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ABSTRACT

Studies on benign overfitting provide insights for the success of overparameterized
deep learning models. In this work, we examine whether overfitting is truly benign
in real-world classification tasks. We start with the observation that a ResNet
model overfits benignly on Cifar10 but not benignly on ImageNet. To understand
why benign overfitting fails in the ImageNet experiment, we theoretically analyze
benign overfitting under a more restrictive setup where the number of parameters
is not significantly larger than the number of data points. Under this mild overpa-
rameterization setup, our analysis identifies a phase change: unlike in the previous
heavy overparameterization settings, benign overfitting can now fail in the presence
of label noise. Our analysis explains our empirical observations, and is validated
by a set of control experiments with ResNets. Our work highlights the importance
of understanding implicit bias in underfitting regimes as a future direction.

1 INTRODUCTION

Modern deep learning models achieve good generalization performances even with more parame-
ters than data points. This surprising phenomenon is referred to as benign overfitting, and differs
from the canonical learning regime where good generalization requires limiting the model complex-
ity (Mohri et al., 2018). One widely accepted explanation for benign overfitting is that optimization
algorithms benefit from implicit bias and find good solutions among the interpolating ones under
the overparametrized settings. The implicit bias can vary from problem to problem. Examples
include the min-norm solution in regression settings or the max-margin solution in classification
settings (Gunasekar et al., 2018a; Soudry et al., 2018; Gunasekar et al., 2018b). These types of bias
in optimization can further result in good generalization performances (Bartlett et al., 2020; Zou
et al., 2021; Frei et al., 2022). These studies provide novel insights, yet they sometimes differ from
the deep learning practice: state-of-the-art models, despite being overparameterized, often do not
interpolate the data points (e.g., He et al. (2016); Devlin et al. (2018)).

We first examine the existence of benign overfitting in realistic setups. In the rest of this work, we
term benign overfitting as the observation that validation performance does not drop while the model
fits more training data points1. We test whether ResNet (He et al., 2016) models overfit data benignly
for image classification on CIFAR10 and ImageNet. Our results are shown in Figure 1 below.

In particular, we first trained ResNet18 on CIFAR10 for 200 epochs and the model interpolates the
training data. In addition, we also trained ResNet50 on ImageNet for 500 epochs, as opposed to the
common schedule that stops at 90 epochs. Surprisingly, we found that although benign overfitting
happens on the CIFAR10 dataset, overfitting is not benign on the ImageNet dataset—the test loss
increased as the model further fits the train set. More precisely, the ImageNet experiment does
not overfit benignly since the best model is achieved in the middle of the training. The different

∗Equal contribution.
†Corresponding author.
1A more detailed discussion can be found in Appendix E.2. This definition is slightly different from existing

theoretical literature but can be verified more easily in practice.
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Figure 1: Different Overfitting Behaviors on ImageNet and CIFAR10. We use ResNet50/ResNet18
to train ImageNet/CIFAR10 and plot the training loss as well as the validation loss. We find that
ResNet50 overfits the ImageNet non-benignly, while ResNet18 overfits CIFAR10 benignly.

Classification
Noiseless

Classification
Noisy

Regression
Noisy

Mild over-
parameterization

p = Θ(n)

Benign
(Ours)

Not Benign
(Ours)

Not Benign
(Bartlett et al., 2020)

Heavy over-
parameterization

p = ω(n)

Benign
(Cao et al., 2021)

(Wang et al., 2021a)

Benign
(Chatterji et al., 2021)

(Frei et al., 2022)
(Wang et al., 2021a)

Benign
(Bartlett et al., 2020)

(Zou et al., 2021)

Table 1: For classification problems, previous work (Cao et al., 2021; Chatterji et al., 2021) provided
upper bounds under the heavy overparameterization setting. This paper focuses on a mild overpa-
rameterization setting, and shows that the label noise may break benign overfitting. Similar results
were known in regression problems. For regression with noisy responses, Bartlett et al. (2020) shows
that the interpolator fails under mild overparameterization regimes while may work under heavy
overparameterization, as is consistent with the double descent curve. However, the analysis under
mild overparameterization in the classification task remained unknown.

overfitting behaviors cannot be explained by known analysis for classification tasks, as no negative
results have been studied yet.

Motivated by the above observation, our work aims to understand the cause for the two different
overfitting behaviors in ImageNet and CIFAR10, and to reconcile the empirical phenomenon with
previous analysis on benign overfitting. Our first hint comes from the level of overparameterization.
Previous results on benign overfitting in the classification setting usually requires that p = ω(n),
where p denotes the number of parameters and n denotes the training sample size (Wang et al., 2021a;
Cao et al., 2021; Chatterji et al., 2021; Frei et al., 2022). However, in practice many deep learning
models fall in the mild overparameterization regime, where the number of parameters is only slightly
larger than the number of samples despite overparameterization. In our case, the sample size n = 106

in ImageNet, whereas the parameter size p ≈ 107 in ResNets.

To close the gap, we study the overfitting behavior of classification models under mild overparameter-
ization setups where p = Θ(n) (this is sometimes referred to as the asymptotic regimes). In particular,
following Wang et al. (2021a); Cao et al. (2021); Chatterji et al. (2021); Frei et al. (2022), we analyze
the solution of stochastic gradient descent for the Gaussian mixture models. We found that a phase
change happens when we move from p = Ω(n log n) (studied in Wang et al. (2021a)) to p = Θ(n).
Unlike previous analysis, we show that benign overfitting now provably fails in the presence of label
noise (see Table 1 and Figure 2). This aligns with our empirical findings as ImageNet is known to
suffer from mislabelling and multi-labels (Yun et al., 2021; Shankar et al., 2020).

More specifically, our analysis (see Theorem 3.1 for details) under the mild overparameterization
(p = Θ(n)) setup supports the following statements that align with our empirical observations in
Figure 1 and 2:

• When the labels are noiseless, benign overfitting holds under similar conditions as in previous
analyses.

• When the labels are noisy, the interpolating solution can provably lead to a positive excess risk
that does not diminish with the sample size.
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Figure 2: Phase Transition in Noisy Regimes: parameter size p vs sample size n. We conduct
experiments on simulated Gaussian mixture model (GMM) with signal strength |µ| = 40 and noise
level σ = 1. We use SGD to train a linear classifier and plot the excess risk. The brighter grid means
that the classifier has smaller excess error, and therefore does not overfit. Figure (a) and Figure (b)
correspond to the classifier at the last epoch. Figure (c) corresponds to the best classifier through the
course of training.

• When the labels are noisy, early stopping can provably lead to better generalization performances
compared to interpolating models.

Our analysis is supported by both synthetic and deep learning experiments. First, we train a linear
classifier in Figure 2. Figure (a) shows that training on noiseless data does not cause overfitting,
Figure (b) shows that training on noisy data with a label noise ratio 0.4 causes overfitting with mild
overparameterization, and Figure (c) shows that applying early-stopping on the same noisy data
can effectively avoid overfitting. Besides, we find that overfitting consistently happens under noisy
regimes, despite the theoretical guarantee that the model overfits benignly when p = ω(n).

Furthermore, our analysis is validated by control experiments in Section 4 with ResNets. We first
show that injecting random labels into the CIFAR10 dataset indeed leads to the failure of benign
overfitting. We further show that, surprisingly, increasing the width of ResNet alone can alleviate
overfitting incorrect labels, as our theory predicted.

More broadly, the empirical and theoretical results in our work point out that modern models may not
operate under benign interpolating regimes. Hence, it highlights the importance of characterizing
implicit bias when the model, though mildly overparameterized, does not interpolate the training
data.

2 RELATED WORKS

Although the benign overfitting phenomenon has been systematically studied both empirically (Belkin
et al., 2018b; 2019; Nakkiran et al., 2021b) and theoretically (see later), our work differs in that
we aim to understand why benign overfitting fails in the classification setup. In particular, among
all theoretical studies, the closest ones to us are Chatterji et al. (2021), Wang et al. (2021b) and
Cao et al. (2021), as the analyses are done under the classification setup with Gaussian mixture
models. Our work provides new results by moving from heavy overparameterization p = ω(n)
to mild overparameterization p = Θ(n). We found that this new condition leads to an analysis
that is consistent with our empirical observations, and can explain why benign overfitting fails. In
short, compared to all previous studies on benign overfitting in classification tasks, we focus on
identifying the condition that breaks benign overfitting in our ImageNet experiments. The comparison
is summarized in Table 1.

More related works on benign overfitting: Researchers have made a lot of efforts to generalize
the notation of benign overfitting beyond the novel work on linear regression (Bartlett et al., 2020),
e.g., variants of linear regression (Tsigler et al., 2020; Muthukumar et al., 2020; Zou et al., 2021; Xu
et al., 2022), linear classification (Liang et al., 2020a; Belkin et al., 2018a) with different distribution
assumptions (instead of Gaussian mixture model), kernel-based estimators (Liang et al., 2018; 2020b;
Mei et al., 2022), neural networks (Frei et al., 2022). Among them, Cao et al. (2022) also identifies a
phase change in benign overfitting when the overfitting can be provably harmful with a different data
distribution under noiseless regimes.
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Gaussian Mixture Model (GMM) represents the data distribution where the input is drawn from a
Gaussian distribution with different centers for each class. The model was widely studied in hidden
Markov models, anomaly detection, and many other fields (Hastie et al., 2001; Xuan et al., 2001;
Reynolds, 2009; Zong et al., 2018). A closely related work is Jin (2009) which analyzes the lower
bound for excess risk of the Gaussian Mixture Model under noiseless regimes. However, their analysis
cannot be directly extended to either the overparameterization or noisy label regimes. Another closely
related work (Mai et al., 2019) focuses on the GMM setting with mild overparameterization, but they
require a noiseless label regime and rely on a small signal-to-noise ratio on the input, and thus cannot
be generalized to our theoretical results.

Asymptotic (Mildly Overparameterized) Regimes. This paper considers asymptotic regimes
where the ratio of parameter dimension and the sample size is upper and lower bounded by absolute
constants. Previous work studied this setup with different focus than benign overfitting (e.g., double
descent), both in regression perspective (Hastie et al., 2019) and classification perspective (Sur et al.,
2019; Mai et al., 2019; Deng et al., 2019). We study the mild overparameterization case because it
generally happens in realistic machine learning tasks, where the number of parameters exceeds the
number of training samples but not extremely.

3 OVERFITTING UNDER MILD OVERPARAMETERIZATION

We observed in Figure 1 that training ResNets on CIFAR10 and ImageNet can result in different over-
fitting behaviors. This discrepancy was not reflected in the previous analysis of benign overfitting in
classification tasks. In this section, we provide a theoretical analysis by studying the Gaussian mixture
model under the mild overparameterization setup. Our analysis shows that mild overparameterization
along with label noise can break benign overfitting.

3.1 OVERPARAMETERIZED GAUSSIAN MIXTURE MODEL

In this subsection, we study the generalization performance of linear models on the Gaussian Mixture
Model (GMM). We assume that linear models are obtained by solving logistic regression with
stochastic gradient descent (SGD). This simplified model may help explain phenomenons in neural
networks, since previous works show that neural networks converge to linear models as the width
goes to infinity (Arora et al., 2019; Allen-Zhu et al., 2019).

We next introduce GMM under two setups of overparameterized linear classification: the noiseless
regime and the noisy regime.

Noiseless Regime. Let y ∼ Unif{−1, 1} ∈ R denote the ground truth label. The corresponding
feature is generated by

x = yµ+ ϵ ∈ Rp,

where ϵ denotes noise drawn from a subGaussian distribution, and µ ∈ Rp denotes the signal vector.
We denote the dataset D = {(xi, yi)}i∈[n] where (xi, yi) are generated by the above mechanism.

Noisy Regime with contamination rate ρ. For the noisy regime, we first generate noiseless data
(x, y) using the noiseless regime, and then consider the data point (x, ỹ) where ỹ is the contaminated
version of y. Formally, given the contamination rate ρ, the contaminated label ỹ = −y with
probability ρ and ỹ = y with probability 1− ρ. And the returned dataset is D̃ = {(xi, ỹi)}.

For simplicity, we assume that the data points in the train set are linearly separable in both noiseless
and noisy regimes. This assumption holds almost surely under mild overparameterization. Besides,
we make the following assumptions about the data distribution:
Assumption 1 (Assumptions on the data distribution).

A1 The feature noise ϵ is drawn from the Gaussian distribution, i.e., ϵ ∼ N (0, σ2I).
A2 The signal-to-noise ratio satisfies ∥µ∥

σ ≥ c
√
log n for a given constant c.

A3 The ratio p/n = r > 1 is a fixed constant.

The three assumptions are all crucial but can be made slightly more general (see Section 5). The first
Assumption [A1] stems from the requirement to derive a lower bound for excess risk under a noisy
regime. The second Assumption [A2] is widely used in the analysis (Chatterji et al., 2021; Frei et al.,
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2022). For a smaller ratio, the model may be unable to learn even under the noiseless regime and
return vacuous bounds. The third Assumption [A3] differs from the previous analysis, where we
consider a mild overparameterization instead of heavy overparameterization (i.e., p = ω(n)).

3.2 TRAINING PROCEDURE

We consider the multi-pass SGD training with logistic loss ℓ(w;x, y) = log(1 + exp(−yx⊤w)).
During each epoch, each data is visited exactly once randomly without replacement. Formally, at the
beginning of each epoch E, we uniformly random sample a permutation PE : {1, ..., n} → {1, ..., n},
then at iteration t, given the learning rate η we have

w(t+ 1) = w(t)− η∇l(w(t);x(t), y(t)),

where x(t) = xPE(i), y(t) = yPE(i), given t = nE + i, 1 ≤ i ≤ n.

Under the above procedure, Proposition 3.1 shows that the classifier under the GMM regime with
multi-pass SGD training will converge in the direction of the max-margin interpolating classifier.

Proposition 3.1 (Interpolator of multi-pass SGD under GMM regime, from Nacson et al. (2019)).
Under the regime of GMM with logistic loss, denote the iterates in multi-pass SGD by w(t). Then for
any initialization w(0), the iterates w(t) converges to the max-margin solution almost surely, namely,

lim
t→∞

w(t)

∥w(t)∥
=

w̃

∥w̃∥
,

where w̃ = argminw∈Rd ∥w∥2 s.t. w⊤xi ≥ 1, ∀ i ∈ [n] denotes the max-margin solution.

For simplicity, we denote w+(t) as the parameter at iteration t in the noiseless setting, and w−(t) as
the parameter in the noisy setting. By the proposition above, we know that both w+(∞) and w−(∞)
are max-margin classifiers on the training data points. During the evaluation process, we also focus
on the 0-1 loss, where the population 0-1 loss is L01(w) = P(yx⊤w < 0).

3.3 MAIN THEOREM

Based on the above assumptions and discussions, we state the following Theorem 3.1, indicating the
different performances between noiseless and noisy settings.

Theorem 3.1. We consider the above GMM regime with Assumption [A1-A3]. Specifically, denote
the noise level by ρ and the mild overparameterization ratio by r = p/n. Then there exists absolute
constant c1, c2, c3, c4, c5 > 0 such that the following statements hold with probability2 at least
1− c1/n:

1. Under the noiseless setting, the max-margin classifier w+(∞) obtained from SGD has a
non-vacuous 0-1 loss, namely,

L01 (w+(∞)) ≲ n−c2 .

2. Under the noisy setting, the max-margin classifier w−(∞) has vacuous 0-1 loss with a
constant lower bound, namely, the following inequality holds for any training sample size n,

L01(w−(∞)) ≥ min

{
Φ(−2),

ρ

c3r
exp

(
−c3r

ρ

)}
.

3. Under the noisy setting, if the learning rate satisfies η < 1
c5nmaxi ∥xi∥2 , there exists a time t

such that the trained early-stopping classifier w−(t) has non-vacuous 0-1 loss, namely,

inf
t≤n

L01(w−(t)) ≲ n−c4 .

Intuitively, Theorem 3.1 illustrates that although SGD leads to benign overfitting under noiseless
regimes (statement 1), it provably overfits when the labels are noisy (statement 2). In particular, it
incurs Ω(1) error on noiseless data and hence would incur Ω(1) + ρ error on noisy labeled data,

2The probability is taken over the training set and the randomness of the algorithm.
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(f) ρ = 0.6

Figure 3: Noisy CIFAR10 under mild overparameterization. In each experiment, the validation
accuracy first increases and then dramatically decreases. This confirms points 2 and 3 in Theorem 3.1
that model would overfit under noisy label regimes.

since label noise in the test set is independent of the algorithm. Furthermore, statement 3 shows that
overfitting is avoidable through early stopping.

One may doubt the fast convergence rate3 in Statement One and Statement Three, which seems too
good to be true. The strange phenomenon happens because the high probability guarantee is in order
O(1/n) with respect to the randomness in the sampling of the training set and the algorithm, and
therefore, the expected 0-1 loss is approximately O(1/n) after union bound. We refer to Cao et al.
(2021); Wang et al. (2021a) for similar types of bounds.

Remark 1 (Comparison against heavy overparameterization). Previous work usually analyze the
GMM model under the heavy overparameterization regime, e.g., p = Ω(n2) (Cao et al., 2021;
Chatterji et al., 2021) or p = Ω(n log(n)) (Wang et al., 2021a). In comparison, our paper focuses
on the mild overparameterization regime, where p = Θ(n). We note that this leads to a phase change
that the overfitting model under noisy settings now provably overfits.

4 EXPERIMENTS

Theorem 3.1 claims the crucial role of label noise and overparameterization level in benign overfitting.
This section aims at providing experimental evidence to validate the statements. However, as the
dataset size is upper bounded, the criterion generalization error converges to zero is hard to verify in
experiments. Instead, we assume that (1) the gap of verification accuracy between the best-epoch
model and the last-epoch model can work as an efficient proxy for the gap between the Bayesian
optimal accuracy and the validation accuracy of the last-epoch model, and (2) training the model
for long-enough epochs can work as an honest proxy for training for infinite epochs. Therefore, as
stated in the introduction part, we adopt a different notion of benign overfitting, namely, validation
performance does not drop while the model fits more training data points. Specifically, we focus on
the noisy CIFAR10 dataset, where we randomly flip a portion of the labels. From the label noise
perspective, Section 4.1 demonstrates that ResNets on noisy CIFAR10 would dramatically overfit
non-benignly (c.f., ResNets on clean CIFAR10 overfit benignly). From the overparameterization level
perspective, Section 4.2 demonstrates that a heavier overparameterization level helps increase the
last-iterate performance and hence leads to benign overfitting.

3Here the convergence rate is with respect to the sample size n, as stated in Theorem 3.1.
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Figure 4: Ablation Study on Overparameterization Level. We fix the label noise ratio ρ = 0.2 and
conduct an ablation study varying the width factor W of WideResNet16-W . The left plot validates
that generalization performances in the best iterate keep constant while the performances in the final
iterate keep increasing, as the width factor increases. The training trajectories for width factors 1 and
4 are shown in the right two plots.

4.1 LABEL NOISE MATTERS: OVERFITTING IN NOISY CIFAR10

In Section 3.1, we prove that under noisy label regimes with mild overparameterization, early-stopping
classifiers and interpolators perform differently. This section aims to verify if the phenomenon
empirically happens in the real-world dataset. Specifically, we generate a noisy CIFAR10 dataset
where each label is randomly flipped with probability ρ, We train the ResNets again and the results
show that the test error first increases and then dramatically decreases, demonstrating that the
interpolator performs worse than the models in the middle of the training.

Setup. The base dataset is CIFAR10, where each sample is randomly flipped with probability
ρ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}. We use ResNet18 and SGD to train the model with cosine learning
rate decay. For each model, we train for 200 epochs, test the validation accuracy and plot the training
accuracy and validation accuracy in Figure 3. More details can be found in the code.

Figure 3 illustrates a similar phenomenon to the results in linear models under mild overparameteriza-
tion analysis (see Section 3.1). Precisely, the interpolator achieves suboptimal accuracy under the
mild overparameterization regimes, but we can still find a better classifier through early stopping. In
Figure 3, such a phenomenon is manifested as the validation accuracy curve increases and decreases.
We also notice that the degree becomes sharper as the noise level increases.

4.2 ACHIEVE BENIGN OVERFITTING BY INCREASING OVERPARAMETERIZATION LEVEL

Theorem 3.1 implies that although noisy label leads to bad overfitting, increasing overparameterization
can turn overfitting benign. Specifically, when the overparameterization ratio r = p/n increases,

(1) The last-iterate classifier (max-margin classifier) may generalize better (see Argument 2 in
Theorem 3.1), since the lower bound ρ

c3r
exp(− c3r

ρ ) decreases with r.

(2) The early-stopping classifiers have similar generalization performances (see Argument 3 in
Theorem 3.1), since the upper bound is in order n−c4 which converges to zero as the sample
size goes to infinity.

Figure 2 demonstrates the two observations on the synthetic dataset (linear models). We next show
similar observations on noisy CIFAR-10. Specifically, We conduct an ablation study on CIFAR10
dataset with a fixed label noise ratio ρ = 0.2. We increase the width of ResNets and effectively turn
ResNet into Wide-ResNets. By varying the width factor W of WideResNet16-W , we show that these
observations remain in the deep learning regime.
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Setup. The base dataset is CIFAR10, where each sample is randomly flipped with probability
ρ = 0.2. We use the WideResNet16-W for W ∈ {1, 1.25, 1.5, 1.75, 2, 3, 4} and use SGD to train
the model with cosine learning rate decay. For each model, we train for 200 epochs, test the
validation accuracy and compare the best validation performance and the validation performance
upon convergence in Figure 4.

Figure 4 verifies our theoretical observation where the early stopped classifier enjoys generalization
performance nearly independent of overparameterization level, again stressing the necessity to study
the bias of neural networks beyond the interpolation regime. Besides, we observe that the validation
performance of the converged classifier increases with respect to the overparameterization level.
Moreover, we notice that the increment is more significant for smaller overparameterization level,
which is qualitatively similar to ρ

c3r
exp(− c3r

ρ ).

We further observe the epoch-wise double descent phenomenon in Figure 4, where the accuracy first
decreases and then increases while the model reaches interpolation (Nakkiran et al., 2020; Heckel
et al., 2021). Stephenson et al. (2021) argues that the phenomenon is also closely related to label
noise and overparameterization level. Their work differs from ours in that they focus on studying
the training dynamics and removing the double-descent phenomenon. We do not observe a similar
phenomenon in the ImageNet experiment with mild overparameterization in 500 epochs. We leave
the discussion of epoch-wise double descent under mild overparameterization as future work.

5 CHALLENGES IN PROVING THEOREM 3.1

This section provides more details about the three statements in Theorem 3.1 with milder assumptions
than those in Assumption 1. We also explain why existing analysis cannot be readily applied.

Assumption 2. The following assumptions are more general,

A4 The noise ϵ in x is generated from a σ-subGaussian distribution.

A5 The signal-to-noise ratio satisfies ∥µ∥
σ ≥ c6

(
p
n

) 1
2 .

A6 The signal-to-noise ratio satisfies ∥µ∥
σ = ω

((
p
n

) 1
4

)
.

We compare the assumptions in Assumption 1 and Assumption 2. Assumption [A4] is a relaxation of
Assumption [A1], and Assumption [A5, A6] can be obtained by Assumption [A2, A3]. Therefore, we
conclude that Assumption 2 is weaker than Assumption 1. We next introduce the generalized version
of the three arguments in Theorem 3.1, including Theorem 5.1, Theorem 5.2 and Theorem 5.3.

Theorem 5.1 (Statement One). Under the noiseless setting, for a fixed δ1 ≥ max{ c7
n , exp(−c8p)},

under Assumption [A2, A4, A5], there exists constant c2 > 0 such that the following statement holds
with probability at least 1− δ1,

L01(w+(∞)) ≲ n−c2 .

Theorem 5.1 implies that the interpolator under noiseless regimes converges to zero as the sample
size n goes to infinity. The proof of Theorem 5.1 depends on bounding the projection of the classifier
w on µ-direction, which relies on a sketch of the classification margin. We defer the whole proof to
the Appendix due to space limitations.

Previous results on noiseless GMM (e.g., Cao et al. (2021); Wang et al. (2021a)) rely on the heavy

overparameterization p = ω(n) and assumption
(
p
n

) 1
4 ≤ ∥µ∥

σ ≤ p
n . In contrast, our results only

require ∥µ∥
σ ≥

(
p
n

) 1
2 as well as ∥µ∥

σ ≥ c
√
log n , and therefore, can be deployed in the mild

overparameterization regimes. Therefore, the existing results cannot directly imply Theorem 5.1.

Theorem 5.2 (Statement Two). Under the noisy regime with noisy level ρ and mild overparameteri-
zation ratio r = p/n, for a fixed δ2 ≥ max{exp(−c8p), c9 exp(−c10η

2n)}, under Assumption [A1,
A3], there exists constant c3 such that the following statement holds with probability at least 1− δ2,

L01(w−(∞)) ≥ min

{
Φ(−2),

ρ

c3r
exp

(
−c3r

ρ

)}
.

Therefore, w−(∞) has constant excess risk, given that r and ρ are both constant.
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Theorem 5.2 proves a constant lower bound for interpolators in noisy settings. Compared to The-
orem 5.1, Theorem 5.2 show that noisy and noiseless regimes perform differently under mild
overparameterization. The core of the proof lies in controlling the distance between the center of
wrong labeled samples and the point µ, which further leads to an upper bound of |µ⊤w−(∞)|. One
can then derive the corresponding 0-1 loss for classifier w−(∞). We defer the whole proof to the
Appendix due to space limitations.

Previous results (e.g., Chatterji et al. (2021); Wang et al. (2021a)) mainly focus on deriving the
non-vacuous bound for noisy GMM, which also relies on the heavy overparameterization assumption
p = ω(n). Instead, our results show that the interpolator dramatically fails and suffers from a constant
lower bound under mild overparameterization regimes. Therefore, heavy overparameterization
performs differently from mild overparameterization cases. We finally remark that although it is still
an open problem when the phase change happens, we conjecture that realistic training procedures are
more close to the mild overparameterization regime according to the experiment results.
Theorem 5.3 (Statement Three). Under the noisy regime, consider the learning rate
η < 1

c5nmaxi ∥xi∥2 where (xi, ỹi) ∈ D denotes the data point. For a fixed δ3 ≥
max{ c11

n , c12 exp(−c13η
2n)}, under Assumption [A2, A4, A6], the following statement holds with

probability at least 1− δ3,

inf
t≤n

L01(w−(t)) ≤ exp

(
−c14

∥µ∥4

∥µ∥2σ2 + σ4 p
n

)
.

Therefore, the bound converges to zero as sample size n goes to infinity under Assumption [A6].

Theorem 5.3 derives that the bound again converges to zero by considering early-stopping. Studying
early-stopping classifiers is meaningful since people usually cannot ideally obtain the interpolation
during training in practice. The derivation of Theorem 5.3 relies on the analysis of one-pass SGD.
Different from the previous approaches where we can directly assume ∥w+(∞)∥ = ∥w−(∞)∥ = 1
without loss of generality, the classifier w−(t) is trained in this case and we need to first bound it.
We then define a surrogate classifier and show that (a) the surrogate classifier is close to the trained
classifier for a sufficiently small learning rate, and (b) the surrogate classifier can return a satisfying
projection on the direction µ. Therefore, we bound the term µ⊤w−(t)/∥w−(t)∥ which leads to the
results. We defer the whole proof to the Appendix due to space limitations.

One may wonder whether we can apply the results of stability-based bound (Bousquet et al., 2002;
Hardt et al., 2016) into the analysis since the training process is convex. However, the analysis
might not be proper due to a bad Lipschitz constant during the training process. Therefore, the
stability-based analysis may only return vacuous bound under such regimes. Besides, the previous
results on convex optimization with one-pass SGD (e.g., Sekhari et al. (2021)) cannot be directly
applied to the analysis since most results on one-pass SGD are expectation bounds, while we provide
a high probability bound in Theorem 5.3.

6 CONCLUSIONS AND DISCUSSIONS

In this work, we aim to understand why benign overfitting happens in training ResNet on CIFAR10,
but fails on ImageNet. We start by identifying a phase change in the theoretical analysis of benign
overfitting. We found that when the model parameter is in the same order as the number of data
points, benign overfitting would fail due to label noise. We conjecture that the noise in labels leads to
the different behaviors in CIFAR10 and ImageNet. We verify the conjecture by injecting label noise
into CIFAR10 and adopting self-training in ImageNet. The results support our hypothesis.

Our work also left many questions unanswered. First, our theoretical and empirical evidence shows
that realistic deep learning models may not work in the interpolating scheme. Still, although there
is a larger number of parameters than data points, the model generalizes well. Understanding
the implicit bias in deep learning when the model underfits is still open. A closely related topic
would be algorithmic stability (Bousquet et al., 2002; Hardt et al., 2016), however, the benefit of
overparameterization within the stability framework still requires future studies. Second, the GMM
model provides a convenient way for analysis, but how the number of parameters in the linear setup
relates to that in the neural network remains unclear. Third, although the conclusions in this paper
can be generalized to other regimes, e.g., GMM with Gradient Descent, the possible extension to
neural networks as in Cao et al. (2022) is still unclear and we will consider that in future works.
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Appendix
A ADDITIONAL RELATED WORKS ON LABEL NOISE

Label noise often exists in real world datasets, e.g., in ImageNet (Yun et al., 2021; Shankar et al.,
2020). However, its effect on generalization remains debatable. Recently, Damian et al. (2021)
claim that in regression settings, label noise may prefer flat global minimizers and thus helps
generalization. Another line of work claims that label noise hurts the effectiveness of empirical risk
minimization in classification regimes, and proposes to improve the model performance by explicit
regularization (Mignacco et al., 2020) or robust training (Brodley et al., 1996; Guan et al., 2011;
Huang et al., 2020). Among them, Bagherinezhad et al. (2018) studies how to refine the labels in
ImageNet using label propagation to improve the model performance, demonstrating the importance
of the label in ImageNet. Besides, Nakkiran et al. (2021a) find that interpolation does harm to
generalization in the presence of label noise. However, they do not relate their findings with the scale
of overparameterization. This paper mainly falls in the latter branch, which theoretically analyzes
how label noise acts in the mild overparameterization regimes.

B DETAILED PROOFS

B.1 PROOF OF THEOREM 5.1

The first statement in Theorem 3.1 states that the interpolator has a non-vacuous bound in a noiseless
setting, which is a direct corollary of the following Theorem 5.1. The proof of Theorem 5.1 mainly
depends on bounding the projection of the classifier w on µ, which relies on a sketch of the
classification margin.

Theorem 5.1 (Statement One). Under the noiseless setting, for a fixed δ1 ≥ max{ c7
n , exp(−c8p)},

under Assumption [A2, A4, A5], there exists constant c2 > 0 such that the following statement holds
with probability at least 1− δ1,

L01(w+(∞)) ≲ n−c2 .

Proof of Theorem 5.1. We denote the classifier w+(∞) by w during the proof for simplicity. Due to
Proposition 3.1, the final classifier converges to its max-margin solution. Without loss of generality,
let the final classifier w satisfy ∥w∥ = 1. Therefore, the following equation for margin γ(·) holds
since w is max-margin solution:

γ(w) ≥ γ(µ/∥µ∥),
where γ(w) = mini yix

⊤
i w denotes the margin of classifier w for the dataset. We next consider the

margin for the classifier µ/∥µ∥. Note that the margin can be rewritten as

γ(µ/∥µ∥)
=min

i
yix

⊤
i µ/∥µ∥

=min
i

yi(yiµ
⊤ + ϵ⊤i )µ/∥µ∥

=∥µ∥+min
i

yiϵ
⊤
i µ/∥µ∥

≥∥µ∥ −max
i

|yiϵ⊤i µ/∥µ∥|.

We note that yiϵ⊤i µ/∥µ∥ is σ-subGaussian due to the definition of subGaussian random vector.
Therefore, due to Claim C.1, we have

γ(w) ≥ γ(µ/∥µ∥) ≳ ∥µ∥ − σ
√

log n ≳ ∥µ∥,

where the last inequality is due to Assumption [A2].

We next bound the term µ⊤w via the above margin. From one hand, we notice that by the definition
of the margin function,

γ(w) = min
i

yix
⊤
i w ≳ ∥µ∥. (1)
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From the other hand, we rewrite the margin as

min
i

yix
⊤
i w

=µ⊤w +min
i

yiϵ
⊤
i w

≤µ⊤w +
1

n

∑
i∈[n]

yiϵ
⊤
i w.

(2)

The right hand side can be bounded as

1

n

∑
i∈[n]

yiϵ
⊤
i w

≤

∥∥∥∥∥∥ 1n
∑
i∈[n]

yiϵi

∥∥∥∥∥∥
≲σ

√
p

n
,

(3)

where the final equation is due to Claim C.2. Therefore, combining the above Equation 1, Equation 2
and Equation 3, we bound the projection of w+ on µ as:

µ⊤w ≳ ∥µ∥ − σ

√
p

n
≳ ∥µ∥, (4)

where the last equation is due to Assumption [A5]. We rewrite Equation (4) as µ⊤w ≥ c5∥µ∥, then
we can bound the 0-1 loss as follows for a given constant c6:

L01(w) =P(yx⊤w < 0)

=P(µ⊤w + yiϵ
⊤w < 0)

=P(yϵ⊤w ≤ −µ⊤w)

≤P(yϵ⊤w ≤ −c5∥µ∥)

≤ exp

(
−c6

∥µ∥2

σ2

)
.

Due to Assumption [A2], ∥µ∥/σ > c
√
log n, and therefore, by setting c2 = c6c

2, we have

L01(w) ≲ n−c2 .

The proof is done.

B.2 PROOF OF THEOREM 5.2

Theorem 5.1 shows that the interpolator can be non-vacuous under noiseless regimes with mild
overparameterization. However, things can be much different in noisy regimes. Statement Two proves
a vacuous lower bound for interpolators in noisy settings, which can be derived by the following
Theorem 5.2. The core of the proof lies in controlling the distance between the center of wrong
labeled samples and the point µ, which further leads to an upper bound of |µ⊤w−(∞)|. One can
then derive the corresponding 0-1 loss for classifier w−(∞).

Theorem 5.2 (Statement Two). Under the noisy regime with noisy level ρ and mild overparameteri-
zation ratio r = p/n, for a fixed δ2 ≥ max{exp(−c8p), c9 exp(−c10η

2n)}, under Assumption [A1,
A3], there exists constant c3 such that the following statement holds with probability at least 1− δ2,

L01(w−(∞)) ≥ min

{
Φ(−2),

ρ

c3r
exp

(
−c3r

ρ

)}
.

Therefore, w−(∞) has constant excess risk, given that r and ρ are both constant.
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Proof. We denote w−(∞) as w for simplicity, and assume that ∥w∥ = 1 without loss of generality.
Let y denote the original label and ỹ denote its corrupted label.

Without loss of generality, we consider those samples with yi = 1 while ỹi = −1, which are indexed
by K = {i : yi = 1, ỹi = −1}. Consider the center point of K, which is

x̄K =
1

|K|
∑
i∈K

xi = µ
1

|K|
∑
i∈K

yi +
1

|K|
∑
i∈K

ϵi = µ+
1

|K|
∑
i∈K

ϵi.

Due to the interpolation in Proposition 3.1 and ỹ = −1, we derive that

x̄⊤
Kw < 0. (5)

Case 1: µ⊤w < 0. In this case, L01(w) naturally has a lower bound of 1/2 since it even fails in the
center point µ.

Case 2: µ⊤w > 0. In this case, the classifier w satisfies µ⊤w > 0 and x̄⊤
Kw < 0. Therefore, the

distance between µ and x̄⊤
K must be less than the distance from µ to its projection on the separating

hyperplane that perpendicular to w through the origin. Formally,

|µ⊤w| ≤ ∥x̄⊤
K − µ∥ =

1

|K|

∥∥∥∥∥∑
i∈K

ϵi

∥∥∥∥∥ .
Note that ϵi is independent and σ-subGaussian, and therefore applying Claim C.2, we have that∥∥∑

i∈K ϵi
∥∥ ≲ σ

√
p
|K| . Besides, we derive by Claim C.3 that |K| ≳ ρn. Therefore,

|µ⊤w| ≤

∥∥∥∥∥ 1

|K|
∑
i∈K

ϵi

∥∥∥∥∥ ≲ σ

√
d

|K|
≲ σ

√
p

ρn
. (6)

We next consider the corresponding test error of w, where we consider the test error on noiseless
regime instead of noisy regime. Note that the two arguments are equivalent, we refer to Claim C.4 for
more details. We rewrite Equation 6 as |µ⊤w| ≤ cσ

√
d
|K| ≲ σ

√
p
ρn , where we abuse the notation

c > 0 as a fixed constant. Therefore,

P(yx⊤w < 0)

=P(yϵ⊤w < −µ⊤w)

≥P(yϵ⊤w/σ < −c

√
p

ρn
)

=Φ(−c

√
p

ρn
),

(7)

where ϵ is sampled from Gaussian distribution, and Φ denotes the CDF of standard Gaussian Random
Variable.

Case 1. If c
√

p
ρn ≤ 2, then Φ(−c

√
p
ρn ) ≥ Φ(−2).

Case 2. If c
√

p
ρn > 2, note that Φ(−t) ≥ ( 1t − 1

t3 ) exp(−t2/2) ≥ 1/t2 exp(−t2/2) if t > 2.

Therefore, Φ(−c
√

p
ρn ) ≥

1
c2 p

ρn
exp(− c2

2
p
ρn ) ≥

1
c2 p

ρn
exp(−c2 p

ρn ).

Taking the above two cases together and denoting r = p/n, we have

L01(w) ≥ min

{
Φ(−2),

ρ

c3r
exp(−c3r

ρ
)

}
,

which is a constant lower bound under Assumption [A3]. The proof is done.
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B.3 PROOF OF THEOREM 5.3

We apologize for the following typos made in Theorem 5.3 in the main text. For consistency, the
dimension d should be written as p and the learning rate λ should be written as η. Furthermore,
Theorem 5.3 needs an initialization from zero during the training, which is widely used in linear
models (Bartlett et al., 2020).

Statement Two shows that the interpolator fails in the noisy regime with mild overparameterization.
How can we derive a non-vacuous bound under such regimes? The key is early-stopping. To show
that, Statement Three provides a non-vacuous bound for early-stopping classifiers in noisy regimes,
which is induced by the following Theorem 5.3.

Theorem 5.3 (Statement Three). Under the noisy regime, consider the learning rate
η < 1

c5nmaxi ∥xi∥2 where (xi, ỹi) ∈ D denotes the data point. For a fixed δ3 ≥
max{ c11

n , c12 exp(−c13η
2n)}, under Assumption [A2, A4, A6], the following statement holds with

probability at least 1− δ3,

inf
t≤n

L01(w−(t)) ≤ exp

(
−c14

∥µ∥4

∥µ∥2σ2 + σ4 p
n

)
.

Therefore, the bound converges to zero as sample size n goes to infinity under Assumption [A6].

To show the relationship between Theorem 5.3 and Theorem 3.1, one can directly use Assumption [A2,
A3] in Theorem 5.3 to reach generalization bound in Theorem 3.1 (Statement Three). The derivation
of Theorem 5.3 relies on the analysis on one-pass SGD, where we show that one-pass SGD is
sufficient to reach non-vacuous bound. The proof of Theorem 5.3 again, relies on bounding the
term c but in a different way. Different from the previous approaches where we can directly assume
∥w+(∞)∥ = ∥w−(∞)∥ = 1, the classifier w−(t) is trained in this case and we need to first bound
it. We then define a surrogate classifier and show that (a) the surrogate classifier is close to the trained
classifier for a sufficiently small learning rate, and (b) the surrogate classifier can return satisfying
projection on the direction µ. Therefore, we bound the term µ⊤w−(t)/∥w−(t)∥ which leads to the
results.

Proof. We abuse the notation wn to represent w−(t) which is returned by one-pass SGD. We first
lower bound the term µ⊤wn

∥wn∥ , where µ is the optimal classification direction. To achieve the goal, we
bound the term µ⊤wn and ∥wn∥ individually.

Before diving into the proof, we first introduce a surrogate classifier w̃n = 1
2η

∑
t xtỹt. From the

definition, we have that for update step size η,

wt+1 = wt + ηxtỹt
exp(−yixiwt)

1 + exp(−yixiwt)
,

w̃t+1 = w̃t +
1

2
ηxtỹt.

(8)

Therefore, we have that

wt+1 − w̃t+1 = η
∑
t

xtỹt
exp(−ỹtx

⊤
t wt)− 1

2(1 + exp(−ỹtx⊤
t wt))

.

µ⊤wt+1 − µ⊤w̃t+1 = η
∑
t

µ⊤xtỹt
exp(−ỹtx

⊤
t wt)− 1

2(1 + exp(−ỹtx⊤
t wt))

(9)

Bounding the term µ⊤w. We fist bound the different between µ⊤wt and µ⊤w̃t. We note that

To bound the above different, the fist step is to bound the term maxt∈[n] µ
⊤xtỹt. Since µ⊤ϵt/∥µ∥

is σ-subGuassian, we have that with probability 1− δ1 with δ1 ≲ 1/n

max
t∈[n]

|µ⊤xtỹt| ≤ ∥µ∥2+max
t

|µ⊤ϵt| ≲ ∥µ∥2+∥µ∥σ
√

log(n/δ1) ≲ ∥µ∥2+∥µ∥σ
√

log(n) ≲ ∥µ∥2.

(10)
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We then bound the term exp(−ỹtx
⊤
t wt)−1

2(1+exp(−ỹtx⊤
t wt))

. Note that | exp(u)− 1| ≤ 2|u| when |u| < 1
2 . By the

iteration in Equation 8, we have that

max
t∈[n]

∥wt∥ ≤ nη(max
t

∥xt∥),

max
t∈[n]

|x⊤
t wt| ≤ nη(max

t
∥xt∥2) ≤

1

2
.

where the first equation is due to the iteration, and the last equation is due to η ≤ 1
2nmaxi ∥xi∥2 (by

setting c5 > 2). Therefore,∣∣∣∣ exp(−ỹtx
⊤
t wt)− 1

2(1 + exp(−ỹtx⊤
t wt))

∣∣∣∣ ≤ ∣∣∣∣exp(−ỹtx
⊤
t wt)− 1

2

∣∣∣∣ ≤ ∣∣x⊤
t wt

∣∣ ≤ 1

2
. (11)

Combining Equation 10 and Equation 11, we have that with probability at least 1− δ1,

max
t∈[n]

|µ⊤wt − µ⊤w̃t| ≲ ηn∥µ∥2. (12)

On the other hand, we show the bound for µ⊤w̃n. Note that w̃t+1 = η/2
∑

t xtỹt, therefore,

2

nη
µ⊤w̃n = ∥µ∥2 1

n

∑
t∈[n]

Ii(ρ) +
1

n

∑
t∈[n]

µ⊤ϵtỹt,

where we denote Ii(ρ) ∈ {−1, 1} as a random variable which takes value −1 with probability ρ and
takes value +1 with probability 1− ρ.

Due to Claim C.3, we have 1
n

∑
t Ii(ρ) ≳ ρ, where we note that I(ρ) ∈ {−1, 1}. Besides, since

µ⊤ϵtỹt is ∥µ∥σ-subGaussian, we have that with probability 1− 1
n ,

1

n

∑
t∈[n]

µ⊤ϵtỹt ≲ ∥µ∥σ
√
log(n),

where the term log(n) comes from the probability 1/n. In summary, we have that

2

nη
µ⊤w̃n ≳ ρ∥µ∥2 − ∥µ∥σ

√
log(n) ≳ ∥µ∥2, (13)

where the last equation follows Assumption [A2].

Combining Equation (12) and Equation (13), we have

µ⊤wn ≥ µ⊤w̃n − |µ⊤w̃n − µ⊤wn| ≳ ηn∥µ∥2. (14)

We additionally note that Equation 14 holds by choosing proper constant in Equation (11) (and in the
choice of η).

Bounding the norm ∥wn∥. We next bound the norm ∥wn∥. Before that, we first bound the norm
∥w̃t∥. Note that

max
t∈[T ]

2

η
∥w̃t∥ =max

t∈[T ]
∥
∑
i∈[t]

xiỹi∥

=max
t∈[T ]

∥µ⊤
∑
i∈[t]

Ii(ρ) +
∑
i∈[t]

ϵiỹi∥

≤max
t∈[T ]

∥µ⊤
∑
i∈[t]

Ii(ρ)∥+ ∥
∑
i∈[t]

ϵiỹi∥

≲T∥µ∥+ σ
√
pT ,

(15)

where the last equation is due to Claim C.2 by choosing probability δ ≳ exp(−p)/n.
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Therefore, we have
sup
t∈[n]

∥w̃t∥ ≲ ηn∥µ∥+ ησ
√
pn.

Note that according to the iteration in Equation 8, we have that

∥wt+1 − w̃t+1∥ ≤ ηtmax
i

∥xi∥2∥wt∥ ≤ 1

2
∥wt∥,

where the last equation is due to η ≤ 1
2nmaxi ∥xi∥2 .

Therefore, we bound the norm wt as

∥wn∥ ≤ ∥wn − w̃n∥+ ∥w̃n∥ ≤ 1

2
∥wn−1∥+ ∥w̃n∥

≤ 1

4
∥wn−2∥+

1

2
∥w̃n−1∥+ ∥w̃n∥

≤ . . .

≤ 2ηn∥µ∥+ ησ
√
pn

≲ ηn∥µ∥+ ησ
√
pn.

(16)

Combining Equation 14 and Equation 16, we derive that with probability at least 1− c/n,

µ⊤wn

∥wn∥σ
≥ ηn∥µ∥2

ηnσ∥µ∥+ ησ2√pn
. (17)

We next consider the probability on the test point, note that given the dataset (xi, yi) and taking
probability on the testing point (x, y), we have

P(yx⊤w < 0) = P(yϵ⊤w/∥w∥ ≤ −µ⊤w/∥w∥) ≤ exp

(
−c

(µ⊤w)2

∥w∥2σ2

)
,

where yx⊤w = µ⊤w + yϵ⊤w and yϵ⊤w/∥w∥ is σ-subGaussian. Plugging Equation 17 into the
above equation, we have that with high probability,

P(yx⊤w < 0) ≤ exp

(
−c14

∥µ∥4

∥µ∥2σ2 + σ4 p
n

)
.

If ∥µ∥/σ >
√
p/n, ∥µ∥4

∥µ∥2σ2+σ4 p
n
≳ ∥µ∥/σ.

If ∥µ∥/σ <
√
p/n, ∥µ∥4

∥µ∥2σ2+σ4 p
n
≳ ∥µ∥2

σ2

√
n/p, which is large when ∥µ∥/σ = ω((p/n)1/4).

Therefore, the above bound is non-vacuous if ∥µ∥/σ = ω((p/n)1/4).

Note that for given a constant r = p/n, under Assumption [A2], we have

P(yx⊤w < 0) ≤ exp

(
−c14

∥µ∥4

∥µ∥2σ2 + σ4 p
n

)
≲ exp

(
−c14

∥µ∥2

σ2

)
≲ n−c4 .

The proof is done.

C TECHNICAL LEMMAS

We next provide some technical claims. The first claims bound the maximum of a sequence of
subGuassian random variables:
Claim C.1 (Maximum of a sequence of subGuassian random variables.). For a sequence of σ-
subGaussian random variables X1, . . . , Xn ∈ R. We have that with probability at least 1− δ,

max
i

|Xi| ≤
√
2σ(

√
log n+

√
log(1/δ)))

Specifically, under the condition that δ ≳ 1/n, we have

max
i

|Xi| ≲ σ
√

log n.
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Proof of Claim C.1. By taking union bound, we have

P(max
i

Xi ≥ u) = P(∃i : Xi ≥ u)

≤ nP(X1 ≥ u)

≤ n exp(− u2

2σ2
).

By setting u =
√
2σ(

√
log n+

√
log(1/δ)), we have

P(max
i

Xi ≥
√
2σ(

√
log n+

√
log(1/δ)))

≤n exp(−
√
2σ(

√
log n+

√
log(1/δ))2

2σ2
)

=n exp(−(
√

log n+
√

log(1/δ))2)

= exp(− log(1/δ)−
√
log(n)

√
1/δ)

≤δ.

Therefore, with probability at least 1− δ, we have

max
i

|Xi| ≤
√
2σ(

√
log n+

√
log(1/δ))

The next claim bounds the norm of sum of epsilon.

Claim C.2. Under Assumption [A4] which assumes that ϵi are subGaussian, we have that with
probability at least 1− δ, ∥∥∥∥∥∥ 1n

∑
i∈[n]

ϵi

∥∥∥∥∥∥ ≤ 4σ

√
p

n
+ 2σ

√
log(1/δ)

n
.

Specifically, under the condition that δ ≳ exp(−4p), it holds that∥∥∥∥∥∥ 1n
∑
i∈[n]

ϵi

∥∥∥∥∥∥ ≲ σ

√
p

n
.

Proof. Note that since ϵi is σ2-subGaussian, its summation
∑

i∈[n] ϵi is nσ2-subGaussian.

Therefore, we have that

1

n

∥∥∥∥∥∥
∑
i∈[n]

ϵi

∥∥∥∥∥∥ ≤ 4σ

√
p

n
+ 2σ

√
log(1/δ)

n

The next claim shows that the number of noisy data is approximately in the same order with ρn.

Claim C.3 (Number of noisy data). Denote |K| as the number of samples with flipped labels. With
probability at least 1− δ, there exists a constant c such that

||K| − ρn| ≤
√

cn log(2/δ).

Furthermore, when δ ≳ 2 exp(− 1
8ρ

2n), we have that with probability at least 1− δ,

|K| ≳ 1

2
ρn and |K| ≲ 3

2
ρn.
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Proof. Note that K =
∑

i ui, where ui are drawn from independent Bernoulli distribution with
parameter ρ. Therefore, by Hoeffding’s inequality, there exists constant c such that with probability
1− 2 exp

(
− ct2

n

)
,

||K| − ρn| ≤ t.

By setting t =
√

n
c log(

2
δ ), we have that with probability at least 1− δ,

||K| − ρn| ≤
√

n

c
log(

2

δ
).

We then rewrite the constant c to reach the above conclusion.

The next Claim C.4 shows that analyzing L01 loss on noiseless data is sufficient under noisy regimes.

Claim C.4. Under the noisy regime, the 0-1 population loss on noiseless data L01(w) = P(yx⊤w <

0) has the same order with the 0-1 population loss (excess risk) on noisy data L̃01(w) − η =

P(ỹx⊤w < 0)− η. Therefore, we analyze L01(w) in this paper as a surrogate of L̃01(w).

Proof. Note that we here consider the L01 on the noiseless data, and one can get L̃01 on the noisy
data by just adding ρ to L01. That is to say,

L̃01 =P(ỹx⊤w < 0)

=ηP(−yx⊤w < 0) + (1− η)P(yx⊤w < 0)

=η(1− L01) + (1− η)L01

=η + (1− 2η)L01,

And therefore L̃01 − η has the same order with L01.

D EXPERIMENTS

D.1 IMPLEMENTED TASKS

We conduct experiments on three public available datasets along with synthetic GMM data. First, we
briefly introduce each dataset.

ImageNet is an image classification dataset containing 1.2 million pictures belonging to 1000
different classes. CIFAR10 is an image classification dataset containing 60000 pictures belonging
to 10 different classes. Penn Tree Bank(PTB) is a dataset containing natural sentences with 10000
different tokens. We use this dataset for language modelling task. Synthetic GMM data is generated
following the setup in Section 3.1. We generate data for n ∈ {24, ..., 29}, p ∈ {24, ..., 29}, ρ ∈
{0, 0.4}, |µ| = 40, σ = 1, n ≤ p.

We then describe experiment details for each dataset.

For ImageNet, we train a ResNet50 from scratch. We use standard cross entropy loss. We first train
the model for 90 epochs using SGD as optimizer, with initial learning rate 1e−1, momentum 0.9
and weight decay 1e−4. The learning rate will decay by a factor of 10 for every 30 iterations. Then
we train the model for another 410 epochs, with initial learning rate 1e−3,momentum 0.9 and weight
decay 1e−4 and learning rate will decay by a factor of 1.25 for every 50 iterations.

For CIFAR10, we randomly flip the label with probability {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6} and for
each train a ResNet18 from scratch. We use standard cross entropy loss. We train each model for 200
epochs using SGD as optimizer, with learning rate 1e−1, momentum 0.9 and weight decay 5e−4.
We use a cosine learning rate decay scheduler. For ablation study, we fix the flip probability to be
0.2 and train WideResNet16-W on the noisy dataset with W ∈ 1, 1.25, 1.5, 1.75, 2, 3, 4. We repeat
each experiments for four times. We train each model for 200 epochs using SGD as optimizer, with
learning rate 1e−1, momentum 0.9 and weight decay 5e−4. We use a cosine learning rate decay
scheduler
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Figure 5: Overfitting Behavior for language modelling. We use transformer to train language
modelling on Penn Tree Bank and plot the training loss as well as validation loss. We find that
transformer overfits Penn Tree Bank significantly.

For Penn Tree Bank, we train a standard transformer from scratch. We train one model for 4800
epochs using ADAM as optimizer, with learning rate 5e−4, beta (0.9, 0.98) and weight decay 1e−2.
We use an inverse square learning rate scheduler.We train another model for 140 epochs using SGD
as optimizer with learning rate 5.0. We use a step learning rate schedule with step size 1 and gamma
0.95.

For Synthetic GMM data, we train a linear classifier for each dataset, initialized from 0. We use
logistic loss. We train each model using SGD as optimizer with learning rate 1e−5 until training
loss decrease below 0.05.

D.2 OVERFITTING ON PTB WITH LANGUAGE MODELLING

In this subsection, we show that the training a small Transformer on PTB for language modelling
also leads to overfitting, as shown in Figure 5. This is expected based on our analysis. If we view
language modelling as a classification task: predicting the next word based on a prefixed sequence,
then the ground truth label will naturally be noisy.

D.3 MORE GMM EXPERIMENTS

We hereby present more GMM experiments results. We consider signal-to-noise ratio between
{10, 20, 40, 80, 160} and the result is shown in figure 6. Notice that according to our theory, we can
roughly separate the GMM models into three cases ignoring some technical conditions.

Case 1 ∥µ∥/σ = o((p/n)1/4) which corresponds to the case where [A6] doesn’t hold. In this
case, as the signal-to-noise ratio is too small, even on noiseless data, the model will suffer a
constant excess risk.

Case 2 ∥µ∥/σ = O((p/n)1/4 +
√
log n) while p = Θ(n). In this case the signal-to-noise ratio

is great enough, however the overparameterization is mild, hence although the model can
benign overfit on noiseless data, it will fail to benigh overfit noisy data. However early
stopping on the noisy data will still gives a classifier that have nonvacuous generalization
guarantee.

Case 3 ∥µ∥/σ = O((p/n)1/4 +
√
log n) while p = ω(n). In this heavy overparameteized regime,

the model will benignly overfit both the noisy and clean data.

Our simulation aligns with the theoretical prediction as

(1) For small signal-to-noise ratio as 5, we observe that when p/n grows to 27, the linear model
starts to suffer an constant excess risk even for the noiseless data. For the noisy data, we need
a larger signal-to-noise ratio compared with the overparameterization. This corresponds
to Case 1 in our prediction and explain the constant excess risk in Figure 6(a) and the
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(a) Noiseless ∥µ∥/σ = 5
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(b) Noisy ∥µ∥/σ = 5
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(c) Early Stop ∥µ∥/σ = 5
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(d) Noiseless ∥µ∥/σ = 10
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(e) Noisy ∥µ∥/σ = 10
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(f) Early Stop ∥µ∥/σ = 10
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(g) Noiseless ∥µ∥/σ = 20
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(h) Noisy ∥µ∥/σ = 20
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(i) Early Stop ∥µ∥/σ = 20
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(j) Noiseless ∥µ∥/σ = 80
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(k) Noisy ∥µ∥/σ = 80
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(l) Early Stop ∥µ∥/σ = 80
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(m) Noiseless ∥µ∥/σ = 160
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(n) Noisy ∥µ∥/σ = 160
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(o) Early Stop ∥µ∥/σ = 160

Figure 6: Extended GMM Experiments. The figure is derived in the same way as Figure 2.

overfitting in the heavy overparameterized regime in Figure 6(b), Figure 6(c), Figure 6(e)
and Figure 6(f).

(2) We observe similar effect as in Figure 2 for ∥µ∥
σ spanning across {10, 20, 40, 80, 160} that

in the mild overparameterized regime, non-benign overfitting happens consistently, while
for the heavy overparameterized regime, benign overfitting takes place.

(3) We also notes that using technique as early stopping prevents overfitting and gives a classifier
with generalization guarantee for ∥µ∥

σ spanning across {10, 20, 40, 80, 160} as predicted.
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E DISCUSSION

E.1 COMPARISON BETWEEN REGRESSION AND CLASSIFICATION

Although Bartlett et al. (2020) shows similar findings in regression regimes, we emphasize that the
techniques can be pretty different. The difference between regression and classification problems can
be split into two folds:
(a) technical difference. Regression problem usually permits closed-form solution through matrix
pseudo-inverse while classification problem does not. Therefore, one needs to use other terms, e.g.,
margin, to study the generalization bound. Besides, the commonly-used operations in regression
settings, e.g., variance-bias decomposition do not apply in classification settings. Therefore, we need
some different techniques during the proof. For example, when proving Theorem 3.1.2 we need to
choose those samples with wrong labels, which is impossible in regression regimes.
(b) different label noise type. In regression problems, the label noise is usually subGaussian type.
However, the label noise is totally different in classification problems and therefore their results
cannot be extended to the classification settings. However, as the most commonly-used learning task,
the analysis of classification is important.

E.2 DETECTING BENIGN OVERFITTING IN PRACTICE

Benign overfitting refers to that large models can fit data well without giving poor generalization
performance (Bartlett et al., 2021), indicating the models operate outside the realm of uniform
convergence. There could be multiple mathematical instantiations of the statement. For example,
Bartlett et al. (2020) bound the generalization error of the last-epoch model with sample size and
model size to characterize benign overfitting, and prove that the validation accuracy approaches
Bayesian optimal as sample size increases. Our theoretical claims (Statements 1 and 3 of Theorem
3.1) follow the same criterion. We show that the validation error of a fully trained linear model
approaches the label error, and hence is Bayesian optimal.

However, the criterion generalization error converges to zero is hard to verify in experiments, as it is
hard to determine when the model size and sample complexity are large enough for the generalization
bound to be sufficiently small, given that the data set size is upper bounded. Hence we adopt two
mild assumptions to test whether benign overfitting happens empirically.

1. Training the model for long-enough epochs (at least three times that of the standard practice)
can work as an honest proxy for training for infinite epochs.

2. The gap of verification accuracy between the best-epoch model and the last-epoch model
can work as an efficient proxy for the gap between the Bayesian optimal accuracy and the
validation accuracy of the last-epoch model. This assumption is supported by our theoretical
predictions (Statements 2 and 3 of Theorem 3.1).

Hence we adopt the different notion of benign overfitting, as the reviewer mentioned, ’validation
performance does not drop while the model fits more training data points’. This notion is

1. coherent to the intuitive definition embed all of the noise of the labels into the parameter
estimate —without harming prediction accuracy;

2. easily experimentally verifiable;
3. closely related to theoretical predictions in our work and previous works, in the sense that

based on theoretical prediction, in the mild overparameterization regime (our work), the
drop will be significant regardless of model size, and in the heavy overparameterization
regime (previous works), the drop will diminish when the model size and sample complexity
increases.

Finally, we would like to stress that the similarity between the overparameterization through model
size and training a model longer is not required for our analysis.
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