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Abstract
We study the problem of adding or deleting features of data from machine learning models trained
using empirical risk minimization. Our focus is on algorithms in an online manner which is capable
for a more general regularization term, and present practical guides to two classical regularizers,
i.e., the group Lasso and `p-norm regularizer. Across a variety of benchmark datasets, our algorithm
improves upon the runtime of prior methods while maintaining the same generalization accuracy.

1. Introduction

In traditional machine learning, we normally assume that the set of features is known and fixed.
However, it’s unrealistic to many real-world scenarios [5, 6, 17]. To address this, incremental (or
decremental) algorithm [8] was proposed to incorporate or eliminate features, which is a promising
family of learning algorithms due to the updated model can refine its knowledge without re-training
from scratch [16]. In supervised learning, an extensive number of algorithms essentially solve the
regularized minimization problem, and for a linear model, it reads

min
w

∑
i

L (xi, yi;w) + αR(w), (1)

whereR(·) is the regularization term andL (·) denotes the loss function. The w represents learnable
parameters inside the model. Although there have been many efforts made to incorporate or elimi-
nate features in an exact way, they are still limited to primitive regularization terms such as `1 and
`2 norms in (1). Specifically, the Lasso regularizer has been solved in [7] using forward stagewise
regression. Other simple regularization like `2-norm leads to analytical solutions [9], hence result
can be computed directly in the new feature space. To fill this blank, we propose a learning system
that handles a class of regularized linear statistical models with dynamic features, termed Dynamic
Feature Learning System (DFLS), where the updated model is exactly the same as a model
trained from scratch using the entire new feature space. Extensive experimental results validate its
efficiency compared to the existing training algorithm.

2. Preliminaries

Given the dataset D = {X ∈ Rn×m,y ∈ Rn} with n observations and each observation has m
features. The yi ∈ R for the regression problem1 and yi ∈ {−1, 1} for the binary classification.

1. The bias term in target can be introduced by expanding X with one column whose all elements are 1.
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Assumption 1 We assume that the loss function L(·) and regularization itemR(·) in (1) are piece-
wise (or element-wise) second-order differentiable.

Assumption 2 We assume that the optimal solution of (1) can be achieved.

Problem Setting First, we consider the case of adding new features in (1). Assume we currently
own n labeled instancesDcur = {X,y} and an optimal ML model trained usingDcur, in which the
parameter is denoted by w(1) ∈ Rm (already known). With the time passed, newly acquired data
can be formalized as X̃ ∈ Rn×m′

that includes m′ features and we want to add X̃ into the existing
training set2. In other words, we need an optimal ML model that trained on Dnew =

{[
X, X̃

]
,y
}

and the parameter of optimal model on the new dataset is w(2) ∈ Rm+m′
(currently unknown). A

conventional practice is to re-train a new model onDnew, while our DFLS aims to compute the w(2)

directly (i.e., without re-training from scratch) using the information of w(1).
Conversely, when we think about deleting m′ old features X̃ ∈ Rn×m′

from existing dataset
Dcur =

{[
X, X̃

]
,y
}

, our goal is to restore an optimal ML model trained on Dnew = {X,y} in
like manner.

Objective Rewriting To simplify notations we organize (or partition) the traning data as
[
X, X̃

]
and coefficient vector w =

[
w1

w2

]
by two types of features, where X̃ ∈ Rn×m′

includes m′

features we intend to add into (or delete from) the original feature set. The A and E are active sets
that containing indices of w1 and w2 that wij 6= 0 (i = 1, 2), so as to store active components,

i.e., we have w1 =
(
wT
A,w

T
A

)T
, w2 =

(
wT
E ,w

T
E

)T
, where elements in wA,wE remains 0. We

denote a point where the active set changes a “transition point”. Now we introduce the following
concrete formulation3

min
w∈Rm+m′

1

2n

∥∥∥∥[X,φθX̃] [ w1

w2

]
− y

∥∥∥∥2
F

+ αR
([

w1

w2

])
, (2)

where α > 0 is regularization parameter to balance the prediction loss and penalty. A rational φθ in
(2) can be used to reparameterize the addition or subtraction procedure of a chunk feature X̃ , which
satisfies (i).φθ are monotonically increasing function w.r.t. θ in closed interval [0, 1]. (ii).φθ have
the properties of continuity and smoothness, meanwhile φθ|θ=0 = 0, φθ|θ=1 = 1 should be kept.
Here we can follow the solution path of w when varying θ from 0 to 1 to add X̃ . Conversely, as we
vary θ from 1 to 0, the elimination of features in X̃ can then be performed in a similar way.

Investigate Optimality Conditions The KKT point [3] of the problem (2) can be obtained by

1

n

[
XT

φθX̃
T

] [
Xw1 + φθX̃w2 − y

]
︸ ︷︷ ︸

denotes as ê(θ)

+α

[
uw1

uw2

]
= 0, (3)

where u ∈ ∂R(w) is subgradient representation.

2. To simplify notations we assume the new X̃ appears last.
3. We mainly study a frequently-used square loss function, and others can be derived following our analysis.
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3. Accuracy Guaranteed Online Solver

3.1. Algorithm Outline

Property of
R (·)

Phase I Update Phase II Update

Sparsity " depends on θ̂

Non-Sparsity % "

Table 1: The choice of two stages in up-
dating process. A tick signifies neces-
sity and vice versa.

We first pointed out that there potentially exists two stages
for tracking the optimal w. The proposed updating stages
are summarized as (i).The solution path of θ would re-
main constant untill the first transition point θ̃ is met. We
compute its value in closed form and update w directly.
(ii).It’s non-trivial for analytical solutions of w(θ) in (3),
especially some complex penalizations. We use the dif-
ferential equation to gain the desired solution path4 untill
θ = 1. The usage of each stage depends on the properties
of regularization term. The criterion of whether to use each phase are summarized in Table 1. The
decremental learning can be viewed as an inverse process for tracking the path from θ = 1 to θ = 0.

3.2. Phase I Update

1

n
XT (Xw1 − y) + αuw1 = 0 (4)

φθ
n
· X̃T (Xw1 − y) + αuw2 = 0 (5)

α‖uwE
‖ ≤ φθ

n
· ‖X̃T

E (Xw1 − y) ‖ (6)

Due to the existence of R (w), at first (i.e. θ =
0) all coefficients in w2 will converges to 0. As
w2|θ=0 = 0, by plugging it into (3) we have (4)
and (5). Considering inactive components in (5),
by the properties of subgradient we get (6). Since
φθ is continuous w.r.t. θ, we can conclude that there
exists a θ̃ > 0 such that the inequality (6) holds in
[0, θ̃). The solution path would be smooth before
approaches a transition point, and non-smooth graphically at transition points. From (4) we can
see the optimal w1 has nothing to do with θ when θ ∈ [0, θ̃), it will be a constant vector till the
θ reaches θ̃. Assume there are one component becomes active, we calculate the first encountered
transition point θ̃ in exact solution

φθ|θ=θ̃ = min

αn · ‖∇R (wi) ‖∥∥∥X̃T
i (y −XAwA)

∥∥∥
 , for i ∈ E . (7)

Then we update
w|

θ=θ̂
← w|θ=0, where θ̂ = min

{
θ̃, 1
}
.

If θ̂ = 1, then we can skip the second stage and finish the algorithm. From expression in (7), we
know that the location of the first transition point is proportional to parameter α, which makes our
approach very efficient when α in relatively large quantities.

Remark 1 When we use decremental learning, there are no analytical solution for θ̂. The boundary
condition for Phase I (Phase II) is that whether E = ∅ (or w2 = 0).

4. The Picard–Lindelöf theorem [12] straightforwardly proves that the solution (path) of (2) is unique and can be ex-
tended to the nearest boundary of θ (i.e., until the violater(s) of active sets A or E appears).
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3.3. Phase II Update

Theorem 2 When the active sets A and E are fixed (in a subinterval of [0, 1]), the solution path of
w satisfies the following first-order ODE system

K̂

 dwA
dθ
dwE
dθ

 = − 1

n

[
φ′θ ·XT

AX̃EwE

X̃T
E

(
φ′θê(θ) + φθφ

′
θX̃EwE

) ] , (8)

where (·)′ is the derivative note. The key matrix K̂ has the form of
[
U ZT

Z V

]
, where U =

1

n
XT
AXA + α∇2R (wA), V =

φ2θ
n
· X̃T
E X̃E + α∇2R (wE) and Z =

φθ
n
· X̃T
E XA.

Theorem 3 We have K̂ is a real symmetric matrix.

The proof of Theorems are listed in Appendix A. With Theorem 3, we can use the low-rank update
or Woodbury formulae [14], which essentially solves (8) with at most O(|A ∪ E|2) work. As

we obtaining the w|θ=0 and
dwA∪E
dθ

, by solving the initial-value problem numerically with ODE
solvers, the solution path regarding to θ can be computed swiftly before active sets A or E changes.
Some visualization examples of solution path are listed in Appendix C.

Handling Transition Point The emergence of a transition point is owing to indices change in
A or E , which is characterized by the variation of optimality conditions (3). Meanwhile the ODE
wouldn’t work due to they are non-differentiable points. We can keep observation on the optimality
conditions while solving the path to estimate if there exists transition point(s), and update the active
sets A and E accordingly. The violator(s) could be easily identified by the thresholding conditions.
For non-sparsity penalizations, there will be no changes for A or E , hence dw

dθ is continuous of θ on
(0, 1).

4. DFLS Implementation

In this part, we select the transformation as φθ
def
= θ. Due to the space limit, we defer the algorithmic

steps and feature decremental learning procedure in our Appendix B, Appendix E, respectively.

Group Lasso Group Lasso [18] has been successful in many practical applications [4, 10]. There
has a total of G groups, dg is the number of features in g-th group. We focus on group regularized
optimization problem as (9).

min
w

1

2n
‖Xw − y‖2 + α

G∑
g=1

√
dg ‖wg‖2 (9)

`p Penalization Optimization method towards `p-norm penalty has been studied extensively by
researchers [11]. Here we present the case of p > 1, which gives a convex setting of R(·). Our
learning objective is shown as (10).

min
w

1

2n
‖Xw − y‖2 + α ‖w‖pp (10)
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5. Simulation Experiments

5.1. Experimental Setup

Dataset Size Dimension

Yolanda 50000 100
BNG(libras move) 20000 90

satellite image 6435 37
BNG(wisconsin) 50000 32

cpu act 8192 22
MR#1 100 500
MR#2 100 1000

Table 2: Summary of the real-world
dasetsets and synthetic data (MR#1∼3)
in experiments.

In this part, we provide experiments on real-world
datasets to validate our theoretical results. Our experi-
ments are delivered from the following two perspectives.
Table 2 summarizes these datasets we used.
Accuracy To prove the practicability of proposed ap-
proach, we compare the generalization performance of
DFLS with batch algorithms. We conduct training tasks
on real-world data and randomly select about 20% fea-
tures in whole feature space to perform dynamic updat-
ing. In detail, we utilize the well-trained model to add
or remove around 20% features and compare the aver-
age Root Mean Squared Error (aRMSE) between several
methods in ten runs. The batch algorithms re-train the model with both cold-start and warm-start
(i.e., the subsequent calls will not re-initialise parameters). Numerical results are shown in Table 3
and Table 4, while we put the results of decremental learning in Appendix E.
Efficiency We evaluate average processing times in five runs when executing one dynamic updating
(feature numbers m′ = 5) using our DFLS and other methods under diverse data scales. Addition-
ally, we test the training time on m � n cases based on MR#1∼2. In order to verify the influence
of high-dimensional situation on efficiency, in our generated MR#1∼3, we keep the data size while
increasing number of variable dimensions.
Baselines Setup We adopt a widely-used batch training algorithm of group Lasso using FISTA op-
timiser [1] with a gradient-based adaptive restarting scheme5 [13]. The batch training algorithm for
`p penalization uses Stochastic Gradient Descent (SGD) [2] to optimize the model. Other imple-
mentation details are in Appendix D.

Dataset Yolanda BNG(libras move) satellite image BNG(wisconsin) cpu act

G α DFLS batch DFLS batch DFLS batch DFLS batch DFLS batch

I
0.2 10.02 10.02 4.03 4.03 1.55 1.55 29.91 29.91 10.11 10.11
0.5 10.77 10.77 4.26 4.26 1.67 1.67 30.16 30.16 10.10 10.10

II
0.2 10.09 10.07 4.02 4.02 1.52 1.52 29.97 29.97 10.31 10.31
0.5 10.50 10.50 4.24 4.24 1.63 1.63 29.96 29.96 10.46 10.46

III
0.2 10.61 10.61 4.38 4.38 1.88 1.88 30.69 30.69 9.98 9.98
0.5 10.87 10.87 4.63 4.63 2.20 2.21 30.86 30.86 9.87 9.87

Table 3: Results of aRMSE when training the group Lasso with incremental features. Any variance
less than 10−5 are omitted. DFLS and batch represent each iteration is trained with a chunk of new
features, or using batch algorithm to retrain from scratch, respectively.

5. Code available at https://github.com/yngvem/group-lasso
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Dataset Yolanda BNG(libras move) satellite image BNG(wisconsin) cpu act

`p α DFLS batch DFLS batch DFLS batch DFLS batch DFLS batch

`4
0.2 9.82 9.82 3.73 3.73 1.20 1.20 31.20 31.20 14.22 14.22
0.5 9.91 9.91 3.74 3.74 1.22 1.22 31.66 31.66 14.88 14.86

`6
0.2 9.66 9.66 3.73 3.73 1.20 1.20 31.27 31.27 14.28 14.28
0.5 9.90 9.89 3.74 3.74 1.20 1.21 31.91 31.90 14.94 14.94

Table 4: The aRMSE results of `p-norm regularized regression model with incremental features.
Any variance less than 10−5 are omitted.
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Figure 1: Efficiency comparison of different algorithms. The α = 0.2 for `p penalty in (b) and (c).
[·] indicates the name of dataset.

5.2. Results & Discussions

From above Table 3 and Table 4, our algorithm enjoys high precision, which is characterized by
very closing to the aRMSE of batch training method. Moreover, Figure 1 clearly demonstrate that
there exists a large time gap compared to other learning strategies while our DFLS keeping the very
similar precision. This is due to the fact that our algorithm can track the path of θ without training
the whole model in new feature space from scratch. Furthermore, the training time in Figure 1
(d). and (e). suggest our algorithm is inefficient compared to batch training in exceptional high-
dimensional cases due to the increased time on solving the linear system in (8). Particularly, in
m� n, the advantages of DFLS would gradually erased as m grows.

6. Conclusion

At this work we propose an efficient online solver via ODEs to perform features expansion and
shrinkage for linear models, and present practical guides to solving group Lasso and `p-norm reg-
ularized regression. Simulation studies show that the proposed algorithm can substantially ease the
computational cost while keeping the accuracy performance.
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Appendix A. Detailed Proofs

A.1. Proof of Theorem 1

Proof By discarding the zero-component6, the optimality conditions for objective (2) are formu-
lated as follows.

1

n
XT
Aê(θ) + α∇wAR (w)

def
= F (θ,wA,wE) = 0, (11)

φθ
n
· X̃T
E ê(θ) + α∇wER (w)

def
= G (θ,wA,wE) = 0. (12)

We derive a system of ODEs to compute the solution path w.r.t. θ when the active sets A and E
are fixed. With the aid of derivation rules for compound function, we take the derivative of θ in (11)
and (12). We can build

0 =


∂F(·)
∂θ

+
∂F(·)
∂wA

· dwA
dθ

+
∂F(·)
∂wE

· dwE
dθ

∂G(·)
∂θ

+
∂G(·)
∂wA

· dwA
dθ

+
∂G(·)
∂wE

· dwE
dθ

. (13)

The above two linear equations (13) can be converted to the following form:
∂F(·)
∂wA

∂F(·)
∂wE

∂G(·)
∂wA

∂G(·)
∂wE



dwA
dθ

dwE
dθ

 def
= K̂


dwA
dθ

dwE
dθ



= − 1

n

[
φ′θ ·XT

AX̃EwE

X̃T
E

(
φ′θê(θ) + φθφ

′
θX̃EwE

) ] , (14)

where (·)′ is the derivative note. By computing the remaining partial derivative terms in (14), we

know that K̂ has the form of
[
U ZT

Z V

]
, where U =

1

n
XT
AXA+α∇2R (wA), V =

φ2θ
n
·X̃T
E X̃E+

α∇2R (wE) and Z =
φθ
n
· X̃T
E XA.

A.2. Proof of Theorem 2

Proof Based on the symmetry property of any Hessian matrix ∇2R(·) = ∇(∇R(·)), we can

conclude UT =
1

n
(XT
AXA)

T + α(∇2R)T = U . Meanwhile, the V T = V can be proved similarly.

From the foregoing, we have K̂T =

[
UT ZT

Z V T

]
=

[
U ZT

Z V

]
= K̂, which completes the

proof.

6. Only pay attention to active sets A ∪ E and ∂R(·) turns to the gradient ofR(·).
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Appendix B. Practical Guides

This part we present the online incremental solver in detail for two significant learning models
mentioned in the main body.

B.1. Group Lasso

At first, we compute the (sub)gradient of regularization term as

∂
∑
g∈G
‖wg‖2 =

{
wg

‖wg‖2
if wg 6= 0

∈ {u : ‖u‖2 6 1} if wg = 0
. (15)

There follows ∇2R(wA∪E) = diag(Bi), where Bg =

√
dg(‖wg‖2I−wgwg>)

‖wg‖3 , g ∈ A ∪ E . I repre-
sents identity matrix.

Transition point for group Lasso First of all, we define the Cg as XT
g

(
y −XAwA − θX̃EwE

)
,

where g = 1, · · · , G denotes g-th predefined group. The KKT conditions for group Lasso problem
are formulated as follows.

Cg =
α
√
dg ·wg

‖wg‖
if g ∈ A,

θCg =
α
√
dg ·wg

‖wg‖
if g ∈ E .

(16)

A non-zero wg will decay to 0 as ‖Cg‖ 6 α
√
dg, g ∈ A (or θ ‖Cg‖ 6 α

√
dg, g ∈ E) is found.

Based on the continuity of solutions given by ODEs solver, we can set wg = 0 (g ∈ A∪E) as soon
as it reaches the opposite sign (i.e. path pass through 0), meanwhile, index g is removed from set
A.

Alternatively, when the norm value of Cg, g ∈ A (or φθ ‖Cg‖ , g ∈ E) comes to α
√
dg, the

g-th group becomes active and will be added into active set. (16) indicates that Cg(g ∈ A ∪ E)
shares the collinearity with wg. Therefore an extreme short syntropic coefficient vector εCg may be
used as a approximation near transition point, which will give a start value for the following ODE
solver, where ε is a user-defined tuning parameter and only lead into a controllable approximation.
Note that Cg has the property of continuity, but is non-monotonic about θ. With that, we can keep
observation on the sign and value of ‖Cg‖−α

√
dg for each g inA (or θ‖Cg‖−α

√
dg for each g in

E) while solving the solution path to estimate transition point.

B.2. `p Penalization

We give a start value of w2 at θ = 0 by optimal conditions. Detailed steps are shown in our
Algorithm 2.

10
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Algorithm 1 DFLS on Group Lasso (incremental)

Require: Samples X =
[
X, X̃

]
, labels y, initial solution w|θ=0, regularization strength α.

1: Set A, A and E , E according to w|θ=0.

2: Compute the first transition point θ̃ = min

 αn
√
dg∥∥∥X̃T

g (y −XAwA)
∥∥∥
 , for g ∈ E .

3: Compute clipped θ̂ = min
{
θ̃, 1
}

.
4: Update w|

θ=θ̂
= w|θ=0.

5: if θ̂ < 1 then
6: while θ ≤ 1 do
7: Solve (8) and detect transition point simultaneously.
8: if g-th group turns to inactive then
9: wg = 0.

10: Move g from A (or E) to A (or E).
11: else if g-th group becomes active then
12: wg = εCg.
13: Put g into A (or E).
14: end if
15: Update wA, wE , XA and X̃E according to the updated A and E .
16: end while
17: end if
Ensure: w|θ=1

Algorithm 2 DFLS on `p Penalization (incremental)

Require: Samples X =
[
X, X̃

]
, labels y, initial solution w|θ=0, regularization strength α, param-

eter p > 1.
1: Set w2|θ=0 by optimal conditions.
2: while θ ≤ 1 do
3: Solve (8).
4: end while

Ensure: w|θ=1

11
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Appendix C. Path Visualization

We plot the solution path of two types of regularizers in this section, which helps readers better
understand their property. Figure 2 shows an example of solution path of group Lasso with respect
to successively varied θ, where θ = 1 corresponds to the adjustment of incorporating new features
and θ = 0 corresponds to removing these features.
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Figure 2: Piecewise smooth path of θ when adjusting features in group Lasso, where one piecewise
smooth curve corresponds to one variable of w. The dotted lines represent solutions given by DFLS,
which coincide with the real solution path (in solid lines).

The `p penalization does not bring sparsity, so there is no transition point. The figure 3 shows
an example of its path visualization.
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Figure 3: Piecewise smooth path of θ when adjusting features in `4 penalization. The dotted lines
represent solutions given by DFLS, which coincide with the real solution path.

Appendix D. Implementation Details.

We implement our novel algorithms in Python 3.7. All the experiments were conducted on a Ubuntu
machine with Intel 2.30GHz CPU×72 and 47.0GB RAM.

Our real-world datasets are all available online at OpenML [15], we randomly selected 70% of
the samples as training set for each data set. The MR#1∼3 are generated by applying a random

12
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linear regression model with no bias term. The standard deviation of the Gaussian centered noise
applied to the output is 1. This setting is common in lots of related works. The stop criterion of the
batch training algorithm is set to 1e-7.7

More importantly, we will provide our directly runnable code with a “Readme” tutorial in Sup-
plementary Material, interested researchers can run Python 3.7 code to reproduce the main results.

Appendix E. Feature Decremental Learning

E.1. Group Lasso

We present the feature decremental learning procedure of group Lasso in Algorithm 3.
To reduce dimensionality, we can track the solution path as θ varies from 1 to 0, which can be

considered as an inverse process of incremental learning. In particular, we can directly eliminate X̃
as we found E = ∅ (i.e., they are irrelevant or redundant features). Similar to incremental learning
for features, this is supported by equations (4) & (5) of main body. At last, we set wE∪E to exact 0
to complete the whole process.

Algorithm 3 DFLS on Group Lasso (decremental)

Require: Samples X =
[
X, X̃

]
, labels y, initial solution w|θ=1, regularization strength α.

1: Set A, A and E , E according to w|θ=1.
2: while E 6= ∅ and θ > 0 do

3: Solve
dwA∪E
dθ

=

[
βA
βE

]
and detect transition point simultaneously.

4: if g-th group turns to inactive then
5: wg = 0.
6: Move g from A (or E) to A (or E).
7: else if g-th group becomes active then
8: wg = εCg.
9: Put g into A (or E).

10: end if
11: Update wA, wE , XA and X̃E according to the updated A and E .
12: end while
13: Set wE∪E = 0.
Ensure: w|θ=0

E.2. `p-norm Regularized Regression

At this part, we present the pseudo-code of feature decremental algorithm for `p-norm regularized
regression in Algorithm 4.

7. Besides, the accuracy results reveal that the solution of our approach has the same quality as that of the batch method.

13
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Algorithm 4 DFLS on `p Penalization (decremental)

Require: Samples X =
[
X, X̃

]
, labels y, initial solution w|θ=1, regularization strength α, pa-

rameter p > 1.
1: while θ > 0 do
2: Solve ODEs to compute the solution path.
3: end while
4: Set wE∪E = 0.

Ensure: w|θ=0

E.3. Simulation Studies

In this subsection, we empirically show the accuracy of derived ODEs in Table 5 and Table 6.
In experimental settings, DFLS on different group partitions in group Lasso (denotes as G) and
various `p-norm are used to perform features shrinkage while different regularization parameter α
are chosen. We conduct comparative experiments in the same environment as in the main paper.

Dataset Yolanda BNG(libras move) satellite image BNG(wisconsin) cpu act

G α DFLS batch DFLS batch DFLS batch DFLS batch DFLS batch

I
0.2 10.64 10.65 4.10 4.10 1.54 1.54 29.97 29.97 10.05 10.05
0.4 10.78 10.78 4.24 4.24 1.77 1.76 30.54 30.54 10.17 10.18

II
0.2 10.74 10.74 4.08 4.09 1.57 1.57 30.04 30.04 9.97 9.98
0.4 10.89 10.90 4.32 4.32 1.82 1.82 30.43 30.42 10.14 10.14

Table 5: Results of aRMSE when training the group Lasso with dynamic features (decremental).
Any variance less than 10−5 are omitted. DFLS and batch represent each iteration is trained with a
chunk of new features, or using batch algorithm to retrain from scratch, respectively.

Dataset Yolanda BNG(libras move) satellite image BNG(wisconsin) cpu act

`p α DFLS batch DFLS batch DFLS batch DFLS batch DFLS batch

`4
0.2 9.83 9.83 3.76 3.76 1.21 1.21 31.41 31.41 15.38 15.38
0.5 9.90 9.90 3.77 3.77 1.21 1.21 31.83 31.83 15.81 15.81

`6
0.2 9.84 9.84 3.76 3.76 1.20 1.21 31.77 31.77 15.84 15.84
0.5 9.88 9.88 3.76 3.78 1.20 1.21 32.05 32.05 16.07 16.07

Table 6: The aRMSE results of `p-norm regularized regression model (decremental). Any variance
less than 10−5 are omitted.

Appendix F. Additional Discussion

This section we will give some discussions on our DFLS.

14
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Note if the whole path is smooth on (0, 1) (i.e., when θ̃ ≥ 1 for sparsity-based penalization
or non-sparsity regularization R(·) is used), algorithm needn’t cost extra time on detecting specific
locations and recalculating the solution path, which apparently reduces the computation complexity.

The concrete process of designing an algorithm for dynamic updating by DFLS mainly consists
of computing ∇2R(·) and investigating optimality conditions. Hence, from a computational per-
spective, regularizer with easily computed ∇2R(·) and ∇R(·) can have a better adaptation to our
DFLS framework.

15
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