
GenArtist: Multimodal LLM as an Agent for Unified
Image Generation and Editing

Zhenyu Wang1 ∗ Aoxue Li2 Zhenguo Li2 Xihui Liu3 †

1 Tsinghua University 2 Noah’s Ark Lab, Huawei 3 The University of Hong Kong
wangzy20@mails.tsinghua.edu.cn, lax@pku.edu.cn,

Li.Zhenguo@huawei.com, xihuiliu@eee.hku.hk

Abstract

Despite the success achieved by existing image generation and editing methods, cur-
rent models still struggle with complex problems including intricate text prompts,
and the absence of verification and self-correction mechanisms makes the generated
images unreliable. Meanwhile, a single model tends to specialize in particular tasks
and possess the corresponding capabilities, making it inadequate for fulfilling all
user requirements. We propose GenArtist, a unified image generation and editing
system, coordinated by a multimodal large language model (MLLM) agent. We
integrate a comprehensive range of existing models into the tool library and utilize
the agent for tool selection and execution. For a complex problem, the MLLM
agent decomposes it into simpler sub-problems and constructs a tree structure to
systematically plan the procedure of generation, editing, and self-correction with
step-by-step verification. By automatically generating missing position-related in-
puts and incorporating position information, the appropriate tool can be effectively
employed to address each sub-problem. Experiments demonstrate that GenArtist
can perform various generation and editing tasks, achieving state-of-the-art perfor-
mance and surpassing existing models such as SDXL and DALL-E 3, as can be
seen in Fig. 1. Project page is https://zhenyuw16.github.io/GenArtist_page/.

1 Introduction

With the recent advancements in diffusion models [17, 10], image generation and editing methods
have rapidly progressed. Current improvements in image generation and editing can be broadly
categorized into two tendencies. The first [40, 41, 37, 6, 1] involves training from scratch using more
advanced model architectures [41, 36] and larger-scale datasets, thereby scaling up existing models
to achieve a more general generation or editing capability. These methods can usually enhance the
overall controllability and quality of image generation. The second is primarily about finetuning or
additionally designing pre-trained large-scale image generation models on specific datasets to extend
their capability [42, 23, 4] or enhance their performance on certain tasks [25, 18]. These methods are
usually task-specific and can demonstrate advantageous results on some particular tasks.

Despite this, current image generation or editing methods are still imperfect and confront some urgent
challenges on the way to building a human-desired system: 1) The demand for image generation
and editing is highly diverse and variable, like various requirements for objects and backgrounds,
numerous demands about various operations in text prompts or instructions. Meanwhile, different
models often possess different strengths and focus. General models may be weaker than some
finetuned models in certain aspects, but they can exhibit better performance in out-of-distribution data.

∗This work is done when Zhenyu Wang was intern in Huawei
†Corresponding author

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://zhenyuw16.github.io/GenArtist_page/

text-to-image generation

Two hot dogs sit on a green plate near a soda cup which are sitting
on a white picnic table, while a red bike on the right of a blue car
are parked nearby.

GenArtist (ours)DALL-E 3Midjourney

SDXL Playground

A restroom features black and white checkered flooring, two
toilets of which has a black seat and lid and the other a white
seat and lid, two black sinks.

SDXL

Midjourney DALL-E 3

Playground

An icy landscape. A vast expanse of snow-covered mountain peaks stretches endlessly. Beneath them is a dense forest and a colossal frozen
lake. Three people are boating in three boats separately in the lake. Not far from the lake, a volcano threatens eruption, its rumblings felt
even from afar. Above, a ferocious red dragon dominates the sky and commands the heavens, fueled by the volcano's relentless energy flow.

SDXL

DALL-E 3

image editing

multi-round interactive image generation

In a city setting, envision a goat outside the fence observing
the cows, while removing the cow nearest to the goat.

Leave the laptop open with a mouse nearby, omitting any telephone
on the table, and imagine this scene rendered in an oil painting style.

A dog (as below) is wearing the
sunglasses (as below) on the beach.

Replace the sunglasses
with the below one.

Move them
to a forest.

In a vibrant summer village in the daylight, the snow has melted and lush green trees dot the landscape, while houses blend seamlessly. In
the distance, some mountains retain a hint of snow, a small river is in the middle of the village.

GenArtist (ours)

GenArtist (ours)

Let the cat accompany him on his
right while changing to the art style.

Figure 1: Visualized examples from GenArtist. It can accomplish various tasks, achieving unified
generation and editing. For text-to-image generation, it obtains greater accuracy compared to existing
models like SDXL and DALL-E 3. For image editing, it also excels in complex editing tasks.

2

Therefore, it is nearly impossible for a well-trained model to meet all human requirements, and the
use of only a single model is often sub-optimal. 2) Models still struggle with complex problems, such
as lengthy and intricate sentences in text-to-image tasks or complicated instructions with multiple
steps in editing tasks. Scaling up or finetuning models can alleviate this issue. However, since texts
are highly variable, flexible, and can be easy to combine, there are always complex problems that a
trained model cannot effectively handle. 3) Although meticulously designed, models still inevitably
encounter some failure cases. Generated images sometimes fail to accurately correspond to the
content of user prompts. Existing models lack the ability to autonomously assess the correctness of
generated images, not to mention self-correcting them, making generated images unreliable. What
we truly desire, therefore, should be a unified image generation and editing system, which can satisfy
nearly all human requirements while producing reliable image results.

In this paper, we propose a unified image generation and editing system called GenArtist to ad-
dress the above challenges. Our fundamental idea is to utilize a multimodal large language model
(MLLM) as an AI agent, which acts as an "artist" and "draws" images according to user instructions.
Specifically, in response to user instructions, the agent will analyze the user requirements, decompose
complex problems, and conduct planning comprehensively to formulate the specific solutions. Then,
it executes image generation or editing operations by invoking external tools to meet the user demands.
After images are obtained, it finally performs verification and correction on the generated results to
further ensure the accuracy of the generated images. The core mechanisms of the agent are:

Decomposition of intricate text prompts. The MLLM agent first decomposes the complex problems
into several simple sub-problems. For complicated text prompts in generation tasks, it extracts
single-object concepts and necessary background elements. For complex instructions in editing tasks,
it breaks down intricate operations into several simple single editing actions. The decomposition of
complex problems significantly improves the reliability of model execution.

Planning tree with step-by-step verification. After decomposition, we construct a tree structure to
plan the execution of sub-tasks. Each operation is a node in the tree, with subsequent operations as
its child nodes, and different tools for the same action are its sibling nodes. Each node is followed by
verification to ensure that its operation can be executed correctly. Then, both generation, editing, and
self-correction mechanisms can be incorporated. Through this planning tree, the proceeding of the
system can be considered as a traversal process and the whole system can be coordinated.

Position-aware tool execution. Most of object-level tools require position-related inputs, like the
position of the object to be manipulated. These necessary inputs may not be provided by the user.
Existing MLLMs are also position-insensitive, and cannot provide accurate positional guidance. We
thus introduce a set of auxiliary tools to automatically complete these position-related inputs, and
incorporate position information for the MLLM agent through detection models for tool execution.

Our main contributions can be summarized as follows:

• We propose GenArtist, a unified image generation and editing system. The MLLM agent serves as
the "brain" to coordinate and manage the entire process. To the best of our knowledge, this is the
first unified system that encompasses the vast majority of existing generation and editing tasks.

• Through viewing the operations as nodes and constructing the planning tree, our MLLM agent
can schedule for generation and editing tasks, and automatically verify and self-correct generated
images. This significantly enhances the controllability of user instructions over images.

• By incorporating position information into the integrated tool library and employing auxiliary tools
for providing missing position-related inputs, the agent performs tool selection and invokes the
most suitable tool, providing a unified interface for various tasks in generation and editing.

Extensive experiments demonstrate the effectiveness of our GenArtist. It achieves more than 7%
improvement compared to DALL-E 3 [1] on T2I-CompBench [18], a comprehensive benchmark for
open-world compositional T2I generation, and also obtains the state-of-the-art performance on the
image editing benchmark MagicBrush [61]. As can be seen in the visualized examples in Fig. 1,
GenArtist well serves as a unified image generation and editing system.

2 Related Work

Image generation and editing. With the development of diffusion models [10, 17], both image
generation and editing have achieved remarkable success. Many general text-to-image generation [41,

3

An oil painting,
where a green
vintage car, a blue
scooter on the
left of it and a
black bicycle on
the right of it,
are parked on the
road, with two
birds in the sky.

Generation Tool Library

text-to-image

image-to-image

layout-to-image

customized image

super-resolution

…

Editing Tool Library

object addition

object removal

attribute editing

instruction text

dragging

…

verification
objects:

type, number,
attribute

spatial layout
background, style
…

attr
edit

add

replace

add

Auxiliary Tool Library

object detector

object segmentor

text-to-image

layout generator

pose estimator …

Decomposition Planning Tree

objects:
a green vintage car
a blue scooter
a black bicycle
bird #1, bird #2
background:
street scene
an oil painting

generation

init

Position-Aware Tool Execution

Tool Selection

self-correctiongeneration

black scooter: [0.06, 0.57, 0.25, 0.3]
bird: [0.69, 0.05, 0.18, 0.13]
green vintage car: [0.38, 0.47, 0.43, 0.31]

position
information:

edge generator

Figure 2: The overview of our GenArtist. The MLLM agent is responsible for decomposing
problems and planning using a tree structure, then invoking tools to address the issues. Employing
the agent as the "brain" effectively realizes a unified generation and editing system.

43, 37, 6] and editing methods [2, 61, 45, 15] have been proposed and achieved high-quality generated
images. Based on these general models, many methods conduct finetuning or design additional
modules for some specialized tasks, like customized image generation [42, 21, 23, 30], image
generation with text rendering [5, 4], exemplar-based image editing [56, 8], image generation that
focuses on persons [53]. Meanwhile, some methods aim to improve the controllability of texts over
images. For example, ControlNet [62] controls Stable Diffusion with various conditioning inputs like
Canny edges, [50] adopts sketch images for conditions, and layout-to-image methods [24, 54, 25, 7]
synthesize images according to the given bounding boxes of objects. Despite the success, these
methods still focus on specific tasks, thus unable to support unified image generation and editing.

AI agent. Large language models (LLMs), like ChatGPT, Llama [48, 49], have demonstrated
impressive capability in natural language processing. The involvement of vision ability for multimodal
large language models (MLLMS), like LLaVA [26], Claude, GPT-4 [34], further enables the models
to process visual data. Recently, LLMs begin to be adopted as agents for executing complex tasks.
These works [57, 44, 29] apply LLMs to learn to use tools for tasks like visual interaction, speech
processing, compositional visual tasks [16], software development [38], gaming [11], APP use [60]
or math [55]. Recently, the idea of AI agents has also begun to be applied to image generation
related tasks. For example, [25, 13] design scene layout with LLMs, [52] utilizes LLMs to assist
self-correcting, [51, 59] target at MLLMs in complex text-to-image generation problems, and [39]
leverages LLM for model selection in the text-to-image generation task.

3 Method

The overview of our GenArtist is illustrated in Fig. 2. The MLLM agent coordinates the whole system.
Its primary responsibilities center around decomposing the complicated tasks and constructing the
planning tree with step-by-step verification for image generation, editing, and self-correction. It
invokes tools from an image generation tool library and an editing tool library to execute the specific
operations, and an auxiliary tool library serves to provide missing position-related values.

3.1 Planning Tree with Step-by-Step Verification

Decomposition. When it comes to complicated prompt inputs, existing methods usually cannot
understand all requirements, which hurts the controllability and reliability of model results. The
MLLM agent thus first decomposes the complex problems. For generation tasks, it decomposes both
object and background information according to the text prompts. It extracts the discrete objects
embedded within the text prompts, along with their associated attributes. For background information,
it mainly analyzes the overall scene and image style required by the input texts. For editing tasks, It
decomposes complex editing operations into several specific actions, such as add, move, remove,
into simple editing instructions. After decomposition, the simpler operations can be relatively easier
to address, which thus improves the reliability of model execution.

4

Tree construction. After decomposition, we organize all operations into a structure of tree for
planning. Such a tree primarily consists of three types of nodes: initial nodes, generation nodes, and
editing nodes. The initial node serves as the root of the tree, marking the beginning of the system.
Generation nodes are about image generation using tools from the generation tool library, while
editing nodes are about performing a single editing operation using the corresponding tools from the
editing tool library. For pure image editing tasks, the generation nodes will be absent.

In practice, as the correctness of generated images cannot be guaranteed, we introduce the self-
correction mechanism to assess and rectify the results of generation. Each generation node thus has a
sub-tree consisting entirely of editing nodes for self-correction. After the tools in the generation nodes
are invoked and verification is conducted, this sub-tree will be adaptively generated by the MLLM
agent. Specifically, after verification, we instruct the MLLM agent to devise a series of corresponding
editing operations to correct the images. Take the example in Fig. 2 for example, editing actions
including "add a black bicycle", "edit the color of the scooter to blue", "add a
bird" should be conducted. These operations are organized into a tree structure to be the sub-tree of
the generation node, allowing for specific planning of self-correction.

initial

addition tool:
A black bicycle

attribute editing tool:
scooter → blue

initial generation
tool: LMD

addition: a
black bicycle

attribute editing:
scooter → blue

instruction: add
a black bicycle

replace:
scooter →
blue scooter

instruction:
edit the scooter
to blue

input text

alternative
generation
tool: SDXL

initial generation
tool: LMD

addition: a
black bicycle

attribute
editing:
scooter → blue

instruction:
add a black
bicycle

replace:
scooter →
blue scooter

…

input text

alternative
generation
tool: SDXL

instruction:
edit the
scooter to blue

…

initial node

generation node

editing node

Figure 3: Illustration of the tree
for planning. The sub-tree of the
"alternative generation tool" node
will be adaptively generated after
verification, and the sub-tree of the
"instruction" node is the same as
the left.

Each generation or editing action corresponds to a node in the
tree, with its subsequent operations as its child nodes. This con-
struction initially forms a "chain", enabling a planning chain.
Then, we note that we can usually utilize different tools to
address the same problem. For example, for adding an object
into the image, we can employ a tool specifically designed for
object addition or instruction-based editing models by translat-
ing the adding operation into text instructions. Similarly, for
attribute editing, we can use attribute editing models or utilize
replacement or instruction-based editing models. Moreover,
numerous generation tools can achieve text-to-image genera-
tion, and varying the random seeds can also produce different
outputs. We consider these nodes as siblings, all serving as
child nodes of their parent nodes. They also share the same
sub-tree, containing subsequent editing operations. The tool
selected by the MLLM agent will be placed as the optimal child
node and positioned on the far left. In this way, we establish the
structure of the tree. An illustration example for the Fig. 2 case
is provided in Fig. 3 (we omit some sub-trees with identical
structures or adaptively generated after generation nodes, and
some nodes about varying random seeds for simplicity).

Planning. Once the tree is established, planning for self-
correction or the whole system can be viewed as the pre-order
traversal of the structure. For a particular node, its corresponding tool is invoked to conduct the
operation, followed by verification to determine whether the editing is successful. If successful,
the process proceeds to its leftmost child node for subsequent operations, and its sibling nodes are
deleted. If unsuccessful, the process backtracks to its sibling nodes, and its sub-tree is removed.
This process continues until the generated image is correct, i.e., when a node at the lowest level
successfully executes. We can also limit the branching factor or the number of nodes of the tree for
early termination, and require the agent to return the most accurate image.

Verification. As described above, the verification mechanism plays a crucial role both in tree
construction and the execution process. Through the multimodal perception capability of the MLLM,
the agent verifies the correctness of the generated images. The main aspect of verification involves
the objects contained in the text, together with their own attributes like their color, shape, texture,
the positions of the objects, the relationship among these different objects. Besides, the background,
scene, overall style and the aesthetic quality of generated images are also considered. Since the
perception ability of existing models tends to be superior to the generative ability, employing such
verification allows for effectively assessing the correctness of generated images.

It is also worth mentioning that during verification, in addition to the accuracy of the generated
images, the agent is also required to assess their aesthetic quality. If the overall quality is poor, the
agent will utilize different generation tools or choose different random seeds to regenerate the images,

5

Table 1: GenArtist utilized tool library, including the tool names and their skills. The main tools
are from the generation tool library and the editing tool library. The following models represent all
the tools used in our current version, while new models can be seamlessly added.

Generation Tools Editing Tools
skill tool skill tool

text-to-image SDXL [37]
text-to-image PixArt-α [6] object addition AnyDoor [8]

image-to-image Stable Diffusion v2 [41] object removal LaMa [47]
layout-to-image LMD [25] object replacement AnyDoor [8]
layout-to-image BoxDiff [54] attribute editing DiffEdit [9]

single-object customization BLIP-Diffusion [23] instruction-based MagicBrush [61]
multi-object customization λ-ECLIPSE [35] dragging (detail) DragDiffusion [46]

super-resolution SDXL [37] dragging (object) DragonDiffusion [33]
image with texts TextDiffuser [4] style transfer InST [64]

{canny, depth ...}-to-image ControlNet [62]

in order to ensure their overall quality. Meanwhile, as an agent-centered system, the framework is
also flexible in terms of human-computer interaction. During verification, human feedback can be
appropriately integrated. By incorporating human evaluation and feedback on the overall quality of
the images, the quality of the generated images can be further improved.

3.2 Tool Library

After constructing the planning tree, the agent proceeds to execute each node by calling external
tools, ultimately solving the problem. We first introduce the tools used in GenArtist. The primary
tools that the MLLM agent utilizes can be generally divided into the image generation tool library
and the editing tool library. The specific tools we utilize currently are listed in Tab. 1, and some new
tools can be seamlessly added, allowing for the expansion of the tool library. To assist the subsequent
tool selection, we need to convey information to the MLLM agent about the specific task performed
by the tool, its required inputs, and its characteristics and advantages. The prompts for introducing
tools consist of the following parts specifically:
• The tool skill and name. It briefly describes the tool-related task and its name, as listed in Tab. 1,

such as (text-to-image, SDXL), (canny-to-image, ControlNet), (object removal,
LaMa). It serves as a unique identifier, enabling the agent to differentiate the utilized tools.

• The tool required inputs. It pertains to the specific inputs required for the execution of the tool. For
example, text-to-image models require "text" as input for generation, customization models also
need "subject images" for personalized generation. Most of object-level editing tools demand
instructions about "object name" and "object position".

• The tool characteristic and advantage. It primarily provides a more detailed introduction of the tool,
including its specific characteristics, serving as a key reference for the agent during tool selection.
For example, SDXL can be a general text-to-image generation model, LMD usually
controls scene layout strictly and is suitable for compositional text-to-image generation,
where text prompts usually contain multiple objects, BoxDiff controls scene layout relatively
loosely, TextDiffuser is specially designed for image generation with text rendering.

3.3 Position-Aware Tool Execution

With tool libraries, the MLLM agent will further perform tool selection and execution to utilize the
suitable tool for fulfilling the image generation or editing task. Before tool execution, we compensate
for the deficiency of position information in user inputs and the MLLM agent through two designs:

Position-related input compensation. In practice, it is common to encounter scenes where the
agent selects a suitable tool but some necessary user inputs are missing. These user inputs are mostly
related to positions. For example, for some complex text prompts where multiple objects exist, the
layout-to-image tool can be suitable. However, users may not necessarily provide the scene layouts
and usually only text prompts are provided. In such cases, due to the absence of some necessary
inputs, these suitable tools cannot be directly invoked. We therefore introduce the auxiliary tool
library to provide these position-related missing inputs. This auxiliary tool library mainly contains:
1) localization models like object detection [28] or segmentation [20] models, to provide position

6

Table 2: Quantitative Comparison on T2I-CompBench with existing text-to-image generation
models and compositional methods. Our method demonstrates superior compositional generation
ability in both attribute binding, object relationships, and complex compositions. We use the officially
updated code for evaluation, which updates the noun phrase number. Consequently, some metric
values for certain methods may be lower than those reported in their original papers.

Model Attribute Binding Object Relationship Complex↑Color ↑ Shape↑ Texture↑ Spatial↑ Non-Spatial↑
Stable Diffusion v1.4 [41] 0.3765 0.3576 0.4156 0.1246 0.3079 0.3080
Stable Diffusion v2 [41] 0.5065 0.4221 0.4922 0.1342 0.3096 0.3386
DALL-E 2 [40] 0.5750 0.5464 0.6374 0.1283 0.3043 0.3696
Composable Diffusion [27] 0.4063 0.3299 0.3645 0.0800 0.2980 0.2898
StructureDiffusion [12] 0.4990 0.4218 0.4900 0.1386 0.3111 0.3355
Attn-Exct [3] 0.6400 0.4517 0.5963 0.1455 0.3109 0.3401
GORS [18] 0.6603 0.4785 0.6287 0.1815 0.3193 0.3328
SDXL [37] 0.5879 0.4687 0.5299 0.2133 0.3119 0.3237
PixArt-α [6] 0.6690 0.4927 0.6477 0.2064 0.3197 0.3433
CompAgent [51] 0.7760 0.6105 0.7008 0.4837 0.3212 0.3972
DALL-E 3 [1] 0.7785 0.6205 0.7036 0.2865 0.3003 0.3773
GenArtist (ours) 0.8482 0.6948 0.7709 0.5437 0.3346 0.4499

information of objects for some object-level editing tools; 2) the preprocessors of ControlNet [62]
like the pose estimator, canny edge map extractor, depth map extractor; 3) some LLM-implemented
tools, like the scene layout generator [25, 13]. The MLLM agent can invoke these auxiliary tools
automatically if necessary, to guarantee that the most suitable tool to address the user instruction can
be utilized, rather than solely relying on user-provided inputs to select tools.

Position information introduction. Existing MLLMs primarily focus on text comprehension and
holistic image perception, with relatively limited attention to precise position information within
images. MLLMs can easily determine whether objects exist in the image, but sometimes struggle
with discerning spatial relationships between objects, such as whether a specific object is to the left
or right of another. It is also more challenging for these MLLMs to provide accurate guidance
for tools that require position-related inputs, such as object-level editing tools. To address this, we
employ an object detector on the input images, and include the detected objects along with their
bounding boxes as part of the prompt, to provide a spatial reference for the MLLM agent. In this way,
the agent can effectively determine the positions within the image where certain tools should operate.

The prompts for the agent to conduct tool selection thus mainly consist of the following parts:

• Task instruction. Its main purpose is to clarify the task of the agent, i.e., tool selection within
a unified generation and editing system. Simultaneously, it takes user instructions as input and
specifies the output format. We request the agent to output in the format of {"tool_name":tools,
"input":inputs} and annotate missing inputs with the pre-defined specified identifier.

• Tool introductions. We input the description of each tool into the agent in the format as described
earlier. The detailed information about the tools will serve as the crucial references for the tool
selection process. We also state that the primary criterion for tool selection is the suitability of the
tool, rather than the content of given inputs, since missing inputs can be generated automatically.

• Position information. The outputs from the object detector are utilized and provided to the MLLM
agent to compensate for the lack of position information.

In summary, the basic steps for tool execution are as follows: First, determine whether the task
pertains to image generation or editing. Next, conduct tool selection according to the instructions
and the characteristics of the tools, and output in the required format. Finally, for missing inputs
which are necessary for the selected tools, utilize auxiliary tools to complete them. Upon completing
these steps, the agent will be able to correctly execute the appropriate tools, thereby initially meeting
the requirements of users. The integration, selection, and execution of diverse tools significantly
facilitate the development of a unified image generation and editing system.

4 Experiments

In this section, we demonstrate the effectiveness of our GenArtist and its unified ability through
extensive experiments in image generation and editing. For image generation, we mainly conduct

7

Table 3: Quantitative Comparison on MagicBrush with existing image editing methods. Multi-
turn setting evaluates images that iteratively edited on the previous source images in edit sessions.

Settinigs Methods L1↓ L2↓ CLIP-I↑ DINO↑ CLIP-T↑

Single-turn

Null Text Inversion [32] 0.0749 0.0197 0.8827 0.8206 0.2737
HIVE [63] 0.1092 0.0341 0.8519 0.7500 0.2752
InstructPix2Pix [2] 0.1122 0.0371 0.8524 0.7428 0.2764
MagicBrush [61] 0.0625 0.0203 0.9332 0.8987 0.2781
SmartEdit [19] 0.0810 - 0.9140 0.8150 0.3050
GenArtist (ours) 0.0536 0.0147 0.9403 0.9131 0.3129

Multi-turn

Null Text Inversion [32] 0.1057 0.0335 0.8468 0.7529 0.2710
HIVE [63] 0.1521 0.0557 0.8004 0.6463 0.2673
InstructPix2Pix [2] 0.1584 0.0598 0.7924 0.6177 0.2726
MagicBrush [61] 0.0964 0.0353 0.8924 0.8273 0.2754
GenArtist (ours) 0.0858 0.0298 0.9071 0.8492 0.3067

quantitative comparisons on the recent T2I-CompBench benchmark [18]. It is mainly about image
generation with complex text prompts, involving multiple objects together with their own attributes or
relationships. For image editing, we mainly conduct comparisons on the MagicBrush benchmark [61],
which involves multiple types of text instructions, both single-turn and multi-turn dialogs for image
editing. We choose GPT-4V [34] as our MLLM agent. In quantitative comparative experiments, we
constrain the editing tree to be a binary tree.

4.1 Comparison with Image Generation Methods

We list the quantitative metric results of our GenArtist in Tab. 2 and compare with existing state-
of-the-art text-to-image synthesis methods. It can be seen that our GenArtist consistently achieves
better performance on all sub-categories. This demonstrates that for the text-to-image generation
task, our system effectively achieves better control over text-to-image correspondence and higher
accuracy in generated images, especially in the case of complicated text prompts. It can be observed
that based on Stable Diffusion, both scaling-up models such as SDXL, PixArt-α, and those methods
specifically designed for this context like Attn-Exct, GORS, can achieve higher accuracy. In contrast,
our approach, by integrating various models as tools, effectively harnesses the strengths of these
two categories of methods. Additionally, the self-correction mechanism further ensures the accuracy
of the generated images. Compared to the current state-of-the-art model DALL-E 3, our method
achieves nearly a 7% improvement in attribute binding, and a more than 20% improvement in
spatial relationships, partly due to the inclusion of position-sensitive tools and the input of position
information during tool selection. Compared to CompAgent, a method that also employs an AI
agent for compositional text-to-image generation, GenArtist achieves a 6% improvement on average,
partially because our system encompasses a more comprehensive framework for both generation and
self-correction. The capability in image generation of our unified system can thus be demonstrated.

4.2 Comparison with Image Editing Methods

We then list the comparative quantitative comparisons on the image editing benchmark MagicBrush in
Tab. 3. Our GenArtist also achieves superior editing results, no matter in the single-turn or multi-turn
setting, compared to both previous global description-guided methods like Null Text Inversion and
instruction-guided methods like InstrctPix2Pix and MagicBrush. The main reason is that editing
operations are highly diverse, and it’s challenging for a single model to achieve excellent performance
across all these diverse editing operations. In contrast, our method can leverage the strengths of
different models comprehensively. Additionally, the planning tree can effectively consider scenarios
where model execution fails, making editing results more reliable and accurate. The capability in
image editing of our unified system can thus be demonstrated.

4.3 Ablation Study

We finally conduct the ablation study on the T2I-CompBench benchmark and list the results in Tab. 4.
We present the results of Stable Diffusion as a reference. The top section includes various tools
relevant to the task, including text-to-image, layout-to-image, and customized generation methods.
It can be observed that through scaling up or additional design, these tools have generally achieved

8

Table 4: Ablation Study on T2I-CompBench. The upper section is about relevant tools from the
generation tool library, then we study the tool selection and planning mechanisms respectively.

Method Attribute Binding Object Relationship Complex↑Color ↑ Shape↑ Texture↑ Spatial↑ Non-Spatial↑
Stable Diffusion v2 [41] 0.5065 0.4221 0.4922 0.1342 0.3096 0.3386
LMD [25] 0.5736 0.5334 0.5227 0.2704 0.3073 0.3083
BoxDiff [54] 0.6374 0.4869 0.6100 0.2625 0.3158 0.3457
λ-ECLIPSE [35] 0.4581 0.4420 0.5084 0.1285 0.2922 0.3131
SDXL [37] 0.5879 0.4687 0.5299 0.2133 0.3119 0.3237
PixArt-α [6] 0.6690 0.4927 0.6477 0.2064 0.3197 0.3433
+ tool selection 0.7028 0.5764 0.6883 0.4305 0.3187 0.3739
+ planning chain 0.7509 0.6045 0.7192 0.4787 0.3216 0.4095
+ planning tree 0.8482 0.6948 0.7709 0.5437 0.3346 0.4499

A man with long black hair in a pony tail has a
beard and is wearing a red hat and dark colored
suit while he looks at his cell phone and is smiling.

SDXLBoxDiff

Instruction: let
the man have
long black hair

replace:
hat to red

instruction:
let the man
smiling

addition:
long
black hair

Two white sheep on the left, a black goat on the
middle and a white goat on the right in a field.

remove:
#sheep

LMD
attribute
editing:
#sheep
to white addition: a

white sheep

addition: a
white goat

replace:
#sheep
to white

instruction: add a
stream to the farm

The farm should have a stream, and a giraffe should be on
the left of the stream under a supernova explosion sky.

addition:
a giraffe

instruction: add a
supernova explosion

instruction:
add a giraffe
on stream left

attribute
editing:
#helmet
to red

Let the color of the helmet on the rightmost person be
red. Meanwhile, remove the right motorbike.

replace:
#helmet
to red

remove:
#motorbike

Figure 4: Visualization of the planning tree for image generation tasks.

better results than Stable Diffusion. After tool selection by the MLLM agent, the quantitative metrics
outperform all these tools. This demonstrates that the agent can effectively choose appropriate tools
based on the content of text prompts, thus achieving superior performance compared to all these
tools. If we use a chain structure for planning to further correct the images, we achieve an average
improvement of 3%, demonstrating the necessity of verification and correction of erroneous results.
Furthermore, by utilizing a tree structure, we can further consider and handle cases where the editing
tool fails, resulting in even more reliable output results. Such an ablation study illustrates the necessity
of integrating multiple models as tools and utilizing tree structure for planning. The reasonableness
of our agent-centric system designs can also be demonstrated.

Table 5: Ablation Study on the position-aware
tool execution on T2I-CompBench.

Spatial↑ Complex ↑
w/o position information 0.4577 0.4083
w/ position information 0.5437 0.4499

Regarding position-aware tool execution, we
list the corresponding ablation study in Tab. 5.
We evaluate the performance on the spatial and
complex aspects of T2I-CompBench, as these
two aspects mainly involve position-sensitive
text prompts for image generation. As multi-

modal large models are usually not sensitive to position information, the performance is limited
without the inclusion of position information, only a slight improvement over the tool selection re-
sults. After introducing position information, which enhances spatial awareness, there is a significant
improvement in both the spatial and complex aspects. This validates the reasonability of our design.

We further list some visualized generation examples in Fig. 4 to illustrate our planning tree and how
the system proceeds. In the first example, as the text prompts contain multiple objects, the agent
chooses the LMD tool for generation. However, there are still some errors in the image. The agent
first attempts to use the attribute editing tool to change the leftmost sheep to white, but it fails. The
agent further attempts to modify the color using the replace tool, but after replacement, the size of the
sheep becomes too small and not very noticeable. The agent then chooses to remove the black sheep
and then adds a white sheep, successfully achieving the same effect as editing color. Finally, the
agent uses the object addition tool to add a goat on the right side, ensuring that the image accurately
matches the text prompt in the end. In the second example, due to the lack of clarity of the hair in
the BoxDiff generated image, the editing tools cannot edit so that the hair correctly matches the
description of "long black hair". Therefore, the agent invokes another generation tool to guarantee
the final image is correct. Some image editing examples are also provided in Fig. 5.

9

A man with long black hair in a pony tail has a
beard and is wearing a red hat and dark colored
suit while he looks at his cell phone and is smiling.

SDXLBoxDiff

Instruction: let
the man have
long black hair

replace:
hat to red

instruction:
let the man
smiling

addition:
long
black hair

Two white sheep on the left, a black goat on the
middle and a white goat on the right in a field.

remove:
#sheep

LMD
attribute
editing:
#sheep
to white addition: a

white sheep

addition: a
white goat

replace:
#sheep
to white

instruction: add a
stream to the farm

The farm should have a stream, and a giraffe should be on
the left of the stream under a supernova explosion sky.

addition:
a giraffe

instruction: add a
supernova explosion

instruction:
add a giraffe
on stream left

attribute
editing:
#helmet
to red

Let the color of the helmet on the rightmost person be
red. Meanwhile, remove the right motorbike.

replace:
#helmet
to red

remove:
#motorbike

Figure 5: Visualization of the planning tree for image editing tasks.

Remove the lettuce in the middle of the sandwich.

A cup on the
top of a green
table, with a
very small
blue cup on
the left of it.

initially-generated image after self-correction

Figure 6: The error cases of GenArtist caused by the ability of editing tools (the left) or the wrong
output of localization tools (the right).

4.4 Error Case Analysis

We further analyze some error cases from our GenArtist in Fig. 6. As can be seen, sometimes, despite
the agent correctly planning the specific execution of tools, the limitations of the tools themselves
prevent correct execution, leading to incorrect results. For example, in the first case, it is required to
add a very small blue cup. However, due to the lack of fine resolution ability in existing editing tools,
the generated blue cup’s size is inaccurate. In addition, as shown in the second case, errors in the
output of localization tools can also affect the final result. For instance, when asked to remove the
lettuce in the middle of a sandwich, the segmentation model fails to accurately identify the part of the
object, leading to the erroneous removal operation. Utilizing more powerful tools or incorporating
some human feedback during the verification stage can effectively address this issue.

5 Conclusion

In this paper, we propose GenArtist, a unified image generation and editing system coordinated
by a MLLM agent. By decomposing input problems, employing the tree structure for planning
and invoking external tools for execution, the MLLM agent acts as the "brain" to generate high-
fidelity and accurate images for various tasks. Extensive experiments demonstrate that GenArtist
well addresses complex problems in image generation and editing, and achieves state-of-the-art
performance compared to existing methods. Its ability in a wide range of generation tasks also
validates its unified capacity. We believe our approach of leveraging the agent to achieve a unified
image generation and editing system with enhanced controllability can provide valuable insights for
future research, and we consider it an important step toward the future of autonomous agents.

Acknowledgement

We gratefully acknowledge the support of Mindspore, CANN(Compute Architecture for Neural
Networks) and Ascend AI Processor used for this research.

Limitation and Potential Negative Social Impacts. Our method employs an MLLM agent as the
core for the entire system operations. Therefore, the method effectiveness depends on the performance
of the MLLM used. Current MLLMs, such as GPT-4, are capable of meeting most basic requirements.
For tasks that exceed the capability of GPT-4, our method may fail. Additionally, the misuse of image
generation or editing could potentially lead to negative social impacts.

10

References
[1] James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long Ouyang,

Juntang Zhuang, Joyce Lee, Yufei Guo, et al. Improving image generation with better captions.
Computer Science. https://cdn. openai.com/papers/dall-e-3.pdf, 2023.

[2] Tim Brooks, Aleksander Holynski, and Alexei A Efros. Instructpix2pix: Learning to follow
image editing instructions. In CVPR, 2023.

[3] Hila Chefer, Yuval Alaluf, Yael Vinker, Lior Wolf, and Daniel Cohen-Or. Attend-and-excite:
Attention-based semantic guidance for text-to-image diffusion models. TOG, 2023.

[4] Jingye Chen, Yupan Huang, Tengchao Lv, Lei Cui, Qifeng Chen, and Furu Wei. Textdiffuser-2:
Unleashing the power of language models for text rendering. arXiv preprint arXiv:2311.16465,
2023.

[5] Jingye Chen, Yupan Huang, Tengchao Lv, Lei Cui, Qifeng Chen, and Furu Wei. Textdiffuser:
Diffusion models as text painters. In NeurIPS, 2023.

[6] Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang,
James Kwok, Ping Luo, Huchuan Lu, et al. Pixart-α: Fast training of diffusion transformer for
photorealistic text-to-image synthesis. In ICLR, 2024.

[7] Minghao Chen, Iro Laina, and Andrea Vedaldi. Training-free layout control with cross-attention
guidance. In WACV, 2024.

[8] Xi Chen, Lianghua Huang, Yu Liu, Yujun Shen, Deli Zhao, and Hengshuang Zhao. Anydoor:
Zero-shot object-level image customization. In CVPR, 2024.

[9] Guillaume Couairon, Jakob Verbeek, Holger Schwenk, and Matthieu Cord. Diffedit: Diffusion-
based semantic image editing with mask guidance. arXiv preprint arXiv:2210.11427, 2022.

[10] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. In
NeurIPS, 2021.

[11] Meta Fundamental AI Research Diplomacy Team (FAIR)†, Anton Bakhtin, Noam Brown, Emily
Dinan, Gabriele Farina, Colin Flaherty, Daniel Fried, Andrew Goff, Jonathan Gray, Hengyuan
Hu, et al. Human-level play in the game of diplomacy by combining language models with
strategic reasoning. Science, 2022.

[12] Weixi Feng, Xuehai He, Tsu-Jui Fu, Varun Jampani, Arjun Reddy Akula, Pradyumna Narayana,
Sugato Basu, Xin Eric Wang, and William Yang Wang. Training-free structured diffusion
guidance for compositional text-to-image synthesis. In ICLR, 2023.

[13] Weixi Feng, Wanrong Zhu, Tsu-jui Fu, Varun Jampani, Arjun Akula, Xuehai He, Sugato Basu,
Xin Eric Wang, and William Yang Wang. Layoutgpt: Compositional visual planning and
generation with large language models. In NeurIPS, 2023.

[14] Tsu-Jui Fu, Wenze Hu, Xianzhi Du, William Yang Wang, Yinfei Yang, and Zhe Gan. Guiding
instruction-based image editing via multimodal large language models. In ICLR, 2024.

[15] Zigang Geng, Binxin Yang, Tiankai Hang, Chen Li, Shuyang Gu, Ting Zhang, Jianmin Bao,
Zheng Zhang, Han Hu, Dong Chen, et al. Instructdiffusion: A generalist modeling interface for
vision tasks. In CVPR, 2024.

[16] Tanmay Gupta and Aniruddha Kembhavi. Visual programming: Compositional visual reasoning
without training. In CVPR, 2023.

[17] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In
NeurIPS, 2020.

[18] Kaiyi Huang, Kaiyue Sun, Enze Xie, Zhenguo Li, and Xihui Liu. T2i-compbench: A com-
prehensive benchmark for open-world compositional text-to-image generation. In NeurIPS,
2023.

11

[19] Yuzhou Huang, Liangbin Xie, Xintao Wang, Ziyang Yuan, Xiaodong Cun, Yixiao Ge, Jiantao
Zhou, Chao Dong, Rui Huang, Ruimao Zhang, et al. Smartedit: Exploring complex instruction-
based image editing with multimodal large language models. In CVPR, 2024.

[20] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson,
Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In
ICCV, 2023.

[21] Nupur Kumari, Bingliang Zhang, Richard Zhang, Eli Shechtman, and Jun-Yan Zhu. Multi-
concept customization of text-to-image diffusion. In CVPR, 2023.

[22] Daiqing Li, Aleks Kamko, Ali Sabet, Ehsan Akhgari, Linmiao Xu, and Suhail Doshi. Playground
v2.

[23] Dongxu Li, Junnan Li, and Steven CH Hoi. Blip-diffusion: Pre-trained subject representation
for controllable text-to-image generation and editing. In NeurIPS, 2023.

[24] Yuheng Li, Haotian Liu, Qingyang Wu, Fangzhou Mu, Jianwei Yang, Jianfeng Gao, Chunyuan
Li, and Yong Jae Lee. Gligen: Open-set grounded text-to-image generation. In CVPR, 2023.

[25] Long Lian, Boyi Li, Adam Yala, and Trevor Darrell. Llm-grounded diffusion: Enhancing
prompt understanding of text-to-image diffusion models with large language models. arXiv
preprint arXiv:2305.13655, 2023.

[26] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In
NeurIPS, 2023.

[27] Nan Liu, Shuang Li, Yilun Du, Antonio Torralba, and Joshua B Tenenbaum. Compositional
visual generation with composable diffusion models. In ECCV, 2022.

[28] Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei
Yang, Hang Su, Jun Zhu, et al. Grounding dino: Marrying dino with grounded pre-training for
open-set object detection. arXiv preprint arXiv:2303.05499, 2023.

[29] Zhaoyang Liu, Yinan He, Wenhai Wang, Weiyun Wang, Yi Wang, Shoufa Chen, Qinglong
Zhang, Yang Yang, Qingyun Li, Jiashuo Yu, et al. Internchat: Solving vision-centric tasks by
interacting with chatbots beyond language. arXiv preprint arXiv:2305.05662, 2023.

[30] Zhiheng Liu, Yifei Zhang, Yujun Shen, Kecheng Zheng, Kai Zhu, Ruili Feng, Yu Liu, Deli
Zhao, Jingren Zhou, and Yang Cao. Cones 2: Customizable image synthesis with multiple
subjects. arXiv preprint arXiv:2305.19327, 2023.

[31] Midjourney. Midjourney, 2023.

[32] Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Null-text inversion
for editing real images using guided diffusion models. In CVPR, 2023.

[33] Chong Mou, Xintao Wang, Jiechong Song, Ying Shan, and Jian Zhang. Dragondiffusion:
Enabling drag-style manipulation on diffusion models. In ICLR, 2024.

[34] OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

[35] Maitreya Patel, Sangmin Jung, Chitta Baral, and Yezhou Yang. λ-eclipse: Multi-concept
personalized text-to-image diffusion models by leveraging clip latent space. arXiv preprint
arXiv:2402.05195, 2024.

[36] William Peebles and Saining Xie. Scalable diffusion models with transformers. In ICCV, 2023.

[37] Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
synthesis. arXiv preprint arXiv:2307.01952, 2023.

[38] Chen Qian, Xin Cong, Cheng Yang, Weize Chen, Yusheng Su, Juyuan Xu, Zhiyuan Liu,
and Maosong Sun. Communicative agents for software development. arXiv preprint
arXiv:2307.07924, 2023.

12

[39] Jie Qin, Jie Wu, Weifeng Chen, Yuxi Ren, Huixia Li, Hefeng Wu, Xuefeng Xiao, Rui Wang,
and Shilei Wen. Diffusiongpt: Llm-driven text-to-image generation system. arXiv preprint
arXiv:2401.10061, 2024.

[40] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical
text-conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

[41] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer.
High-resolution image synthesis with latent diffusion models. In CVPR, 2022.

[42] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In
CVPR, 2023.

[43] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. In NeurIPS, 2022.

[44] Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang.
Hugginggpt: Solving ai tasks with chatgpt and its friends in huggingface. In NeurIPS, 2023.

[45] Shelly Sheynin, Adam Polyak, Uriel Singer, Yuval Kirstain, Amit Zohar, Oron Ashual, Devi
Parikh, and Yaniv Taigman. Emu edit: Precise image editing via recognition and generation
tasks. arXiv preprint arXiv:2311.10089, 2023.

[46] Yujun Shi, Chuhui Xue, Jiachun Pan, Wenqing Zhang, Vincent YF Tan, and Song Bai. Dragdif-
fusion: Harnessing diffusion models for interactive point-based image editing. In CVPR,
2024.

[47] Roman Suvorov, Elizaveta Logacheva, Anton Mashikhin, Anastasia Remizova, Arsenii Ashukha,
Aleksei Silvestrov, Naejin Kong, Harshith Goka, Kiwoong Park, and Victor Lempitsky.
Resolution-robust large mask inpainting with fourier convolutions. In WACV, 2022.

[48] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open
and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

[49] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[50] Andrey Voynov, Kfir Aberman, and Daniel Cohen-Or. Sketch-guided text-to-image diffusion
models. In SIGGRAPH, 2023.

[51] Zhenyu Wang, Enze Xie, Aoxue Li, Zhongdao Wang, Xihui Liu, and Zhenguo Li. Divide and
conquer: Language models can plan and self-correct for compositional text-to-image generation.
arXiv preprint arXiv:2401.15688, 2024.

[52] Tsung-Han Wu, Long Lian, Joseph E Gonzalez, Boyi Li, and Trevor Darrell. Self-correcting
llm-controlled diffusion models. In CVPR, 2024.

[53] Guangxuan Xiao, Tianwei Yin, William T Freeman, Frédo Durand, and Song Han. Fastcom-
poser: Tuning-free multi-subject image generation with localized attention. arXiv preprint
arXiv:2305.10431, 2023.

[54] Jinheng Xie, Yuexiang Li, Yawen Huang, Haozhe Liu, Wentian Zhang, Yefeng Zheng, and
Mike Zheng Shou. Boxdiff: Text-to-image synthesis with training-free box-constrained diffu-
sion. In ICCV, 2023.

[55] Huajian Xin, Haiming Wang, Chuanyang Zheng, Lin Li, Zhengying Liu, Qingxing Cao, Yinya
Huang, Jing Xiong, Han Shi, Enze Xie, et al. Lego-prover: Neural theorem proving with
growing libraries. In ICLR, 2023.

13

[56] Binxin Yang, Shuyang Gu, Bo Zhang, Ting Zhang, Xuejin Chen, Xiaoyan Sun, Dong Chen,
and Fang Wen. Paint by example: Exemplar-based image editing with diffusion models. In
CVPR, 2023.

[57] Hui Yang, Sifu Yue, and Yunzhong He. Auto-gpt for online decision making: Benchmarks and
additional opinions. arXiv preprint arXiv:2306.02224, 2023.

[58] Ling Yang, Jingwei Liu, Shenda Hong, Zhilong Zhang, Zhilin Huang, Zheming Cai, Wentao
Zhang, and Bin Cui. Improving diffusion-based image synthesis with context prediction. In
NeurIPS, 2023.

[59] Ling Yang, Zhaochen Yu, Chenlin Meng, Minkai Xu, Stefano Ermon, and Bin Cui. Mastering
text-to-image diffusion: Recaptioning, planning, and generating with multimodal llms. In ICML,
2024.

[60] Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin Chen, Zebiao Huang, Bin Fu, and Gang Yu.
Appagent: Multimodal agents as smartphone users. arXiv preprint arXiv:2312.13771, 2023.

[61] Kai Zhang, Lingbo Mo, Wenhu Chen, Huan Sun, and Yu Su. Magicbrush: A manually annotated
dataset for instruction-guided image editing. In NeurIPS, 2023.

[62] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
diffusion models. In ICCV, 2023.

[63] Shu Zhang, Xinyi Yang, Yihao Feng, Can Qin, Chia-Chih Chen, Ning Yu, Zeyuan Chen, Huan
Wang, Silvio Savarese, Stefano Ermon, et al. Hive: Harnessing human feedback for instructional
visual editing. In CVPR, 2024.

[64] Yuxin Zhang, Nisha Huang, Fan Tang, Haibin Huang, Chongyang Ma, Weiming Dong, and
Changsheng Xu. Inversion-based style transfer with diffusion models. In CVPR, 2023.

14

Appendix

In the appendix, we primarily include more quantitative comparisons, along with additional visual
results, to more comprehensively compare with existing state-of-the-art methods.

A More Quantitative Experiments

Table 6: Quantitative Comparison on T2I-CompBench with existing text-to-image generation
models and compositional methods. The metric here is from the officially old-version code.

Model Attribute Binding Object Relationship Complex↑Color ↑ Shape↑ Texture↑ Spatial↑ Non-Spatial↑
SDXL [37] 0.6369 0.5408 0.5637 0.2032 0.3110 0.4091
PixArt-α [6] 0.6886 0.5582 0.7044 0.2082 0.3179 0.4117
ConPreDiff [58] 0.7019 0.5637 0.7021 0.2362 0.3195 0.4184
DALL-E 3 [1] 0.8110 0.6750 0.8070 - - -
CompAgent [51] 0.8488 0.7233 0.7916 0.4837 0.3212 0.4863
RPG [59] 0.8335 0.6801 0.8129 0.4547 0.3462 0.5408
GenArtist (ours) 0.8837 0.8014 0.8771 0.5437 0.3346 0.5514

Considering that many existing methods on T2I-CompBench report results based on the official old
version evaluation code, here we utilize the same old version evaluation method and list the results in
Tab. 6. It can be observed that the performance improvement keeps consistently under this metric.
Compared to the current state-of-the-art text-to-image method, DALL-E 3, our approach achieves
over a 7% improvement in attribute binding. For shape-related attributes, the improvement is even up
to 12.64%. Additionally, compared to RPG, which also utilizes MLLM to assist image generation,
our method demonstrates an over 5% enhancement. This is because our GenArtist incorporates
MLLM for step-by-step verification and the corresponding planning, thereby better ensuring the
correctness of the images. This quantitative comparison more comprehensively demonstrates the
effectiveness of our method.

B More Qualitative Experiments

In this section, we provide more visual analyses to further illustrate our GenArtist and to compare it
more thoroughly with existing methods.

Comparative visualized results on image generation. We first present visual comparisons with
existing methods in Fig. 7. It can be observed that our GenArtist achieves superior results in multiple
aspects: 1) Attribute Binding. For example, in the fourth example, there are strict requirements
for the clothes and pants each person is wearing. Such numerous requirements are challenging for
existing methods to meet. In this case, GenArtist can continuously verify and edit to ensure all these
requirements are correctly satisfied. 2) Numeric Accuracy. In the second example, detailed quantity
requirements are given for various objects. Our method can gradually achieve the correct quantities
through addition and removal operations. In contrast, even though methods like LMD+ can meet
numeric accuracy, they struggle to maintain the accuracy of other aspects, such as the atmosphere of
the image. 3) Position Accuracy. By position-aware tool execution, better position-related accuracy
can be guaranteed. In the first example, although DALL-E 3 can correctly predict many other aspects,
it fails to accurately place the book on the left floor, which our method can achieve. 4) Complex
Relationships, like the complex requirements for the relationship between the panda and bamboo in
the fifth example. 5) Other Diverse Requirements. By integrating various tools, GenArtist effectively
leverages the strengths of different tools to meet diverse requirements, the ability that a single model
lacks. For instance, the text requirements in the third example are better handled by our method. Such
visualized results strongly demonstrate the effectiveness of our method in image generation.

Comparative visualized results on image editing. We further present comparisons with existing
image editing methods in Fig. 8. GenArtist shows superior performance in several aspects: 1) Highly
Specific Editing Instructions. For instance, in the first example, only a particular pizza needs to be
modified, while the second example requires changes to the color and placement of a vase. Existing
methods often struggle to satisfy such specific requirements. 2) Reasoning-based Instructions. The

15

GenArtist
(ours)

PixArt
-Alpha

Mid
journey

LMD+

DALL-E 3

Play
ground

The red chair and a
wooden table hold the
black laptop in the
library, with a yellow
book on the left floor.

One candle in the
middle, two sheep and
four dogs nearby, three
bees in the air, creates a
warm atmosphere.

The word 'GenArtist'
in blue background and
white letters is written
on a road, with a red
bike in front of it.

Three boys in green, red,
white shirts and blue,
black, yellow short pants
separately from left to
right, are in the rain.

A panda holds the
bamboo higher than
its head and is
preparing to eat, in a
cartoon style.

SDXL

RPG

Figure 7: Qualitative comparison with existing state-of-the-art methods for image generation
tasks. We compare our GenArtist with SOTA text-to-image models including SDXL [37], LMD+ [25],
RPG [59], PixArt-α [6], Playground [22], Midjourney [31], DALL-E 3 [1].

16

replace the pizza in the
left bottom corner
with a roast chicken

GenArtist
(ours)

Magic
Brush
-168

Instruct
Diffusion

Instruct
Pix2Pix

MGIE

remove the only
person not wearing
dark-colored clothing

let the color of the
birds be blue and
yellow separately

add a red sports car in
the front, and then
remove the original one

Magic
Brush
-52

add a red vase of
flowers between
the sinks

Figure 8: Qualitative comparison with existing state-of-the-art methods for image editing
tasks. We compare our GenArtist with SOTA image editing models including InstructPix2Pix [2],
MagicBrush [61], MGIE [14], InstructDiffusion [15]

third example requires the model to autonomously determine which person needs to be removed.
Because of the reasoning capability of the MLLM agent, our method can accurately make this
determination. In contrast, even MGIE, which also uses MLLM assistance, fails to make the correct
modification. 3) Instructions with Excessive Requirements. The fourth example requires different
modifications to both birds, which existing methods struggle to achieve. 4) Multi-step Instructions.

17

A winter beach at sunset, snow covered everywhere,
with a layout similar to the given beach.

A girl is reading a book in the autumn park,
with the same pose as the boy. Plenty of
red and yellow leaves are in the park.

An indoor scene during the Christmas day, based on the given image.

In the dim scene, a sea of molten lava, a valiant and lonely warrior is preparing to confront a monster, based on the given image.

a with a

and a on it,

near it,

in front of the Egyptian Pyramid.

two

Figure 9: Visualized results of GenArtist about various tasks and user instructions.

18

Two blue hardcover
books on the left
of a rectangular
table, with two red
chairs on the right
and one black couch
on the behind.

generation:
LMD

generation:
BoxDiff

remove:
LaMa

add:
AnyDoor

add:
AnyDoor

add:
AnyDoor

generation:
LMD

move:
DragonDiff
usion

remove:
LaMa

generation:
BoxDiff

add:
AnyDoor

move:
DragonDiffusion

The metallic
picture frame and
glass stand display
the rectangular
photo on the black
table.

generation:
BoxDiff

add:
AnyDoor

instruction:
MagicBrush

generation:
SDXL

attribute editing:
DiffEdit

instruction:
MagicBrush

add:
AnyDoor

add:
AnyDoor

generation:
BoxDiff

add:
AnyDoor

instruction:
MagicBrush

generation:
SDXL

attr-edit:
DiffEdit

instruction:
MagicBrush

Figure 10: Visualization of the step-by-step process for image generation tasks.

remove:
LaMa

Let the cars be
blue, red, black
separately from
front to back.

replace:
AnyDoor

instruction:
MagicBrush

attr-edit:
DiffEdit

Change the yellow
items to red. Then
remove the
transportation tools
and the right
umbrella. The scene
should rain now.

remove:
LaMa

attribute editing:
DiffEdit

instruction:
MagicBrush

remove:
LaMa

attr-edit:
DiffEdit

instruction:
MagicBrush

remove:
LaMa

instruction:
MagicBrush

instruction:
MagicBrush

instruction:
MagicBrush

attribute editing:
DiffEdit

attribute editing:
DiffEdit

attr-edit:
DiffEdit

replace:
AnyDoor

replace:
AnyDoor

replace:
AnyDoor

Figure 11: Visualization of the step-by-step process for image editing tasks.

The fifth example involves complex instructions including multiple operations. The MLLM agent can
decompose the problem into multiple single-step operations, simplifying complex tasks. 5) Diverse
Operations. It can be seen that our method excels in various editing operations, such as addition,
removal, and attribute editing, due to the integration of different tools. These comparisons strongly
demonstrate the effectiveness of our method in image editing.

Visualized results about various tasks and user instructions. To demonstrate that our GenArtist
can meet a wide range of user requirements, we provide visual examples in Fig. 9. As can be seen,
because of the integration of various tools, our framework can efficiently address these diverse
requirements. For instance, it can generate images with a layout or pose similar to a given image,
as well as customization-related generation. Through the use of multiple generation and editing
tools, our method also achieves greater control, such as representing more objects and more complex
relationships between objects in customization generation. These visualization examples strongly

19

illustrate the necessity of employing an agent for image generation and demonstrate that our approach
effectively accomplishes the goal of unified image generation and editing.

Visualization for the step-by-step process. Finally, we present our step-by-step visualized results
in Fig. 10 and Fig. 11. For image generation, our method initially utilizes the most suitable tool to
generate the initial image. If the image quality is too low or cannot be corrected after some modifica-
tion operations, additional tools are invoked to continue generation. Further, for parts of the image
that do not meet the text requirements, editing tools are continuously called to make modifications
until the image correctly matches the text. For image editing, our method effectively decomposes
the input problem and iteratively utilizes different tools to make step-by-step modifications until the
image is correctly edited. This visualization clearly demonstrates the process, from decomposition
and planning tree with step-by-step verification, to the final tool execution.

20

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes] .

Justification: We have clearly claimed the scope, contribution and related experiments in the
abstract and introduction sectoin.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes] .

Justification: We have discussed at the end of the appendix.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA] .

Justification: We do not include theoretical results.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes] .

Justification: We have included details in the beginning of the experiments section and in
the appendix.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes] .

Justification: We have released the code in https://github.com/zhenyuw16/
GenArtist.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes] .

Justification: We have included details in the beginning of the experiments section and in
the appendix.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No] .

Justification: The experimental results are quite stable, so error bars are not necessary.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes] .

21

https://github.com/zhenyuw16/GenArtist
https://github.com/zhenyuw16/GenArtist

Justification: We have included details in the beginning of the experiments section and in
the appendix.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes] .
Justification: We have read and conformed the the NeurIPS Code of Ethics.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes] .
Justification: We have discussed at the end of the appendix.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes] .
Justification: We will include this in the open-sourced code in the future.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes] .
Justification: We have cited all the original papers.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA] .
Justification: We do not release new assets.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA] .
Justification: We do not involve crowdsourcing nor research with human subjects.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA] .
Justification: We do not involve crowdsourcing nor research with human subjects.

22

https://neurips.cc/public/EthicsGuidelines

	Introduction
	Related Work
	Method
	Planning Tree with Step-by-Step Verification
	Tool Library
	Position-Aware Tool Execution

	Experiments
	Comparison with Image Generation Methods
	Comparison with Image Editing Methods
	Ablation Study
	Error Case Analysis

	Conclusion
	More Quantitative Experiments
	More Qualitative Experiments

