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Abstract

Residual networks, as discrete approximations of Ordinary Differential Equations
(ODEs), have inspired significant advancements in neural network design, including
multistep methods, high-order methods, and multi-particle dynamical systems. The
precision of the solution to ODEs significantly affects parameter optimization,
thereby impacting model performance. In this work, we present a series of advanced
explorations of Transformer architecture design to minimize the error compared to
the true “solution.” First, we introduce a predictor-corrector learning framework to
minimize truncation errors, which consists of a high-order predictor and a multistep
corrector. Second, we propose an exponential moving average-based coefficient
learning method to strengthen our higher-order predictor. Extensive experiments
on large-scale machine translation, abstractive summarization, language modeling,
and natural language understanding benchmarks demonstrate the superiority of
our approach. On the WMT’14 English-German and English-French tasks, our
model achieved BLEU scores of 30.95 and 44.27, respectively. Furthermore, on
the OPUS multilingual machine translation task, our model surpasses a robust 3.8B
DeepNet by an average of 2.9 SacreBLEU, using only 1/3 parameters. Notably, it
also beats LLama models by 5.7 accuracy points on the LM Harness Evaluation.

1 Introduction

Residual networks [16], formally yt+1 = yt + F(yt, θt), represent a cornerstone in the development
of deep neural networks [59, 10], primarily due to their capacity to facilitate the flow of information
across multiple layers. Beyond their pivotal role in convolutional networks, residual connections have
become an essential element in the architecture of more complex models, including the Transformer
[59] and its various derivatives. This concept can be likened to the discretization process in the Euler
method [63, 37, 15, 7, 51, 29], which serves as a first-order solver for ordinary differential equations
(ODEs), where dy(t)

dt = F(y(t), θ(t)). In both cases, the new state (be it the next layer’s output in
ResNets or the solution at the next time step in the Euler method) is computed by taking the current
state and adding an adjustment term.

Given this analogy with ODEs, there has been a surge of interest in improving residual network
architectures by using more powerful numerical methods for ODEs. For instance, the linear multistep
method [62, 37, 71, 24] has been employed to bolster the optimization of deep models. Other efforts
have included redesigning the Transformer architecture from a multi-particle dynamical system
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perspective [38, 12] and improving parameter learning efficiency through high-order methods [29].
Additionally, ODEs have been extensively studied for their potential to accelerate diffusion processes,
with multistep and high-order solvers offering more accurate predicted noise among each denoising
process, generating comparable images but consuming much fewer NFEs [31, 35, 36].

In this work, we mainly focus on advancing the architecture design, specifically by minimizing the
truncation error across each timestep. Building upon the ODE Transformers [29], which replace
the first-order Euler method with a high-order method for more precise numerical solutions, our
focus extends to addressing two key limitations. First, high-order solutions, such as those from the
Runge-Kutta method or multistep methods, are found not to lead to significant improvements when
we scale up training data and/or model size. Second, the gated fusion coefficient learning method,
which is widely used in previous work, is not well suited for higher-order solutions.

Our work draws inspiration from the predictor-corrector method [11], a well-established approach in
numerical analysis known for its accuracy in solving differential equations. This method involves a
two-step process: a prediction step that estimates the solution based on known conditions, followed
by a correction step that refines the prediction for a more accurate result. We introduce a novel
family of PCformers that embrace this predictor-corrector paradigm. Our approach integrates the
final solution using an exponential moving average (EMA) method, capitalizing on the insight that
higher-order intermediate approximations tend to be more accurate. This assertion is supported by
the truncation error analysis presented in Section 3.1.2. Our method is not only readily extensible to
arbitrary higher orders but also consistently outperforms the gated fusion method.

Our contributions are summarized below:

• We extend explicit ODE solutions to implicit ODE solutions via a predictor-corrector learning
paradigm. This kind of iterative refinement can attain more accurate solutions than previous studies
both theoretically and empirically. In particular, we choose the high-order method as the predictor
and the multistep method as the corrector.

• To further strengthen the learning ability and training stability for high-order methods, we propose
an exponential moving average coefficient learning method to replace the constant coefficients.
This leads to a much stronger predictor.

• Our extensive experimental evaluation on several benchmarks, including WMT’14 English-German,
WMT’14 English-French, WMT’16 Romanian-English, and the OPUS multilingual machine
translation benchmark, demonstrates the superior effectiveness of our PCformer models. Notably,
our model surpasses the 3.8B DeepNet by an average BLEU score of 2.9 with only 1/3 of the
parameters. Furthermore, our model can be extended to other domains. Results on abstractive
summarization, language modeling, and language understanding tasks demonstrate its generality.

2 Background

We build our method upon Transformer [59] as it is one of the most popular models in NLP. The
encoder is a stack of identical layers. Each layer consists of a self-attention block and a feedforward
network (FFN) block. Both of them are equipped with a residual connection [16] and a layer
normalization unit [25]. The output of a block can be defined as

yt+1 = yt + F(yt, θt) (1)

where F(·) is either the self-attention or FFN block. This equation illustrates that the layer output
yt+1 is determined by the layer input yt and a learnable derivative estimated by the current function
F . This approach aligns with the benefits of the Euler method, which we will discuss in the following
sections. In this work, we use Ft to denote the t-th layer representation and F̂i to denote the i-th
order intermediate approximations.

The Euler Method The Euler method is the most basic solution to solve ODEs given the initial
value, involving a function y(t) of a variable t and its derivatives. The Euler method defines the
first-order derivative of y(t)

dy(t)

dt
= f(y(t), t) (2)

where f(y(t), t) defines a time-dependent vector field if we know its value at all points of y and all
instants of time t. Eq. 2 illustrates that the change of a variable is determined by its current value
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Figure 1: Illustration of several advanced numerical methods and our proposed predictor-corrector
paradigm. The right part plots a 4-order method as the predictor to obtain Pt+1; Ft+1 is then estimated
via a function F(·); A 4-step method as the corrector to obtain the yt+1.

and a time variable t. In deep learning, we can use a trainable function F(·) to estimate f(y(t), t).
In a nutshell, residual networks could be regarded as a 1st-order discretization of the Euler method
[63, 29]. The advantage is obvious since residual networks deliver consistent performance gains in
the artificial intelligence, but the precision of yt+1 is limited. Fortunately, we can move forward along
the numerical analysis perspective as more advanced numerical methods can alleviate this issue.

The Linear Multistep Method Compared with the Euler method, the linear multistep method
uses previously obtained “solutions” to estimate the current one, leading to more accurate results.
Formally, a multistep method could be defined as: yt+1 = yt +

∑t
i=1 αiFi, where Ft = F(yt, θt).

The High-Order ODE Method Another family of numerical methods is high-order ODE solvers
by repeatedly refining the solutions within a single step. Previous work [29] employed the Runge-
Kutta methods [50, 23, 6, 2] for a higher-order solution to ODEs, where Runge-Kutta is a classic
family of iterative methods with different orders of precision. More formally, the explicit Runge-Kutta
methods of an n-order solution is defined to be: yt+1 = yt +

∑n
i=1 γiF̂i, where F̂1 = F(yt, θt),

F̂i = F(yt +
∑i−1

j=1 βijF̂j , θt). Note that F̂i is the intermediate approximation to the solution at an
inner step. β and γ are coefficients to model the scale of the input and the output of F̂i. This kind of
method can be adapted to Transformer blocks by reusing F(·) within a block.

3 Predictor-Corrector Transformer

In this section, we first show the core design of Predictor-Corrector paradigm to more accurately
solve ODEs. Then we propose an alternative coefficient learning strategy that could be applied to
arbitrary orders using the merit of the exponential moving average. At last, we show some additional
training techniques for stable and well-performance training.

3.1 Predictor-Corrector Method

A genuine problem-solving process involves the repeated use of available information to
initiate exploration, which discloses, in turn, more information until a way to attain the
solution is finally discovered. – Newell et al. [43]

The Predictor-Corrector framework leverages an iterative process of using available information
to refine approximations continuously. Initially, the Predictor generates a rough estimate, which is
subsequently refined by the Corrector using newly available data. This cyclical process mirrors the
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problem-solving strategy described earlier, where each iteration uncovers additional information that
enhances the final solution’s accuracy.

3.1.1 Adams-Bashforth-Moulton Methods

A predictor-corrector method typically uses an explicit method for the predictor and an implicit
method for the corrector. Here we take the 4-step Adams-Bashforth-Moulton [1] methods as an
instance, where Adams-Bashforth is the predictor and Adams-Moulton is the corrector. Adams-
Bashforth is a 4-step method, which defined as

yt+1 = yt +
1

24
(55Ft − 59Ft−1 + 37Ft−2 − 9Ft−3), (3)

where Ft = F(yt, θt). F(·) denotes the t-th function, and θt is corresponding parameters. Obviously,
the Adams-Bashfroth methods are explicit since yt+1 only depends on the “observed” statistics
(Fi≤t). Similarly, Adams-Moulton is also a 4-step method as below

yt+1 = yt +
1

24
(9Ft+1 + 19Ft − 5Ft−1 + Ft−2). (4)

Formally, both Eq. 3 and Eq. 4 reused Ft, Ft−1, Ft−2 to improve the accuracy, but the corrector
necessitates an approximate current “solution” Ft+1 to substitute Ft−3, which is an implicit method.
This is because that yt+1 is the value to be solved, thus we cannot compute Ft+1. To solve this, the
Adams-Bashforth-Moulton methods utilize Eq. 3 to obtain the approximate value (Pt+1) for yt+1.
Then Ft+1 could be approximated following Ft+1 = F(Pt+1, θt). Concretely, the predictor provides
a rough approximation, which is the combination of the preceding four layer representations. And
the corrector then improves the approximation, offering a more precise sample derived from the data.

However, applying the Adams-Bashforth-Moulton method directly to Transformer architecture design
leads to unstable training and limited benefits due to the difficulty in optimizing constant coefficients.
Similar issues have been observed in training a Runge-Kutta (RK4) network with numerically
suggested coefficients [29]. To address these challenges, Wang et al. [62] proposed a Dynamic Linear
Combination of Layers (DLCL) method. This approach utilizes learnable coefficients and adjusts
steps based on layer depth, effectively transforming it into a variable multistep method. Additionally,
the Adams-Bashforth method is not the only choice for the predictor; other numerical methods, such
as high-order methods, are also considered strong alternatives as they often provide more accurate
solutions [29, 72].

3.1.2 High-order Predictor and Multistep Corrector

The aforementioned discussion motivates us to design a more powerful and stable architecture based
on the above principles. Our preliminary experiments indicate that more accurate predictors indeed
improve the performance, thus we choose a high-order method to serve as the predictor. A 2-order
method could be defined as

yt+1 = yt +
1

2
(F̂1 + F̂2) (5)

where F̂1 = F(yt, θt), and F̂2 = F(yt + F̂1, θt). Rather than utilizing the previously obtained
representations in multistep methods, high-order methods iteratively estimate the approximations
upon the last timestep. Similarly, a 4-order method is:

yt+1 = yt +
1

6
(F̂1 + 2F̂2 + 2F̂3 + F̂4) (6)

where F̂1 = F(yt, θt), F̂2 = F(yt +
1
2 F̂1, θt), F̂3 = F(yt +

1
2 F̂2, θt), and F̂4 = F(yt + F̂3, θt).

To break the limit of constant coefficients, Li et al. [29] employed a gated network to dynamically
compute the coefficients of F̂1 and F̂2, however, this method cannot applied to higher-order methods,
e.g., RK4. To facilitate higher-order optimization, we design a more flexible coefficient learning
method via an exponential moving average strategy.

Predictor with Exponential Moving Average Coefficient Learning The Exponential Moving
Average (EMA) method [20] is widely used for estimating time-series data by assigning variable
weights to past observations, giving more importance to recent data compared to simple weighted
averaging methods. We hypothesize that high-order approximations at each step should have a larger
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impact on the final output, as they provide a more accurate initial state than previous ones. To support
this claim, we replaced Eq. 6 by yt+1 = yt + F̂i, where i ∈ [1, ..., 4]. We used a single-layer decoder
to compute the perplexity (PPL) on the validation set to simulate truncation errors. Our expectation is
that the fewer truncation errors, the larger the coefficient it should own.

Vanilla RK4 1st 2nd 3rd 4th
120

130

140

150

142.33

126.89

136.33

132.11
129.91

127.89

Tr
un

ca
tio

n
E

rr
or

s
(P

PL
)

Figure 2: Truncation errors with different
intermediate approximations.

Figure 2 displays the perplexity comparisons. It shows
that a 4-th order approximation, used as a replacement
for the linear aggregation in Eq. 6, delivers comparable
results and outperforms other cases. This observation
motivates us to combine the benefits of EMA with the
coefficient learning method. EMA is more flexible to the
order of ODE solvers, that is could be easily extended to
2 orders, 4 orders, or even larger. Figure 1(b) illustrates
the design merit of our proposed PCformer with an EMA
coefficient predictor and a parameterization multistep
corrector. Here, we use the RK4-block as an example. It
is apparent that the original scales have been replaced by
γ, γ · (1− γ), γ · (1− γ)2, and γ · (1− γ)3 from F̂4 to F̂1, where γ is learnable and the initialization
is 0.5 empirically. In this way, our n-order predictor approximates Pt+1 as follows:

Pt+1 = yt +

n∑
i=1

γ · (1− γ)n−i · F̂i. (7)

Corrector with Parameterization Leveraging a robust predictor, our corrector is designed to
be computationally lightweight, striking an optimal balance between performance and efficiency.
Utilizing the Adams-Moulton method, we parameterize the coefficients of previous states with
learnable parameters. These coefficients are initialized using an EMA value, where the newly
estimated Ft+1 is assigned a larger weight (α = 0.5), and the weights of previous states decrease in a
descending order. In this way, we rewrite the Eq. 4 by

yt+1 = yt + α · F(Pt+1, θt) +

t∑
i=t−2

α · (1− α)t−i+1 · Fi. (8)

where Pt+1 is obtained with Eq. 7. Empirically, we found that when the dataset is limited, an
Backward Euler method [5] as the corrector is enough to provide precise correction, where yt+1 =
yt + F(Pt+1, θt). We will discuss this in the analysis for more insights.

3.2 Improving Training Stability

Algorithm 1 Predictor-Corrector Paradigm
1: procedure PREDICTORCORRECTOR(yt, H)
2: S← ∅ ▷ Initialize an empty list to store F̂i

3: for i← 1 to 4 do
4: if i == 1 then
5: F̂1 ← F(yt, θt) ▷ Compute F̂1

6: else
7: F̂i ← F(yt, S[i− 1], θt) ▷ Compute F̂i

8: end if
9: LN(F̂i)← LayerNorm(F̂i) ▷ Apply RK-Norm

10: S.append(LN(F̂i)) ▷ Store LN(F̂i)
11: end for
12: Compute Pt+1 using S via Eq. 7 ▷ Predictor
13: Ft+1 ← F(Pt+1) ▷ Compute Ft+1

14: Compute yt+1 using H via Eq. 8 ▷ Corrector
15: H.add(Ft+1) ▷ Store Ft+1

16: return yt+1 ▷ Return the layer output
17: end procedure

Step Normalization (RK-Norm) We
built our PCformer following pre-norm
architecture [62, 58], by rewritten Eq. 1
to yt+1 = yt + F(LN(yt), θt), where
LN(·) denotes the normalization. This
ensures that the representation is nor-
malized before computing the derivative
Fi. To achieve this, we normalize the
obtained intermediate approximations
F̂i at each inner step and then compute
the offset, e.g., yt + 1

2LN(F̂1) to obtain
the F̂2 for the next timestep. Meanwhile,
the F̂i in Eq. 7 is rewritten by LN(F̂i).
If not, this oversight can cause insta-
bility when computing the final ODE
solution, where we will make ablations
in the analysis section. The algorithm
(right part) presents a more detailed computation flow of a single layer in our PCformer, where H
stores the previously obtained Ft+1.
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Table 1: Comparison with the state-of-the-arts on the WMT En-De and WMT En-Fr tasks. We both
report the tokenized BLEU and SacreBLEU scores for comparison with previous work.

Model Layers WMT En-De WMT En-Fr

#Param Steps BLEU SBLEU #Param Steps BLEU SBLEU

Transformer [59] 6-6 213M 100K 28.40 - 222M 300K 41.00 -
MacaronNet [38] 6-6 - - 30.20 - - - - -
Transformer-DLCL [62] 30-6 137M 50K 29.30 28.6 - - - -
Transformer-Base 6-6 61M 50K 27.89 26.8 69M 100K 41.05 39.1
RK2-block (Gated) [29] 6-6 61M 50K 28.89 27.7 69M 100K 42.31 40.3
RK2-block (EMA) 6-6 61M 50K 29.11 28.1 69M 100K 42.44 40.4
RK4-block [29] 6-6 61M 50K 29.03 27.9 69M 100K 42.56 40.6
RK4-block (EMA) 6-6 61M 50K 29.43 28.4 69M 100K 42.72 40.7
Transformer-Big 6-6 211M 100K 29.21 28.1 221M 100K 42.89 40.9
RK2-block (Gated) [29] 6-6 211M 100K 30.53 29.4 221M 100K 43.59 41.6
RK4-block [29] 6-6 211M 100K 30.39 29.3 221M 100K 43.51 41.6
PCformer (2-order) 6-6 211M 100K 30.90 29.8 221M 100K 43.85 41.8
Transformer-Big 12-6 286M 100K 29.91 28.9 297M 100K 43.22 41.2
RK2-block (Gated) [29] 12-6 286M 100K 30.77 29.6 297M 100K 43.96 42.1
RK4-block [29] 12-6 286M 100K 30.55 29.4 297M 100K 43.81 41.8
RK4-block (EMA) 12-6 286M 100K 30.66 29.5 297M 100K 44.17 42.2
PCformer (2-order) 12-6 286M 100K 30.95 29.8 297M 100K 44.27 42.4

Table 2: Results on the En-Ro task.

Model Params BLEU

Transformer in [39] 62M 34.30
DeLight [39] 53M 34.70
Transformer (Our impl.) 69M 33.49
RK2-block (gated) [29] 69M 34.94
PCformer (2-order) 69M 35.43
PCformer (4-order) 69M 35.49
RK4-block [29] 226M 35.28
PCformer (2-order) 226M 35.55
PCformer (4-order) 226M 35.80

Table 3: Average SacreBLEU on the OPUS-100.

Models Layers Hidden Params X→En En→X Avg

DeepNet [61] 200 512 863M 33.2 29.0 31.1
1000 512 3.8B 33.9 30.2 32.1

BranchNorm [33] 200 512 863M 34.2 28.5 31.4
1000 512 3.8B 35.0 29.6 32.3

Transformer 12 1024 466M 34.0 27.6 30.8
24 1024 618M 34.9 28.1 31.5

PCformer
12 1024 466M 36.0 29.1 32.6
24 1024 618M 36.9 30.5 33.7
24 1536 1.2B 37.7 32.2 35.0

Sublayer Dropping Additionally, we observe that our models benefit from the rich information
brought by high-order predictor and subsequent implicit multistep corrector. To prevent from
overfitting (settling into sub-optimal solutions) as the learning ability is quite strong, we borrowed the
sublayer dropping technique [28, 34]. The drop rate is empirically set as 0.1 which delivers robust
results in previous studies.

4 Experimental Results

We mainly evaluated the proposed method on machine translation, abstractive summarization, lan-
guage modeling, and language understanding benchmarks. The details of datasets, and corresponding
hyper-parameters please refer to Appendix C. For a clear comprehension, note that RK2-block (gated)
is 2-order method with learnable coefficients in [29]’s work. And RK2-block (EMA) denotes our
EMA strategy.

Results of En-De and En-Fr Table 1 compares the proposed PCformer with state-of-the-art systems
in base and large configurations. As ODE Transformer is a strong baseline to ours, we implemented
their results for a fair comparison. We can see that the proposed EMA coefficient learning method
can further strengthen high-order methods, leading to better results than the gated fusion method
in Li et al. [29]’s work (comparisons in RK2-block). And EMA can facilitate RK4-block to deliver
a further gain of 0.40 BLEU points. The performance gains are more obvious for wider models,
that PCformer sets or matches the new state-of-the-art with fewer parameters. Notably, a 6-layer
PCformer (2-order) achieves a BLEU score of 30.90, surpassing the previous best of 30.77 by a
12-layer RK2-block with gated fusion [29]. For En-Fr, PCformer outperforms the standard Big model
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Table 4: ROUGE results on CNN/DailyMail
summarization dataset.

Model RG-1 RG-2 RG-L
Surface Connection [32] 41.00 18.30 37.90
Transformer [59] 40.47 17.73 37.29
RK2-block (gated) [29] 41.58 18.57 38.41
PCformer (2-order) 41.96 18.99 38.74
RK4-block [29] 41.83 18.84 38.68
PCformer (4-order) 42.10 19.13 38.87

Table 5: Perplexity results on Wikitext-103. Adap-
tive refers to Adaptive Input Transformer [3].

Model Layers Params Valid Test
Adaptive [3] 8L 146M 21.11 21.00
RK2-block (gated) [29] 8L 146M 20.02 19.98
PCformer (2-order) 8L 146M 19.50 19.21
Shortformer [48] 8L 146M 19.04 19.78
RK2-block (gated) [29] 8L 146M 18.67 19.23
PCformer (2-order) 8L 146M 18.01 18.55

Table 6: PCformer results against Transformer++ [58] on various configurations. All models are
trained on the same subset of the SlimPajama dataset (from 6B to 100B) with the Mistral tokenizer
[21]. The last column shows the average over all benchmarks that use (normalized) accuracy as the
metric.

Model Param Tokens Wiki. LMB. LMB. PIQA Hella. SciQ ARC-c Wino. Avg.
ppl ↓ ppl ↓ acc ↑ acc ↑ acc_norm ↑ acc ↑ acc_norm ↑ acc ↑ acc ↑

Transformer++ 340M 6B 38.5 96.1 21.4 60.3 29.1 69.2 21.5 50.4 41.9
PCformer 340M 6B 35.3 78.8 23.6 61.6 30.1 71.6 22.9 51.8 43.6
Transformer++ 340M 16B 28.3 65.3 29.8 63.2 33.9 73.2 23.1 51.4 45.8
PCformer 340M 16B 25.6 39.7 34.5 65.2 36.9 79.6 23.2 52.2 48.6

Transformer++ 1.3B 16B 23.8 26.2 37.3 65.7 37.6 78.6 23.7 51.5 49.0
PCformer 1.3B 16B 20.9 23.2 42.5 68.3 43.4 81.5 25.1 52.4 52.2
Transformer++ 1.3B 100B 16.3 11.8 51.6 71.0 51.7 86.7 28.1 54.6 57.2
PCformer 1.3B 50B 16.2 9.4 55.1 71.9 54.8 88.6 29.6 57.2 59.5
PCformer 1.3B 100B 14.0 7.4 59.6 73.8 60.0 90.7 31.7 61.7 62.9

PCformer 3B 50B 13.6 6.5 62.1 74.4 61.9 90.6 32.4 61.9 63.9
PCformer 3B 100B 12.1 5.8 64.3 76.3 66.7 92.6 35.3 64.0 66.5

by 1.00 and 1.05 BLEU points with 2-order and 4-order configurations. This demonstrates that the
predictor-corrector paradigm is a more parameter-efficient option than pure high-order methods.

Results of En-Ro Table 2 exhibits a similar phenomenon on the En-Ro task. Our predictor-corrector
paradigm with EMA method achieves much better performance (35.49 v.s. 34.70) with DeLight
within much less training cost. For a bigger model (line 7), it obtains a BLEU score of 35.80. A
much higher performance (36.00) could be achieved by a carefully designed corrector which would
be discussed in the subsequent analyses.

Results of OPUS Table 3 provides the comparison of PCformer against existing state-of-the-
art models [69, 61] on the OPUS-100 testset. The findings here are three aspects: 1) Across all
configurations, PCformer delivers significant BLEU gains over vanilla baselines. 2) Our 12-layer
EMA Pre-Cor model attains an average SacreBLEU score of 32.6, which not only outperforms
the 3.8B DeepNet but also beats its further optimized variant, BranchNorm, with only 1/8 model
parameters. 3) PCformer can benefit from the enlarging width and depth. Notably, our 1.2B model
shows an average SacreBLEU of 35.0, thereby setting a new state-of-the-art on the OPUS-100 testset.

Abstractive Summarization Table 4 presents the results of the abstractive summarization task. As
shown, our PCformer consistently improves upon pure the high-order method [29], in terms of three
rouge scores. Notably, PCformer (2-order) even beats RK4-block which consumes less computation
cost. Additionally, PCformer (4-order) sets a new state-of-the-art on the summarization task which
excludes models based on pre-trained models. This result strongly supports our hypothesis that an
appropriate coefficient learning schedule is essential for the effectiveness of higher-order methods,
thereby enhancing the performance of our PCformer model.

Language Modeling Table 5 presents a comparative analysis of our PCformer against vanilla Trans-
formers in Adaptive Input Representation [3] and Shortformer [48] settings. Our 2nd-order configu-
ration achieves significant reductions in perplexity (PPL), outperforming Adaptive and Shortformer
by 1.79 and 1.23 PPL, respectively, even within identical model capacity constraints. Remarkably,
PCformer surpasses the high-order method (RK2-block) by a substantial margin in both settings on
both validation and test sets, demonstrating the superiority of PCformer.
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Table 7: Comparison results on the GLUE development set.

Model CoLA QQP MNLI-m/mm SST-2 STS-B QNLI RTE MRPC Avg.
Mcc Acc Acc Acc Corr Acc Acc Acc

BERT 60.6 91.3 86.6/- 93.2 90.0 92.3 70.4 88.0 84.0
PCformer 65.9 92.0 87.3/- 93.6 90.8 92.8 74.7 91.5 86.1

LM Evaluation Harness In response to the increasing significance of attention mechanisms in
LLMs, we conducted a comprehensive evaluation of PCformer using established benchmarks, LM
Evaluation Harness [13], focusing on a diverse range of downstream tasks including common-sense
reasoning and question-answering. Table 6 presents our findings, where we utilized a llama-like
model3, Transformer++, as the foundation for PCformer. We trained models with parameter sizes
ranging from 340M to 3B, using datasets comprising 6B to 100B tokens from Slimpajama. The
experimental results indicate that PCformer consistently surpasses the performance of a well-tuned
Transformer of equivalent capacity. Notably, PCformer achieves an average score improvement of 1.7
points for the 340M model and 5.7 points for the 1B model across six challenging subtasks. When
scaled to a 3B parameter size, PCformer demonstrates even greater gains, achieving an additional 3.5
average score improvement compared to the 1B model, underscoring its scalability and potential with
larger model capacities and richer training datasets.

Language Understanding We also validate our method on the widely used natural language
understanding benchmarks, namely GLUE, which consists of 8 sub downstream tasks. The evaluation
metrics are as follows: The result for STS-B is the Pearson correlation; Matthew’s correlation is
used for CoLA; Other tasks are measured by Accuracy. The results are presented in Table 7. We
can see that PCformer achieves 2.1 points (on average) improvement over the BERT-large, which
demonstrates the effectiveness of PCformer.

5 Analysis

In this section, we explore several significant issues, comprising the visualization of truncation errors,
COMET results, and a set of essential ablation studies. We primarily conducted ablation studies on
machine translation tasks, but the conclusions are generalizable.

Table 8: Comparison of PPL on PTB.
Model 1-Layer 2-Layer

Residual-Block 142.33 136.07
RK2-block 131.80 123.12
RK2-block (gated) [29] 128.48 121.02
RK2-block (EMA) 124.01 119.65
PCformer (2-order) 120.91 118.37
RK4-block 126.89 119.46
RK4-block (EMA) 121.82 116.77
PCformer (4-order) 119.27 114.32

Quantization of the Truncation Error Following the
suggestion in [29]’s work, we use the perplexity between
the single-layer Transformer decoder output and the
ground truth to approximate the “truncation error”. The
results of Table 8 were conducted on the Penn Treebank
dataset. We see that the proposed EMA method achieves
a lower perplexity than the learnable coefficient (gated)
learning method, similar observation in 4-order (EMA
v.s. Rk4-block). Additionally, the Predictor-Corrector
paradigm can further reduce the truncation error, which
demonstrates the effectiveness of our method.

Table 9: COMET (%) v.s. BLEU (%) results.

Model En-De En-Fr

BLEU COMET BLEU COMET

Transformer-big (6L) 29.21 51.87 42.89 71.21
PCformer (RK2) 30.90 54.74 43.85 73.96
PCformer (RK4) - - 44.10 74.76
Transformer-big (12L) 29.91 52.90 43.22 72.33
PCformer (RK2) 30.95 55.38 44.27 75.09
PCformer (RK4) - - 44.21 75.33

Evaluation by COMET Our PCformer con-
sistently outperforms baselines, showing an
even larger gap in COMET than BLEU, as
shown in Table 9. Both metrics exhibit sim-
ilar performance trends, highlighting our ap-
proach’s effectiveness. Increasing model depth
from 6 to 12 layers does not improve BLEU for
the En-De task but results in a 0.64 COMET
gain. A similar pattern is observed in the En-
Fr task, where PCformer (4-order) achieves
comparable BLEU to its 2-order counterpart but gains 0.24 in COMET.

3we followed the setting in Gu and Dao [14]’s work.
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Table 10: Ablation on the several choices of the predictor and corrector on four translation tasks.
Predictor Corrector En-De En-Fr En-Ro OPUS

First-order Baseline - 29.91 43.22 34.20 31.5
ODE Transformer - 30.77 43.96 35.28 32.3
RK2-block with EMA Multistep Method 30.70 44.27 35.55 33.7
RK2-block with EMA Backward Euler Method 30.95 43.68 36.00 33.2
Multistep Method Multi-step Method 30.30 43.92 35.30 33.0
Multistep Method RK2-block with EMA 29.78 42.68 34.40 32.5
Multistep Method Backward Euler Method 30.30 43.62 35.27 32.8

Table 11: Ablations on the PCformer design on the machine translation task. The evaluation metric is
BLEU (%).

Model γ BLEU
Transformer-base - 27.89
RK4-block (EMA) 0.25 28.90
RK4-block (EMA) 0.50 29.43
RK4-block (EMA) 0.75 28.99
RK4-block (EMA) 0.99 29.20

(a) Coefficients: the effect of different γ
for the EMA coefficient learning.

Model BLEU
Transformer-big 29.21
RK2-block (EMA + Pre-Cor) 30.95
w/o RK-Norm failed
Layer-wise γ 30.63
Vector γ 30.88

(b) Other techniques: Figuring out several
key components for high-order solutions.

Ablation Study on Predictor-Corrector Framework The predictor-corrector framework is cru-
cial in our work, with the choice of ODE solutions for each component significantly impacting
performance. We experimented with various combinations of predictors and correctors, including
high-order methods, linear multistep methods, and the Backward Euler method. Table 10 summarizes
these results. We chose RK2-block with EMA as the default for high-order solutions due to its
performance and efficiency. Key insights include: 1) The predictor must be highly accurate, as it sets
the performance lower bound. High-order predictors outperform the multistep method (DLCL) and
the Euler method. 2) A complex corrector isn’t always optimal; a Backward Euler method suffices
for small and medium datasets (e.g., En-Ro and En-De), while more complex methods may cause
overfitting. 3) Combining a multi-step method predictor with a high-order corrector performed worse
than other combinations, highlighting the importance of predictor choice.

Ablation Study on Core Design Technique Table 11 presents the performance of our PCformer
with various initial coefficients for the EMA method and stable training techniques. Our default, with
γ set to 0.5, performs best because smaller γ values disrupt the numerical bound, and larger values
overly focus on recent approximations. As detailed in Section 3.2, RK-Norm is essential for training
stability, as shown by the BLEU score drop without it. Testing different layer-wise coefficients and
replacing the learnable scalar γ with a learnable matrix vector showed no significant performance
difference, so these were excluded from our default settings.

Table 12: Comparison of inference speed (sentences/s)
and memory consumption (GB) between the vanilla Trans-
former and numerical Transformers.
Model Layers Inference Memory BLEU

Transformer 6 98.7 13.2 29.2
Transformer 12 94.5 18.7 29.7
Transformer 24 87.3 23.5 29.8
ODE Transformer (RK2) 6 93.5 15.1 30.7
PCformer (RK2 predcitor) 6 90.3 16.2 30.9
ODE Transformer (RK4) 6 87.1 17.3 30.5

Inference Speed and Memory Con-
sumption Table 12 presents a detailed
comparison of inference speed and mem-
ory consumption across various large
model configurations, revealing that the
proposed PCformer models achieve sat-
isfactory inference performance. This
is primarily because the computational
overhead is concentrated on the decoder
side rather than the encoder, as demon-
strated in our experiments. Additionally,
PCformer is memory-efficient, as shown by the memory usage comparison between the baseline and
the ODE Transformer. Despite the fact that our PCformer models are more than twice as slow as the
vanilla baseline in encoder-only and decoder-only configurations, they deliver significantly superior
performance, making the trade-off worthwhile. These performance gains are clearly illustrated in Ta-
ble 6, where the substantial improvement in model effectiveness justifies the increased inference time.
We acknowledge that further optimization to accelerate PCformer’s inference speed is a promising
direction for future research.
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More Analyses Due to the limited space in the main content, we summarized more detailed
analyses in Appendix D, including the parameter efficiency (Figure 3), illustration of training and
validation curves (Figure 4), and visualization of coefficients during the learning procedure (Figure
5). We anticipate that these analyses will offer a deeper and more comprehensive understanding of
our method.

6 Related Work

Ordinary Differential Equations The connection between ResNet and ODEs was first proposed
by Weinan [63], while Neural ODENet [8] introduced a new perspective on neural architecture design.
Several architectures [71, 24, 37, 17, 72, 38, 53] can be interpreted from the ODE perspective. Recent
studies leverage ODE benefits for Transformers. Lu et al. [38] proposed MacaronNet using the
Strang-Marchuk Splitting Scheme, and Zhang et al. [70] introduced continuous self-attention models.
Dutta et al. [12] redesigned Transformer architecture for efficiency from a multi-particle dynamic
system view. Li et al. [29] showed that first-order ODE blocks could cause error accumulation,
and high-order methods were suggested as solutions. In this work, we advance the Transformer
design with a more accurate Predictor-Corrector paradigm and a general coefficient learning strategy
inspired by the exponential moving average, showing significant performance improvements on NLP
benchmarks.

ODE and Diffusion Models ODEs and numerical methods are also popular in diffusion models,
reducing prediction errors in denoising processes. Text-to-image generation typically uses a two-stage
model, including a text-to-image diffusion model and super-resolution models. The standard diffusion
model, DDPM [19], requires up to 1000 iterations to recover images from Gaussian noise. Subsequent
work accelerated DDPMs using denoising equations [57] or scheduled variance [44], though often at
the cost of performance. Liu et al. [31] proposed treating DDPMs as solving differential equations on
manifolds, introducing a pseudo linear multi-step method for efficiency and performance. Further
diffusion acceleration efforts [35, 36] were motivated by ODE benefits. More recently, Xu et al.
[67] presented a deep generative model solving the Poisson equation, opening new possibilities in
text-to-image generation. ODEs also show promise in discrete diffusion models, as demonstrated by
Lezama et al. [26], who used a predictor-corrector paradigm to enhance the accuracy.

7 Conclusions

This paper advances the design of parameter-efficient neural network backbones through a numerical
analysis perspective. Previous work has utilized high-order ODE solutions for more accurate approxi-
mations at each block, yielding promising results on various sequence generation tasks. However,
challenges remain, such as the scalability of learnable coefficients to RK4-blocks and the lack of
exploration into implicit ODE methods. To address these issues, we introduce a predictor-corrector
framework to improve estimation precision. Additionally, we proposed an EMA coefficients learning
strategy to promote coefficients learning for high-order methods with high flexibility. Experimental
results across 8 benchmarks demonstrate the general ability and strong effectiveness of our approach.
More concretely, Our PCformer achieves 30.95 and 44.27 BLEU scores on the WMT’14 En-De and
En-Fr, setting a new state-of-the-art result on both testsets without considering data augmentation
methods. Also, it delivers an average BLEU of 35.0 on the OPUS multilingual dataset, beating Deep-
Net and other variants with much fewer model parameters. Notably, PCformer demonstrates strong
potential in large language model scenarios, outperforming vanilla LLama models by a considerable
margin across various configurations on LM Harness Evaluation. Our codebase could be found at
https://github.com/libeineu/PCformer.

Acknowledgments

This work was supported in part by the National Science Foundation of China (No.62276056), the
Natural Science Foundation of Liaoning Province of China (2022-KF-26-01), the Fundamental Re-
search Funds for the Central Universities (Nos. N2216016 and N2316002), the Yunnan Fundamental
Research Projects (No. 202401BC070021), and the Program of Introducing Talents of Discipline to
Universities, Plan 111 (No.B16009). Jingang Wang is funded by Beijing Nova Program (Grant NO.
20220484098).

10

https://github.com/libeineu/PCformer


References
[1] Roger Alexander. Solving ordinary differential equations i: Nonstiff problems (e. hairer, sp norsett, and g.

wanner). Siam Review, 32(3):485, 1990.

[2] Uri M Ascher and Linda R Petzold. Computer methods for ordinary differential equations and differential-
algebraic equations. Siam, 1998.

[3] Alexei Baevski and Michael Auli. Adaptive input representations for neural language modeling. In Proc.
of ICLR, 2019.

[4] Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical common-
sense in natural language. In Proc. of AAAI, volume 34, pages 7432–7439, 2020.

[5] John C. Butcher. Numerical methods for ordinary differential equations: early days. In Adhemar Bultheel
and Ronald Cools, editors, The Birth of Numerical Analysis, pages 35–44. World Scientific, 2009.

[6] John Charles Butcher. A history of runge-kutta methods. Applied numerical mathematics, pages 247–260,
1996.

[7] Bo Chang, Lili Meng, Eldad Haber, Lars Ruthotto, David Begert, and Elliot Holtham. Reversible
architectures for arbitrarily deep residual neural networks. In Proc. of AAAI, pages 2811–2818, 2018.

[8] Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary differential
equations. In Proc. of NeurIPS, pages 6572–6583, 2018.

[9] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge. arXiv preprint
arXiv:1803.05457, 2018.

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proc. of NAACL, pages 4171–4186, 2019.

[11] Kai Diethelm, Neville J Ford, and Alan D Freed. A predictor-corrector approach for the numerical solution
of fractional differential equations. Nonlinear Dynamics, 29(1):3–22, 2002.

[12] Subhabrata Dutta, Tanya Gautam, Soumen Chakrabarti, and Tanmoy Chakraborty. Redesigning the
transformer architecture with insights from multi-particle dynamical systems. pages 5531–5544, 2021.

[13] Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff, Chris
Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika, Eric Tang,
Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot language model evaluation,
07 2024.

[14] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. CoRR,
abs/2312.00752, 2023.

[15] Eldad Haber, Lars Ruthotto, Elliot Holtham, and Seong-Hwan Jun. Learning across scales - multiscale
methods for convolution neural networks. In Proc. of AAAI, pages 3142–3148, 2018.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016.

[17] Xiangyu He, Zitao Mo, Peisong Wang, Yang Liu, Mingyuan Yang, and Jian Cheng. Ode-inspired network
design for single image super-resolution. In Proc. of in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
pages 1732–1741, 2019.

[18] Karl Moritz Hermann, Tomás Kociský, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. Teaching machines to read and comprehend. In Proc. of NeurIPS, pages 1693–1701,
2015.

[19] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Proc. of NeurIPS,
pages 6840–6851, 2020.

[20] J Stuart Hunter. The exponentially weighted moving average. Journal of quality technology, 18(4):203–210,
1986.

11



[21] Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego
de Las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and
William El Sayed. Mistral 7b. CoRR, abs/2310.06825, 2023.

[22] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proc. of ICLR, 2015.

[23] Wilhelm Kutta. Beitrag zur naherungsweisen integration totaler differentialgleichungen. Z. Math. Phys.,
pages 435–453, 1901.

[24] Gustav Larsson, Michael Maire, and Gregory Shakhnarovich. Fractalnet: Ultra-deep neural networks
without residuals. In Proc. of ICLR, 2017.

[25] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. ArXiv preprint, 2016.

[26] José Lezama, Tim Salimans, Lu Jiang, Huiwen Chang, Jonathan Ho, and Irfan Essa. Discrete predictor-
corrector diffusion models for image synthesis. In Proc. of ICLR, 2023.

[27] Bei Li, Ziyang Wang, Hui Liu, Yufan Jiang, Quan Du, Tong Xiao, Huizhen Wang, and Jingbo Zhu.
Shallow-to-deep training for neural machine translation. In Proc. of EMNLP, pages 995–1005, 2020.

[28] Bei Li, Ziyang Wang, Hui Liu, Quan Du, Tong Xiao, Chunliang Zhang, and Jingbo Zhu. Learning
light-weight translation models from deep transformer. In Proc. of AAAI, pages 13217–13225, 2021.

[29] Bei Li, Quan Du, Tao Zhou, Yi Jing, Shuhan Zhou, Xin Zeng, Tong Xiao, JingBo Zhu, Xuebo Liu, and
Min Zhang. Ode transformer: An ordinary differential equation-inspired model for sequence generation.
In Proc. of ACL, page 8335–8351, 2022.

[30] Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text Summarization
Branches Out, pages 74–81, 2004.

[31] Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo numerical methods for diffusion models on
manifolds. 2022.

[32] Xuebo Liu, Longyue Wang, Derek F Wong, Liang Ding, Lidia S Chao, and Zhaopeng Tu. Understanding
and improving encoder layer fusion in sequence-to-sequence learning. In Proc. of ICLR, 2020.

[33] Yijin Liu, Xianfeng Zeng, Fandong Meng, and Jie Zhou. Branchnorm: Robustly scaling extremely deep
transformers. In Findings of ACL, pages 11675–11687, 2024.

[34] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin
transformer: Hierarchical vision transformer using shifted windows. In Proc. of CVPR, pages 10012–10022,
2021.

[35] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast ode
solver for diffusion probabilistic model sampling in around 10 steps. In Proc. of NeurIPS, 2022.

[36] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast solver
for guided sampling of diffusion probabilistic models. arXiv preprint arXiv:2211.01095, 2022.

[37] Yiping Lu, Aoxiao Zhong, Quanzheng Li, and Bin Dong. Beyond finite layer neural networks: Bridging
deep architectures and numerical differential equations. In Proc. of ICML, pages 3282–3291, 2018.

[38] Yiping Lu, Zhuohan Li, Di He, Zhiqing Sun, Bin Dong, Tao Qin, Liwei Wang, and Tie-Yan Liu. Under-
standing and improving transformer from a multi-particle dynamic system point of view. ArXiv preprint,
2019.

[39] Sachin Mehta, Marjan Ghazvininejad, Srinivasan Iyer, Luke Zettlemoyer, and Hannaneh Hajishirzi. Delight:
Very deep and light-weight transformer. ArXiv preprint, 2020.

[40] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture models. In
Proc. of ICLR, 2016.

[41] Tomáš Mikolov, Anoop Deoras, Stefan Kombrink, Lukáš Burget, and Jan Černockỳ. Empirical evaluation
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Supplementary Material for “Predictor-Corrector Enhanced
Transformers with Exponential Moving Average Coefficient

Learning”

A Broader Impact

We do not anticipate any specific negative impacts from our work. However, as with any machine learning
method, we recommend exercising caution. Our primary contribution is advancing neural model design from a
numerical perspective, aiming to facilitate models’ parameter learning and enhance the performance, which we
believe to be environmentally friendly. This approach encourages the community to enhance neural models by
integrating knowledge from various domains, such as physiology, physics, and mathematics, thereby further
benefiting AI research.

B Limitations and Future Work

The proposed PCformer has demonstrated significant performance gains across a variety of tasks, including
sequence generation, natural language understanding, and language modeling. While the encoder-decoder
PCformer is computationally efficient, as it only employs the predictor-corrector paradigm on the encoder side,
the primary computational overhead during inference remains in the decoder. However, when our method is
applied to encoder-only models (for NLU) or decoder-only models (for LM/LLM), the additional computational
complexity becomes non-negligible. Addressing how to further accelerate inference in these scenarios remains
critical, and we aim to explore this in future work.

We plan to address this issue from two primary aspects:

• High-order Computation in Latent Space: When adopting high-order methods, the iterative computations
among inner steps cannot be skipped. Therefore, we aim to investigate whether high-order computations can
be performed in a latent space with a reduced dimensionality, such as 64 or 128 hidden dimensions, compared
to the original 1024 dimensions. This approach presents a significant theoretical challenge: maintaining the
stability of the ODE while computing higher-order intermediate approximations in the latent space.

• High-order Training and Inference in a First-order Manner: Another alternative is to achieve high-order
training and inference using a first-order (Euler-like) approach. This might involve employing distillation
techniques or treating high-order computations as a form of training regularization.

We will continue to advance the design of PCformers to balance performance gains with inference efficiency,
particularly in the context of large language models. This research could provide valuable insights to the
community on whether such modeling methods can further enhance the performance of LLMs.

C Dataset and Evaluation

C.1 Machine Translation

Datasets We present experimental results across three WMT benchmarks, including WMT’14 English-
German (En-De), WMT’14 English-French (En-Fr), and WMT’16 English-Romanian (En-Ro), as well as on a
large-scale, challenging multilingual machine translation benchmark (OPUS).

• For the En-De task, the training data consisted of approximately 4.5M tokenized sentence pairs, as in [59]. All
sentences were segmented into sequences of sub-word units [54] with 32K merge operations using a shared
vocabulary. We selected newstest2013 as the validation data and newstest2014 as the test data.

• For the En-Fr task, we used the dataset provided within Fairseq, i.e., 36M training sentence pairs from
WMT’14. newstest2012+newstest2013 was the validation data and newstest2014 was the test data.

• For the En-Ro task, we replicated the setup of [39], which used 600K/2K/2K sentence pairs for training,
evaluation and inference, respectively.

• Apart from the aforementioned three bilingual translation benchmarks, OPUS is a multilingual benchmark that
contains more challenges for the model to serve. We choose OPUS [69], an English-centric corpus covering
100 languages, which is randomly sampled from the OPUS collection. For a fair comparison with prior work,
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Table 13: Statistics of the datasets and hyperparameters for sequence generation tasks. For the dataset,
we both report the vocabulary size, sentence numbers of training, validation and test sets. For the
training, Lr denotes the peaking learning rate and Warmup denotes the warmup step of the Adam
optimizer. WD denotes whether we applied word dropout. For the inference, Beam and LP denote
the beam size and length penalty, respectively.

Benchmarks Vocab Dataset Training Inference

Train Dev Test Lr Warmup Batch Steps Beam LP

WMT’14 En-De 34040 4.5M 3000 3003 0.002 16000 80K 50K 4 0.6
WMT’14 En-Fr 37284 35.7M 26,822 3003 0.002 16000 320K 100K 4 0.6
WMT’16 En-Ro 34976 602K 1999 1999 0.002 8000 80K 17K 5 1.3
OPUS 209816 109.3M 371068 376000 0.002 16000 320K 100K 5 1.0
CNN/DailyMail 32584 287K 13368 11490 0.002 8000 160K 50K 4 2.0
PTB 10008 908 73 - 0.002 2000 160K 3K 4 2.0
Wikitext-103 32584 180K 3760 11490 0.002 8000 160K 50K 4 2.0

we used the already sampled subset4 and following the script provided by Zhang et al. [69] to pre-process
the data, including the data filtering, sentence piece training and applying. After that, OPUS-100 contains
approximately 55M sentence pairs. Following the same training strategy with [69, 61], we train a single model
for both to English (XE) and from English (EX), thus the total training data is 110M. Note that 2000 sentence
pairs for each language to serve as validation and test sets.

Evalutation We measured performance in terms of BLEU. Both tokenized BLEU and SacreBLEU5 scores
were reported on the En-De and En-Fr tasks. For the OPUS task, we average the SacreBLEU scores among
94 languages for both X→En and En→X. The beam size and length penalty of each task are summarized in
Table 13. In order to attain results that are more compelling, it is imperative to acknowledge that BLEU may not
be a suitable metric for evaluating a model’s performance. To supplement our evaluation, we have included a
summary of the COMET scores [49] of the top-performing model, utilizing a reference-based model6.

Training Details In accordance with the recommendations provided by [27], we have incorporated relative
positional representation [55], namely RPR for short, into our model architecture to establish stronger baselines.
To ensure stable learning during training, we have also borrowed the merit of dense connections among layers
[62] for stable optimization within FP16 training. Our models were trained on 8 GPUs with 4, 096 tokens per
GPU. For the En-De, En-Fr and OPUS tasks, we have observed that larger batching schemas often result in
better convergence [45]. Therefore, we accumulated gradients every 2 and 8 steps for En-De and En-Fr/OPUS,
respectively. Adam optimizer [22] with (0.9, 0.997) for β1 and β2 is adopted. The hyperparameters including
the learning rate, the warmup step and the total training steps of three tasks could be found in Table 13. Note
that we trained Base/Deep and Big models for 50K and 100K steps on the En-De task. We regarded merging
SAN and FFN as the default ODE block. In addition, main results were the average of three times running with
different random seeds (1, 42 and 2024), and we averaged the last several checkpoints towards the robustness.
The detail of Base/Deep/Wide configurations is as follows:

• Base/Deep Model. The hidden size of self-attention was 512, and the dimension of the inner-layer
in FFN was 2, 048. We used 8 heads for attention. For training, we set all dropout to 0.1 as default,
including residual dropout, attention dropout, ReLU dropout. Label smoothing ϵls = 0.1 was applied
to enhance the generation ability of the model. For deep models, we only enlarged the encoder depth
considering the inference speed.

• Wide (or Big) Model. We used the same architecture as Transformer-Base but with a larger hidden
layer size 1, 024, more attention heads (16), and a larger feed forward inner-layer (4, 096 dimensions).
The residual dropout was set to 0.3 for the En-De task and 0.1 for the En-Fr task.

C.2 Abstractive Summarization

We also tested the models’ ability to process long sequences on the CNN-DailyMail summarization task [42, 18].
The preprocessed method was the same as in [46]. We used a shared BPE with 30K operations, resulting in a
vocabulary of 32, 580 entries. The evaluation metric was F1-Rouge [30] (Rouge-1, Rouge-2 and Rouge-L).

4https://object.pouta.csc.fi/OPUS-100/v1.0/opus-100-corpus-v1.0.tar.gz.
5BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a+version.2.3.1
6The default setting which uses a reference-based regression model built on top of XLM-R (Large).
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Figure 3: The comparison of BLEU as well as model capacities and training costs against previous
state-of-the-art deep transformers.

C.3 Language Modeling

Datasets As mentioned above, the truncation error analysis is conducted on the Penn Treebank [41], which
is a widely-used language model dataset. It contains 88K, 3, 370 and 3, 761 sentences for training, validation
and test. The vocabulary size is 10K. We set the layer depth of the language model to 1 or 2 to make a fair
comparison. Assuming the layer depth is 1, then the loss between the model output and the true label could be
regarded as the truncation error. In this way, we alleviate the influence of the error accumulation across different
layers. Apart from PTB, we also evaluate our approach on another widely acknowledged language modeling
dataset, Wikitext-103 dataset [40], which is the largest available word-level language modeling benchmark with
long-term dependency. WikiText-103 consists of 103M training tokens from 28K articles on Wikipedia, and the
average length of tokens per article is about 3.6K. The data is can be easily obtained and preprocessed following
Baevski et al. [3]’s work.

Setups For the PTB dataset, we used the transformer_base configuration, whose hidden size is 512, and
the filter size of the FFN is 2, 048. All the dropout rates are 0.1, including the residual dropout, attention dropout
and ReLU dropout. Each model was trained up to 20 epochs, while most models arrived at convergence on the
validation set when the epoch is 10. Then the validation PPL began to increase, though the training PPL is still
declining. This is due to the small model capacity. The warmup step was 2, 000 and the batch size was 4, 096.
The max learning rate was set to 0.0007. For the Wikitext-103 dataset, all models were based on the original
open-source Fairseq toolkit, and the corresponding configuration is transformer_lm_baevski_wiki103. It
inherits the configuration of transformer_big with 1, 024 hidden size and 4, 096 filter size. Besides these
common hyper-parameters, it adopts the adaptive input representation to reduce the embedding matrix by
decreasing the embedding size of low-frequency words or sub-words. This is also the most common choice
when building large-scale language models.

C.4 Language Understanding

Our proposed PCformer by continue training the BERT model using the provided pretrained model, BERT-
Large-cased. And we evaluated on the General Language Understanding Evaluation (GLUE) [60]. Concretely,
the GLUE benchmark has 8 different text classification or regression tasks including MNLI, MRPC, QNLI, QQP,
RTE, SST-2, SST-B, and CoLA.

C.5 LM Evaluation Harness

We also evaluate our PCformer on a wide range of downstream tasks covering common-sense reasoning
and question-answering, including LAMBADA (LMB. [47]), PIQA [4], SciQ [64], Winograde (Wino. [52]),
HellaSwag (Hella. [68]), and ARC-challenge [9]. We mainly evaluate language models via zero-shot evaluation.
We randomly sampled 100B tokens from Slimpajama dataset for training.

D More Analyses

Parameter Efficiency Figure 3 summaries the results of several efficient Transformer variants, including
Lite Transformer [66], DeLight [39], a light version of the Evolved Transformer [56], and our PCformer. It is
clear to see that PCformer is significantly more parameter efficient than others. We make detailed comparisons of
PCformer within different hyper-parameters, comprising of hidden size and model depth. Concretely, RK2-block
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Figure 4: The comparison of training and validation PPL on base and wide models.

with gated fusion coefficient learning strategy delivers stronger performance than DeLight within the same
model parameters. And it is on par with DeLight in terms of BLEU, but having 9M fewer parameters. Moreover,
as expected, our newly proposed EMA coefficient learning method slightly improves the performance of gated
fusion in almost all scenarios. A notable bonus it brought is higher-order solutions, e.g., RK4-block is superior
to RK2-block with the help of EMA. It may offer a new choice for deploying NMT systems on edge devices.

Training and Validation Perplexity Apart from the BLEU scores, we also compare our methods with
baselines regarding perplexity on both training and validation sets. Figure 4 plots the training and validation
PPL curves of the PCformer (RK2-block (EMA + Pre-Cor)) and the baseline on two representative translation
tasks. All models were in big configurations for more convincing conclusions. The proposed RK2-block with
EMA coefficient learning and Predictor-Corrector framework delivers much lower training and validation PPLs
within the same configurations. More specifically, our method still benefits from increasing model depth, as the
12-layer model outperforms the 6-layer one. For both the En-De and En-Fr tasks, we observed that our 6-layer
method even shows lower PPLs than a 12-layer Transformer. This phenomenon is more evident in the WMT
En-Fr task, which again demonstrates the high parameter efficiency of our PCformer.

Visualization of the Coefficient Learning Procedure We also collect the learning process of learnable
coefficients γ during training. As we discussed above that the inspiration of EMA coefficient learning method
comes from the prior that the most current approximation is more precise. This assumption has already been
clarified by the comparisons of truncation errors. Here, we want to figure out how coefficients learned if
removing the constraint. To achieve this goal, we set all coefficients to be independently initialized by the
mean of 1, e.g., a 2-order block with γ1 = 0.5, γ2 = 0.5. Figure 5 plots the learning curves of RK2-block and
RK4-block within these two learning strategies. As we can see that, for the independent initialization scenarios,
coefficients vary dramatically within the first several epochs, and then show convergence in a small range. Both
two figures show that the contribution of the most current coefficient is larger than others.

To our surprise, γ2 in RK2-block (Independent) converges to large than 1 and oppositely, γ1 is even goes to a
negative value. Meanwhile, γ3 in the RK4-block (Independent) shows a negative impact to the final solution,
but the other 3 coefficients vary within our expectation. We notice the order relation among these 4 coefficients
are consistent with the numerical suggested coefficients in the Adams-Bashforlth method (-9/24, 37/24, -59/24,
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Figure 5: The coefficient learning curves of independent initialization and EMA oin both 2-order and
4-order scenarios. The experiments are conducted on WMT En-De.

55/24). This indicates the underlying relationship between the numerical analysis and the neural network
optimization. While, after employing our EMA method, coefficients are optimized along our expected direction,
and these models are empirically better than those without constraints.

Results on Time-Series Forecasting We also followed the reviewer’s suggestion to evaluate PCformer on
time-series forecasting tasks. We selected 10 multivariate datasets from UEA Time Series Classification Archive
following the setting and the codebase provided by Flowformer [65]. Thus we choose the Flowformer as the
baseline, which is also a strong model on these testsets. For the details, we build the PCformer upon Flowformer
and report the 2-order predictor and Euler corrector as the training data is very small. Also, we use RK-Norm to
avoid the model suffering from the overfitting problem as the authors of Flowformer trained their models upon
to 100 epochs (or even 400 epoch on some tasks.). The results are evaluated by the best accuracy. We can see
that PCformer can beat the Flowformer by 2 average score on 10 testsets, which demonstrates the effectiveness
on time-series forecasting tasks.

Table 14: Comparison of Flowformer and PCformer on different datasets.

Dataset Flowformer PCformer
ETHANOLCONCENTRATION 30.3 33.9
FACEDETECTION 67.0 68.2
HANDWRITING 29.1 33.5
HEARTBEAT 77.0 78.5
JAPANESEVOWELS 98.4 99.2
PEMS-SF 87.2 87.9
SELFREGULATIONSCP1 89.0 92.2
SELFREGULATIONSCP2 55.0 56.1
SPOKENARABICDIGITS 98.0 100.0
UWAVEGESTURELIBRARY 85.3 86.3

Average Score 71.6 73.6
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: We have highlighted our contributions in Section 1. We proposed a predictor-corrector
paradigm for Transformer architecture design, and also an EMA coefficient learning algorithm to
augment the learning of high-order predictor. Experimental results have also shown the superiority of
PCformer.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in the
paper.

• The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Please refer to Appendix B

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not include theoretical results.
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear in

the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have summarized all details including the datasets, the model configurations and
training details in the appendix. Please refer to Section C of the Appendix. And we also make a clear
algorithm to illustrate the detailed computation flow of the proposed PCformer. And we will release
the code after re-organizing the codebase, to provide detailed scripts for reproduce our results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either be

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We will open-source the code as soon as we collect our scripts for an easy way to
reproduce our results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.
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• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We have summarized the training and test details in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have conducted experiments 3 times and reported the average result. The seeds are 1,
42, 2024, respectively.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report

a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]
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Justification: We mainly conducted experiments on A100 and H800, single machine with 8 GPUs.
Each GPU has an 80G memory. When training PCformer 1B and 3B models, we used 128 H800 gpus.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]

Justification: Please refer to Appendix A.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: This paper only uses publicly available open-source code and datasets, and the authors
have properly credited the original creators and respected the licenses and terms of use.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [Yes]

Justification: We will provide detailed documentation in our open-source code repository after
publication.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
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