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ABSTRACT

Multimodal contrastive learning methods (e.g., CLIP) have shown impressive zero-
shot classification performance due to their strong ability to joint representation
learning for visual and textual modalities. However, recent research revealed
that multimodal contrastive learning on poisoned pre-training data with a small
proportion of maliciously backdoored data can induce backdoored CLIP that could
be attacked by inserted triggers in downstream tasks with a high success rate.
To defend against backdoor attacks on CLIP, existing defense methods focus on
either the pre-training stage or the fine-tuning stage, which would unfortunately
cause high computational costs due to numerous parameter updates and are not
applicable in the black-box setting. In this paper, we provide the first attempt at a
computationally efficient backdoor detection method to defend against backdoored
CLIP in the inference stage. We empirically find that the visual representations
of backdoored images are insensitive to both benign and malignant changes in
class description texts. Motivated by this observation, we propose BDetCLIP,
a novel test-time backdoor detection method based on contrastive prompting.
Specifically, we first prompt the language model (e.g., GPT-4) to produce class-
related description texts (benign) and class-perturbed random texts (malignant)
by specially designed instructions. Then, the distribution difference in cosine
similarity between images and the two types of class description texts can be used
as the criterion to detect backdoor samples. Extensive experiments validate that
our proposed BDetCLIP is superior to state-of-the-art backdoor detection methods,
in terms of both effectiveness and efficiency.

1 INTRODUCTION

Multimodal contrastive learning methods (e.g., CLIP (Radford et al., 2021)) have shown impressive
zero-shot classification performance in various downstream tasks and served as foundation models
in various vision-language fields due to their strong ability to effectively align representations from
different modalities, such as open-vocabulary object detection (Wu et al., 2023), text-to-image
generation (Wu et al., 2023), and video understanding (Xu et al., 2021). However, recent research
has revealed that a small proportion of backdoor samples poisoned into the pre-training data can
cause a backdoored CLIP after the multimodal contrastive pre-training procedure (Carlini & Terzis,
2021; Carlini et al., 2023; Bansal et al., 2023). In the inference stage, a backdoored CLIP would
produce tampered image representations for images with a trigger, close to the text representation of
the target attack class in zero-shot classification. This exposes a serious threat when deploying CLIP
in real-world applications.

To overcome this issue, effective defense methods have been proposed recently, which can be divided
into three kinds of defense paradigms, as shown in Figure 1: including (a) robust anti-backdoor
contrastive learning in the pre-training stage (Yang et al., 2023b), (b) counteracting the backdoor
in a pre-trained CLIP in the fine-tuning stage (Bansal et al., 2023), (c) leveraging trigger inversion
techniques to decide if a pre-trained CLIP is backdoored (Sur et al., 2023; Feng et al., 2023a). Overall,
these defense methods have a high computational cost due to the need for additional learning or
optimization procedures. In contrast, we advocate test-time backdoor sample detection (Figure 1(d)),
which is a more computationally efficient defense against backdoored CLIP, as there are no parameter
updates in the inference stage. Intuitively, it could be feasible to directly adapt existing unimodal
test-time detection methods (Gao et al., 2019; Guo et al., 2023; Liu et al., 2023) to detect backdoored
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Figure 1: Current backdoor defense paradigms in CLIP. (a) Robust anti-backdoor contrastive learning
(Yang et al., 2023b); (b) Fine-tuning a backdoored CLIP (Bansal et al., 2023); (c) Detecting a CLIP
if backdoored (Sur et al., 2023; Feng et al., 2023a); (d) Our test-time backdoor sample detection.
Our multimodal detection method is more effective and efficient than existing unimodal detection
methods.

images in CLIP, since they can differentiate backdoored and clean images generally based on the
output consistency in the visual representation space by employing specific image modifications, e.g,
corrupting (Liu et al., 2023), amplifying (Guo et al., 2023), and blending (Gao et al., 2019). However,
the performance of these unimodal detection methods is suboptimal, because of lacking the utilization
of the text modality in CLIP to assist backdoor sample detection. Hence we can expect that better
performance could be further achieved if we leverage both image and text modalities simultaneously.

In this paper, we provide the first attempt at a computationally efficient backdoor detection method
to defend against backdoored CLIP in the inference stage. We empirically find that the visual
representations of backdoored images are insensitive to both benign and malignant changes of class
description texts. Motivated by this observation, we propose BDetCLIP, a novel test-time multimodal
backdoor detection method based on contrastive prompting. Specifically, we first prompt the GPT-4
model (Achiam et al., 2023) to generate class-related (or class-perturbed random) description texts by
specially designed instructions and take them as benign (malignant) class prompts. Then, we calculate
the distribution difference in cosine similarity between images and the two types of class prompts,
which can be used as a good criterion to detect backdoor samples. We can see that the distribution
difference of backdoored images between the benign and malignant changes of class prompts is
smaller than that of clean images. The potential reason for the insensibility of backdoored images is
that their visual representations have less semantic information aligned with class description texts. In
this way, we can detect backdoored images in the inference stage of CLIP effectively and efficiently.
Extensive experiments validate that our proposed BDetCLIP is superior to state-of-the-art backdoor
detection methods, in terms of both effectiveness and efficiency.

Our main contributions can be summarized as follows:

• A new backdoor detection paradigm for CLIP. We pioneer test-time backdoor detection for CLIP,
which is more computationally efficient than existing defense paradigms.

• A novel backdoor detection method. We propose a novel test-time multimodal backdoor detection
method based on contrastive prompting, which detects backdoor samples based on the distribution
difference between images regarding the benign and malignant changes of class prompts.

• Strong experimental results. Our proposed method achieves superior experimental results on
various types of backdoored CLIP compared with state-of-the-art detection methods.

2 BACKGROUND & PRELIMINARIES

2.1 MULTIMODAL CONTRASTIVE LEARNING

Multimodal contrastive learning (Radford et al., 2021; Jia et al., 2021) has emerged as a powerful
approach for learning shared representations from multiple modalities of data such as text and images.
Specifically, we focus on Contrastive Language Image Pretraining (CLIP) (Radford et al., 2021) in
this paper. Concretely, CLIP consists of a visual encoder denoted by V(·) (e.g., ResNet (He et al.,
2016) and ViT (Dosovitskiy et al., 2020)) and a textual encoder denoted by T (·) (e.g., Transformer
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(Vaswani et al., 2017)). The training examples used in CLIP are massive image-text pairs collected
on the Internet denoted by DTrain = {(xi, ti)}Ni=1 where ti is the caption of the image xi and
N ≃ 400M . During the training stage, given a batch of Nb image-text pairs (xi, ti) ⊂ DTrain,
the cosine similarity for matched (unmatched) pairs is denoted by ϕ(xi, ti) = cos(V(xi), T (ti))
(ϕ(xi, tj) = cos(V(xi), T (tj))). It is noteworthy that the image and text embeddings are normalized
using the ℓ2 norm to have a unit norm. Based on these notations, the CLIP loss can be formalized by
the following (Radford et al., 2021):

LCLIP = − 1

2Nb

( Nb∑
i=1

log
[ exp(ϕ(xi, ti)/τ)∑Nb

j=1 exp(ϕ(xi, tj)/τ)

]
+

Nb∑
j=1

log
[ exp(ϕ(xj , tj)/τ)∑Nb

i=1 exp(ϕ(xi, tj)/τ)

])
, (1)

where τ is a trainable temperature parameter.

Zero-shot classification in CLIP. To leverage CLIP on the downstream classification task where
the input image x ∈ DTest and class name yi ∈ {1, 2, · · · , c}, a simple yet effective way is using a
class template function T (j) which generates a class-specific text such as "a photo of [CLS]"
where [CLS] can be replaced by the j-th class name on the dataset. In the inference stage, one can
directly calculate the posterior probability of the image x for the i-th class as the following:

p(y = i|x) = exp(ϕ(x, T (i))/τ)∑c
j=1 exp(ϕ(x, T (j))/τ)

. (2)

In this way, CLIP can achieve impressive zero-shot performance, even compared with unimodal
vision models trained by (self) supervised learning methods.

Moreover, since CLIP only considers the simple and coarse alignment between images and texts
in Eq. (1), many follow-up studies focus on more fine-grained and consistent alignment strategies
such as SLIP (Mu et al., 2022), Uniclip (Lee et al., 2022), Cyclip (Goel et al., 2022), PROMU (Hu
et al., 2023), and RA-CLIP (Xie et al., 2023). On the other hand, using naive class prompts generated
by T (j) in Eq. (2) in zero-shot image classification might not take full advantage of the strong
representation learning ability of CLIP on the text modality. This means that more well-described
class-specific prompts may be more beneficial to image classification. To this end, recent research
delves into engineering fine-grained class-specific attributes or prompting large language models
(e.g., GPT-4 (Achiam et al., 2023)) to generate distinguishable attribute-related texts (Yang et al.,
2023c; Pratt et al., 2023; Maniparambil et al., 2023; Yu et al., 2023; Saha et al., 2024; Feng et al.,
2023b; Liu et al., 2024).

2.2 BACKDOOR ATTACKS AND DEFENSES

The backdoor attack is a serious security threat to machine learning systems (Li et al., 2022; Carlini
& Terzis, 2021; Xu et al., 2022; Chen et al., 2021). The whole process of a backdoor attack can
be expounded as follows. In the data collection stage of a machine learning system, a malicious
adversary could manufacture a part of backdoor samples with the imperceptible trigger poisoned into
the training dataset. After the model training stage, the hidden trigger could be implanted into the
victim model without much impact on the performance of the victim model. During the inference
stage, the adversary could manipulate the victim model to produce a specific output by adding the
trigger to the clean input. Early research on backdoor attacks focuses on designing a variety of
triggers that satisfy the practical scenarios mainly on image and text classification tasks including
invisible stealthy triggers (Chen et al., 2017; Turner et al., 2019; Li et al., 2021a; Doan et al., 2021;
Nguyen & Tran, 2021; Gao et al., 2023; Souri et al., 2022) and physical triggers (Chen et al., 2017;
Wenger et al., 2021). To defend against these attacks, many backdoor defense methods are proposed
which can be divided into four categories, mainly including data cleaning in the pre-processing stage
(Tran et al., 2018), robust anti-backdoor training (Chen et al., 2022; Zhang et al., 2022), mitigation,
detection, and inversion in the post-training stage (Min et al., 2023), and test-time detection in the
inference stage (Shi et al., 2023). Besides, recent research also investigates the backdoor attack on
other learning paradigms including self-supervised learning (Li et al., 2023) and federated learning
(Nguyen et al., 2023), and other vision or language tasks including object tracking (Huang et al.,
2023), text-to-image generation by diffusion models (Chou et al., 2023), and text generation by large
language models (Xue et al., 2023).

Backdoor attacks for CLIP. This paper especially focuses on investigating backdoor security in
multimodal contrastive learning. Recent research (Carlini & Terzis, 2021; Carlini et al., 2023; Bansal
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et al., 2023; Jia et al., 2022; Bai et al., 2023; Liang et al., 2023) has revealed the serious backdoor
vulnerability of CLIP. Specifically, a malicious adversary can manufacture a proportion of backdoor
image-text pairs DBD = {(x∗

i , T (yt)}
NBD
i=1 where x∗

i = (1 −M) ⊙ xi +M⊙ ∆ is a backdoor
image with the trigger pattern ∆ (Gu et al., 2017; Chen et al., 2017) and the maskM, and T (yt)
is the caption of the target attack class yt. Then, the original pre-training dataset DTrain could be
poisoned as DPoison = {DBD ∪ DClean}. The backdoor attack for CLIP can be formalized by:

{θV∗ , θT ∗} = argmin
{θV ,θT }

LCLIP(DClean) + LCLIP(DBD), (3)

where θV∗ is the parameter of the infected visual encoder V∗(·) and θT ∗ is the parameter of the
infected textual encoder T ∗(·). It is noteworthy that the zero-shot performance of the backdoored
CLIP is expected to be unaffected in Eq. (2), while for the image x∗

i with a trigger, the posterior
probability of the image for the yt-th target class could be large with high probability:

p(yi = yt|x∗
i ) =

exp(ϕ(x∗
i , T (yt))/τ)∑c

j=1 exp(ϕ(x
∗
i , T (j))/τ)

. (4)

Defenses for the backdoored CLIP. Effective defense methods have been proposed recently,
which can be divided into three kinds of defense paradigms including anti-backdoor learning (Yang
et al., 2023b) in Eq. (3), fine-tuning the backdoored CLIP (Bansal et al., 2023; Kuang et al., 2024;
Xun et al., 2024), and using trigger inversion techniques (Sur et al., 2023; Feng et al., 2023a) to
detect the visual encoder of CLIP if is infected. However, due to the need for additional learning or
optimization processes, these defense methods are computationally expensive. Furthermore, in many
real-world scenarios, we only have access to third-party models or APIs, making it impossible to
apply existing backdoor defense methods for pre-training and fine-tuning.

3 THE PROPOSED APPROACH

In this section, we provide the first attempt at test-time backdoor detection for CLIP and propose
BDetCLIP that effectively detects test-time backdoored images based on the text modality.

3.1 A DEFENSE PARADIGM: TEST-TIME BACKDOOR SAMPLE DETECTION

Compared with existing defense methods used in the pre-training or fine-tuning stage, detecting
(and then refusing) backdoor images in the inference stage directly is a more lightweight and
straightforward solution to defend backdoored CLIP. To this end, one may directly adapt existing
unimodal detection methods (Gao et al., 2019; Zeng et al., 2021; Udeshi et al., 2022; Guo et al.,
2023; Liu et al., 2023; Pal et al., 2024; Hou et al., 2024) solely based on the visual encoder (i.e.,
V∗(·)) of CLIP with proper modifications. However, this strategy is suboptimal because of the lack
of the utilization of the textual encoder T ∗(·) in CLIP to assist detection (as shown in Figure 2(a)).
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Figure 2: (a) Illustration of unimodal backdoor detection that only focuses on the visual representation
space; (b) Illustration of BDetCLIP that leverages both image and text modalities in CLIP.
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Figure 3: Empirical density distributions of benign and malignant similarities for 1,000 classes on
ImageNet-1K. The larger the overlap proportion in the figure, the smaller the difference in contrastive
distributions. We have omitted coordinate axes for a better view.

In contrast, we propose to integrate the visual and textual encoders in CLIP for test-time backdoor
sample detection (TT-BSD). The objective of TT-BSD for CLIP is to design a good detector Γ:

Γ = argmin
Γ

1

n

(∑
x∈DClean

I(Γ(x,V∗, T ∗) = 1) +
∑

x∗∈DBD

I(Γ(x∗,V∗, T ∗) = 0)
)
, (5)

where I(·) is an indicator function, and Γ(x) returns 1 or 0 indicates the detector regards x as a
backdoored or clean image.

Defender’s goal. Defenders aim to design a good detector Γ in terms of effectiveness and efficiency.
Effectiveness is directly related to the performance of Γ, which can be evaluated by AUROC. Effi-
ciency indicates the time used for detection, which is expected to be short in real-world applications.

Defender’s capability. In this paper, we consider the black-box setting. Specifically, defenders
can only access the encoder interface of CLIP and obtain feature embeddings of images and texts,
completely lacking any prior information about the architecture of CLIP and backdoor attacks. This
is a realistic and challenging setting in TT-BSD (Guo et al., 2023).

3.2 OUR PROPOSED BDETCLIP

Motivation. It was shown that CLIP has achieved impressive zero-shot classification performance
by leveraging visual description texts (Yang et al., 2023c; Pratt et al., 2023; Maniparambil et al., 2023;
Yu et al., 2023; Saha et al., 2024; Feng et al., 2023b; Liu et al., 2024) generated by large language
models. For backdoored CLIP (i.e., CLIP corrupted by backdoor attacks), recent research (Bansal
et al., 2023) has revealed that implanted visual triggers in CLIP can exhibit a strong co-occurrence
with the target class. However, such visual triggers in CLIP are usually simple non-semantic pixel
patterns, which could not align well with abundant textual concepts. Therefore, backdoored images
with visual triggers are unable to properly capture the semantic changes of class description texts.
This motivates us to consider whether the alignment between the visual representations of backdoored
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images and the class description texts would be significantly changed when there exist significant
changes in the class description texts. Interestingly, we empirically find that the alignment of backdoor
samples would not be significantly changed even given significant changes in the text description
texts. This observation can help us distinguish backdoor samples from clean samples because the
alignment of clean samples would be significantly influenced by the changes in the text description
texts.

Contrastive prompting. Based on the above motivation, we propose BDetCLIP, a novel test-time
backdoor detection method based on contrastive prompting. Specifically, we prompt GPT-4 (Achiam
et al., 2023) to generate two types of contrastive class description texts. Firstly, based on the powerful
in-context learning capabilities of GPT-4, we use specially designed instructions with a demonstration
as shown in Appendix A. In particular, the demonstration for the class “goldfish” is associated with
various attributes of objects, e.g., shape, color, structure, and behavior. In this way, GPT-4 is expected
to output multiple fine-grained attribute-based sentences for the assigned j-th class, denoted by
ST k

j (k ∈ [m]) where m is the number of sentences. On the other hand, we also prompt GPT-4 by
the instruction “Please randomly generate a sentence of no more than 10 words unrelated to {Class
Name}”, to generate one random sentence unrelated to the assigned j-th class. We concatenated
the class template prompt with the obtained random sentences to generate the final class-specific
malignant prompt, denoted by RTj , such as “A photo of a goldfish. The bright sun cast shadows on
the bustling city street.”. In Appendix F, We also recorded the money and time costs associated with
the prompts generated by GPT-4, and demonstrated the feasibility of using open-source models (e.g.,
LLaMA3-8B (Dubey et al., 2024) and Mistral-7B-Instruct-v0.2 (Jiang et al., 2023)) as alternatives to
proprietary models like GPT-4.

Contrastive distribution difference. Based on the generated two types of texts by GPT-4, we can
calculate the benign (malignant) similarity between test images and benign (malignant) class-specific
prompts. In particular, we consider this calculation towards all classes in the label space, since we
have no prior information about the label of each test image. In this way, we can obtain the whole
distribution difference for all classes by accumulating the contrastive difference between the per-class
benign and malignant similarity. Formally, for each class y ∈ Y, the benign and malignant simi-
larity for each test image xt is denoted by ϕ(V∗(xt), 1

m

∑m
k=1 T ∗(ST k

y )) and ϕ(V∗(xt), T ∗(RTy))
respectively. It is worth noting that we consider the average textual embeddings of all m class-related
description texts. Then, the contrastive distribution difference of a test image x can be formalized by:

Ω(x) =
∑

j∈Y

(
ϕ
(
V∗(x),

1

m

∑m

k=1
T ∗(ST k

y )
)
− ϕ

(
V∗(x), T ∗(RTy)

))
. (6)

This statistic reveals the sensitivity of each test image towards the benign and malignant changes
of class-specific prompts. We show the empirical density distributions of benign and malignant
similarities on ImageNet-1K in Figure 3. In our consideration, a test-time backdoored image x∗ is
insensitive to this semantic changes of class-specific prompts, thereby leading to a relatively small
value of Ω(x∗). Therefore, we propose the following detector of TT-BSD:

Γ(x,V∗, T ∗) =

{
1, if Ω(x) < ϵ,

0, otherwise,
(7)

where ϵ is a threshold (see Appendix B about how to empiriclly determine the value of ϵ). The
pseudo-code of BDetCLIP is shown in Appendix C.

4 EXPERIMENTS

In this section, we introduce the experimental setup and provide the experimental results, further
analysis, and ablation studies.

4.1 EXPERIMENTAL SETUP

Datasets. In the experiment, we evaluate BDetCLIP on various downstream classification datasets
including ImageNet-1K (Russakovsky et al., 2015), Food-101 (Bossard et al., 2014), and Caltech-101
(Fei-Fei et al., 2004). In particular, we pioneer backdoor attacks and defenses for CLIP on fine-
grained image classification datasets Food-101 and Caltech-101, which are more challenging tasks.
Besides, we select target backdoored samples from CC3M (Sharma et al., 2018) which is a popular
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multimodal pre-training dataset including about 3 million image-text pairs. During the inference
stage, we consider 30% test-time samples to be backdoored ones, which is a more practical setting.
We also provide the impact of different backdoor ratios on the effectiveness of detection methods and
the detection results of ImageNet-V2 (Recht et al., 2019) in Appendix F. The details of the datasets
are shown in Appendix D.

Attacking CLIP. By following CleanCLIP (Bansal et al., 2023), we adopt BadNet (Gu et al.,
2017), Blended (Chen et al., 2017), and Label-consistent (Turner et al., 2019) as our attack methods
in our main experiments. In particular, we use the triggers of BadNet and Blended to implement
label-consistent attacks denoted by BadNet-LC and Blended-LC. For backdoor attacks for CLIP,
we consider pre-training CLIP from scratch on the poisoned CC3M dataset denoted or fine-tuning
pre-trained clean CLIP by a part of poisoned pairs. The attack details are shown in Appendix D.
For the target attack class, we select three types of classes from ImageNet-1K including “banana”,
“ant”, and “basketball”, one fine-grained class “baklava” from Food-101, and one fine-grained class
“dalmatian” from Caltech-101. Unless otherwise specified, the models we use are CLIP trained on
400M samples with ResNet-50 (He et al., 2016) as the visual encoder. The details of the zero-shot
performance of CLIP under backdoor attacks using class-specific benign prompts, class-specific
malignant prompts, and prompt templates, as well as the attack success rate on CLIP using these
prompts, are provided in Appendix F. Furthermore, we also considered the BadCLIP (Liang et al.,
2023) backdoor attack, specifically targeting CLIP, in Section 4.2. In Appendix F, we detect other
attack methods such as BadCLIP (Bai et al., 2023), which targets prompt learning scenarios, and the
backdoor attack with sample-specific triggers (Li et al., 2021b).

Compared methods. We cannot make a fair and direct comparison with other CLIP backdoor
defense methods because our paper is the first work on backdoor detection during the inference phase
for CLIP. Our method is fundamentally different from the defense methods during the fine-tuning or
pre-training phases, which are designed to protect models from backdoor attacks and correct models
that have been compromised by such attacks, respectively. Different from them, backdoor detection
in the inference phase serves as a firewall to filter out malicious samples when we are unable to
protect or correct the model. Due to the different purposes of these methods mentioned above, their
evaluation metric (i.e., ASR) is completely distinct from our evaluation metric (i.e., AUROC), making
a direct comparison between our method and those methods impossible. This can be easily verified
by examining the experimental settings in many recent papers focused on (unimodal) backdoor
sample detection (Guo et al., 2023; Liu et al., 2023). We would like to emphasize that our BDetCLIP
is applicable in the black-box setting (the defender only needs to access the output of the victim
model instead of controlling the overall model), while other methods (Bansal et al., 2023; Yang
et al., 2023b;a; Liang et al., 2024) have to control the whole training procedure which is infeasible in
many real-world applications where only third-party models and APIs are accessible. Moreover, our
defense method is much more computationally efficient, as it does not need to modify any model
parameters, while previous defense methods involve the update of numerous model parameters.
Given these distinctions, a direct comparison with other backdoor defense methods is not feasible.
Therefore, to provide a baseline evaluation, we compare our proposed method with three widely-used
unimodal test-time backdoor detection methods in conventional classification models: STRIP (Gao
et al., 2019), SCALE-UP (Guo et al., 2023), and TeCo (Liu et al., 2023). Further implementation
details can be found in Appendix D. In addition, in order to further prove the effectiveness of our
method, we provide a scenario for performance comparison with CleanCLIP in Appendix E.

Evaluation metrics. Following conventional studies on backdoor sample detection, we assess
defense effectiveness by using the area under the receiver operating curve (AUROC) (Fawcett, 2006).
Besides, we adopt the inference time as a metric to evaluate the efficiency of the detection method.
Generally, a higher value of AUROC indicates that the detection method is more effective and a
shorter inference time indicates that the detection method is more efficient. We also report additional
metrics such as Accuracy, Recall, and F1 in Appendix B to comprehensively evaluate the effectiveness
of BDetCLIP.

4.2 EXPERIMENTAL RESULTS

Overall comparison. As shown in Tables 1 and 2, we can see that BDetCLIP consistently outper-
formed comparing methods in almost all attack settings and target classes. Specifically, BDetCLIP
achieved an average AUROC (Fawcett, 2006) exceeding 0.946 for all settings, which validates the
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Table 1: AUROC comparison on ImageNet-1K (Russakovsky et al., 2015). The best result is
highlighted in bold.

Target class
Attack→

Detection↓ BadNet Blended BadNet-LC Blended-LC Average

Ant

STRIP 0.597 0.215 0.656 0.216 0.421
SCALE-UP 0.740 0.670 0.715 0.737 0.716

TeCo 0.934 0.974 0.889 0.981 0.945
BDetCLIP (Ours) 0.990 0.943 0.979 0.942 0.964

Banana

STRIP 0.772 0.111 0.803 0.150 0.459
SCALE-UP 0.737 0.692 0.690 0.853 0.743

TeCo 0.827 0.954 0.799 0.979 0.890
BDetCLIP (Ours) 0.930 0.932 0.931 0.991 0.946

Basketball

STRIP 0.527 0.273 0.684 0.265 0.437
SCALE-UP 0.741 0.715 0.755 0.650 0.715

TeCo 0.818 0.929 0.904 0.873 0.881
BDetCLIP (Ours) 0.984 0.932 0.992 0.993 0.975

Table 2: AUROC comparison on the Food101 (Bossard et al., 2014) and Caltech101 (Fei-Fei et al.,
2004) datasets. The best result is highlighted in bold.

Target class Method BadNet Blended Average

Food101 (Baklava)

STRIP 0.893 0.244 0.569
SCALE-UP 0.768 0.671 0.720

TeCo 0.834 0.949 0.892
BDetCLIP (Ours) 0.941 0.977 0.959

Caltech101 (Dalmatian)

STRIP 0.868 0.672 0.770
SCALE-UP 0.632 0.585 0.609

TeCo 0.637 0.913 0.775
BDetCLIP (Ours) 0.977 0.989 0.983

Table 3: Inference time on ImageNet-1K (Russakovsky et al., 2015). Totally 50000 test samples.
Method STRIP SCALE-UP TeCo BDetCLIP (Ours)

Inference time 253m 42.863s 9m 7.066s 637m 34.350s 3m 8.436s

superiority of effectiveness. On the contrary, unimodal detection methods generally achieved poor
performance. For example, STRIP often achieved disqualified performance (11 of 19 cases) where
AUROC is less than 0.55. Although SCALE-UP (Guo et al., 2023) achieved a relatively better
performance than STRIP, its performance is also unsatisfying in practical applications. In particular,
TeCo (Liu et al., 2023) achieved comparable performance compared with BDetCLIP in certain cases.
However, its performance is unstable and worse in fine-grained datasets. Overall, these unimodal de-
tection methods are ineffective in test-time backdoor detection for CLIP, while BDetCLIP is superior
to them in terms of effectiveness. As for efficiency, BDetCLIP also achieved the best performance
for the inference time. As shown in Table 3, TeCo (Liu et al., 2023) is the slowest detection method,
even more than 160 times slower than BDetCLIP. This is because TeCo uses many time-consuming
corruption operators on images which is too heavy in CLIP. This operation is also used in unimodal
methods STRIP and SCALE-UP. In contrast, BDetCLIP only leverages the semantic changes in
the text modality twice for backdoor detection, i.e., benign and malignant class-specific prompts.
Therefore, BDetCLIP can achieve fast test-time backdoor detection in practical applications. In a
word, BDetCLIP achieved superior performance in terms of effectiveness and efficiency compared to
existing unimodal methods.

Backdoor detection for CLIP using ViT-B/32. We also evaluated the case where ViT-B/32
(Dosovitskiy et al., 2020) served as the visual encoder of backdoored CLIP. As shown in Table 4,
our proposed BDetCLIP also achieved superior performance across all types of backdoor attacks.
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Table 4: For the performance (AUROC) on ImageNet-1K (Russakovsky et al., 2015), the visual
encoder of CLIP is ViT-B/32 (Dosovitskiy et al., 2020). The target label of the backdoor attack is
“Ant”.

Attack→
Detection↓ BadNet Blended BadNet-LC Blended-LC Average

STRIP 0.527 0.025 0.606 0.020 0.295
SCALE-UP 0.652 0.875 0.649 0.867 0.761

TeCo 0.714 0.969 0.727 0.969 0.845
BDetCLIP (Ours) 0.930 0.963 0.903 0.972 0.942

Table 5: For performance (AUROC) on ImageNet-1K (Russakovsky et al., 2015) dataset, the CLIP is
pre-trained with CC3M (Sharma et al., 2018). The target label of the backdoor attack is “Banana”.

Attack→
Detection↓ BadNet Blended Label-Consistent Average

STRIP 0.061 0.005 0.420 0.162
SCALE-UP 0.651 0.627 0.612 0.630

TeCo 0.779 0.782 0.765 0.775
BDetCLIP (Ours) 0.928 0.966 0.896 0.930

Table 6: Performance (AUROC) on BadCLIP. The target label of the backdoor attack is “Banana”.
Detection→

Attack↓ STRIP SCALE-UP TeCo BDetCLIP (Ours)

BadCLIP 0.794 0.669 0.443 0.694
BadCLIP (CleanCLIP) 0.732 0.510 0.433 0.909

Concretely, other methods have a significant drop in performance compared with the results in Table
1, while BDetCLIP also maintains a high level of AUROC (e.g., the average AUROC is 0.942). This
observation validates the versatility of BDetCLIP in different vision model architectures of CLIP.

Backdoor detection for backdoored CLIP pre-trained on CC3M. Following CleanCLIP (Bansal
et al., 2023), we also considered pre-training CLIP from scratch on the poisoned CC3M dataset. As
shown in Table 5, compared with the results in Table 1, STRIP failed to achieve detection in almost
all cases, SCALE-UP and TeCo became worse, while BDetCLIP also achieved superior performance
across all attack settings. This observation definitely validates the versatility of BDetCLIP in different
model capabilities of CLIP.

Backdoor detection for BadCLIP. Note that BadCLIP (CleanCLIP) in Table 6 indicates that
we used the victim model which was first attacked by BadCLIP (Liang et al., 2023) and then was
repaired by CleanCLIP (still achieving a high ASR of 0.902). From Table 6, all detection methods
are difficult to achieve excellent detection results for BadCLIP (Liang et al., 2023). As far as we
know, no defense method in the pre-training or fine-tuning stages has been proven to reduce the
attack effect of BadCLIP (Liang et al., 2023) to a satisfactory level (e.g., ASR < 10%), which
highlights the challenge of defending against this attack. However, we found that by combining our
BDetCLIP with CleanCLIP, an impressive AUROC can be achieved, indicating that BDetCLIP has
strong compatibility with other defense methods in the fine-tuning stage. Such a composite method is
currently the most powerful defense method against BadCLIP (Liang et al., 2023).

4.3 FURTHER ANALYSIS OF CLASS-SPECIFIC PROMPTS

The impact of the number of class-specific benign prompts. As shown in Table 7, we can see
that increasing the number of class-specific benign prompt s can enhance the detection performance
under various backdoor attacks. This is because more diverse fine-grained description texts expand
the difference of contrastive distributions, which is more beneficial for BDetCLIP to distinguish
backdoored and clean images. Therefore, it is of vital importance to leverage more diverse description
texts in BDetCLIP.
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Table 7: Comparison of AUROC using different numbers of class-specific benign prompts on
ImageNet-1K (Russakovsky et al., 2015). The target label of the backdoor attack is “Ant”.

Attack→
The number of class-specific benign prompts↓ BadNet Blended BadNet-LC Blended-LC Average

using 1 class-specific benign prompt 0.988 0.887 0.967 0.959 0.950
using 3 class-specific benign prompts 0.990 0.910 0.975 0.959 0.959
using 5 class-specific benign prompts 0.991 0.928 0.980 0.956 0.964

Table 8: Comparison of AUROC using different word counts in the class-perturbed random text on
ImageNet-1K (Russakovsky et al., 2015). The target label of the backdoor attack is “Ant”.

Attack→
random sentence in class-specific malignant prompt ↓ BadNet Blended BadNet-LC Blended-LC Average

no more than 10 words 0.987 0.887 0.966 0.959 0.950
no more than 20 words 0.981 0.777 0.952 0.920 0.908
no more than 30 words 0.980 0.644 0.955 0.868 0.862

Table 9: Comparison of AUROC using different prompts on ImageNet-1K (Russakovsky et al., 2015).
The target label of the backdoor attack is “Ant”.

Attack→
Prompts↓ BadNet Blended BadNet-LC Blended-LC Average

w/o class-specific benign prompts (using class template) 0.931 0.912 0.894 0.974 0.928
w/o class-specific malignant prompts (using class template) 0.979 0.830 0.953 0.684 0.862

original contrastive prompts 0.990 0.943 0.979 0.942 0.964

The impact of the text length of class-specific malignant prompts. As shown in Table 8,
the performance has a sharp drop as the number of words in class-specific malignant prompts
increases. This is because more random texts generated in class-specific malignant prompts would
greatly destroy the semantics of class-specific malignant prompts, thereby increasing the contrastive
distribution difference of backdoored images (close to that of clean images). This would degrade
the performance of detection significantly. Besides, the performance on Blended and Blended-LC
attacks exhibits a high sensitivity to the text length of class-specific malignant prompts.

4.4 ABLATION STUDIES

The significance of class-specific benign prompts and class-specific malignant prompts. As
shown in Table 9, the detection performance decreases without using two types of class-specific
prompts. This observation justifies the significance of using these two prompts to achieve semantic
changes in BDetCLIP. In particular, without using class-specific malignant prompts, the performance
has a significant drop. This is because in this case, the contrastive distribution difference of clean
images would be smaller (close to that of backdoored images). Therefore, the performance of
detection significantly drops.

5 CONCLUSION

In this paper, we provided the first attempt at a computationally efficient backdoor detection method
to defend against backdoored CLIP in the inference stage. We empirically observed that the visual
representations of backdoored images are insensitive to significant changes in class description texts.
Motivated by this observation, we proposed a novel test-time backdoor detection method based on
contrastive prompting, which is called BDetCLIP. For our proposed BDetCLIP, we first prompted the
language model (e.g., GPT-4) to produce class-related description texts (benign) and class-perturbed
random texts (malignant) by specially designed instructions. Then, we calculated the distribution
difference in cosine similarity between images and the two types of class description texts and utilized
this distribution difference as the criterion to detect backdoor samples. Comprehensive experimental
results validated that our proposed BDetCLIP is more effective and more efficient than state-of-the-art
backdoor detection methods.
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Ethics Statement. Our research contributes to AI security by detecting backdoor samples in the
inference phase, which has a positive social impact. However, we acknowledge the possibility that
sophisticated attackers could use our insight to bypass our defense to threaten AI security. Future
work should explore the robustness of our method against adaptive attacks.
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 Prompt used to generate class-related description texts:

I am creating class attributes for a zero-shot image recognition algorithm to classify 
 different images. The attributes are part of the fine-grained information about the classesThis 
 information must be deeply related to the category, and cannot be some low-quality information, 
 such as goldfish are living things, goldfish have life, and so on.

For example, if I say what attributes help us identify goldfish? You should respond:
"goldfish":[

"Goldfish are known for their bright orange or gold color but they can also come in 
 other colors like white, black, red, and yellow.",

"Goldfish have a variety of body shapes, ranging from the common slim-bodied 
 type  to more rounded or egg-shaped varieties.",

"Goldfish typically have a single dorsal fin, paired pectoral and pelvic fins, and a 
 forked caudal (tail) fin. Some varieties, like the fancy goldfish, may have long, flowing fins."

"Most goldfish have shiny, metallic scales, but some varieties, like the pearl scale 
 goldfish, have uniquely textured scales."

"Goldfish are known for their active swimming behavior and are often seen 
 exploring their environment."]

 Now I want to ask you: What attributes help us identify {Class Name}?

 Prompt used to generate class-perturbed random texts:

 Please randomly generate a sentence of no more than 10 words unrelated to {Class Name}

 GPT-4 OUTPUT Example (Class Name: goldfish):

 The bright sun cast shadows on the bustling city street.

Figure 4: Prompts for generating class-related description texts and class-perturbed random texts.

A PROMPT DESIGN

Generative Pretrained Large Language Models, such as GPT-4, have been demonstrated (Yang et al.,
2023c; Pratt et al., 2023; Maniparambil et al., 2023; Yu et al., 2023; Saha et al., 2024; Feng et al.,
2023b; Liu et al., 2024) to be effective in generating visual descriptions to assist CLIP in classification
tasks for the following reasons: (1) These models are trained on web-scale text data, encompassing
a vast amount of human knowledge, thereby obviating the need for domain-specific annotations.
(2) They can easily be manipulated to produce information in any form or structure, making them
relatively simple to integrate with CLIP prompts.

In our study, we harnessed the in-context learning capabilities of GPT-4 to generate two types of
text—related description text and class-perturbed description text. The prompts used for generating
the text are illustrated in Figure 4.

B THRESHOLD SELECTION

Our proposed BDetCLIP can efficiently and effectively map input images to a linearly separable
space. The defender needs to set a threshold ϵ to distinguish between clean images and backdoor
images. In determining this threshold, we follow a widely used protocol in previous studies (Guo
et al., 2023),(Liu et al., 2023): the defender can set a proper threshold based on a small set of clean
validation data. Specifically, we first sampled clean samples at the designated sampling rates. Then,
using 6, we computed the contrastive distribution difference for all samples, ranked them from largest
to smallest, and selected the 85th percentile as the threshold (notably, the specific threshold percentile
can be adjusted based on real-world defense requirements). To assess the sensitivity of our approach,
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Table 10: The backdoor target label is ant. We use a backdoor ratio of 0.3 and a sampling rate of 1%.
Backdoor Accuracy Recall F1 AUROC Threshold

Badnet 0.8941 ± 0.0107 0.9902 ± 0.0013 0.8488 ± 0.0127 0.9906 ± 0.0003 11.7225 ± 1.2723
Blended 0.8772 ± 0.0061 0.9279 ± 0.0142 0.8193 ± 0.0151 0.9425 ± 0.0003 12.0281 ± 1.2399

Badnet_LC 0.8938 ± 0.0074 0.9842 ± 0.0016 0.8476 ± 0.0088 0.9796 ± 0.0004 16.7526 ± 0.8944
Blended_LC 0.8837 ± 0.0068 0.9396 ± 0.0102 0.8290 ± 0.0067 0.9420 ± 0.0005 15.9315 ± 1.2748

Table 11: The backdoor target label is ant. We use a backdoor ratio of 0.3 and a sampling rate of
0.5%.

Attack Accuracy Recall F1 AUROC Threshold

Badnet 0.8950 ± 0.0160 0.9903 ± 0.0013 0.8502 ± 0.0189 0.9908 ± 0.0003 11.6161 ± 1.8596
Blended 0.8772 ± 0.0109 0.9224 ± 0.0211 0.8186 ± 0.0096 0.9416 ± 0.0003 11.7094 ± 1.9545

Badnet_LC 0.8958 ± 0.0128 0.9835 ± 0.0029 0.8501 ± 0.0151 0.9797 ± 0.0004 16.4568 ± 1.5488
Blended_LC 0.8865 ± 0.0070 0.9347 ± 0.0106 0.8317 ± 0.0070 0.9422 ± 0.0005 15.3494 ± 1.3340

Table 12: The backdoor target label is ant. We use a backdoor ratio of 0.3 and a sampling rate of
0.1%.

Attack Accuracy Recall F1 AUROC Threshold

Badnet 0.8775 ± 0.0107 0.9904 ± 0.0040 0.8312 ± 0.0418 0.9905 ± 0.0004 13.0927 ± 4.3069
Blended 0.8564 ± 0.0315 0.9391 ± 0.0430 0.7987 ± 0.0279 0.9424 ± 0.0003 14.2042 ± 4.4056

Badnet_LC 0.8799 ± 0.0453 0.9831 ± 0.0082 0.8341 ± 0.0488 0.9795 ± 0.0005 17.6179 ± 4.8725
Blended_LC 0.8722 ± 0.0269 0.9404 ± 0.0363 0.8167 ± 0.0524 0.9422 ± 0.0004 16.9313 ± 4.2465

we chose three sampling ratios: 1%, 0.5%, and 0.1%. As shown in Table 10, 11 and 12, even when
a very small sampling ratio is used, despite the increased standard deviation in the threshold, our
method achieves exceptional performance across all metrics, particularly in terms of recall, due to its
high AUROC value, which demonstrates its strong discriminative capability.

C THE PSEUDO-CODE OF THE PROPOSED METHOD

Algorithm 1 BDetCLIP
Require: CLIP’s infected visual encoder V∗(·) and infected text encoder T ∗(·), threshold τ , Test set
Xtest; class-specific benign prompts ST k

j ,class-specific malignant prompts RTj , cosine similarity
ϕ().

1: for xi in Xtest do
2: Compute benign similarity ϕ(V∗(xi), 1

m

∑m
k=1 T ∗(ST k

j ))

3: Compute malignant similarity ϕ(V∗(xi), T ∗(RTj))

4: Ω(xi)←
∑C

j=1

(
ϕ(V∗(xi), 1

m

∑m
k=1 T ∗(ST k

j ))− ϕ(V∗(xi), T ∗(RTj))
)

5: if Ω(xi) < ϵ then
6: Mark xi as backdoored
7: else
8: Mark xi as clean
9: end if

10: end for
11: Output the detection results

D MORE DETAILS ABOUT THE EXPERIMENTAL SETUP

Details of attacking CLIP. Following the attack setting in CleanCLIP (Bansal et al., 2023), we
consider two types of attack means for CLIP including fine-tuning pre-trained clean CLIP 1 on the
part of backdoored image-text pairs from CC3M and pre-training backdoored CLIP by the poisoned

1https://github.com/openai/CLIP
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CC3M dataset. In the first case, we randomly select 500,000 image-text pairs from CC3M as the
fine-tuning dataset among which we also randomly select 1,500 of these pairs as target backdoor
samples and apply the trigger to them while simultaneously replacing their corresponding captions
with the class template for the target class. Then, we can fine-tune CLIP with the backdoored dataset.
We finetune the pretrained model for 5 epochs with an initial learning rate of 1e-6 with cosine
scheduling and 50 warmup steps, and use AdamW as the optimizer. In the second case, following the
attack setting in CleanCLIP (Bansal et al., 2023), we randomly select 1,500 image-text pairs from
CC3M as target backdoor samples. Then, we pre-train CLIP from scratch on the backdoored CC3M
dataset. We trained for 64 epochs with a batch size of 128, an initial learning rate of 0.0005 for cosine
scheduling, and 10000 warm-up steps for the AdamW optimizer. All the experiments are conducted
on 8 NVIDIA 3090 GPUs.

Details of comparing methods.
• STRIP (Gao et al., 2019) is the first black-box TTSD method that overlays various image

patterns and observes the randomness of the predicted classes of the perturbed input to identify
poisoned samples. The official open-sourced codes for STRIP (Gao et al., 2019) can be found at:
https://github.com/garrisongys/STRIP. In our experiments, for each input image,
we use 64 clean images from the test data for superimposition.

• SCALE-UP (Guo et al., 2023) is also a method for black-box input-level backdoor detection that
assesses the maliciousness of inputs by measuring the scaled prediction consistency (SPC) of
labels under amplified conditions, offering effective defense in scenarios with limited data or no
prior information about the attack. The official open-sourced codes for SCALE-UP (Guo et al.,
2023) can be found at: https://github.com/JunfengGo/SCALE-UP.

• TeCo (Liu et al., 2023) modifies input images with common corruptions and assesses their ro-
bustness through hard-label outputs, ultimately determining the presence of backdoor triggers
based on a deviation measurement of the results. The official open-sourced codes for TeCo (Liu
et al., 2023) can be found at: https://github.com/CGCL-codes/TeCo. In our experi-
ments, considering concerns about runtime, we selected "elastic_transform", "gaussian_noise",
"shot_noise", "impulse_noise", "motion_blur", "snow", "frost", "fog", "brightness", "contrast",
"pixelate", and "jpeg_compression" as methods for corrupting images. The maximum corruption
severity was set to 6.

Details of datasets. ImageNet-1K (Russakovsky et al., 2015) consists of 1,000 classes and
over a million images, making it a challenging dataset for large-scale image classification tasks.
Food-101 (Bossard et al., 2014), which includes 101 classes of food dishes with 1,000 images per
class, and Caltech101 (Fei-Fei et al., 2004), an image dataset containing 101 object categories and
1 background category with 40 to 800 images per category, are both commonly used for testing
model performance on fine-grained classification and image recognition tasks. In our experiment,
we utilized the validation set of ImageNet-1K (Russakovsky et al., 2015), along with the test sets of
Food-101 (Bossard et al., 2014) and Caltech101 (Fei-Fei et al., 2004). By using a fixed backdoor ratio
(0.3) on different downstream datasets in the evaluation, there are 15,000 (out of 50,000) backdoored
images on ImageNet-1K, 7,575 (out of 25,250) backdoored images on Food-101, and 740 (out of
2,465) backdoored images on Caltech-101. Moreover, we also use larger backdoor ratios (0.5 and
0.7) on ImageNet-1K, resulting in 25,000 and 35,000 backdoor samples respectively.

E DEFENSE RESULT COMPARISON WITH CLEANCLIP

To facilitate a direct comparison of defense effectiveness, we made the necessary modifications.
Specifically, during the inference stage, we set the backdoor ratio to 1. In BDetCLIP, samples with
distribution differences below the threshold are directly discarded. The Attack Success Rate (ASR)
is then calculated as the ratio of successfully attacked backdoor samples to the total number of
backdoor samples. We argue that this strategy is reasonable in practical scenarios. To demonstrate the
reliability and stability of our experimental results, we used the threshold selection method described
in Appendix B, performed random sampling ten times, and calculated both the mean and the standard
deviation. For our detection experiments, we utilized the backdoored model provided by CleanCLIP
Bansal et al. (2023) as the victim model and compared the defense performance with the results
reported in CleanCLIP Bansal et al. (2023). As shown in Table 13, BDetCLIP can effectively decrease
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Table 13: Comparison with the Defense Results of CleanCLIP. The metric is ASR.
Attack CleanCLIP BDetCLIP (ours)

Badnet 0.1046 0.0195 ± 0.0040
Blended 0.0980 0.0047 ± 0.0012

Label Consistent 0.1108 0.1163 ± 0.0121

Table 14: Zero-shot performance of using different prompts for the attacked models.

Target class Attack→
Prompts↓ BadNet Blended BadNet-LC Blended-LC

Ant
class template 0.539 0.540 0.539 0.537

class-specific benign prompt 0.483 0.475 0.478 0.472
class-specific malignant prompt 0.290 0.309 0.309 0.298

Banana
class template 0.539 0.537 0.541 0.538

class-specific benign prompt 0.481 0.477 0.478 0.475
class-specific malignant prompt 0.269 0.272 0.280 0.273

Basketball
class template 0.535 0.542 0.542 0.538

class-specific benign prompt 0.474 0.474 0.477 0.477
class-specific malignant prompt 0.285 0.278 0.288 0.298

the ASR compared with the current fine-tuning defense method CleanCLIP Bansal et al. (2023).
Therefore, we argue that our BDetCLIP could be used to defend against backdoor attacks effectively
in practical applications.

F MORE EXPERIMENTAL RESULTS

Zero-shot performance and attack success rate (ASR) of using different prompts for the attacked
models. We also examined the zero-shot classification performance of CLIP subjected to a backdoor
attack using our class-specific benign prompt, class-specific malignant prompt, and the original class
template prompt for benign images, as well as the severity of its susceptibility to malicious images.
Detailed results are presented in Table 14 and 15. The results show that when using class template
prompts, the model’s zero-shot performance is higher, but the attack success rate is also the highest,
indicating that while these prompts offer the best classification performance, they are the most
susceptible to triggering backdoor attacks. class-specific benign prompts exhibit some variability in
reducing the attack success rate, with slightly lower zero-shot performance. class-specific malignant
prompts generally significantly reduce the attack success rate, though their zero-shot performance is
the lowest, indicating that these prompts have potential to reduce the attack success rate but at the
cost of some classification performance. Overall, the choice of prompts plays a significant role in
mitigating backdoor attacks, and further research in prompt engineering to enhance model robustness
while maintaining high performance is a promising direction.

Varying proportions of test-time backdoor samples. We conducted a comparative analysis
between SCALE-UP and our method to explore the effects of variations in backdoor proportions
on our efficacy. Results can be found in Table 16 and 17. The results indicate that under different
proportions of test-time backdoor samples, our method (BDetCLIP) consistently outperforms the
baseline method SCALE-UP. Whether at a backdoor sample ratio of 0.5 or 0.7, BDetCLIP achieves
higher AUROC scores across all target categories and attack detection scenarios compared to SCALE-
UP. This suggests that BDetCLIP exhibits higher robustness and accuracy in detecting backdoor
samples, thereby enhancing the reliability and security of multi-modal models against backdoor
attacks.

Backdoor detection for BadCLIP (Bai et al., 2023). BadCLIP (Bai et al., 2023) is a back-
door attack against prompt learning scenarios, which uses a learnable continuous prompt as a
trigger.Although our approach is designed for CLIP that use discrete prompts for classification
tasks, we can also make simple modifications to detect it. Specifically, we keep the benign prompt
unchanged and modify the malignant prompt to a combination of learnable context and random
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Table 15: Attack success rate (ASR) of using different prompts for the attacked models.

Target class Attack→
Prompts↓ BadNet Blended BadNet-LC Blended-LC

Ant
class template 0.983 0.993 0.971 0.994

class-specific benign prompt 0.821 0.885 0.752 0.905
class-specific malignant prompt 0.840 0.847 0.116 0.309

Banana
class template 0.985 0.998 0.974 0.994

class-specific benign prompt 0.021 0.932 0.004 0.862
class-specific malignant prompt 0.821 0.781 0.785 0.601

Basketball
class template 0.990 0.980 0.987 0.997

class-specific benign prompt 0.962 0.856 0.808 0.917
class-specific malignant prompt 0.716 0.689 0.806 0.948

Table 16: AUROC comparison on ImageNet-1K (Russakovsky et al., 2015). The proportion of
test-time backdoor samples is 0.5. The best result is highlighted in bold.

Target class
Attack→

Detection↓ BadNet Blended BadNet-LC Blended-LC Average

Ant
SCALE-UP 0.737 0.668 0.714 0.734 0.713

BDetCLIP (Ours) 0.991 0.941 0.979 0.942 0.963

Banana
SCALE-UP 0.738 0.693 0.688 0.854 0.743

BDetCLIP (Ours) 0.930 0.932 0.930 0.991 0.946

Basketball
SCALE-UP 0.740 0.714 0.755 0.650 0.715

BDetCLIP (Ours) 0.984 0.933 0.992 0.993 0.976

Table 17: AUROC comparison on ImageNet-1K (Russakovsky et al., 2015). The proportion of
test-time backdoor samples is 0.7. The best result is highlighted in bold.

Target class
Attack→

Detection↓ BadNet Blended BadNet-LC Blended-LC Average

Ant
SCALE-UP 0.738 0.670 0.711 0.735 0.714

BDetCLIP (Ours) 0.990 0.941 0.979 0.940 0.963

Banana
SCALE-UP 0.738 0.692 0.689 0.852 0.743

BDetCLIP (Ours) 0.929 0.931 0.929 0.991 0.945

Basketball
SCALE-UP 0.741 0.714 0.756 0.652 0.716

BDetCLIP (Ours) 0.984 0.933 0.991 0.993 0.975

Table 18: Performance (AUROC) on BadCLIP. The target label of the backdoor attack is “Face”.

Detection→
Attack↓ STRIP SCALE-UP TeCo BDetCLIP (Ours)

BadCLIP 0.987 0.976 0.428 0.977

text. In the experimental setup, we choose ViT 16 as the encoder, attack “Face”, and detect it on
caltech101. As shown in Table 18, we achieve an AUROC of 0.977, while TeCo is only 0.428, which
again highlights the strong performance of our method.

Backdoor detection for ISSBA. As shown in Table 19, only BDetCLIP can achieve excellent
detection, and all other methods struggle to detect such attacks. This again emphasizes the superiority
of BDetCLIP.
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Table 19: Performance (AUROC) on ISSBA. The target label of the backdoor attack is “Banana”.

Detection→
Attack↓ STRIP SCALE-UP TeCo BDetCLIP (Ours)

ISSBA 0.351 0.515 0.496 0.927

Table 20: Detection performance on the open-set classification task.
Backdoor AUROC
BadNet 0.933
Blended 0.936

BadNet-LC 0.929
Blended-LC 0.991

Table 21: The detection performance of Backdoor Attacks with semantically meaningful triggers
("Hello Kitty").

SCALE-UP BDetCLIP (ours)

0.6111 0.8554

Table 22: Detection performance for WaNet.

SCALE-UP BDetCLIP (Ours)

0.920 0.982

Table 23: The detection performance of Multi-target Attacks. The backdoor ratio is 0.3.

SCALE-UP BDetCLIP (ours)

0.5404 0.9858

Backdoor detection for open-set detection. We have conducted additional experiments to validate
the effectiveness of our proposed BDetCLIP for open-set classification tasks. Specifically, we added
a subset of Caltech-101 as the open set to ImageNet1K and set the backdoor ratio to 0.3. Table
20 shows that our proposed BDetCLIP can also achieve impressive performance on the open-set
classification task, which verifies the transferability of our proposed BDetCLIP to other tasks in
VLMs.

Backdoor detection for semantically meaningful trigger. We have considered the scenario
where the backdoor trigger has semantic meaning. Specifically, we used the popular "Hello Kitty" as
a trigger and we also achieve good detection results in Table 21.

Backdoor detection for Wanet. We also use wanet to attack CLIP and perform detection. As
Table 22 shows, we maintain excellent detection performance.

Backdoor detection for multi-targets attack. We have conducted more experiments about using
BDetCLIP to defend against multi-target attacks. Specifically, to achieve the multi-target attack,
we poisoned 1,000 (out of 500,000) samples for each target class (i.e., "goldfish", "basketball", and
"banana") respectively. We fine-tuned the CLIP based on the poisoned dataset (the backdoor ratio is
0.3.) following the original experimental setting. Then, we used BDetCLIP to detect the backdoored
CLIP. Table 23 shows that our BDetCLIP can still achieve impressive detection performance against
the multi-target attack.
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Cost and Time Efficiency of Prompt Generation We recorded the time and monetary costs
associated with generating two types of prompts for each class in the Food-101 dataset using GPT-4
and GPT-4o. The results are summarized in Table 24.

Table 24: Run Time and Money Cost by using GPT-4 or GPT-4o
GPT-4 Run Time Money Cost GPT-4o Run Time Money Cost
Benign 15m19s 2.38 $ Benign 5m33s 0.42 $
Malignant 2m5s 0.12 $ Malignant 1m24s 0.06 $

The results indicate that utilizing GPT-4 (or GPT-4o) for prompt generation is both efficient and
cost-effective. Moreover, the prompt generation process can be conducted offline (prior to test-time
detection), allowing the generated prompts to be directly employed in BDetCLIP for real-time
detection tasks. Consequently, concerns regarding the runtime of the prompt generation step are
minimal.

Using open-source models for prompts generation We also explored the feasibility of replacing
GPT4 for prompt generation with open source models, such as Llama3-8B (denoted as "L") and
Mistral-7B-Instruct-v0.2 (denoted as "M"). The results are shown in Table 25.

Table 25: The left side represents the time spent generating prompts, while the right side illustrates
the detection effectiveness of the generated prompts under the BadNet and Blended attack.

Model Benign Malignant Model BadNet Blended
L 24m20s 4m6s L 0.947 0.983
M 21m14s 4m16s M 0.983 0.963

Although using open-source models for prompt generation may require more time (which minimally
impacts detection efficiency when performed offline), the detection performance remains comparable
to that achieved with GPT-4. This indicates that using open-source models is a promising alternative
for prompt generation.

Table 26: Performance (AUROC) on ImageNetV2 (Recht et al., 2019). The visual encoder of CLIP
is ViT-B/32 (Dosovitskiy et al., 2020). The target label of the backdoor attack is “Banana”.

Attack→
Detection↓ BadNet Blended Average

STRIP 0.776 0.114 0.445
SCALE-UP 0.755 0.696 0. 723

TeCo 0.832 0.958 0.895
BDetCLIP (Ours) 0.930 0.932 0.931

Experiments on ImageNetV2. We conducted additional experiments on ImageNetV2 (Recht
et al., 2019), and the results are presented in Table 26. The results indicate that BDetCLIP consistently
demonstrates superior performance on ImageNetV2, thereby validating its scalability to large-scale
datasets.

The relationship between the number of class-specific benign prompts and threshold. We
denote the number of class-specific benign prompts as m. We conducted tests with m = 6, 5, 4, 3,
applying the aforementioned threshold selection strategy detailed in the Appendix. Random sampling
was performed ten times for each case. Subsequently, we calculated both the variance and the mean
of the selected thresholds. The mean value was then employed as the threshold for subsequent
experiments. As shown in 27, We can see that the larger m is, the better the overall effect will be, and
the threshold will be correspondingly larger. This is intuitive: as m increases, the number of benign
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Table 27: Performance for Different Values of m.
m Threshold (mean) Accuracy Recall F1 AUROC

6 11.7199 0.8785 0.9238 0.8200 0.9417
5 5.2971 0.8640 0.8638 0.7919 0.9280
4 2.1915 0.8539 0.8335 0.7737 0.9200
3 -1.3766 0.8424 0.7986 0.7523 0.9099

prompts grows, providing more fine-grained information, which increases the semantic differences
between benign prompts and malicious prompts.

G LIMITATIONS

The main limitation of this work lies in that only the CLIP model is considered. However, we can
expect that our proposed test-time backdoor detection method can also be applied to other large
multimodal models. We leave this exploration as future work. In addition, our employed strategy to
determine the threshold ϵ in Eq. (7) is relatively simple. More effective strategies could be further
proposed to obtain a more suitable threshold.

H FUTURE WORK

We aim to discuss future work from both offensive and defensive perspectives. For more sophisticated
backdoor attacks, we propose designing triggers that can naturally adapt to changes in prompt
semantics, thereby creating more covert backdoor attacks. For enhanced backdoor defense, we
suggest developing a framework for evaluating prompt quality to further improve the quality of
prompts.
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