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Abstract

Eliminating the covariate shift cross domains is one of the common methods to deal
with the issue of domain shift in visual unsupervised domain adaptation. However,
current alignment methods, especially the prototype based or sample-level based
methods neglect the structural properties of the underlying distribution and even
break the condition of covariate shift. To relieve the limitations and conflicts, we
introduce a novel concept named (virtual) mirror, which represents the equivalent
sample in another domain. The equivalent sample pairs, named mirror pairs reflect
the natural correspondence of the empirical distributions. Then a mirror loss, which
aligns the mirror pairs cross domains, is constructed to enhance the alignment of
the domains. The proposed method does not distort the internal structure of the
underlying distribution. We also provide theoretical proof that the mirror samples
and mirror loss have better asymptotic properties in reducing the domain shift.
By applying the virtual mirror and mirror loss to the generic unsupervised do-
main adaptation model, we achieved consistently superior performance on several
mainstream benchmarks.

1 Introduction

Current deep learning models have achieved significant progress on many tasks but heavily rely
on the large amount of labeled data. The generality of the model may be severely degraded when
facing the same task of a different domain. So, domain adaptation (DA) attracts a lot of attentions in
recent years. DA has several different settings, such as unsupervised [34] or semi-supervised DA
[23], open-set [6] or closed-set DA [38], as well as single or multi-source DA [40]. In this paper, we
consider the closed-set, single-source unsupervised domain adaptation (UDA) on the classification
task. In this setting, one has the source domain data with labels and is expected to predict for the
unlabeled target domain data. Both the source and target domains share the same class labels.

The main challenge for DA is the domain shift. It can be further categorized into covariate shift
[45, 44], target/label shift [48]),etc. Specifically, define ps(x, y) and pt(x, y) as the joint distributions
of the source and target domains. The covariate shift refers to the difference of the marginal
distribution of x, i.e. ps(x) 6= pt(x), assuming the conditional probabilities cross domains are
same, i.e. ps(y|x) = pt(y|x). Most of the current methods, in terms of learning domain-invariant
representation or domain alignment, are working to reduce the covariate shift explicitly or implicitly.
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(b) One-dimension illustration of the dilemma.

Figure 1: (a) The ratios of samples having certain visual patterns for the same class (Bed and
Calendar) from different domains (Art v.s. Clipart) in Office-Home. (b) In one-dimension case,
aligning the biased datasets of different domains (green dots vs red cross) will distort the underlying
distribution (red dashed line), making the conditional probability in the alingned space (x̃) not same,
i.e.ps(y|x̃) 6= pt(y|x̃)

They aligned the domain centers [34, 8, 4, 47] or class-wise centers/prototypes [37], regularized
the margins of inter-intra class distances [7, 15, 28] and even aligned the two domains through
sample-level mappings[16, 14, 13].

However, there exists a covert dilemma between the covariate shift and its assumption in practice,
which bounds the performance of those methods. That is reducing the covariate shift will break its
assumptions empirically. The underlying reason is that the dataset we have is a sampling result from
the underlying distribution. The randomness in collecting the dataset for different domains varies a
lot and introduces the sampling bias unavoidably (i.e. the sample pattern distributes differently cross
domains). Aligning the marginal distributions of the biased datasets will distort the internal structure
of the real underlying distribution, leading the underlying conditional distribution of the dataset
cannot be same under the bias. Investigating the internal structure of the underlying distribution in
DA has been noted by SRDC [49] using discriminative clustering [7], by sample-level matching cross
domains [13, 14], or by Optimal Transport Theory[1],etc. But they all neglect the issue mentioned
above.

We first elaborate the dilemma mentioned above in Section 2. Then our proposed methodology is
presented in Section 3. We introduce the “mirror samples”, which are generated to complement
the potential bias of the sampled dataset cross domains, making each sample in the domain to have
the corresponding instance in the opposite domain. We propose the mirror loss by regularizing the
generated mirror sample with the existing sample to achieve more fine-grained distribution alignment.
The properties of the proposed methods and the experiment results on several mainstream benchmarks
are given in Section 4 and Section 5.

2 Delimma of Covariate Shift using Samples

We first revisit the intuition behind the method of reducing the covariate shift. In cross-domain
visual classification, the domain distribution can be decomposed into class-discriminative latent
visual pattern distribution (p(x)) and conditional class distribution (p(y|x)). The class-discriminative
visual pattern refers to the intrinsic visual characteristics of each class, which is domain-agnostic
and follows their natural distribution. The conditional distribution is the probability of those visual
patterns belonging to a certain category. Reducing the covariate shift assumes the conditional
distributions cross domains are same. Aligning the marginal distribution of visual patterns in certain
latent space can achieve the ideal domain alignment.

Biased Sampling Dataset. Note that the dataset we have is a sampling result w.r.t. the intrinsic visual
property distribution. The sampling process (i.e. dataset collection procedure) varies for different
domains and inevitably introduces sampling bias cross domains, resulting the imbalanced patterns
within one category etc. One observation of this sampling bias can be seen in the Fig.1(a), where
we take the category “Bed” and “Calendar” of domain “Art” and “Clipart” in Office-Home[51] as
examples. For the same category, saying “Bed”, some of the images are Bunk bed but the others are
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not; some of them have pillows while the others do not; even some of them have people on bed while
the left are empty etc. However, the ratios of those different visual patterns differ dramatically in the
two domains. As shown in Fig.1(a), the ratios of “with People” in Bed are much lower in “Art” than
in “Clipart”, while the Bunk bed ratio has higher percentage in “Clipart”. This difference also exists
for “Calendar” in patterns like whether it has digit or not and whether it is daily calendar or monthly
calendar. An ideal sampling process should assure the consistent ratios for these patterns following
the category’s intrinsic distribution, but it’s impractical.

Reducing Covariate Shift vs Assumption Violation. The biased dataset will induce a dilemma if
we still follow the philosophy of reducing covariate shift. Specifically, in the biased dataset, the
samples in the source domains do not have the same counterparts in the target domain in distribution.
If we align the two domains by the biased data, no matter using moments/prototype alignment
or minimizing the sample-based domain discrepancy, we essentially align the samples to biased
positions, making the intrinsic conditional probability, which should be same, distorted. Fig.1(b)
gives a simplified illustration of this dilemma in one-dimension case. The underlying marginal
distributions of x for source and target domains are U(−3, 5) and U(4, 12) respectively, where U
means uniform distribution. The conditional distributions of x belonging to certain class in source and
target domains are N[−3,5](1, 1) and N[4,12](8, 1), where N[a,b](µ, σ) is truncated normal distribution
with support [a, b], µ and σ as mean and standard deviation respectively. This is an ideal case where
reducing the covariate shift can perfectly eliminate the domain gap: offsetting the target samples to
left by 7 without changing the class probability (from red solid line to green solid line in Fig.1(b)),
both the conditional distribution and marginal distribution are same. However, in practice, we only
have the random samples illustrated by dots in Fig.1(b). If we still try to reduce the covariate shift,
i.e. offsetting the target samples to the source samples in the same order (any order of moments of x
are same in this case), the resulting conditional distribution for target domain (the red dashed line
in Fig.1(b)) will be distorted, breaking the assumption of covariate shift. This dilemma is what our
proposed mirror sample and mirror loss are expecting to reduce.

3 Proposed Methods

3.1 Preliminaries

Mirror Samples. A straightforward solution to reduce the dilemma is to find the ideal counterpart
sample in the other domain. Those counterpart sample pairs are in the same positions in their own
distribution, i.e. having the equivalent domain-agnostic latent visual pattern. We call it Mirror Sample.
If we could find those ideal mirror samples cross domains under the inevitable sampling bias, the
alignment by reducing the covariate shift will not incur the conditional inconsistency anymore. The
closest work to the mirror sample would be the series of pixel-level GAN based method, such as
CyCADA [26] ,CrDoCo[10], etc. However, those methods are dedicated for pixel-level domain
adaptation, assuming the domain gap is mainly the “style” difference. But domain shift is generally
large and varied. What’s more, the adversarial losses might suffer from the mode collapse and
convergence issues. The experimental comparison can be found in Appendix E. Different from those
ideas, we propose a concise method to construct the Mirror Sample, which consists of Local Neighbor
Approximation (LNA) and Equivalence Regularization (ER).

Optimal transport Explanation. In fact, the mirror sample can be formulated in terms of optimal
transport theory [1]. Let Ts and Tt be the two transforms (push-forwards operators) on the two
domain distributions pS and pT such that the resulting distributions are same, i.e. Ts#ps = Tt#pt.
This sheds light on an elegant way to reduce the domain gap. In this context, xs ∈ DS and xt ∈ DT
are the mirror for each other if Ts#ps(xs) = Tt#pt(xt). Direct finding the push-forwards operators
are almost impossible. However, if we would first find the mirror samples defined above, those
operators would like be learned by those mirror constraints. The more detailed explanation and
illustration can be found in Appendix A.

Denotations. Similar to the existing settings of DA, denote the source samples as {(xsi , ysi )}n
s

i=1,
ysi ∈ Y and the target samples as {xtj}n

t

j=1, where ns and nt are the numbers of source and target
samples, Y is the label set with M classes. We also use XS = {xsi}n

s

i=1, X
T = {xtj}n

t

j=1 for brevity.
The notations with “tilde” above refer to the mirror samples. Since the proposed method follows the
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framework of domain-invariant representation, all the above notations as well as the mirror samples
are in the latent space after certain transformation.

3.2 Local Neighbor Approximation

The Local Neighbor Approximation (LNA) is expected to generate mirror samples using the local
existing data in the same domain. Considering that if the source and target domains are aligned
ideally, the source and target domains are two different views of the same distribution. The mirror
pairs, although in different domains, are exactly the same instance in the aligned space. Inspired
by d-SNE in [57], we use the nearest neighbors in the opposite domain to estimate the mirror of a
sample. Fig.2 gives an illustration of the local neighbor approximation cross domains. Formally,
denote d as the distance measure of two samples. To construct the mirror of target sample xtj , we first
find the nearest neighbor set in the source domain as X̃S(xtj), called mirror sets as follows:

X̃S(xt
j) = arg>k

x∈XSd(x, x
t
j) (1)

where >kΩ is a “top-k” operation that selects the top k-smallest elements in set Ω with respect to
the distance measure d. Then we estimate the mirror sample of xtj by weighted combination of
the samples in X̃S(xtj). This is following the conclusion that the learned features after the feature
extractor lie in a manifold [3, 57]:

x̃s(xt
j) =

∑
x∈X̃S(xt

j)
ω(x, xt

j)x (2)

where ω(x, xtj) is the weight of the element x in the mirror set X̃S(xtj). The weight can be inversely
proportional to t d(x, xtj) or simply 1/k. Symmetrically, we can also have the corresponding mirror
of source sample xsi in target domain as x̃t(xsi ) analogous to Eq.1 and 2.

3.3 Equivalence Regularization
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Figure 2: Local Neighbor Approximation:
the mirror sets X̃s and X̃t are calculated by
Eq.(1) using virtual mirrors. We show the
case when we set k = 3.

Although LNA provides a way to estimate the mir-
ror sample, it cannot guarantee the equivalence of
the mirror pairs. We propose an anchor-based Equiv-
alence Regularization (ER) method to enhance the
equivalence cross domains.

In detail, define the centers for class c in source and
target domains as µsc and µtc respectively. If the distri-
butions are aligned, those class-wise centers for the
same class should be same. This means they could
be the anchors cross domains. Inspired by the prob-
ability vector used in SRDC [49], we introduce the
relative position of sample xtj to an anchor µtc of its
domain as:

qtc(x
t
j) =

exp{−d(xtj , µ
t
c)}∑M

c=1 exp{−d(xtj , µ
t
c)}

(3)

where d is a distance measure. Then the relative position vector w.r.t. all the anchors is

qt(xtj) =
[
qt1(xtj), q

t
2(xtj), · · · , qtM (xtj)

]
(4)

where M is the class number. For xtj’s mirror sample x̃s(xtj) estimated by LNA, its relative position
to its anchors µsc is symmetrically written as:

qsc(x̃
s(xtj)) =

exp{−d(x̃s(xtj), µ
s
c)}∑M

c=1 exp{−d(x̃s(xtj), µ
s
c)}

(5)

Its relative position vector w.r.t. to all source anchors is analogously written as:

qs(x̃s(xtj)) =
[
qs1(x̃s(xtj)), q

s
2(x̃s(xtj)), · · · , qsM (x̃s(xtj))

]
(6)
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Figure 3: Overall structure of the model: the LNA and ER are applied to the output of the backbone
and the first FC layer to calculate the mirror and mirror loss. The detailed algorithm can be found in
Appendix.

Note that Eq.3, 4, 5 and 6 can be used to get the corresponding qsc(x
s
i ) and qs(xsi ), qtc(x̃

t(xsi )) and
qt(x̃t(xsi )) by switching the source and target domains.

To regularize the equivalence of the mirror pairs, we minimize the Kullback-Leibler divergence of
the relative position vectors of them, forming the mirror loss:

Lmr,x =
1

nt

∑nt

j=1
KL
(
qt(x̃s(xtj))‖qt(xtj)

)
+

1

ns

∑ns

i=1
KL
(
qs(x̃t(xsi ))‖qs(xsi )

)
(7)

where the first term of right side of the equation is aligning the relative position vector of target
sample xtj and its virtual mirror x̃s(xtj) in source domain, while the second term is aligning the source
sample xsi to its virtual mirror x̃t(xsi ) in target domain.

One should note that although some existing works use KL divergence losses such as TPN [37] or
SRDC [49] etc., mirror loss is quite different. The mirror loss minimizes the divergence of the relative
position vectors of mirror pairs to the anchors, ensuring the constructed sample by LNA to be the
equivalent. The other methods do not involve constructed samples. They generally minimized the KL
divergence of different distributions for the same sample.

3.4 Model with Mirror Loss

The mirror samples actually augment the existing datasets to
{
xsi
}ns

i=1
∪ {x̃s(xtj)}n

t

j=1 for source and
{xtj}n

t

j=1 ∪ {x̃t(xsi )}n
s

i=1 for target. The mirror loss setups the constraints cross domains between
{x̃s(xtj)}n

t

j=1 and {xtj}n
t

j=1, {xsi}n
s

i=1 and {x̃t(xsi )}n
s

i=1, rather than the existing dataset, expecting to
relieve the sampling bias and the mentioned dilemma.

Fig.3 illustrates the model structure we use here. After the backbone we have the feature f ∈ Rdf ,
then we use additional one full-connected layer to have feature representation g ∈ Rdg , which is
finally fed into the final classifier. We incorporate the mirror loss by applying LNA and ER to the
source and target features f and g, resulting the mirror loss Lmr,f and Lmr,g . For the labeled source
data {(xsi , ysi )}n

s

i=1, we use cross entropy loss, i.e.Ls = − 1
ns

∑ns

i=1

∑M
c=1 I(ysi = c) log psi,c , where

psi,c is the predicted probability for class c and I is the indicator function. For the unlabeled target data
{xtj}n

t

j=1, we follow the unsupervised discriminative clustering method [27] to introduce an auxiliary

distribution as soft pseudo label. Then we have the target-related loss as Lt = − 1
nt

∑nt

i=1 z
t
i · log pti,

where pti ∈ RM is the predicted probability using current learned network and zti ∈ RM is the

auxiliary distribution with each entity as zti,c ∝
pti,c

(
∑nt

i=1 p
t
i,c)1/2

. Note that zti will be updated once for

each epoch rather than iterating until convergence in [27]. To sum up, the total loss of the model is:

L = Ls + Lt + γ(Lmr,f + Lmr,g) (8)

4 Asymptotic Properties of Mirrors

We present the theoretical analysis for the mirror sample-based alignment in terms of target error
RT (h) and source error RS(h) following the theoretical framework of [2]. If the mirror-based
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alignment empirically aligns the underlying distribution cross domains (Proposition 1), we could
have lower target error asymptotically (Proposition 2). The proofs are given in Appendix C.
Proposition 1. Denote ΦS(x),ΦT (x) as the density function for domain S and T , with supports as
DT andDS respectively. H as the hypothesis class from features to label space. If ΦS(x)

a.s.
= ΦT (x),

then dH∆H(S, T )→ 0, where dH∆H(S, T ) = 2 suph,h′∈H
∣∣Prx∼DS [h(x) 6= h′(x)]−Prx∼DT [h(x) 6=

h′(x)]
∣∣.

Proposition 1 states that the distribution alignment for certain learnable space will reduce the domain
discrepancy in terms of functional differences dH∆H. The above distribution alignment can be
achieved empirically by minimizing the Lmr,x in Eq.(7). From the definition, we can see that
Lmr,x is minimized if and only if qs(x̃s(xtj)) = qt(xtj) and qt(x̃t(xsi )) = qt(xsi ) for every mirror
pairs for xsi and xtj . It means: 1) the class centers (anchors) for both source and target domain
are same, 2) the mirror pairs cross domains have the same position relative to the common centers
µc, c = 1, 2, · · · ,M . Thus the empirical density function Φ̂S(x) and Φ̂T (x) over XS and XT are
same, i.e.Φ̂S(x) = Φ̂T (x). Since XS and XT are sampled from DS and DT w.r.t. the underlying
density function ΦS and ΦT , Glivenko–Cantelli theorem [41] could assure that when nt, ns →∞,
we have

ΦS(x)
a.s.
= Φ̂S(x) = Φ̂T (x)

a.s.
= ΦT (x) (9)

where a.s. means almost surely. So based on Proposition 1, minimizing Lmr,x will reduce
dH∆H(S, T ) to zero empirically when the number of samples is large.

Proposition 2. Define λ = minh∈H{RS(h, hS) +RT (h, hT )} same to [2], where hS and hT are
the labeling functions in each domain. Denote λm + 1

2d
m
H∆H as the term of λ+ 1

2dH∆H when Lmr,x
is minimized. If minimizing Lmr,x aligns the distribution in the learned space, we have

λm +
1

2
dmH∆H ≤ λ+

1

2
dH∆H (10)

Note that λ+ 1
2dH∆H is the main gap between source and target error stated in [2]. Proposition 2

indicates that when the mirror loss is minimized, we would get a lower gap. The key insight behind
proposition 2 is that if the discrepancy of the underlying distribution is empirically approaching to 0,
we can have a more relaxed effective hypothesis ofH, leading to a lower value of λ. This advantage
can be obtained by mirror loss.

5 Experiments

5.1 Datasets and Implementations

Datasets. We use Office-31 [42], Office-Home[51], ImageCLEF and VisDA2017[39] to validate
our proposed method. Office-31 has three domains: Amazon(A), Webcam(W) and Dslr(D) with
4,110 images belonging to 31 classes. Office-Home contains 15,500 images of 65 classes with four
domains: Art(Ar), Clipart(Cl), Product(Pr) and RealWorld(Rw). ImageCLEF contains 600 images of
12 classes in three domains: Caltech-256(C), ILSVRC 2012(I) and Pascal VOC 2012(P). VisDA2017
contains ∼280K images belonging to 12 classes. We use “train” as source domain and “validation”
as target domain.

Implementations. We implement our model in PyTorch. We use ResNet50 [24] or ResNet101
pre-trained on the ImageNet as backbone shown in Fig.3. The learning rate is adjusted by ηp =
η0(1 + αp)−β like [17], where p is the epoch which is normalized in [0, 1], η0 = 0.001, α = 10
and β = 0.75. The learning rate of fully connected layers is 10 times of the backbone layers. When
calculating the centers µtf,c and µtg,c, we use the class-wise centers of source domain µsf,c and µsg,c
as the initial centers in k-Means clustering. To enhance the alignment effect, we use the centers
µf,c = 0.5µsf,c + 0.5µtf,c and µg,c = 0.5µsg,c + 0.5µtg,c in calculating the mirror loss in Eq.(7). To
estimate the virtual mirror using LNA, the additional operation “Top-k” can be implemented using
priority queue of length k. It only brings additional O(ns) and O(nt) computation costs during
training. The virtual mirror weight, i.e. ω(w, xtj) is 1/k. All the experiments are carried out on one
Tesla V100 GPU.
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Table 1: Comparsion with SOTA methods(%). All the results are based on ResNet50 except those
with mark †, which are based on ResNet101. Red indicates the best result while Blue means the
second best. The mark ∗ means the result is reproduced by the offically released code.

Method Office-31 Office-Home CLEF VisDA2017
Source Model[24] 76.1 46.1 80.7 52.4†

MDD[60] 88.9 68.1 88.5∗ 74.6
JDDA[7] 80.2 58.5∗ 83.3∗ 62.5∗†

MCSD[59] 90.7 69.6 90.0 71.3
SAFN [56] 87.1 67.3 88.9 76.1†

CAN [28] 90.6 68.8∗ 89.6∗ 87.2†

RSDA-MSTN[22] 91.1 70.9 90.5 75.8
SHOT[32] 88.7 71.6 87.2∗ 79.6∗†

SRDC[49] 90.8 71.3 90.9 —
BSP-TSA[9] 90.6 71.2 88.9∗ 82.0
FixBi[36] 91.4 72.7 86.0∗ 87.2†

Ours 91.7 73.4 91.6 87.9†

Table 2: Ablation studies using Office-Home and
Office-31 datasets based on ResNet50.(K = 3)

Baseline FC
Mirror

Bk
Mirror Office-Home Office-31

X 66.5 85.5
X X 71.7 89.7
X X 71.8 90.0
X X X 73.4 91.7

Table 3: Parameter Sensitivity Analysis for k

Parameters Office-Home Office-31

k

1 71.7 90.2
3 73.4 91.7
5 71.8 90.3
7 71.3 89.8
9 71.4 89.8

5.2 Comparison with SOTA Results

We compare our methods with several types of SOTA methods under the same settings on the four
datasets. They include the methods using maximum mean discrepancy and its variants: e.g. DAN
[34], JDDA [7], SAFN [56], MDD [56] etc; class-wise center/centroid based methods: e.g. CAN
[28]; adversarial learning related methods, e.g. DANN [17], ADDA [50] etc; as well as the most
recent methods such as MCSD [59], SRDC [49] etc.

Table 1 shows the average results of all the tasks. Detailed results for each task can be found
in supplementary material. We can find that our method has made a consistent and significant
improvement over the existing SOTA methods. For the relatively simple datasets Office-31, our
method improves by 0.3% comparing with SOTA. For the more challenging dataset Office-Home and
the large-scale dataset VisDA2017, our method improves about 0.7% on average.

5.3 Model Analysis

We take Office-Home and Office-31 as examples to investigate the different components of the
proposed model. Average results for all tasks are presented. Detailed results are given in the
appendix.

Ablation Study. To investigate the efficacy of the proposed mirror loss, we experiment several
model variations. The “Baseline” model only uses the backbone and the source and target losses, i.e.
Ls +Lt in Eq.(8). Then the mirror loss is added gradually. Specifically, we applied the mirror loss to
the last pooling layer of the backbone, i.e. feature layer f in Session 3.4 (“BK Mirror”), the output
of first full-connected layer after the backbone, i.e. the feature layer g in Session 3.4 (“FC Mirror”)
and finally both. Table 2 gives the results when k = 3 and λ = 1.0. From the results, we can see
that by adding the mirror loss, the performance will boost at least 5.2% on Office-31 and 4.2% on
Office-Home. The difference between the “FC Mirror” and “BK Mirror” is small. When we apply
the mirror loss to both layers f and g, the final results can achieve SOTA on the datasets. In fact,
only using losses on the source and target domains neglects the connection between the underlying
distributions cross domains, which is what the mirror loss focuses on.
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Figure 4: Visualization of mirror sets for Office
Home: the source domain is “Product” and the
target domain is “Art”.
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Figure 5: Visualization of mirror sets for Office
31: the source domain is “Webcam” and the
target domain is “Amazon”.

(a) W/O Mirror, Ar-RW, epoch 1 (b) W/O Mirror, Ar-RW, epoch 100 (c) W/O Mirror, Ar-RW, epoch 200

(d) Mirror, Ar-RW, epoch 1 (e) Mirror, Ar-RW, epoch 100 (f) Mirror, Ar-RW, epoch 200
Figure 6: Visualization of cluster evolvement for task Ar-Rw in Office-Home. Different classes are
distinguished by color.

Sensitivity Analysis. The parameter k in Eq.(1) controls how we construct the virtual mirrors. A
larger k means choosing a larger mirror set and it may lead to more indistinguishable mirrors. A
smaller k may get an unreliable or even wrong mirror. In Table 3, we investigate the accuracies with
different ks by setting k = 1, 3, 5, 7, 9. In terms of average accuracy, we can see that k = 3 is the best
choice. The parameter γ in Eq.(8) controls the weight of the mirror loss. We tried different values
from 0.0 to 3.0 to investigate the best choice for different tasks. Note the γ = 0.0 means we do not
use mirror loss. Table 3 also gives the average results on both Office-31 and Office-home datasets. We
can see that different tasks have different optimal γs (refer to the supplementary material). In most of
the tasks, the optimal γ is in range 1.0 ∼ 2.0 for the two datasets. Besides above, we also evaluate
the sensitivity of the key components to construct the mirror samples in Eq.2, i.e. the weight of w
and the selection of d. We use Euclidean and Gaussian-kernel distance, combined with the weight of
1/k and inverse proportion of the distance. The final results varied not much on Office-Home, from
72.4 to 73.4, indicating that these components are robust to the variations. Detailed results are in
Appendix E.

Visualization of Mirror Set To further illustrate the virtual mirror in real datasets, we visualize
the mirror set defined in Eq.(1) in Fig.4 and 5. We use the embeddings in layer f to find the top-3
similar samples in the source w.r.t. to certain sample in target domain. As a comparison, the same
top-3 similar samples by the model without mirror loss are also given. Overall, we can see that the
top-3 similar samples with mirror loss are more similar compared to the results without mirror loss.
Specially, the “clock” class in Fig.4 might consist of quite dissimilar samples although they belong to
the same class for the model without mirror loss. In Fig.5, the “Bottle” has mirror sets belonging
to the same class, but our proposed method gives results much more similar. For the “Helmet”, the
results without mirror loss consist of even different class samples, such as “mouse”.

Impacts of the Biased Dataset. As pointed out in Section 2, the visual patterns are biased among
the source and target domains, which will incur the dilemma of domain alignment. To elaborate how
our proposed methods solve this issue, we compare the error rates of each visual pattern using the
mirror samples or not. Table 4 gives the results for “Bed”, “Calendar” and “Bucket” in the task of “Ar
→ Cl” in Office-Home. For the category “Bed”, there is no “Bunk bed” for domain Ar while 7.1%
for Clipart. Among the error-predicted samples, the “Bunk bed” consists of 2.0% for our proposed
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Table 4: Error Rates for visual patterns of task Ar→ Cl in Office-Home. “Source/Target” refers to
the ratios (%) of the visual pattern in source and target domains. “W/O Mirror” gives the error rates
(%) using the baseline model without mirror loss.

Category Bed Calendar Bucket

Visual Pattern Bunk
Bed

With
People

With
Pillow

Daily
Calendar

W/O.
Digit

With
Brush

W/O.
People

Source/Target 0.0/7.1 2.5/20.4 12.5/14.3 0.0/20.5 15.0/42.6 0.0/37.0 82.5/100
W/O Mirror 8.5 28.8 59.0 42.0 31.0 42.0 57.0

Mirror 2.0 14.9 51.0 28.5 24.0 25.8 38.0

method, which is much lower than 8.5%, the results of the baseline method without using mirror loss.
Similar observation can be found for other patterns. These results directly validate that the proposed
methods alleviate the bias of the performance resulting from the biased dataset.

Visualization of embeddings. We visualize the alignment procedure by t-SNE [25] of the feature
embeddings. We record both source and target features in layer f during different training epochs.
Then t-SNE is carried out for all the features at different epochs once to assure the same transformation
is applied to them. Fig.6 shows the detailed evolvement of the different classes and distributions
for the task of Ar to Rw in Office-Home. As a comparison, the evolvement for the model without
mirror loss is also given. At beginning, the samples of source and target are messy. As the training
progressing, such as epoch 100 in Fig.6(b) and Fig.6(e), the cluster discriminality and the cluster
shape are clearer and more consistent. At the final stage, i.e. epoch 200, our proposed method has
much more “shape” similarity between source and target domains. This reflects the proposed mirror
and mirror loss have achieved higher consistency between the underlying distributions.

6 Related Works

Researchers have designed substantial approaches to eliminate the domain gap, from model side
or data side. From the model side, existing methods try to align the two domains using different
terms of discrepancy metrics, like maximum mean discrepancy (MMD) [21, 34], differences of the
first- or high-order statistics of distributions [47, 58, 8], inter or intra class distance [7, 57], and even
Geodesic Flow Kernel [52, 18] in Grassman manifold. Furthermore, to enhance alignment effects,
adversarial learning between domain discriminator and classifier is also widely investigated, like
gradient reversal layer in DANN [17], ADDA [50], conditional adversarial learning CDNN[35],
3CATN [30], multiple classifiers discrepancy [43] and batch spectral penalization [9] etc. There
are also the meta-learning[53], disentangling learning [29] and dynamic weighting [54] following
this line. The manipulation of data in cross domain alignment provides a strong complement to the
model design. They include techniques like generating virtual or intermediate domain that boosts
the performance by reducing the difficulty the model is facing [55, 12, 36, 37], data augmentation
[31] that mimics the target domain. Inspired by GAN [19], generating the sample directly is also
an effective way for domain adaptation to enhance the model capability cross domains. Typical
works are PixelDA [5], CoGAN[33], CyCADA[26] and CrDoCo[10] etc. They generally work on
the pixel-level domain gap like style or depth differences. In sum, almost all the methods are working
to reduce covariate shift implicitly or explicitly.

As far as we know, there is few researches discussing the sample-level domain alignment, not
alone considering the biased dataset. One type of the most related works is the methods using
sample-level domain alignment. SRDC [49] used samples to form structure regularization for each
domain. [16, 11, 13] took advantage of a simplified discrete version of optimal transport theory.
[37] regularized the distance distribution of each sample for different prototypes. However, they do
not consider the biased issue discussed in Section 2. The other type is the generative method like
CyCADA [26] etc. Although generating virtual sample in target domain is like mirror sample in our
methods, those work only apply to the pixel-level task or the classification tasks with strict domain
gap assumption. Those methods heavily rely on GAN-based method, which is complicated comparing
to our method and suffers from mode collapse and divergence. In fact, aligning the distribution by
sample data can trace back to the work of [46, 20], but there is no further discussion in the UDA field.
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7 Conclusion

In this paper, we uncover the dilemma when using the sampled data to reduce the covariate shift
in unsupervised domain adaptation and further propose the mirror sample and mirror loss to solve
this issue. The mirror sample is constructed using the local neighbor approximation and equivalence
regularization, expecting to approximate equivalent samples in the marginal distributions. The
ablation analysis as well as the visualizations demonstrate the efficacy of the proposed mirror and
the mirror loss. Current construction method of mirror samples is a start point, which would have
brittle improvements when the dataset is extremely biased or sparse. It is also limited to the visual
classification task. More sophisticated and generic methods are expected. What’s more, we believe
that both the dilemma and the idea of using equivalent sample for distribution alignment should have
more discussion in both domain adaptation and transfer learning.
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