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Abstract

Instruction-following from prompts in Natural Languages (NLs) is an impor-1

tant benchmark for Human-AI collaboration. Training Embodied AI agents for2

instruction-following with Reinforcement Learning (RL) poses a strong explo-3

ration challenge. Previous works have shown that NL-based state abstractions can4

help address the exploitation versus exploration trade-off in RL. However, NLs5

descriptions are not always readily available and are expensive to collect. We6

therefore propose to use the Emergent Communication paradigm, where artificial7

agents are free to learn an emergent language (EL) via referential games, to bridge8

this gap. ELs constitute cheap and readily-available abstractions, as they are the9

result of an unsupervised learning approach. In this paper, we investigate (i) how10

EL-based state abstractions compare to NL-based ones for RL in hard-exploration,11

procedurally-generated environments, and (ii) how properties of the referential12

games used to learn ELs impact the quality of the RL exploration and learning.13

Results indicate that the EL-guided agent, namely EReLELA, achieves similar14

performance as its NL-based counterparts without its limitations. Our work shows15

that Embodied RL agents can leverage unsupervised emergent abstractions to16

greatly improve their exploration skills in sparse reward settings, thus opening new17

research avenues between Embodied AI and Emergent Communication.18

1 Introduction19

Natural Languages (NLs) have some properties, such as compositionality and recursive syntax, that20

allow us to talk about infinite meanings while only using a finite number of words (or even letters,21

or phonemes...). In other words, it enables us to be as expressive as one might needs. However,22

it may be interesting sometimes to use language to abstract away from the details and only focus23

on the essence of a specific experience, or a specific sensory stimulus. Thus, even though NLs can24

sometimes be used with high expressiveness, they also can work as abstractions. For instance, using a25

unique utterance to refer to a lot of semantically-similar but (visually) different situations, such as the26

one presented in Figure 1 where the utterance ‘one can see a purple key and a green ball’ can refer27

to many of the first-person perspective of the embodied agent, irrespective of the actual perspective28

under which each object is seen.29

Tam et al. [61] referred to that aspect as compacting/clustering a state/observation space, which is30

in effect segmenting it into a set of less-detailed but more-meaningful sub-spaces. We employ the31

term meaningful with respect the task that the embodied agent is possibly trained for. For instance,32

if the task consists of picking and placing objects, then it is meaningful for utterances to contain33

information about objects and places, but not so much to contain information about other agents in34

the environment, if any. In this paradigm, Tam et al. [61] and Mu et al. [51] provided some arguments35

towards the compacting/clustering assumption of NLs, as they used NLs oracle to build an abstraction36
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over a 3D and 2D environments. They relied upon state-of-the-art exploration algorithms, such as37

Random Network Distillation (RND - Burda et al. [9]) and Never-Give-Up (NGU - Badia et al. [1]),38

which can be difficult to deploy.39

Figure 1: Top-view visualization
of a wall-free 3D environment with
different objects (e.g. red and
blue cubes, purple and green keys,
and green ball) showing the trajec-
tory (from blue to red dots) of a
randomly-walking embodied agent,
with first-person perspectives high-
lighted at relevant timesteps using
colored cones - showing the agent’s
viewpoint direction when a new ut-
terance is used to describe the first-
person perspective using an oracle
speaking in NL.

Thus, in this work, we aim to simplify the process of using40

languages as abstractions and address the limitation of using41

NLs, as they are expensive to harvest and not necessarily the42

most meaningful abstraction for any given task. Indeed, instead43

of state-of-the-art exploration algorithms, we show that simpler44

count-based approaches combined with language abstraction45

can be leveraged for hard-exploration tasks. And, in order to46

remove the reliance on NLs, we look at the field of Emergent47

Communication (EC) [41, 7] which have shown that artificial48

languages, that we refer to as emergent languages (ELs), can49

emerge through unsupervised learning algorithms, such as Ref-50

erential Games and variants [19], with structure and properties51

similar to NLs. Our experimental evidences show that ELs,52

acquired over an embodied agent’s observations in an online53

fashion and in parallel of its training, can be leveraged for hard-54

exploration tasks. We investigate what are the properties of55

NLs and ELs in terms of their abstraction building abilities56

by proposing a novel metric entitled Compactness Ambigu-57

ity Metric (CAM). Measures show that ELs abstractions are58

aligned but not similar to NLs in terms of the abstractions they59

perform, as the Emergent Communication context successfully60

picks up on the meaningful features of the environment. Indeed,61

EReLELA’s abstractions reflect colors in the MultiRoom-N7-S462

environment which only features coloured, unlocked doors, but no distracting objects, or shapes in63

the KeyCorridor-S3-R2 environment where it is important to pickup a relevant key, among other64

distractingly-shaped objects, and to open the locked door-shaped object.65

We continue by reviewing EC and RL backgrounds and notations in Section 2. After detailing our66

method in Section 3, we present experimental results on procedurally-generated, hard-exploration67

task from the MiniGrid [15] benchmarks in Section 4. Finally, we discuss in Section 5 the results68

presented in light of some related works and highlight possible future works.69

2 Background & Notation70

We provide details on our Reinforcement Learning (RL) settings and count-based exploration methods71

in Section 2.1.Then, we review Emergent Communication in Section 2.2.72

2.1 Exploration vs Exploitation in Reinforcement Learning73

An RL agent interacts with an environment in order to learn a mapping from states to actions that74

maximises its reward signal. Initially, both the reward signal and the dynamics of the environment,75

i.e. the impact that the agent actions may have on the environment, are unknown to the agent. It must76

explore the environment and gather information, but, all the while it is exploring, it cannot exploit the77

best strategy that it has found so far to maximise the currently-known reward signal. This dilemma is78

known as the Exploration-vs-Exploitation trade-off of RL.This dilemma is only the start of the rabbit79

hole, as it can even get worse. Indeed, in sparse reward environments, the reward signal is mainly80

zero most of the time. This context makes it very difficult for RL agents to learn anything, because RL81

algorithms derive feedback (i.e. gradients to update their parameters) from the reward signal that they82

observe from the environment.It is usually referred to as extrinsic, in order to differentiate it from an83

intrinsic reward signal. As the extrinsic reward is mostly zero, RL agents must exploit another signal84

to derive information about the currently-unknown environment. This other signal can be found in85

relation to the observation/state space, as RL agents can learn to seek novelty or surprise around the86

observation/state space and attempt to manipulate it efficiently by choosing relevant actions. Focusing87

on this novelty, RL agents can harvest an intrinsic reward signal, in the sense that RL agents are88

building it and giving it to themself. Note that this intrinsic reward signal is very different from the89
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extrinsic reward signal, because it does not inform about the task that RL agents need to perform90

in the environment. Ideally, though, it provides a graded and dense signal that the RL agent can91

use to start learning anything about the environment. This is inspired by intrinsic motivation in92

psychology [53]. Exploration driven by curiosity/novelty might be an important way for children93

to grow and learn. Here, we focus on novelty, but the intrinsic rewards could be correlated with e.g.94

impact [54], surprise [9] or familiarity of the state. The intrinsic reward signal is only a proxy for95

RL agents to start to make progress into learning about the environment and eventually, hopefully96

encounter some non-zero extrinsic reward signal along the way. It provides a denser reward signal97

that can guide RL agents into learning internal representations about the environment’s dynamic so98

that, whenever some extrinsic reward are encountered along the way, then they can efficiently bind99

their previously-learned representations to those recently-encountered extrinsic rewards.100

Rt = Est+k+1∼T (st+k,at+k)
at+k+1∼π(st+k+1)

[

T∑
k=0

γkR(st+k+1, at+k+1)]
(1)

Formally, we study a single agent in a Markov Decision Pro-101

cess (MDP) defined by the tuple (S,A, T,R, γ), referring to,102

respectively, the set of states, the set of actions, the transition103

function T : S × A → P (S) which provides the probability104

distribution of the next state given a current state and action,105

the reward function R : S × A → r, and the discount fac-106

tor γ ∈ [0, 1]. The agent is modelled with a stochastic policy107

π : S → P (A) from which actions are sampled at every time step of an episode of finite time horizon108

T . The agent’s goal is to learn a policy which maximises its discounted expected return at time t,109

defined in equation 1. We further define R = λextRext + λintRint as the weighted sum of the extrinsic110

and intrinsic reward functions, respectively, Rext,Rint, with weights λext, λint. Indeed, while the111

extrinsic reward is provided by the environment, we assume that for any tuple (st, at, st+1) we can112

compute an intrinsic reward.113

Stanton and Clune [58] identifies two categories of exploration strategies, to wit across-training,114

where novelty of states, for instance, is evaluated in relation to all prior training RL episodes, and115

intra-life, where it is evaluated solely in relation of the current RL episode. And, historically, we116

can identify two types of intrinsic motivation exploration depending on how the intrinsic reward is117

computed, either relying on count-based or prediction-based methods. Prediction-based methods fit118

into the across-training category and count-based methods can actually fit in both categories but they119

have mainly been instantiated in the literature as across-training methods after extension of intra-life120

core mechanisms. As our proposed architecture EReLELA fit into the category of count-based121

methods, we detail them further.In the context of an intrinsic reward signal correlated with surprise,122

then it is necessary to quantify how much of surprise each observation/state provides. Intuitively, we123

can count how many times a given observation/state has been encountered and derive from that count124

our intrinsic reward. The reward would guide the RL agent to prefer rarely visited/observed states125

compared to common states. This is referred to as the count-based exploration method. Count-based126

exploration method were originally only applicable to tabular RL where the state space is discrete127

and it is easy to compare states together. When dealing with continuous or high-dimensional state128

spaces, such method is not practical. Thus, Bellemare et al. [3] proposed (and extended in Ostrovski129

et al. [52]) a pseudo-count approach which was derived from increasingly more efficient density130

models, and they showed success in applying it to image-based exploration environments from Atari131

2600 benchmark, such as Montezuma’s Revenge, Private Eye, and Venture. We provide more relevant132

details in Appendix B.133

Nevertheless, hard-exploration task involving procedurally-generated environments are notoriously134

difficult for count-based exploration methods. Indeed, when states are procedurally-generated, almost135

all states will be showing ‘novel’ features, most times irrespectively of whether it is relevant to the136

task or not. It will follow that their state (pseudo-)count will always be low and therefore the RL137

agent will get feedback towards reaching all of them indefinitely, but if every state is ‘novel’ then138

there is nothing to guide the agent in any specific direction that would entail to good exploration.139

2.2 Emergent Communication140

Emergent Communication is at the interface of language grounding and language emergence. While141

language emergence raises the question of how to make artificial languages emerge, possibly with142

similar properties to NLs, such as compositionality [2, 24, 45, 55], language grounding is concerned143

with the ability to ground the meaning of (natural) language utterances into some sensory processes,144
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e.g. the visual modality. On one hand, the compositionality of ELs has been shown to further145

the learnability of said languages [38, 57, 8, 45] and, on the other hand, the compositionality of146

NLs promises to increase the generalisation ability of the artificial agent that would be able to147

rely on them as a grounding signal, as it has been found to produce learned representations that148

generalise, when measured in terms of the data-efficiency of subsequent transfer and/or curriculum149

learning [27, 49, 50, 33]. Yet, emerging languages are far from being ‘natural-like’ protolanguages150

[40, 10, 11], and the questions of how to constraint them to a specific semantic or a specific syntax151

remain open problems. Nevertheless, some sufficient conditions can be found to further the emergence152

of compositional languages and generalising learned representations [40, 43, 17, 5, 24, 39, 12, 21].153

The backbone of the field rests on games that emphasise the functionality of languages, namely,154

the ability to efficiently communicate and coordinate between agents. The first instance of such155

an environment is the Signaling Game or Referential Game (RG) by Lewis [44], where a speaker156

agent is asked to send a message to the listener agent, based on the state/stimulus of the world that it157

observed. The listener agent then acts upon the observation of the message by choosing one of the158

actions available to it in order to perform the ‘best’ action given the observed state depending on the159

notion of ‘best’ action being defined by the interests common to both players. In RGs, typically, the160

listener action is to discriminate between a target stimulus, observed by the speaker and prompting161

its message generation, and some other distractor stimuli. Distractor stimuli are selected using a162

distractor sampling scheme, which has been shown to impact the resulting EL [42, 43]. The listener163

must discriminate correctly while relying solely on the speaker’s message. The latter defined the164

discriminative variant, as opposed to the generative variant where the listener agent must reconstruct/-165

generate the whole target stimulus (usually played with symbolic stimuli). Visual (discriminative)166

RGs have been shown to be well-suited for unsupervised representation learning, either by competing167

with state-of-the-art self-supervised learning approaches on downstream classification tasks [22], or168

because they have been found to further some forms of disentanglement [28, 35, 14, 46] in learned169

representations [65, 18]. Such properties can enable “better up-stream performance”[63], greater170

sample-efficiency, and some form of (systematic) generalization [48, 26, 59]. Thus, this paper aims171

to investigate visual discriminative RGs as auxiliary tasks for RL agents.172

3 Method173

In this section, following the acknowledgement of a gap in terms of evaluating the abstractions174

that different languages perform over different state/observation space, we start by introducing in175

Section 3.1 our Compactness Ambiguity Metric (CAM) that attempts to fill in that gap.Then, in176

Section 3.2, we present the EReLELA architecture that leverages EL abstractions in an intra-life177

count-based exploration scheme for RL agents.178

3.1 Compactness Ambiguity Metric179

In order to measure qualities related to the kind of abstraction that a language performs over stimuli,180

we propose to rely on the temporal aspects of embodied agent’s trajectories in a given environment.181

We build over the following intuition, represented in Figure 2: we consider two possible languages182

grounded into the first-person viewpoint of an embodied agent situated in a 3D environment populated183

with objects of different shapes and colors. On one hand, we have the Blue language, which is only184

concerned about blue objects and its utterances only describe that they are of color blue when they185

are, while, on the other hand, we have the Color language, which is describing the color of all186

visible objects. Inherently, those two languages expose different semantics about the world, and187

therefore they perform different abstractions. We aim to build a metric that captures how different the188

semantics they expose are. To do so, we propose to arrange their respective utterances when prompted189

with the very same agent’s trajectories into different timespan-focused buckets towards building190

an histogram. These timespan-focused buckets reflect δ(u) the number of consecutive timesteps191

(tk)k∈[kstart,kstart+δ(u)] for which a specific utterance u would be uttered by a speaker of each language192

when prompted with the stimuli in those timesteps. We will refer to these are compactness counts. For193

instance the Blue language’s utterance ‘I see a blue object’ at the beginning of the trajectory occupies194

twice as more consecutive timesteps as the same utterance coming from a Color language speaker (or,195

its compactness count in the Blue language is twice its compactness count in the Color language).196

Therefore, in the case of the Blue language, this utterance would increment the medium-length bucket,197

while it would increment the short-length bucket in the case of Color language histogram. It ensues198
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that the histograms of timespan-focused buckets captures semantics exposed by each language, and199

we will therefore refer to the resulting histogram as the histogram of semantic-clustering timespans.200

As the toy example highlights, the histograms of semantic-clustering timespans will differ from one201

language to another depending on the semantics each language expose or, in other words, depending202

on the abstractions they perform. This is the first intuition on which the Compactness Ambiguity203

metric is built.204

Figure 2: Toy example illustration of how dif-
ferent languages expose different semantics
over the same observed trajectory of stimuli,
and that the discrepancy in exposed semantics
can be captured by an histogram of semantic-
clustering timespans.

Formally, we define L as the set of all possible lan-205

guages over vocabulary V with maximum sentence206

length L, such that for any language l ∈ L we denote207

Spl : S → l as a speaker agent or oracle that maps208

any state/observation s ∈ S to a caption or utterance209

u ∈ l. Thus, we can now consider N buckets whose210

related timespans (Ti)i∈[1,N ] are sampled relative to211

the maximal length T of a trajectory in the given en-212

vironment, and the histogram of semantic-clustering213

timespans that they induce.214

Then, the other intuition on which the metric is built215

is made evident by considering the expressivity or, its216

inverse, the ambiguity, of a given language l, defined217

as El = #unique utterances
#unique stimuli with # the set cardinality218

operator. Dealing with stimuli being states/observations of a (randomly walking) embodied agent,219

gathered into a dataset D, the number of unique stimuli cannot be estimated reliably when dealing220

with complex, continuous stimuli. Thus, the best we can rely on is a measure of relative expressivity221

over a dataset, that we define as RE l(D) = #unique utterrances
#stimuli =

#Spl(D)
|D| , with | · | being the size222

operator over collections (differing from sets in the sense that they allow duplicates). In those terms,223

the relative expressivity is maximised if and only if (i) #D = |D|, and (ii) Spl is a bijection over224

D. On the other hand, considering that a language l performs an abstraction over D is tantamount225

to some stimuli (s, s′) ∈ D2 sharing the same utterance u = Spl(s) = Spl(s
′), i.e. consisting of226

a hash collision, meaning that the mapping Spl from D to l woud not be injective (and therefore227

not bijective). Incidentally, the relative expressivity RE l(D) cannot be maximised, leading to the228

language l being ambiguous over D. In this consideration, we can see that the ambiguity of a229

language (over a given dataset) can be impacted by either the extent to which an abstraction is230

performed (meaning that most colliding states/observations are of consecutive timesteps) or the231

extent to which the dataset is redundant (meaning #D << |D|). Therefore it is important that our232

proposed Compactness Ambiguity Metric is built to focus on sources of ambiguities that are the233

result of consecutive-timesteps states colliding, more than sources of ambiguities that are the result234

of redundancy in the given dataset.235

∀i ∈ [1, N ], Ti = 1 + ⌈λi · RAl(D)⌉ (2)
∀i ∈ [1, N ], T ′

i = 1 + ⌈λi · T ⌉ (3)

∀i ∈ [1, N ], CA(D)Ti
=

∑
u∈l

#δ≥Ti

D (u)

#δD(u)
(4)

Yet, in its currently proposed form, it is impacted236

by the amount of redundancy in the dataset. In237

order to reduce this dependence, we propose238

to bake some invariance to redudancy-induced239

ambiguity into the timespan-focused buckets.240

To this end, for a given language l and dataset241

D, we define the buckets’ related timespans in relation to the relative ambiguity RAl(D) = 1
REl(D) =242

|D|
#Spl(D) , as shown in equation 2 with λi ∈ [0, 1] s.t. ∀(j, k), j < k =⇒ λj < λk, and ⌈·⌉ being243

the ceiling operator. This is in lieu of defining them in relation to the maximal length T of an agent’s244

trajectory in the environment, as shown in equation 3. More specifically, let us first acknowledge245

decomposition of relative ambiguity over two independent quantities, one for each of its sources246

being either abstraction or redundancy, such that RAl = RAredundancy
l +RAabstract

l . Then note that247

the relative ambiguity is equal to the mean number of consecutive timesteps, or compactness count,248

for which a given utterance would be used when the unique utterances are uniformly distributed249

over the dataset D. Thus, in the metric, we propose to absorb variations of relative ambiguity due to250

redundancy by changing the metric’s bucket setup, from Equation 3 to Equation 2. Doing so, it is true251

that the metric’s bucket setup will also vary when the abstraction-induced relative ambiguity varies,252

we remark that the metric would not build invariance to this source of relative ambiguity since it is253

taken into accounts when sorting out the different unique utterances into their relevant bucket, based254
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on the maximal number of consecutive timesteps in which they occur, as shown in equation 4 with255

δD : l → 2N is the compactness count function that associates each utterances u ∈ l to its related set256

of compactness counts over dataset D, i.e. the set that contains numbers of consecutive timesteps257

for which u ∈ l was uttered by Spl, each time it was uttered without being uttered in the previous258

timestep. For instance, if we consider u ∈ l such that Sp−1
l (u) = {st1 , st1+1, st1+2, st2}, with259

(t1, t2) ∈ [0, T ]2 such that t2 > t1 + 3, then δD(u) = {3, 1} because u occurred 2 non-consecutive260

times over D and those occurrences lasted for, respectively, 3 and 1 consecutive timesteps, i.e. for261

compactness counts of 3 and 1. The superscript ≥ Ti in δ≥Ti

D implies filtering of the output set based262

on compactness counts being greater or equal to Ti. We provide in appendix C an analysis of the263

sensitivity of our proposed metric, and in appendix E.1 experimental results that ascertain the internal264

validity of our proposed metric, we consider a 3D room environment of MiniWorld [15], filled with 5265

different, randomly-placed objects, as shown in a top-view perspective in Figure 1.266

3.2 EReLELA Architecture267

Figure 3: EReLELA architecture consisting of a stimulus/ob-
servation encoder shared between an RL agent and the speaker
and listener agents of a RG, framed as an unsupervised auxil-
iary task [31]. The language utterances outputted by the RG
speaker agent are used in a count-based exploration method
to generate intrinsic rewards for the RL agent.

This section details the EReLELA268

architecture, which stands for Ex-269

ploration in Reinforcement Learning270

via Emergent Language Abstractions.271

As a count-based exploration method,272

we present here its intra-life core273

mechanism, where intrinsic reward274

signals are derived from novelty at275

the level of language utterances de-276

scribing the current observation/state.277

It relies on a hashing-like function278

(cf. Appendix B), which takes the279

form of the speaker agent of a refer-280

ential game (RG), to turn continuous281

and high-dimensional observations/s-282

tates into discrete, variable-length sequences of tokens. EReLELA is built around an RL agent283

augmented with an unsupervised auxiliary task, a (discriminative, here, or generative) RG, following284

the UNREAL architecture from Jaderberg et al. [31], as shown in Figure 3.285

We train the RG agents in a descriptive, discriminative RG with K = 256 distractors, every TRG =286

32768 gathered RL observations, on a dataset DRG consisting of the most recent |DRG| = 8192287

observations, among which 2048 are held-out for validation/testing-purpose, over a maximum of288

NRG−epoch = 32 epochs or until they reach a validation/testing RG accuracy greater than a given289

threshold accRG−thresh = 90%. Our preliminary experiments in Appendices D.1 and D.2 show,290

respectively, that increasing the RG accuracy threshold accRG−thresh increases the sample-efficiency291

of the EL-guided RL agent, and that the number of distractors K ∈ [15, 128, 256] is critical (even292

more so than the distractor sampling scheme - which we set to be uniform unless specified otherwise),293

and that it correlates positively with the performance of the RL agent. More specific details about294

the RG and its agents’ architectures can be found in Appendices F and G and our open-source295

implementation1.296

4 Experiments297

Agents Our RL agent is optimized using the R2D2 algorithm from [34] with the Adam opti-298

mizer Kingma and Ba [36]. Importantly, as it aims to maximise the weighted sum of the extrinsic299

and intrinsic reward functions following equation 1, throughout this paper, we use λint = 0.1 and300

λext = 10.0 in order to make sure that the agent pursues the external goal once the exploration of301

the environment has highlighted it. Further details about the RL agent can be found in Appendix F.302

For our RG agents, we consider optimization using either the Impatient-Only or the LazImpa loss303

function from Rita et al. [56], but the latter is adapted to the context of a Straight-Through Gumbel-304

Softmax (STGS) communication channel [25, 21], as detailed in Appendix G.1, and we refer to305

it as STGS-LazImpa. Indeed, the LazImpa loss function has been shown to induce Zipf’s Law of306

1HIDDEN_FOR_REVIEW_PURPOSE
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Abbreviation (ZLA) in the ELs. Thus, we can investigate in the following experiments how does307

structural similarity between NLs and ELs affect the kind of abstractions they perform, as well as308

the resulting RL agent. Further details about the RG in EReLELA can be found in Appendix G.309

Environments. After having considered in our preliminary experiments (cf. Appendix E.4) the 2D310

environment MultiRoom-N7-S4, we propose below experiments in the more challenging KeyCorridor-311

S3-R2 environment from MiniGrid [15]. Indeed, it involves complex object manipulations, such as312

(distractors) object pickup/drop and door unlocking, which requires first picking up the relevantly-313

colored key object.314

Natural Language Oracles. Our implementation of a NL oracle is simply describing the visible315

objects in terms of their colour and shape attributes, from left to right on the agent’s perspective,316

whilst also taking into account object occlusions. For instance, around the end of the trajectory317

presented in Figure 1, the green key would be occluded by the blue cube, therefore the NL oracle318

would provide the description ‘blue cube red cube’ alone. We also implement colour-specific and319

shape-specific language oracles, which consists of filtering out from the NL oracle’s utterance the320

information that each of those language abstract away, i.e. removing any shape-related word in the321

case of the colour-specific language, and vice-versa.322

Hypotheses. We seek to validate the following hypotheses. Firstly, we consider whether NL323

abstractions can help for hard-exploration in RL with a simple count-based approach (H1), and refer324

to the relevant agent using NL abstractions to compute intrinsic rewards as NLA. We carry on with325

the hypothesis that ELs can be used similarly (H2), and we investigate to what extent do ELs compare326

to NLs in terms of abstraction. We would expect ELs to perform more meaningful abstractions than327

NLs (H3), in the sense that their abstractions would be more aligned with the relevant features of a328

given environment.329

Evaluation. We employ 3 random seeds for each agent. We evaluate (H1) and (H2) using both the330

success rate and the manipulation count, in the hard-exploration task of KeyCorridor-S3-R2. The331

manipulation count is a per-episode counter incremented each time an object is successfully picked332

up or dropped by the RL agent over the course of each episode. In order to evaluate both (H3.1)333

and (H3.2), we use the CAM to measure the kind of abstractions performed by ELs, and compare334

those measures with those of the oracles’ languages that we previously studied. We report the CAM335

distances between ELs and the NL, Color language, and Shape language oracles, which is computed336

as an euclidean distance in R6 by considering the N = 6 CAM scores for each timespans/thresholds337

as vectors in this space. As we remarked that an agent’s skillfullness at the task would induce very338

different trajectories (e.g. in MultiRoom-N7-S4, staying in the first room and only ever seeing the339

first door, for an unskillfull agent, as opposed to visiting multiple rooms and observing multiple340

colored-doors, for a skillfull agent), we compute the oracle languages CAM scores on the exact same341

trajectories than used to compute each EL’s CAM scores.342

Figure 4: Success rate learning curve (left), computed as running averages over 1024 episodes each
time (i.e. 32 in parallel, as there are 32 actors, over 32 running average steps), and barplot (right),
along with per-episode manipulation count (middle) in KeyCorridor-S3-R2 from MiniGrid [15], for
different agents: (i) the Natural Language Abstraction agent (NLA) refers to using the NL oracle to
compute intrinsic reward, (ii) the STGS-LazImpa-β1-β2 EReLELA agents with β1 = 5 (agnostic only)
or β1 = 10 (shared and agnostic), and β2 = 1, (iii) the Impatient-Only EReLELA agents (shared and
agnostic), and (iv) the RANDOM agent referring to an ablated version of EReLELA without RG
training.
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4.1 EReLELA learns Systematic Navigational & Manipulative Exploration Skills from343

Scratch344

We present in Figure 4 both the success rate of the different agents (as line plot through learning -left-,345

or barplot at the end of learning -right-), and the per-episode manipulation count (middle). From346

the fact that both the NLA and EReLELA agent performance converges higher or close to 80% of347

success rate (except the STGS-LazImpa-10-1), we validate hypotheses (H1) and (H2), meaning that348

it is possible to learn systematic exploration skills from both NL or EL abstractions with a simple349

count-based exploration method, in 2D environments (cf. further evidence in Appendix D.1 with the350

MultiRoom-S7-R4 environment). This result puts into perspective the directions of previous literature351

designing complex exploration algorithms [9, 1].352

The sample-efficiency is better for NLA than it is for most EL-based agents, except the Agnostic353

STGS-LazImpa-10-1 agent, possibly because of the fact that ELs are learned online in parallel of the354

RL training, as opposed to the case of NLA which makes use of a ready-to-use oracle. Concerning355

the most-sample-efficient Agnostic STGS-LazImpa-10-1 agent, we interpret its success to be the356

result of benefiting from both a language structure ascribing to the ZLA and a performed abstraction357

that is more optimal than NL oracle’s ones, because it is learned from the stimuli themselves.358

Among the different Agnostic EReLELA agents, the final performance are not statistically-359

significantly distinguishable, meaning that learning systematic exploration skills with EReLELA can360

be done with some robustness to the anecdotical differences in qualities of the different ELs. On the361

other hand, the shared/non-agnostic EReLELA agents’s performance are statistically-significantly362

distinguishable from each other and from their agnostic versions, achieving lower performance or363

even failing to learn anything in the case of the STGS-LazImpa-10-1 EReLELA agent. We interpret364

these results as being caused by some kind of interference between the RG training and the RL365

training, preventing any valuable representations from being learned in the shared observation encoder366

(cf. Figure 3), thus warranting the need for future works to investigate whether a synergy can be367

achieved.368

Finally, acknowledging the RANDOM agent, which is the ablated version of EReLELA without369

RG training, enabling still a median performance around 70% of success rate, we recall the Random370

Network Distillation approach from Burda et al. [9], for they both share a randomly initialised371

networked from which feedback is harvested to guide an RL agent. Thus, even more so in a 2D372

environment, this ablated version is not to be confused with a lower-bound baseline but rather an373

interesting ablation that enables us to show the impact of the RG training, increasing the sample-374

efficiency and final performance of the resulting RL agent.375

4.2 EReLELA learns Meaningful Abstractions376

Regarding hypothesis (H3), we show in Figure 5 the CAM distances between the different agent’s377

ELs and the natural, colour-specific, and shape-specific languages. We recall that in the KeyCorridor-378

S3-R2 environment, the most important feature is object shape as the agent must pickup a key from379

Figure 5: CAM distances to NL (left), Color language (middle), and Shape language (right), for
ELs brought about in KeyCorridor-S3-R2 from MiniGrid [15], with different agents: (i) the STGS-
LazImpa-β1-β2 EReLELA agents with β1 = 5 (agnostic only) or β1 = 10 (shared and agnostic), and
β2 = 1, (ii) the Impatient-Only EReLELA agents (shared and agnostic), and (iii) the RANDOM agent
referring to an ablated version of EReLELA without RG training.
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all other distractor objects and then use it to unlock the locked door. Thus, as we observe that380

most ELs’ abstractions are closer to the shape-specific language than the others, we conclude that381

EReLELA learns meaningful abstractions, thus validating hypothesis (H3) (cf. Appendix E.3 for382

further evidence in the context of MultiRoom-N7-S4). Further, we remark that the failing STGS-383

LazImpa-10-1 EReLELA agent is indeed failing because its EL’s abstractions are not highlighting384

shape features. When considering the shared/non-agnostic agents only, we can see that they require385

many more RG training epochs, meaning that they reach the accuracy threshold less often than their386

agnostic counterparts. We take this as further evidence for our interpretation that there might be387

interference between the RL objective and the RG objective.388

We note that abstractions from ELs brought about in the contexts of the Agnostic STGS-LazImpa389

agents and the Agnostic Impatient-Only agents are the closest to that of the shape-specific language390

ones, and their evolution throughout learning are similar. Yet, the Agnostic STGS-LazImpa agents391

achieves statistically-significantly better sample-efficiency (cf. Figure 7). We interpret this as being392

caused by the ZLA structure of the ELs in the context of the Agnostic STGS-LazImpa agents, thus393

showing that NL-like structure is impacting the kind of abstractions being performed in ways that are394

yet to be unveiled by future works.395

Limitations. With regards to the external validity of EReLELA, we acknowledge that the current396

work only addresses a 2D environment and therefore, despite being procedurally-generated, it presents397

less challenges to count-based exploration methods than in the context of 3D procedurally-generated398

environments. Although we provide some results in Appendix E.3 showing that EReLELA is able399

to learn meaningful abstractions in a 3D environment, we leave it to future work to ascertain the400

external validity of EReLELA by testing it in a procedurally-generated 3D environment that pose401

purely-navigational or navigational and manipulative exploration challenges.402

5 Discussion403

We investigated the compacting/clustering hypothesis for ELs, questioning how do NLs and ELs404

compare in terms of the abstractions they perform over state/observation spaces. To answer this405

question, we proposed a novel metric entitled Compactness Ambiguity Metric (CAM), for which we406

analysed the sensitivity and performed internal validation.407

We then leveraged this metric to show that ELs abstractions are more meaningful than NLs ones,408

as the Emergent Communication context successfully picks up on the meaningful features of the409

environment.410

Then, we have proposed the Exploration in Reinforcement Learning via Emergent Languages411

Abstractions (EReLELA) agent, which leverages ELs abstractions to generate intrinsic motivation412

rewards for an RL agent to learn systematic exploration skills. Our experimental evidences showed413

the performance of EReLELA in procedurally-generated, hard-exploration 2D environments from414

MiniGrid [15].415

Moreover, in the parallel optimization of the RG players, we evidenced how the STGS-LazImpa loss416

function, which induces EL to abide by ZLA like most NLs, impacts the kind of abstraction being417

performed compared to baseline Impatient-Only loss function, and yields better sample-efficiency for418

the RL agent training.419

Future work ought to investigate different loss functions and distractor sampling schemes, especially420

if playing discriminative RGs like here, as we expect, for instance, that sampling distractors more421

contrastively, e.g. like in Choi et al. [17], may induce the emergence of more complete, and therefore422

more meaningful ELs. By complete, we mean that the ELs would still be abstracting away details but423

also capturing more information about the underlying structure of the stimuli space, e.g. capturing424

both colour- and shape-related information of visible objects. In this light, we would also expect425

generative RGs to propose a possibly different picture that is worth investigating.426

While we leave it to subsequent work to investigate the external validity of EReLELA and whether427

it transfers similarly well to 3D environments, our results open the door to a new application428

of the principles of Emergent Communication and ELs towards influencing/shaping the learned429

representations and behaviours of Embodied AI agents trained with RL.430
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for exploration in reinforcement learning over hard-exploration, procedurally-generated601

environments, is substantiated in Section E.3.602
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Question: For each theoretical result, does the paper provide the full set of assumptions and645

a complete (and correct) proof?646

Answer: [Yes]647

Justification: Our only theoretical results is found in Appendix C with the full set of648

assumptions and a complete and correct proof.649

Guidelines:650

• The answer NA means that the paper does not include theoretical results.651

• All the theorems, formulas, and proofs in the paper should be numbered and cross-652

referenced.653

• All assumptions should be clearly stated or referenced in the statement of any theorems.654

• The proofs can either appear in the main paper or the supplemental material, but if655

they appear in the supplemental material, the authors are encouraged to provide a short656

proof sketch to provide intuition.657

• Inversely, any informal proof provided in the core of the paper should be complemented658

by formal proofs provided in appendix or supplemental material.659

• Theorems and Lemmas that the proof relies upon should be properly referenced.660

4. Experimental Result Reproducibility661

Question: Does the paper fully disclose all the information needed to reproduce the main ex-662

perimental results of the paper to the extent that it affects the main claims and/or conclusions663

of the paper (regardless of whether the code and data are provided or not)?664

Answer: [Yes]665

Justification: All the information needed to reproduce the main experimental results and666

appendices experimental results are discussed both in Sections 3 or 4 for critical (and new)667

hyperparameters, and in Appendices G and F for hyperparameters introduced in previous668

works.669

Guidelines:670

• The answer NA means that the paper does not include experiments.671

• If the paper includes experiments, a No answer to this question will not be perceived672

well by the reviewers: Making the paper reproducible is important, regardless of673

whether the code and data are provided or not.674

• If the contribution is a dataset and/or model, the authors should describe the steps taken675

to make their results reproducible or verifiable.676

• Depending on the contribution, reproducibility can be accomplished in various ways.677

For example, if the contribution is a novel architecture, describing the architecture fully678

might suffice, or if the contribution is a specific model and empirical evaluation, it may679

be necessary to either make it possible for others to replicate the model with the same680

dataset, or provide access to the model. In general. releasing code and data is often681

one good way to accomplish this, but reproducibility can also be provided via detailed682

instructions for how to replicate the results, access to a hosted model (e.g., in the case683

of a large language model), releasing of a model checkpoint, or other means that are684

appropriate to the research performed.685

• While NeurIPS does not require releasing code, the conference does require all submis-686

sions to provide some reasonable avenue for reproducibility, which may depend on the687

nature of the contribution. For example688

(a) If the contribution is primarily a new algorithm, the paper should make it clear how689

to reproduce that algorithm.690

(b) If the contribution is primarily a new model architecture, the paper should describe691

the architecture clearly and fully.692

(c) If the contribution is a new model (e.g., a large language model), then there should693

either be a way to access this model for reproducing the results or a way to reproduce694

the model (e.g., with an open-source dataset or instructions for how to construct695

the dataset).696
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(d) We recognize that reproducibility may be tricky in some cases, in which case697

authors are welcome to describe the particular way they provide for reproducibility.698

In the case of closed-source models, it may be that access to the model is limited in699

some way (e.g., to registered users), but it should be possible for other researchers700

to have some path to reproducing or verifying the results.701

5. Open access to data and code702

Question: Does the paper provide open access to the data and code, with sufficient instruc-703

tions to faithfully reproduce the main experimental results, as described in supplemental704

material?705

Answer: [Yes]706

Justification: The open-access code contains a README.md file with sufficient instructions707

to faithfully reproduce the main experimental results.708

Guidelines:709

• The answer NA means that paper does not include experiments requiring code.710

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/711

public/guides/CodeSubmissionPolicy) for more details.712

• While we encourage the release of code and data, we understand that this might not be713

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not714

including code, unless this is central to the contribution (e.g., for a new open-source715

benchmark).716

• The instructions should contain the exact command and environment needed to run to717

reproduce the results. See the NeurIPS code and data submission guidelines (https:718

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.719

• The authors should provide instructions on data access and preparation, including how720

to access the raw data, preprocessed data, intermediate data, and generated data, etc.721

• The authors should provide scripts to reproduce all experimental results for the new722

proposed method and baselines. If only a subset of experiments are reproducible, they723

should state which ones are omitted from the script and why.724

• At submission time, to preserve anonymity, the authors should release anonymized725

versions (if applicable).726

• Providing as much information as possible in supplemental material (appended to the727

paper) is recommended, but including URLs to data and code is permitted.728

6. Experimental Setting/Details729

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-730

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the731

results?732

Answer: [Yes]733

Justification: All the information needed to reproduce the main experimental results and734

appendices experimental results are discussed both in Sections 3 or 4 for critical (and newly-735

introduced) hyperparameters, and in Appendices G and F for hyperparameters introduced736

in previous works.737

Guidelines:738

• The answer NA means that the paper does not include experiments.739

• The experimental setting should be presented in the core of the paper to a level of detail740

that is necessary to appreciate the results and make sense of them.741

• The full details can be provided either with the code, in appendix, or as supplemental742

material.743

7. Experiment Statistical Significance744

Question: Does the paper report error bars suitably and correctly defined or other appropriate745

information about the statistical significance of the experiments?746

Answer: [Yes]747
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Justification: All plots (barplots or line plots) contains in the title the type of information748

about the statistical significance of the experiments (i.e. min/median/max, meaning that the749

shaded area reflect the min and max values of the distribution while the bar or line reflects750

the median of the distribution).751

Guidelines:752

• The answer NA means that the paper does not include experiments.753

• The authors should answer "Yes" if the results are accompanied by error bars, confi-754

dence intervals, or statistical significance tests, at least for the experiments that support755

the main claims of the paper.756

• The factors of variability that the error bars are capturing should be clearly stated (for757

example, train/test split, initialization, random drawing of some parameter, or overall758

run with given experimental conditions).759

• The method for calculating the error bars should be explained (closed form formula,760

call to a library function, bootstrap, etc.)761

• The assumptions made should be given (e.g., Normally distributed errors).762

• It should be clear whether the error bar is the standard deviation or the standard error763

of the mean.764

• It is OK to report 1-sigma error bars, but one should state it. The authors should765

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis766

of Normality of errors is not verified.767

• For asymmetric distributions, the authors should be careful not to show in tables or768

figures symmetric error bars that would yield results that are out of range (e.g. negative769

error rates).770

• If error bars are reported in tables or plots, The authors should explain in the text how771

they were calculated and reference the corresponding figures or tables in the text.772

8. Experiments Compute Resources773

Question: For each experiment, does the paper provide sufficient information on the com-774

puter resources (type of compute workers, memory, time of execution) needed to reproduce775

the experiments?776

Answer: [Yes]777

Justification: Section F contains sufficient information on the computer resources needed to778

reproduce the experiments.779

Guidelines:780

• The answer NA means that the paper does not include experiments.781

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,782

or cloud provider, including relevant memory and storage.783

• The paper should provide the amount of compute required for each of the individual784

experimental runs as well as estimate the total compute.785

• The paper should disclose whether the full research project required more compute786

than the experiments reported in the paper (e.g., preliminary or failed experiments that787

didn’t make it into the paper).788

9. Code Of Ethics789

Question: Does the research conducted in the paper conform, in every respect, with the790

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?791

Answer: [Yes]792

Justification: The research conducted in the paper conform in every respect with the NeurIPS793

Code of Ethics.794

Guidelines:795

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.796

• If the authors answer No, they should explain the special circumstances that require a797

deviation from the Code of Ethics.798
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-799

eration due to laws or regulations in their jurisdiction).800

10. Broader Impacts801

Question: Does the paper discuss both potential positive societal impacts and negative802

societal impacts of the work performed?803

Answer: [Yes]804

Justification: The paper contains a Broader Impact discussion in Appendix A.805

Guidelines:806

• The answer NA means that there is no societal impact of the work performed.807

• If the authors answer NA or No, they should explain why their work has no societal808

impact or why the paper does not address societal impact.809

• Examples of negative societal impacts include potential malicious or unintended uses810

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations811

(e.g., deployment of technologies that could make decisions that unfairly impact specific812

groups), privacy considerations, and security considerations.813

• The conference expects that many papers will be foundational research and not tied814

to particular applications, let alone deployments. However, if there is a direct path to815

any negative applications, the authors should point it out. For example, it is legitimate816

to point out that an improvement in the quality of generative models could be used to817

generate deepfakes for disinformation. On the other hand, it is not needed to point out818

that a generic algorithm for optimizing neural networks could enable people to train819

models that generate Deepfakes faster.820

• The authors should consider possible harms that could arise when the technology is821

being used as intended and functioning correctly, harms that could arise when the822

technology is being used as intended but gives incorrect results, and harms following823

from (intentional or unintentional) misuse of the technology.824

• If there are negative societal impacts, the authors could also discuss possible mitigation825

strategies (e.g., gated release of models, providing defenses in addition to attacks,826

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from827

feedback over time, improving the efficiency and accessibility of ML).828

11. Safeguards829

Question: Does the paper describe safeguards that have been put in place for responsible830

release of data or models that have a high risk for misuse (e.g., pretrained language models,831

image generators, or scraped datasets)?832

Answer: [NA]833

Justification: The paper does release data or models that have any risk for misuses.834

Guidelines:835

• The answer NA means that the paper poses no such risks.836

• Released models that have a high risk for misuse or dual-use should be released with837

necessary safeguards to allow for controlled use of the model, for example by requiring838

that users adhere to usage guidelines or restrictions to access the model or implementing839

safety filters.840

• Datasets that have been scraped from the Internet could pose safety risks. The authors841

should describe how they avoided releasing unsafe images.842

• We recognize that providing effective safeguards is challenging, and many papers do843

not require this, but we encourage authors to take this into account and make a best844

faith effort.845

12. Licenses for existing assets846

Question: Are the creators or original owners of assets (e.g., code, data, models), used in847

the paper, properly credited and are the license and terms of use explicitly mentioned and848

properly respected?849

Answer: [NA]850
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Justification: Apart from the environments from MiniGrid [15], the paper does not use851

existing assets.852

Guidelines:853

• The answer NA means that the paper does not use existing assets.854

• The authors should cite the original paper that produced the code package or dataset.855

• The authors should state which version of the asset is used and, if possible, include a856

URL.857

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.858

• For scraped data from a particular source (e.g., website), the copyright and terms of859

service of that source should be provided.860

• If assets are released, the license, copyright information, and terms of use in the861

package should be provided. For popular datasets, paperswithcode.com/datasets862

has curated licenses for some datasets. Their licensing guide can help determine the863

license of a dataset.864

• For existing datasets that are re-packaged, both the original license and the license of865

the derived asset (if it has changed) should be provided.866

• If this information is not available online, the authors are encouraged to reach out to867

the asset’s creators.868

13. New Assets869

Question: Are new assets introduced in the paper well documented and is the documentation870

provided alongside the assets?871

Answer: [NA]872

Justification: The paper does not release new assets.873

Guidelines:874

• The answer NA means that the paper does not release new assets.875

• Researchers should communicate the details of the dataset/code/model as part of their876

submissions via structured templates. This includes details about training, license,877

limitations, etc.878

• The paper should discuss whether and how consent was obtained from people whose879

asset is used.880

• At submission time, remember to anonymize your assets (if applicable). You can either881

create an anonymized URL or include an anonymized zip file.882

14. Crowdsourcing and Research with Human Subjects883

Question: For crowdsourcing experiments and research with human subjects, does the paper884

include the full text of instructions given to participants and screenshots, if applicable, as885

well as details about compensation (if any)?886

Answer: [NA]887

Justification: The paper does not involve experiments with human subjects nor crowdsourc-888

ing.889

Guidelines:890

• The answer NA means that the paper does not involve crowdsourcing nor research with891

human subjects.892

• Including this information in the supplemental material is fine, but if the main contribu-893

tion of the paper involves human subjects, then as much detail as possible should be894

included in the main paper.895

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,896

or other labor should be paid at least the minimum wage in the country of the data897

collector.898

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human899

Subjects900
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Question: Does the paper describe potential risks incurred by study participants, whether901

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)902

approvals (or an equivalent approval/review based on the requirements of your country or903

institution) were obtained?904

Answer: [NA]905

Justification: The paper does not involve crowdsourcing nor research with human subjects.906

Guidelines:907

• The answer NA means that the paper does not involve crowdsourcing nor research with908

human subjects.909

• Depending on the country in which research is conducted, IRB approval (or equivalent)910

may be required for any human subjects research. If you obtained IRB approval, you911

should clearly state this in the paper.912

• We recognize that the procedures for this may vary significantly between institutions913

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the914

guidelines for their institution.915

• For initial submissions, do not include any information that would break anonymity (if916

applicable), such as the institution conducting the review.917
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A Broader impact918

No technology is safe from being used for malicious purposes, which equally applies to our research.919

However, we view many of the ethical concerns surrounding research to be mitigated in the present920

case. These include data-related concerns such as fair use or issues surrounding use of human subjects,921

given that our data consists solely of simulations.922

With regards to the ethical aspects related to its inclusion in the field of Artificial Intelligence, we argue923

that our work aims to have positive outcomes on the development of human-machine interfaces since924

we investigate, among other things, alignment of emergent languages with natural-like languages.925

The current state of our work does not allow extrapolation towards negative outcomes. We believe926

that this work is of benefit to the research community of reinforcement learning, language emergence927

and grounding, in their current state.928

B Further details on Count-Based Exploration929

Another approach to counting states from continuous and/or high-dimensional state spaces is by930

relying on hashing functions, so that states become tractable. Indeed, Tang et al. [62] have shown that931

a generalisation of classical counting techniques through hashing can provide an appropriate signal932

for exploration in continuous and/or high-dimensional environments where informed exploration is933

required. In effect, they proposed to discretise the state space S with a hash function ϕ : S → Zk,934

with k ∈ N \ {0}, to derive an exploration bonus of the form r+(s) = β√
n(ϕ(s))

where β ∈ R+ is a935

bonus coefficient and n(.) is a count initialised at zero for the whole range of ϕ and updated at each936

step t of the RL loop by increasing by 1 the count n(ϕ(st)) related to the current observation/state937

st. Performance is dependent on the hash function ϕ, and especially in terms of granularity of the938

discretisation it induces. Indeed, it would be desirable that the ‘similar’ states result in hashing939

collisions while the ‘distant’ states would not. To this end, they propose to use locality-sensitive940

hashing (LSH) such as SimHash [13], resulting in the following:941

ϕ(s) = sgn(Ag(s)) ∈ {−1, 1}k, (5)

where sgn is the sign function, A ∈ Rk×D is a matrix with each entry drawn i.i.d. from a standard942

Gaussian distribution, and g : S → RD is an optional preprocessing function. Note that increasing943

k leads to higher granularity and therefore decreases the number of hashing collisions. Tang et al.944

[62] reports great results on the Atari 2600 benchmarks, both with and without a learnable g that is945

modelled as the encoder of an autoencoder (AE).946
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C Sensitivity Analisys of the Compactness Ambiguity Metric947

Based on derivative-based local sensitivity analysis, we propose an intuitive proof of our claim that948

defining timespans in relation to the relative ambiguity reduces the sensibility to variations induced949

by redundancy-based ambiguity in the resulting metric, compared to defining timespans in relation to950

the the maximal length T of an agent’s trajectory in the environment. To do so, we assume:951

(i) that there exists two differentiable function fi.f
′
i such that for all i ∈ [1, N ], we have952

CA(D)Ti = fi(D,RAredundancy
l ,RAabstract

l ) when Ti is defined according to Equation 2,953

and respectively with f ′
i when using T ′

i from Equation 3, and954

(ii) that their partial derivatives with respect to Ti or T ′
i are negative. Indeed, Ti and T ′

i are955

involved into filtering operations reducing the value of the numerator in Equation 4, therefore956

any increase of their values would result in decreasing the overall metric output, which957

implies that their partial derivatives with fi and f ′
i must be negative.958

With those assumptions, we show that fi’s sensitivity to redundancy-induced ambiguity RAredundancy
l959

is less than that of f ′
i :960

Proof.

∂fi

∂RAredundancy
l

=
∂fi

∂CCD
· ∂CCD

∂RAredundancy
l

+
∂fi
∂Ti

· ∂Ti

∂RAredundancy
l

(from Assump. (i) about fi)

⇐⇒ ∂fi

∂RAredundancy
l

=
∂f ′

i

∂RAredundancy
l

+
∂fi
∂Ti

· ∂Ti

∂RAredundancy
l

(from Assump. (i) about f ′
i )

⇐⇒ ∂fi

∂RAredundancy
l

=
∂f ′

i

∂RAredundancy
l

+
∂fi
∂Ti

· λi

=⇒ | ∂fi

∂RAredundancy
l

| ≤ | ∂f ′
i

∂RAredundancy
l

| (since ∂fi
∂Ti

· λi ≤ 0 from Assump. (ii))

961
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D Preliminary Experiments962

D.1 Impact of Referential Game Accuracy963

In this experiments, we investigate whether the RG accuracy impacts the RL agent training, in the964

context of the MultiRoom-N7-S4 environment from MiniGrid [15], with an RL sampling budget of965

1M observations.966

Hypothesis. We seek to validate the following hypotheses, (PH1) : the sample-efficiency of the967

RL agent is dependant on the quality of the RG players, as parameterised by the accRG−thresh968

hyperparameter.969

Evaluation. We report both the success rate and the coverage count in the hard-exploration task of970

MultiRoom-N7-S4. To compute the coverage count, we overlay a grid of tiles over the environment’s971

possible locations/cells of the agents and we count the number of different tiles visited by the RL972

agent over the course of each episode. We use 3 random seeds for each agent. In order to evaluate the973

impact of the RG accuracy strictly in terms of the kind of abstractions that are being performed by the974

resulting EL, we use the Impatient-Only loss function (removing the impact of the hyperparameter of975

the scheduling function α(·) from the Lazy term of the STGS-LazImpa loss function), and we employ976

an agnostic version of our proposed EReLELA agent, i.e. without sharing the observation encoder977

between the RG players and the RL agent. We present results for two different RG accuracy978

threshold accRG−thresh = 60% (green) or accRG−thresh = 80% (red), and compare against, as an979

upper bound the Natural Language Abstraction agent (blue), which refers to using the NL oracle to980

compute intrinsic reward, and, as a lower bound an ablated version of EReLELA without RG training981

(orange).982

Results. We present results in Figure 6. We observe statistically significant differences between983

the performances (in terms of success rate, cf. Figure 6(left)) of the two EReLELA agents with984

accRG−thresh = 60% or accRG−thresh = 80%, thus validating hypothesis (PH1). We observe that985

higher RG accuracy threshold lead to higher sample-efficiency.986

As a sanity check, we plot the results of the ablated EReLELA agent without RG training, and we were987

expecting it to perform poorer than any other agent since the quality of its RG players is the lowest, at988

chance level. Yet, we observe that it performs on par with the best accRG−thresh = 80%-EReLELA989

agent. While puzzling, we propose a possible explanation in the observation that the test-time relative990

expressivity of the ablated agent is higher than that of the least-performing, accRG−thresh = 60%-991

EReLELA agent, and on par with that of the best-performing, accRG−thresh = 80%-EReLELA992

agent, at the beginning of the RL agent training process. Thus, we interpret this as follows: the993

randomly-initialised ablated agent’s EL is possibly performing an abstraction over the observation994

Figure 6: Success rate (left), test-time relative expressivity (middle), and per-episode coverage
count (right) in MultiRoom-N7-S4 from MiniGrid [15], computed as running averages over 256
episodes each time (i.e. 32 in parallel, as there are 32 actors, over 8 running average steps), for
different agents: (i) the Natural Language Abstraction agent (blue) refers to using the NL oracle
to compute intrinsic reward, the Agnostic Impatient-Only EReLELA agent refers to our proposed
architecture without sharing the observation encoder between the RG players and the RL agent,
using the Impatient-Only loss function to optimize the RG players, with an RG accuracy threshold
accRG−thresh = 60% (ii - green) or accRG−thresh = 80% (iii - red), and (iv) an ablated version
without RG training (orange).
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space that is good-enough for the RL agent to start learning exploration skills, the same way the995

random network in the context of the RND agent from Burda et al. [9] probably does, and increasing996

the quality of the RG players may only be a sufficient condition to increasing the sample-efficiency997

of the EL-guided RL agent.998

D.2 Impact of Referential Game Distractors999

In this experiments, we investigate whether the RG’s number of distractors K and distractor sampling1000

scheme impacts the RL agent training, in the context of the KeyCorridor-S3-R2 environment from1001

MiniGrid [15], with an RL sampling budget of 1M observations.1002

Hypothesis. We seek to validate the following hypotheses, (PH2) : the sample-efficiency of the RL1003

agent is dependant on the number of distractors K and the distractor sampling scheme.1004

Evaluation. We report the success rate in the hard-exploration task of KeyCorridor-S3-R2. We1005

use 3 random seeds for each agent. Like previously, we use the Impatient-Only loss function (to1006

remove the impact of the hyperparameter of the scheduling function α(·) from the Lazy term of1007

the STGS-LazImpa loss function), and we employ an agnostic version of our proposed EReLELA1008

agent, i.e. without sharing the observation encoder between the RG players and the RL agent.1009

We present results for three different number of distractors K ∈ [15, 128, 256] and two different1010

sampling scheme between UnifDSS corresponding to uniformly sampling distractors over the whole1011

training dataset, or Sim50DSS corresponding to sampling distractors 50% of the time from the same1012

RL episode than the current target stimulus is from and, the rest of the time following UnifDSS.1013

Following results in Appendix D.1, we set the RG accuracy threshold accRG−thresh ∈ [80%, 90%].1014

Results. We present results in Figure 7. We observe statistically significant differences between the1015

performances of the different EReLELA agents, thus validating hypothesis (PH2). Our results show1016

that (i) the number of distractors K is the most impactful parameter and it correlates positively with1017

the resulting performance, irrespective of the distractor sampling scheme used, and, indeed, (ii) while1018

the Sim50DSS seems to provide better performance than UnifDSS for low numbers of distractors1019

K = 15, although not statistically-significantly, the table is turned when considering high number of1020

distractors K = 256 where the UnifDSS yields statistically significantly better performance than the1021

Sim50DSS.1022

Figure 7: Final success rate barplot (left) and success rate throughout learning (right) in KeyCorridor-
S3-R2 from MiniGrid [15], computed as running averages over 1024 episodes each time (i.e. 32
in parallel, as there are 32 actors, over 32 running average steps), for the Agnostic Impatient-Only
EReLELA agent, which refers to our proposed architecture without sharing the observation encoder
between the RG players and the RL agent, using the Impatient-Only loss function to optimize
the RG players, with different number of distractors K and distractors sampling schemes: with RG
accuracy threshold accRG−thresh = 80%, (i) K = 15 and UnifDSS or Sim50DSS, (ii) K = 1128
and UnifDSS or Sim50DSS, or with RG accuracy threshold accRG−thresh = 90%, (iii) K = 256
and UnifDSS or Sim50DSS.
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E Further Experiments1023

E.1 Experiment #1: CAM Metric Internal Validity1024

Environment. We consider a 3D room environment of MiniWorld [15], where the agent’s observation1025

is egocentric, as a first-person viewpoint. The room is filled with 5 different, randomly-placed objects,1026

with different shapes (among ball, box or key) and colours (among). The dimensions simulate a 121027

by 5 meters room, like shown in a top-view perspective in Figure 1.1028

Hypothesis. In this experiments, we seek to validate two hypotheses, (H1.1) : the Compactness1029

Ambiguity Metric captures something that is related to the kind of abstraction a language performs,1030

and (H1.2) : the Compactness Ambiguity Metric allows a graduated comparison of different kind1031

of abstractions being performed, meaning that it allows discrimination between different kind of1032

abstractions.1033

Evaluation. In order to compute the metric, we use 5 seeds to gather random walk trajectories in our1034

environment, for each language. In order to evaluate (H1.1), we propose to measure a language that1035

is built to present no meaningful abstractions and we expect the measure to be close to null. We build1036

a language that performs no meaningful abstraction from the natural language oracles by shuffling1037

its utterances over the set of agent trajectories that are used to compute the metric, meaning that1038

the mapping between temporally-sensitive stimuli and linguistic utterances is rendered completely1039

random.1040

Then, in order to evaluate (H1.2), we show experimental evidences that the metric allows qualitative1041

discrimination between the different languages built above from the natural language oracles, which1042

are build to perform different kind of abstractions.1043

Results. We present results of the metric with N = 6 timespans in Figure 8, for λ0 = 0.0306125,1044

λ1 = 0.06125, λ2 = 0.125, λ3 = 0.25, λ4 = 0.5 and λ5 = 0.75. As the shuffled (natural) language1045

measure is almost null on all timespans/thresholds, we validate hypothesis (H1.1).1046

We observe that we can qualitatively discriminate between each evaluated language’s measures since1047

the histograms are statistically different. Moreover, language abstractions scores are inversely corre-1048

lated with the amount of information being abstracted away, i.e. attribute-value-specific languages’1049

abstraction score lower than colour/shape-specific languages abstraction, which score lower than1050

natural language abstractions. Thus, we can see that the metric is graduated and that the graduation1051

follows the amount of abstraction being performed by each language. This allows us to validate1052

hypothesis (H1.2).1053

Figure 8: Interval validity measures of Compactness Ambiguity Metric for N = 6 timespans/thresh-
olds, with λ0 = 0.0306125, λ1 = 0.06125, λ2 = 0.125, λ3 = 0.25, λ4 = 0.5 and λ5 = 0.75, for
different languages built to perform different kind of abstraction. We can qualitatively discriminate
between each languages, and validate that the shuffled (natural) language’s meaningless abstraction
scores almost null.

25



E.2 Experiment #2: Qualities of Emergent Languages Abstractions in 3D environment1054

In this experiment, we investigate what kind of abstractions do ELs perform over a 3D environment,1055

in comparison to some natural languages abstractions, as detailed at the beginning of Section 4. For1056

further precision, we also implement attribute-value-specific language oracles with the same filtering1057

approach. For instance, for the green value on the colour attribute, we would obtain a green-only1058

language oracle whose utterances could be ‘EoS’ if no visible object is green, or ‘green green’ if there1059

are two green objects visible in the agent’s observation. We consider the same 3D room environment1060

of MiniWorld [15] as in Section E.1, i.e. the agent’s observation is egocentric, as a first-person1061

viewpoint and the room is filled with 5 different, randomly-placed objects, with different shapes1062

(among ball, box or key) and colours (among). The dimensions simulate a 12 by 5 meters room, like1063

shown in a top-view perspective in Figure 1.1064

Hypothesis. We seek to validate the following hypotheses, (H2.1) : ELs build meaningful abstractions,1065

and (H2.2) : ELs brought about using the STGS-LazImpa loss function (type II) perform more1066

meaningful abstractions than Impatient-Only baseline (type I).1067

Evaluation. In order to make the CAM measures, we use 5 seeds to gather random walk trajectories1068

in our environment, for each language. In order to evaluate both (H2.1) and (H2.2), we use the CAM1069

to measure the kind of abstractions performed by ELs brought about in the two different EReLELA1070

settings, with Impatient-Only or STGS-LazImpa losses, and compare those measures with those of1071

the oracles’ languages that we previously studied.1072

Results. We present results of the metric with N = 6 timespans in Figure 9. We observe statistically1073

significant differences between ELs of type I and II, with type I’s abstraction being similar to a Blue-1074

specific language’s abstraction (timespans 0− 4) or a Ball-specific language’s abstraction (timespans1075

1− 3), and type II’s abstraction not really resembling any of the oracle languages’ abstractions, but1076

still being meaningful with scores increasing along with the length of the considered timespans. Thus,1077

we validate hypothesis (H2.1), but cannot conclude on hypothesis (H2.2), unless we consider that1078

CAM scores related to longer timespans are more meaningful, for instance.1079

E.3 Experiment #3: Learning Purely-Navigational Systematic Exploration Skills from1080

Scratch1081

In the following, we present an experiment in the MultiRoom-N7-S4 environment from MiniGrid [15],1082

which is possibly less challenging than KeyCorridor-S3-R2, presented in the Section 4, for it does1083

not involve as many complex object manipulation (e.g. only open/close doors, no unlocking of1084

doors – which requires the corresponding key to be firstly picked up – nor pickup/drop keys or1085

other objects as distractors), but still poses a purely-navigational hard-exploration challenge. We1086

report results on the agnostic version of our proposed EReLELA architecture, that is to say without1087

sharing the observation encoder between both RG players and the RL agent, in order to guard1088

ourselves against the impact of possible confounders found in multi-task optimization, such as possible1089

Figure 9: Measures of Compactness Ambiguity Metric for N = 6 timespans/thresholds, with
λ0 = 0.0306125, λ1 = 0.06125, λ2 = 0.125, λ3 = 0.25, λ4 = 0.5 and λ5 = 0.75, comparing ELs
(Type I and II) with different oracles’ languages built to perform different kind of abstraction.
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Figure 10: Success rate (left) and per-episode coverage count (right) in MultiRoom-N7-S4 from
MiniGrid [15], computed as running averages over 1024 episodes each time (i.e. 32 in parallel, as
there are 32 actors, over 32 running average steps), for different agents: (i) the Natural Language
Abstraction agent (NLA) refers to using the NL oracle to compute intrinsic reward, (ii) the STGS-
LazImpa EReLELA agent refers to our proposed architecture, EReLELA, using the STGS-LazImpa
loss function to optimize the RG players, and (iii) the Impatient-Only EReLELA agent refers to the
same architecture without the lazy-speaker loss to optimize the RG players.

interference between the RL-objective-induced gradients and the RG-training-induced gradients. We1090

use an RG accuracy threshold accRG−thresh = 65% and a number of training distractors K = 31091

(like at testing/validation time).1092

Hypotheses. We consider whether NL abstractions can help for a purely-navigational hard-1093

exploration task in RL with a count-based approach (H3.0), and refer to the relevant agent using1094

NL abstractions to compute intrinsic rewards as NLA. Then, we make the hypothesis that ELs can1095

be used similarly (H3.1), and we investigate to what extent do ELs compare to NLs in terms of1096

abstraction performed, in this purely-navigational task. In the case of (H3.1) being verified, we would1097

expect ELs to perform similar abstractions as NLs (H3.2).1098

Evaluation. We evaluate (H3.0) and (H3.1) using both the success rate and the coverage count.To1099

compute the coverage count, we overlay a grid of tiles over the environment’s possible locations/cells1100

of the agents and we count the number of different tiles visited by the RL agent over the course of1101

each episode. To evaluate (H3.2), we compute the CAM scores of both the ELs and the oracles’1102

natural, color-specific, and shape-specific languages. As we remarked that an agent’s skillfullness at1103

the task would induce very different trajectories (e.g. in MultiRoom-N7-S4, staying in the first room1104

and only ever seeing the first door, for an unskillfull agent, as opposed to visiting multiple rooms1105

and observing multiple colored-doors, for a skillfull agent), we compute the oracle languages CAM1106

scores on the exact same trajectories than used to compute each EL’s CAM scores.1107

Results. We present in Figure 10(left) the success rate of the different agents, and the per-episode1108

coverage count in Figure 10(right).From the fact that both the NLA and EReLELA agent performance1109

converges higher or close to 80% of success rate, we validate hypotheses (H0) and (H3.1), in the1110

context of the MultiRoom-N7-S4 environment. We remark that the sample-efficiency is slightly better1111

for NLA than it is for EL-based agents, possibly because of the fact that ELs are learned online1112

in parallel of the RL training, as opposed to the case of NLA which makes use of a ready-to-use1113

oracle. Among the two EReLELA agents, the learning curves are not statistically-significantly1114

Figure 11: Performance and qualities of the ELs brought about in the context of both (i) the
STGS-LazImpa EReLELA agent, and (ii) the Impatient-Only EReLELA agent, with respect to both
the training- and validation/testing-time RG accuracy (left), the validation/test-time Instantaneous
Coordination [32, 47, 23](middle), and the validation/testing-time length of the speaker’s messages
(as a ratio over the max sentence length L = 128 - right).
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Figure 12: Comparison of Compactness Ambiguity Metric scores for N = 6 timespans/thresholds,
with λ0 = 0.0306125, λ1 = 0.06125, λ2 = 0.125, λ3 = 0.25, λ4 = 0.5 and λ5 = 0.75, between the
abstractions performed by ELs brought about in the context of both (i) the STGS-LazImpa EReLELA
agent (in green, first rows) and (ii) the Impatient-Only EReLELA agent (in purple, bottom rows), and
the abstractions performed by the natural, colour-specific, and shape-specific languages, computed
on the very same agent trajectories.

distinguishable, meaning that learning systematic exploration skills with EReLELA can be done with1115

some robustness to the anecdotical differences in qualities of the different ELs due to using different1116

optimization losses. Indeed, we also report in Figure 11 both the training- and validation/testing-time1117

RG accuracies (on the left), the validation/testing-time Instantaneous Coordination (in the middle –1118

Jaques et al. [32], Lowe et al. [47], Eccles et al. [23]), and the validation/testing-time length of the RG1119

speaker’s messages (on the right), showing that the ELs brought about in the two different contexts1120

perform differently in terms of their RG objective and have different qualities, but these discrepancies1121

do not seem to impact the RL agents learning equally well from the different abstractions they1122

perform (as evidenced in the next paragraph).1123

Next, with regards to hypothesis (H3.2), we investigate whether the two contexts bring about ELs1124

that perform different abstractions, and how do these relate to the abstractions performed by natural,1125

colour-specific, and shape-specific languages, by showing in Figure 12 their CAM scores. We1126

observe that both contexts result in ELs performing abstractions similar or better than colour-specific1127

languages, which is to be expected as (door) colours are the most salient features of the environment.1128

Indeed, the only two shapes or objects visible are ‘wall’ and ‘door’, whereas there are more than1129

7 different colours of interest. In the context of the Impatient-Only EReLELA agent, the EL’s1130

abstractions are scoring very similarly to NL abstractions, as we consider longer timespans (from1131

timespans #2 to #5). We could hypothesise that without the lazy-ness constraint the speaker agent1132

may be given enough capacity to compress/express information pertaining to the location of visible1133

objects, as this information is the only one that is captured by the NL oracle but not captured by the1134

shape- and colour-specific languages.1135

E.4 Experiment #4: Quantifying RL Agents’ Learning Progress?1136

In the context of RGs, the speed at which a language emerges (in terms of sampled observations, or1137

number of games played) may possibly remain constant, when the data and the player architectures1138

are fixed. Thus, when the data changes, the rate of language emergence may change too. Incidentally,1139

we are entitled to ponder whether some properties of the data, which here are RL trajectories, would1140

influence the rate of language emergence and how?1141
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Figure 13: Relative expressivity of the EL as a function of the per-episode coverage of the RL agent,
at the end of training, over multiple runs with different hyperparameters during a W&B Sweep [4].

Hypothesis. We hypothesise that as the RL agent gets more skillful, the expressivity of the emergent1142

language increases (H4.1). Indeed, at each RG training epoch, the size of the dataset is fixed, and as1143

the stimuli gets more diverse when the RL agent gets more skillful at exploring, the RG training will1144

prompt the EL to increase its expressivity.1145

Evaluation. To verify our hypothesis, we propose to measure the skillfullness of the RL agent in1146

terms of exploration using the per-episode coverage count metric, and we measure the expressivity of1147

the EL via the test-time (Relative) Expressivity after each RG training epoch.1148

Results. We present results in Figure 13, that show the (relative) expressivity of the ELs does exhibit1149

variations throughout the learning process of the RL agent. And, if we perform a regression analysis1150

with each runs in terms of the per-episode coverage count of the RL agent on the x-axis and the1151

expressivity of the ELs on the y-axis, we obtain a high coefficient of determination between the two1152

metrics, R2 = 0.4642. Thus, we conclude that the (relative) expressivity of the ELs in EReLELA can1153

provide a way to quantify the progress of the RL agent, at least when it comes to exploration skills.1154

Limitations. Exploration skills translates directly into diversity of the stimuli being observed, and1155

therefore it prompts any RG players to increase the expressivity of their communication protocol,1156

but it is remains to be seen whether this effect is valid in any environment. For instance, it is unclear1157

whether a skillfull player in any other video game would induce the same effect on the diversity of1158

the stimuli encountered. Thus, it is worth investigating whether this correlation holds for other genre1159

of environments and skills, which we leave to future works.1160
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F Agent Architecture1161

The ERELELA architecture is made up of three differentiable agents, the language-conditioned RL1162

agent and the two RG agents (speaker and listener). Each agent contains at least a visual/observation1163

encoder module that can be shared between agents.Both RG agents contain a language module that is1164

not shared. The listener agent additionally incorporates a third decision module that combines the1165

outputs of the other two modules. The RL agent similarly incorporates a third decision module with1166

the addition that this third module contains a recurrent network, acting as core memory module for1167

the agent. Using the Straight-Through Gumbel-Softmax (STGS) approach in the communication1168

channel of the RG, the speaker agent is prompted to produce the output string of symbols with a1169

Start-of-Sentence symbol and the visual module’s output as an initial hidden state while the listener1170

agent consumes the string of symbols with the null vector as the initial hidden state. In the following1171

subsections, we detail each module architecture in depth.1172

Visual Module. The visual module f(·) consists of the Shared Observation Encoder, which can be1173

shared between all the different agents.The former consists of three blocks of convolutional layers1174

of sizes 8, 4, 3 with strides 4, 3, 1, each followed by a 2D batch normalization layer and a ReLU1175

non-linear activation function. The two first convolutional layers have 32 filters, whilst the last one1176

has 64. The bias parameters of the convolutional layers are not used, as it is common when using1177

batch normalisation layers. Inputs are stimuli consisting of RGB frames of the environment resized1178

to 64× 64.1179

Language Module. The language module g(·) consists of some learned Embedding followed by1180

either a one-layer GRU network [16] in the case of the RL agent, or a one-layer LSTM network [29]1181

in the case of the RG agents. In the context of the listener agent, the input message m = (mi)i∈[1,L]1182

(produced by the speaker agent) is represented as a string of one-hot encoded vectors of dimension1183

|V | and embedded in an embedding space of dimension 64 via a learned Embedding. The output1184

of the listener agent’s language module, gl(·), is the last hidden state of the RNN layer, hl
L =1185

gL(mL, h
l
L−1). In the context of the speaker agent’s language module gS(·), the output is the1186

message m = (mi)i∈[1,L] consisting of one-hot encoded vectors of dimension |V |, which are sampled1187

using the STGS approach from a categorical distribution Cat(pi) where pi = Softmax(ν(hs
i )),1188

provided ν is an affine transformation and hs
i = gs(mi−1, h

s
i−1). h

s
0 = f(st) is the output of the1189

visual module, given the target stimulus st.1190

Decision Module. From the RL agent to the RG’s listener agent, the decision module are very1191

different since their outputs are either, respectively, in the action space A or the space of distributions1192

over K + 1 stimuli (i.e. discriminating between distractors and target stimuli). For the RL agent, the1193

decision module takes as input a concatenated vector comprising the output of visual module, after1194

it has been procesed by a 3-layer fully-connected network with 256, 128 and 64 hidden units with1195

ReLU non-linear activation functions, and some other information relevant to the RL context (e.g.1196

previous reward and previous action selected, following the recipe in Kapturowski et al. [34]). The1197

resulting concatenated vector is then fed to the core memory module, a one-layer LSTM network [29]1198

with 1024 hidden units, which feeds into the advantage and value heads of a 1-layer dueling network1199

[64].1200

In the case of the RG’s listener agent, similarly to Havrylov and Titov [25], the decision module1201

builds a probability distribution over a set of K + 1 stimuli/images (s0, ..., sK), consisting of K1202

distractor stimuli and the target stimulus, provided in a random order, given a message m using the1203

scalar product:1204

p((di)i∈[0,K]|(si)i∈[0,K];m) = Softmax
(
(hl

L · f(si)T )i∈[0,K]

)
. (6)

Regarding optimization of the RL agent, table 1 highlights the hyperparameters used for the off-policy1205

RL algorithm, R2D2[34]. More details can be found, for reproducibility purposes, in our open-source1206

implementation at HIDDEN-FOR-REVIEW-PURPOSES.1207

Each run can be done on less than 2Gb of VRAM, and the amount of training time for a run, with e.g.1208

one NVIDIA GTX1080 Ti, is between 24 and 48 hours depending on the architecture (e.g. shared or1209

agnostic).1210
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Table 1: Hyper-parameter values relevant to R2D2 in the EReLELA architecture presented. All
missing parameters follow the ones in Ape-X [30].

R2D2

Number of actors 32
Actor update interval 1 env. step
Sequence unroll length 20
Sequence length overlap 10
Sequence burn-in length 10
N-steps return 3
Replay buffer size 1× 104 obs.
Priority exponent 0.9

Importance sampling exponent 0.6

Discount γ 0.98
Minibatch size 64
Optimizer Adam [36]
Learning rate 6.25× 10−5

Adam ϵ 10−12

Target network update interval 2500
updates

Value function rescaling None

G On the Referential Game in EReLELA1211

We follow the nomenclature proposed in Denamganaï and Walker [20] and focus on a descrip-1212

tive object-centric (partially-observable) 2-players/L = 10-signal/N = 0-round/K-distractor RG1213

variant.1214

The descriptiveness implies that the target stimulus may not be passed to the listener agent, but1215

instead replaced with a descriptive distractor. In effect, the listener agent’s decision module therefore1216

outputs a K + 2-logit distribution where the K + 2-th logit represents the meaning/prediction that a1217

descriptive distractor has been introduced and none of the K + 1 stimuli is the target stimulus that1218

the speaker agent was ‘talking’ about. The addition is made following Denamganaï et al. [18] as a1219

learnable logit value, logitno−target, it is an extra parameter of the model. In this case the decision1220

module output is no longer as specified in Equation 6, but rather as follows:1221

p((di)i∈[0,K+1]|(si)i∈[0,K];m) = Softmax
(
(hl

L · f(si)T )i∈[0,K] ∪ {logitno−target}
)
. (7)

The descriptiveneness is ideal but not necessary in order to employ the listener agent as a predicate1222

function for the hindsight experience replay scheme. Thus, in the main results of the paper, we1223

present the version without descriptiveness.1224

The object-centrism is achieved via application of data augmentation schemes before feeding stimuli1225

to any RG agent, following Dessi et al. [22] but using Gaussian Blur transformation alone, as it was1226

found sufficient in practice.1227

We optimize the RG agents with either the Impatient-Only STGS loss and the STGS-LazImpa loss.1228

In the remainder of this section, we detail the STGS-LazImpa loss that we employed to optimize the1229

referential game agents.1230

G.1 STGS-LazImpa Loss1231

Emergent languages rarely bears the core properties of natural languages [40, 6, 43, 12], such as1232

Zipf’s law of Abbreviation (ZLA). In the context of natural languages, this is an empirical law which1233

states that the more frequent a word is, the shorter it tends to be [66, 60]. Rita et al. [56] proposed1234

LazImpa in order to make emergent languages follow ZLA.1235
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To do so, Lazimpa adds to the speaker and listener agents some constraints to make the speaker1236

lazy and the listener impatient. Thus, denoting those constraints as LSTGS−lazy and Limpatient, we1237

obtain the STGS-LazImpa loss as follows:1238

LSTGS−LazImpa(m, (si)i∈[0,K]) = LSTGS−lazy(m) + Limpatient(m, (si)i∈[0,K]). (8)

In the following, we detail those two constraints.1239

Lazy Speaker. The Lazy Speaker agent has the same architecture as common speakers. The1240

‘Laziness’ is originally implemented as a cost on the length of the message m directly applied to the1241

loss, of the following form:1242

Llazy(m) = α(acc) · |m| (9)
where acc represents the current accuracy estimates of the referential games being played, and α1243

is a scheduling function as follows: α : accuracy ∈ [0, 1] 7→ accuracyβ1

β2
, with (β1, β2) = (45, 10).1244

It is aimed to adaptively penalize depending on the message length. Since the lazyness loss is1245

not differentiable, they ought to employ a REINFORCE-based algorithm for the purpose of credit1246

assignement of the speaker agent.1247

In this work, we use the STGS communication channel, which has been shown to be more sample-1248

efficient than REINFORCE-based algorithms [25], but it requires the loss functions to be differen-1249

tiable. Therefore, we modify the lazyness loss by taking inspiration from the variational autoencoders1250

(VAE) literature [37].1251

The length of the speaker’s message is controlled by the appearance of the EoS token, wherever1252

it appears during the message generation process that is where the message is complete and its1253

length is fixed. Symbols of the message at each position are sampled from a distribution over all1254

the tokens in the vocabulary that the listener agent outputs. Let (Wl) be this distribution over all1255

tokens w ∈ V at position l ∈ [1, L], such that ∀l ∈ [1, L], ml ∼ (Wl). We devise the lazyness loss1256

as a Kullbach-Leibler divergence DKL(·|·) between these distribution and the distribution (WEoS)1257

which attributes all its weight on the EoS token. Thus, we dissuade the listener agent from outputting1258

distributions over tokens that deviate too much from the EoS-focused distribution (WEoS), at each1259

position l with varying coefficients β(l). The coefficient function β : [1, L] → R must be monotically1260

increasing. We obtain our STGS-lazyness loss as follows:1261

LSTGS−lazy(m) = α(acc) ·
∑

l∈[1,L]

β(l)DKL

(
(WEoS)|(Wl)

)
(10)

Impatient Listener. Our implementation of the Impatient Listener agent follows the original work1262

of Rita et al. [56]: it is designed to guess the target stimulus as soon as possible, rather than solely1263

upon reading the EoS token at the end of the speaker’s message m. Thus, following Equation 6, the1264

Impatient Listener agent outputs a probability distribution over a set of K + 1 stimuli (s0, ..., sK) for1265

all sub-parts/prefixes of the message m = (m1, ...,ml)l∈[1,L] = (m≤l)l∈[1,L] :1266

∀l ∈ [1, L], p((d≤l
i )i∈[0,K]|(si)i∈[0,K];m

≤l) = Softmax
(
(h≤l · f(si)T )i∈[0,K]

)
, (11)

where h≤l is the hidden state/output of the recurrent network in the language module after consuming1267

tokens of the message from position 1 to position l included.1268

Thus, we obtain a sequence of L probability distributions, which can each be contrasted, using the1269

loss of the user’s choice, against the target distribution (Dtarget) attributing all its weights on the1270

decision dtarget where the target stimulus was presented to the listener agent. Here, we employ1271

Havrylov and Titov [25]’s Hinge loss. Denoting it as L(·), we obtain the impatient loss as follows:1272

Limpatient/L(m, (si)i∈[0,K]) =
1

L

∑
l∈[1,L]

L((d≤l
i∈[0,K], (Dtarget)). (12)
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