of Systems Research (JSys) 2023

evaluated (line 3). If this initial population already contains
a valid solution, the population and their fitness values are
returned (line 5). If not, the main cycle is entered. In each
generation, λ children are generated from the existing popula-
tion via the GetChildren function and get evaluated (lines
7+8). The GetChildren function takes the mutation proba-
bility mxpb and the crossover probability cxpb and creates
the offspring by randomly selecting parents from the popula-
tion and performing mutations and crossovers based on the
provided probabilities (see Algorithm 5). The internals of the
mutation operator will be explained in detail in chapter 6.2
when we present our modified version of this algorithm for
the kernel. For now, it is enough to know that it can either
insert or remove allocation/free sequences from a candidate in
different ways. The crossover operator implements some kind
of two-point crossover which will also be gone into some
more detail in chapter 6.2. If one of the children contains
a valid solution, the children and their fitness values are re-
turned (line 10). Otherwise, a new population for the next
generation gets selected via a (µ+λ) selection strategy using
a mixture of elitist and double tournament selection. Details
on this will also be given in chapter 6.2, as we use the same
selection strategy as EvoHeap. Then the cycle starts from the
beginning and a new generation is entered. If after g gener-
ations no solution has been found, the current population is
returned with their corresponding fitness values.

1 Function EvoHeap(g, popsz, µ, λ, mxpb,
cxpb):

2 pop← InitialisePopulation(popsz)
3 popF ← Evaluate(pop)
4 if SolutionFound(popF) then
5 return pop, popF
6 while g > 0 do
7 ch← GetChildren(pop, λ, mxpb,

cxpb)
8 chF ← Evaluate(ch)
9 if SolutionFound(chF) then

10 return ch, chF
11 pop, popF ←

Select(µ,pop+ ch,popF + chF)
12 g← g−1
13 end
14 return pop, popF

Algorithm 4: The main routine of EvoHeap. g is the
maximum number of generations to run. mxpb and cxpb
are the mutation/crossover probabilities.

EvoHeap showed significant improvements over the
pseudo-random search during evaluation. On average, Evo-
Heap solved 95.3% of all of the synthetic challenges, while

1 Function GetChildren(pop, λ, mxpb,
cxpb):

2 children← []
3 while λ > 0 do
4 parentA←

pop[Random(0, len(pop))]
5 r← Random(0, 1)
6 if r < mxpb then
7 new← Mutate(parentA)
8 else if r < mxpb+ cxpb then
9 parentB←

pop[Random(0, len(pop))]
10 new← Crossover(parentA,

parentB)
11 else
12 children.append(parentA)
13 λ← λ−1
14 end

Algorithm 5: The routine that creates λ offspring from
the population pop using the mutation probability mxpb
and the crossover probability cxpb.

pseudo-random search solved about 51% of all challenges.
Heelan labeled certain specific challenges as "very-hard", of
which pseudo-random search was only able to solve about
8% of. EvoHeap was able to solve 80% of these challenges,
again showing the massive improvement it brought. Both
algorithms were also evaluated in a realistic scenario, where
they should solve heap layout manipulation problems in the
PHP interpreter. EvoHeap here also surpassed pseudo-random
search by solving 84.2% of the problems on average, in con-
trast to 61% solved by random search. In addition to the
quality of the solutions, EvoHeap was also faster at finding
these solutions most of the time. In the synthetic benchmarks,
EvoHeap was faster 74% of the time, and pseudo-random
search was only faster on problems that Heelan labeled as
"very-easy". On the PHP benchmarks, EvoHeap was always
faster than pseudo-random search (only considering problems
that both algorithms solved), with a time difference averaging
at 600 seconds.

C Pseudo-Random Search

In the following we show our implementation of the pseudo-
random search with minor adjustments to the one used in
Heelan’s work (cf. Algorithm 6).

The search is made pseudo-random by the r parameter
that defines the ratio of allocations to frees. In our ex-
periments, 90 proved to be a good value if noise is low,
but it depends on the challenge. With increasing noise,
a lower value can be useful to increase the number of

21

Journal of Systems Research (JSys) 2023

Input: g, m, r
Output: A set of candidate solutions

1 Function GenerateBatch(g, m, r):
2 candidates← []
3 for i← 1 to g do
4 candidates.append(
5 ConstructCandidate(m, r)
6)
7 end
8 return candidates

9 Function ConstructCandidate(m, r):
10 len← Random(1, m)
11 f stIdx← Random(0, len−1)
12 for i← 0 to len−1 do
13 if i = f stIdx then
14 AppendFstSequence(cand)
15 else if Random(0, 100) ≤ r then
16 AppendAllocSequence(cand)
17 else
18 AppendFreeSequence(cand)
19 end
20 AppendSndSequence(cand)
21 return cand

Algorithm 6: Method to pseudo-randomly generate a
batch of candidate solutions. g is the total number of
candidates to generate. m is the maximum number of
directives per candidate. r is the ratio of allocations to
frees.

frees generated. To customize the challenges we have to
implement the AppendFstSequence, AppendSndSequence,
AppendAllocSequence, and AppendFreeSequence func-
tions. As you can see in comparison to Heelan’s imple-
mentation of pseudo-random search [33], we left out the
GetStartingState function, which can be used to create
a starting heap configuration, emulating previous allocations.
In the case of heap layout manipulation in the kernel, this
would not increase the difficulty of the challenge, as we could
also always just perform defragmentation again to flatten the
heap surface.
The AppendFstSeqence/AppendSndSequence functions
should return the respective sequences for allocating the
first/second target object. The simplest form would be the sim-
ple instruction "fst <size>"/"snd <size>", but they can
also consist of multiple other directives to simulate noise.
The AppendAllocSequence function should choose between
available allocation sequences with equal probability. The
AppendFreeSequence function should choose a random se-
quence from the available free sequences. If there is no
allocation available to free, it simply redirects the call to
AppendAllocSequence.

D KEvoHeap

In this section, we will explain how KEvoHeap represents
its individuals and how each of the genetic operators was
implemented.

D.1 Individual Representation
For KEvoHeap we use the same individual representation that
Heelan used in EvoHeap. The individuals are designed in a
way that decouples them from the actual code of the candidate
solution.

Each interaction that is available to the algorithm gets
mapped to a representative ID3. The algorithm then only
acts on these IDs. That means that the user has to provide a
mapping function that translates these IDs to their counter-
part instructions and vice versa. By this, the algorithm does
not need to know specifics about the problem it should solve.
Figure 13 illustrates the translation cycle performed by the
algorithm.

EvoStep

ReadPopulation()

WritePopulation()

Candidates

Map to IDs

Translate to
directives

Figure 13: The translation cycle of the genetic algorithm.

At the beginning of each evolution step, the algorithm uses
the user-provided mapping to translate the directives of the
candidates to their respective IDs. When the new population
is written at the end, they are translated into actual directives
in a similar fashion.

Each individual represents a candidate solution that is made
of multiple directives. The algorithms represent the directives
as 128-bit integers. Figure 14 shows how the coding works.
The first 8 bits define the type of the directive. The interpreta-
tion of the rest depends on the type.

• Allocate: The Allocate directive represents an interac-
tion sequence that results in the allocation of an object.
It is very likely that we do not have one single primitive
to trigger allocations in the target cache but can choose
between multiple different, which are also different in
behavior and quality. For example, we might have one

3As you will see later, it is actually not just a simple ID but they are also
sorted into groups to provide some hierarchies between different primitives,
but to illustrate the general principle we can just assume that each interaction
gets mapped to a simple ID.

22

Journal of Systems Research (JSys) 2023

Allocate

Allocate
in loop

Free

Source,
Destination

Type

Allocation ID

- Size Group Sub Group Selector

Type

Loop ID

Rep Size Group Sub Group Selector

Type

Allocation ID

-

Type

-

-

[0-7 | 8-23 | 24-31 | 32-39 | 40-63]

Figure 14: The representation of the directives after Heelan
[33]. Each directive is represented by a 128-bit integer. The
type field is always the first, the following fields depend on
the type.

primitive that triggers a single allocation in the target
cache, and a second one that triggers multiple allocations
at once. Most of the time we would probably prefer to
use the primitive that allows us more granular control
about the allocations made. But in certain situations a
primitive that triggers multiple allocations can be very
useful, e.g. to "flatten" the heap structure after a noisy
previous allocation. To tackle these different kinds of
allocation primitives they can be sorted into groups and
sub-groups, which themselves can be assigned probabil-
ities. When e.g. a new allocation is generated through
mutation (as we will see later), the kind of allocation
will be drawn according to the given probability distri-
bution. The first group, the group of the highest order,
is called the "Size Group". In Heelan’s algorithm that
targeted user space allocators, this group was used to
differentiate between primitives that trigger allocations
of objects of different sizes. Due to the nature of slab
allocation, this kind of grouping is not applicable here,
as an allocation of diverging size would either be placed
in a different cache or if the difference is small enough
to still be placed in the same cache, would still behave
the same way as all other allocations, as all allocations
in a cache are placed in a chunk of equal size (as de-
scribed in Section 4.1)4. We still decided to keep the
group structure the same, as it allows very fine control
between different primitives. If the user decides that this
fine control is not necessary, he can simply provide only
one group. Here, the "Size Group" can differentiate be-
tween allocations of one or multiple objects. Each "Size
Group" is divided into one or multiple "Sub Groups".

4As mentioned before, Linux also offers the SLOB allocator as an alter-
native. Here objects are not stored in caches but a simple free list. While the
SLOB allocator is out of scope for this work, a "Size Group" in the original
sense would be applicable here, as objects of different sizes can be placed
next to each other.

These are just another layer of control for defining a
probability distribution over interaction sequences of the
same size but different quality. The actual primitive used
is finally selected via the "Selector" field. Each allo-
cation is then assigned a 64-bit "Allocation ID". This
ID can be referenced by a "Free" directive to free said
allocation. By using 64-bit for generating the ID we can
simply generate these IDs randomly while mutating or
recombining individuals without having to worry about
ID collisions.

• Allocate in a loop: The Allocate in a loop direc-
tive simply performs an "Allocate" directive multiple
times. The fields are identical to those of the "Allocate"
directive with an additional "rep" field that defines how
often the allocation should be repeated.

• Free: The Free directive triggers a free of a previous
allocation. The allocation is referenced by the 64-bit
allocation ID.

• Source/Destination: The Source/Destination direc-
tives trigger an allocation of the Source/Destination ob-
ject. They require no additional parameters.

D.2 Mutation
As described before, the mutation is one of the basic opera-
tions a genetic algorithm performs to generate offspring by
altering a single individual. Our mutation operator is very
similar to the one used in EvoHeap [33]. When the Mutate
function is called from within GetChildren (Algorithm 18),
a number of mutations to be applied is drawn from a geomet-
rically decreasing probability distribution between 1 and a
maximum set by the user.

For each mutation to be applied the algorithm chooses
randomly5 from one of the following available operators:

• Mutate: The Mutate operator first selects a random
number of Allocate and/or Free directives. Each of
the selected Allocate directives are with equal proba-
bility then either changed to an allocation using a dif-
ferent primitive or to a Free of a previous allocation (if
possible). A Free directive on the other hand is either
changed into an Allocation directive using a random
primitive drawn from the provided probability distribu-
tion of the groups and selectors or is changed to free a
different previous allocation (if possible).

• Spray: The Spray operator inserts a new sequence of
Allocation directives into the individual at a random
offset. The primitives used in the allocation are drawn
from the provided distribution but are all identical. The
length of the sequence is randomly drawn from an inter-
val provided by the user.

5Based on a probability distribution provided by the user.

23

Journal of Systems Research (JSys) 2023

• Hole Spray: The Hole Spray operation first generates
a sequence of identical allocations just like the Spray
operator but follows it up with a series of Free directives
which free every second allocation made in the sequence.
The length of the sequence is also drawn randomly from
a user-provided interval, just like in the Spray operator.
The combined sequence is placed at a random position
in the individual.

• Shorten: The Shorten operator simply removes a con-
tiguous section of directives from the individual.

EvoHeap also uses two additional operators: Allocation
Nudge and Free Nudge. These two are alternate versions of
the Spray and Hole Spray operators which only differ in
the maximum length of the generated sequences. The Nudge-
Operators should generate short sequences, while the normal
ones could also generate sequences of very large length. We
chose to remove this kind of differentiation in KEvoHeap for
the following reason: As we apply defragmentation to the
kernel heap right before we execute the candidate, we start
allocating objects in an empty slab. That means, that most
likely all our allocations will take place in one single page
frame. If we allow the algorithm to make a huge number of
allocations, we will most certainly exhaust the slab, which
will cause the creation of a new slab on a new page frame.
This will probably result in the second target object being
allocated on a different page frame than the first one, so the
target objects will not be adjacent to each other6. Because of
this, we only allow sequences to be generated that will not
exhaust the complete slab. As this leaves us with a rather
small maximum length, we do not need a second operator for
a different length class.

D.3 Crossover

The crossover is the other operation a genetic algorithm uses
to create offspring. Just like in EvoHeap we use a modi-
fied version of a two-point crossover [33, 57]. In the classic
two-point crossover, two individuals of equal length swap
a sequence between two set offsets. To cope with the fact
that our individuals can be of different lengths, we select a
sequence of random length starting from a random offset in
each individual and swap them. This can possibly create in-
valid individuals, e.g. by removing an allocation from an
individual that is freed later on or removing the allocation of
the source or the destination. While it is possible to simply let
the algorithm filter these in the selection process, it is more
efficient to prevent this from happening. For this, we employ

6Technically this is not always true, as overflowing over page borders
is possible and can lead to successful exploitation [46]. As SLUB does not
keep metadata at the beginning of a slab, the objects could theoretically even
be directly adjacent. However, this would require manipulating the buddy
allocator in addition to the slab allocator. While this is possible, it is much
more reasonable to assume that we can find a simpler solution inside the slab.

some kind of "housekeeping" routine. If we by accident re-
move the allocation of one of the target objects, we add it
again manually. Additionally, we check the individual for
double frees or frees of IDs that have not been allocated, and
remove those.

D.4 Selection
At the beginning of each EvoStep that is not the first the ex-
isting population has to be evaluated. The Evaluate function
takes the current population and the distances that were re-
turned from the client and assigns each individual a fitness
value that we try to minimize. The fitness is calculated accord-
ing to the following formula:

f itness(d) =

264 if d is "error"
264−1 if d > 0
abs(d) otherwise

(1)

The distance that the client returns is calculated as (srcAddr−
dstAddr), where srcAddr is the address of the first target
object, and dstAddr the address of the second object. If the
client returns an error the fitness of the individual is set to the
maximum, 264. If the distance is larger than zero the objects
have been allocated in the wrong order. We set the fitness
to 264−1 so we can distinguish them from execution errors.
Otherwise, we simply set the fitness to the absolute value
of d. This calculation assumes that we try to allocate the
target after the source, simulating an overflow. If we want to
simulate an underflow, the target has to be allocated before the
source. This can be achieved by simply changing the second
condition from d > 0 to d < 0.

The Select function is listed in Algorithm 7. It is identical
to the one Heelan used in EvoHeap [33]. First, we divide
the population into two groups: The noerr group contains
all individuals that did not result in an error. The orderok
group contains all groups that did not cause an error and also
allocated the target objects in the correct order, so have a
fitness lower than 264−1. If the orderok group is not empty,
the offspring will be selected from it, otherwise, we select
from the noerr group. In the unlikely case that all executions
resulted in an error, we select from the whole population. For
selection we use a mix of elitist selection and double tour-
nament selection, which are both standard genetic algorithm
selection functions [42, 57]. The weighting between both
strategies is set via the e parameter. The third parameter of
SelBest and SelDoubleTourn tells how many individuals
should be selected. Elitist selection simply returns the µ · e
individuals with the best fitness. Double tournament selec-
tion is an a bit more sophisticated approach for selection. In
standard tournament selection, a random set of individuals is
taken from the population, from which the best according to
their fitness is selected. This process gets repeated as often
as the number of individuals that should be selected. In dou-
ble tournament selections, the individuals have to pass two

24

Journal of Systems Research (JSys) 2023

tournaments: First, two individuals are selected via standard
tournament selection. These two then participate in a parsi-
mony tournament, in which the shorter individual is selected
according to a user-provided probability between 0.5 and 1.
This selection strategy puts a penalty on very long individuals.
As through mutation individuals can grow rapidly in size, this
strategy proved to counterbalance this growth [33, 42]. In our
experiments we saw that it is most effective to use a value
of 0.5 for e, splitting the selection in half between elitist and
double tournament selection. The code for both algorithms is
available on GitHub [43].

1 Function Select(pop, f it, µ):
2 noerr← [],noerrFit← []
3 orderok← [],orderokFit← []
4 i← 0
5 while i < len(pop) do
6 if f it[i] ̸= 264 then
7 noerr.append(pop[i])
8 noerrFit.append(f it[i])
9 if f it[i] ̸= 264−1 then

10 orderok.append(pop[i])
11 orderokFit.append(f it[i])
12 i← i+1
13 end
14 if len(orderok) > 0 then
15 pop← orderok
16 f it← orderokFit
17 else if len(noerr) > 0 then
18 pop← noerr
19 f it← noerrFit
20 e← GetFracElitism()
21 b← SelBest(pop, f it, µ · e)
22 r← SelDoubleTourn(pop, f it,

µ · (1− e))
23 return b+ r

Algorithm 7: The selection routine [33]. pop is the popu-
lation, f it their fitnesses, and µ the number of individuals
to select. It implements a (µ+ λ) strategy, as both the
parents and the children are taken into consideration.

D.5 Evaluation Fast-reset-KEvoHeap
Figure 15 provides a comparison of the runtimes of running
100 experiments using KevoHeap, pseudo-random search,
and fast-reset-KEvoHeap.

0 1 2 3 4 5

100

101

102

103

104

Noise
M

in
ut

es
KEvoHeap PRS Fast-reset-KEvoHeap

Figure 15: Bar plot illustrating the execution time of running
100 experiments with natural allocation order and different
noise levels across KEvoHeap and pseudo-random search
with the custom cache implementation, and KEvoHeap utiliz-
ing the fast reset strategy. The values for fast-reset-KEvoHeap
were estimated using the average generations needed for
KEvoHeap to solve the respective problems.

25

	Introduction
	Related Work
	Automation of Exploitation Sub-tasks
	Automatic Exploit Generation
	Kernel Exploitation

	Exploiting Heap Overflows
	Memory allocation in the Linux kernel
	Slab-Allocation

	Kernel-SIEVE: Evaluating HLM Algorithms in the Kernel
	Candidate Algorithms
	Pseudo-Random Search
	KEvoHeap

	Evaluation
	Synthetic Benchmarks
	Pseudo-Random Search
	KEvoHeap

	Analysis and Discussion
	Application in Realistic Settings
	Accessing Distance of Target Objects
	Instability of Results after Multiple Executions
	Application of KEvoHeap in real-world vulnerabilities

	Conclusion
	The SLUB Allocator
	Heelans work
	EvoHeap

	Pseudo-Random Search
	KEvoHeap
	Individual Representation
	Mutation
	Crossover
	Selection
	Evaluation Fast-reset-KEvoHeap

