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ABSTRACT

A primary challenge in developing large language models (LLMs) is their onerous
pre-training cost. This paper explores a promising paradigm to improve LLM
pre-training efficiency and quality by leveraging a small language model (SLM).
In particular, this paradigm relies on an SLM to both (1) provide soft labels as
additional supervision, and (2) select a small subset of valuable training examples.
Put together, this enables an effective transfer of the SLM’s predictive distribution
to the LLM, while prioritizing specific regions of the training data distribution.
Empirically, this leads to reduced LLM training time compared to standard train-
ing, while improving the overall quality. Theoretically, we develop a statistical
framework to study the utility of SLMs in enabling efficient training of high-quality
LLMs. Our framework characterizes how the SLM’s seemingly low-quality super-
vision can enhance the training of a much more capable LLM. Furthermore, it also
highlights the need for an adaptive utilization of such supervision, by striking a
balance between the bias and variance introduced by the SLM-provided soft labels.
We corroborate our theoretical framework by improving the pre-training of LLMs
with 2.8B and 8.6B parameters by utilizing smaller LMs on the Pile dataset.

1 INTRODUCTION

Owing to the surge in their ever-growing capabilities, large language models (LLMs) (OpenAI,
2023; Gemini-Team et al., 2025; Anthropic, 2024; DeepSeek-AI et al., 2024) have become the focal
point of machine learning research. Pre-training highly capable general-purpose LLMs is extremely
expensive due to large model sizes (Chowdhery et al., 2022) and massive training corpora (Meta,
2025). Thus, sustainable advancement and adoption of LLMs hinges on designing novel algorithms
that can reduce the overall pre-training compute cost and data requirement for LLM development.

This paper focuses on leveraging small language models (SLMs) for efficient LLM pre-training. A
growing literature (see, e.g., Gupta et al., 2024; Chen et al., 2023; Yue et al., 2024) shows that SLMs
can acquire a good understanding of pre-training data distribution despite their limited model capacity.
Particularly, SLMs can perform well on a large portion of “easy” instances, and help identify the
remaining “hard” instances, e.g., via confidence of their predictions. This prompts us to explore:
Can we speed up pre-training of a high-quality large LM by transferring the predictive distribution

from a lower-quality small LM?
Suitable SLMs are often readily available during LLM development, either as previous generation
models trained on similar pre-training corpora, or smaller models trained for initial exploration around
architectural and algorithmic choices on the current pre-training corpora. Furthermore, the potential
of SLMs to enhance LLM quality and efficiency, coupled with their relatively cheaper development
cost, justifies training such models even to aid LLM training solely, especially since their training
cost can be amortized by leveraging them to train multiple LLMs.

Knowledge distillation (KD; Bucilǎ et al., 2006; Hinton et al., 2015) is a natural candidate to achieve
our objective by utilizing the SLM as a teacher model to transfer its predictive distribution to a
student LLM during pre-training. However, it is unclear if KD can help realize our goal, as unlike a
typical KD setup – where a larger or stronger teacher trains a smaller or weaker student (Team et al.,
2025; Meta, 2025) – our proposal is to leverage a smaller and weaker teacher LM to improve the
training efficiency and quality of a larger and stronger student LM.

We begin by developing a statistical framework to study KD for language modeling. We derive
novel risk bounds that identify the desirable properties of the teacher LM-provided supervision for
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enhancing the student LM’s performance, even when employing a significantly weaker SLM as the
teacher. To our knowledge, ours are the first such bounds for language modeling. Notably, our bounds
subsume standard pre-training as a special case, and control LM generalization as one scales model
size and pre-training data. These bounds may be of independent interest to the broader community.

Small LM 

Large LM

Token-level 
KD loss with 
Small LM as 

teacher

Standard 
pre-training loss

Original 
pre-training 

corpora

Selected 
data

Small LMs selects 
challenging yet learnable 
training sequences for KD

1

2 One-hot distribution for 
ground truth next-token

Figure 1: An overview of SALT, which utilizes an SLM in
two ways to improve the pre-training of LLM: 1⃝ To perform
KD with SLM as teacher in the early phase of LLM pre-
training; and 2⃝ To obtain a valuable subset of pre-training
corpora to be utilized during the KD.

Our statistical analysis lays the foun-
dation for an adaptive pre-training
method that leverages SLM via KD
only in “easy” regions, where the
SLM can approximate the ground
truth next-token distribution well.
Combining this with the tendency of
neural network to learn easier exam-
ples first (Kalimeris et al., 2019; Re-
finetti et al., 2023), we propose small
model aided large model training
(SALT), a two-stage pre-training ap-
proach wherein the first phase em-
ploys KD from an SLM, and the sec-
ond phase reverts to standard (next-token prediction-based) pre-training. We then expand SALT
by employing an SLM to additionally perform data selection for the KD phase. Our selection
procedure focuses on identifying challenging yet learnable sequences from the easy region of the
data distribution to ensure an effective transfer of SLM’s predictive distribution during KD (see Fig. 1
for an overview). Our key contributions are:

(1) We present a statistical framework for KD in language modeling, which delineates how even a
significantly weaker teacher LM can improve the quality of a larger student LM (§3).
(2) Guided by our analysis, we propose SALT, a two-stage pre-training method that employs KD
with an SLM teacher in the first stage. We then extend SALT by using SLMs to perform data selection
for the KD, facilitating effective transfer of predictive distribution from SLM to LLM (§4).
(3) We showcase the utility of SALT (with and without data selection) by training 2.8B and 8.6B
LMs with the help of smaller LMs, on the Pile dataset (Gao et al., 2020). SALT-produced LLMs
outperform the same-sized LMs trained via standard pre-training on a comprehensive set of few-shot
benchmarks while utilizing less that 0.7× training step budget, resulting in ∼25% and ∼28% wall-
clock time reduction for 2.8B and 8.6B LMs, respectively. Moreover, SALT models demonstrate
significant downstream performance gains after SFT on multiple domains (§5).

2 BACKGROUND

Language modeling. Given a large corpus, language modeling aims to train a model that can assign
probabilities to each sequence x ∈ V⋆, where V denotes the vocabulary with V = |V| tokens. Given a
T -token long sequence x = [x1, x2, . . . , xT ], a language model (LM) parameterized by θ assigns the
probability Pθ(x) = Pθ(x1)Pθ(x2|x1) · · ·Pθ(xT |x1, . . . , xT−1) to x. Transformer (Vaswani et al.,
2017) is the most prominent architecture for modern LMs, which we briefly discuss in Appendix A.1.

Standard LM pre-training. Typically, LM pre-training utilizes the next-token prediction task:
given a training sequence x = [x1, . . . , xT ], for each t ∈ [T ], one maximizes the log-likelihood
logPθ(xt|x≤t−1). This amounts to minimizing the cross-entropy loss between the per-token LM
prediction distribution Pθ(·|x≤t−1) and the one-hot distribution1xt

(·) defined by the ground truth
next-token xt (for v ∈ V , 1x(v) = 1 iff v = x). Thus, the overall loss associated with x becomes

ℓ(x;θ) = 1/T ·
∑

t∈[T ]− logPθ(xt|x≤t−1) = 1/T ·
∑

t∈[T ] CE
(
1xt

(·), Pθ(·|x≤t−1)
)
, (1)

where CE(P1, P2) = −
∑

v∈V P1(v) logP2(v) is the cross-entropy between distributions P1 & P2.
Knowledge distillation for LMs. Going beyond the ground truth next-token based loss in (1), one
can utilize the per-token prediction distribution provided by another LM parameterized by ζ as
additional supervision. Formally, given the context x≤t−1, one can train the LM parameterized by θ
via aligning its prediction distribution Pθ(·|x≤t−1) with Pζ(·|x≤t−1). KL divergence is a common
choice to promote such an alignment, which amounts to minimizing the following cross-entropy loss:

ℓζ(x;θ) = 1/T ·
∑

t CE
(
Pζ(·|x≤t−1), Pθ(·|x≤t−1)

)
. (2)
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The objective in (2) corresponds to token-level KD (Kim & Rush, 2016), with ζ and θ serving as the
teacher and student LMs, respectively. Appendix A.2 discusses KD for LM variants. Temperature
scaling of teacher is a common strategy (Zheng & Yang, 2024) where, given a temperature ρ > 0,
one utilizes Pζρ(·|x≤t−1) = Pζ(·|x≤t−1)

ρ/
∑

v′∈V Pζ(v
′|x≤t−1)

ρ during KD, resulting in the loss:
ℓζ

ρ

(x;θ) = 1/T ·
∑

t CE
(
Pζρ(·|x≤t−1), Pθ(·|x≤t−1)

)
. (3)

In practice, one typically minimizes a weighted combination of both (1) and (3) with distillation loss
weight ω ∈ [0, 1], yielding the following loss for x (we omit the dependence on ζ and ρ for brevity):

ℓω(x; θ) ≜ (1− ω) · ℓ(x;θ) + ω · ℓζρ(x;θ). (4)

3 THEORETICAL ANALYSIS: WHEN CAN KD HELP LANGUAGE MODELING?
Our goal is to utilize KD with an SLM as the teacher to improve LLM pre-training. Towards this,
we develop a statistical framework to study KD for language modeling by building on Menon et al.
(2021); Dao et al. (2021a); Ren et al. (2022a). The resulting novel risk bounds show how even a
weaker teacher can aid student LLM by striking the right balance in terms of a bias-variance trade-off.

Notably, our analysis controls the student LM’s generalization gap in terms of both the number of
training sequences N , as well as the number of tokens NT . The latter is highly non-trivial due to
possibly arbitrary dependence within a training sequence, and crucially leverages certain natural
stability conditions on the underlying distribution and function class. Next, we setup necessary
notation and then present our risk bounds as functions of N and NT in §3.1 and §3.2, respectively.
§3.3 utilizes our bounds to justify the utility of SLMs for improving LLM model quality via KD.

Let D be the data distribution that generates N independent training sequences SN = {x(i)}i∈[N ] ⊂
VT , i.e., x(i) ∼ D. (Our analysis can be extended to varying length sequences at the cost of increased
notational complexity.) Given SN and CE surrogate loss (cf. (1)), we define the empirical surrogate
risk, i.e., standard training objective, and its population version for an LM parameterized by θ as:

RN (θ) = 1/N ·
∑

x∈SN
ℓ(x;θ); R(θ) = Ex

[
ℓ(x;θ)

]
. (5)

On the other hand, the empirical surrogate risk for KD, i.e., the KD training objective, and its
population version take the following form (note that we omit dependence on ζ, ρ):

Rω
N (θ) = 1/N ·

∑
x∈SN

ℓω(x;θ); Rω(θ) = Ex

[
ℓω(x;θ)

]
. (6)

3.1 EXCESS SURROGATE RISK BOUND FOR LM IN TERMS OF NUMBER OF SEQUENCES

Given a potentially infinite function class Θ for student LMs, let θ̂ and θ∗ be the minimizers of KD
training objective in (6) and the population risk in (5), respectively:

θ̂ := argminθ∈Θ Rω
N (θ); θ∗ = argminθ∈Θ R(θ). (7)

We want to compare the test performance (population risk) of θ̂ with that of θ∗ – the optimal LM in
Θ. To achieve this, our analysis relies on the following assumption.
Assumption 3.1. The per-token log-loss with at most T -token long sequences for the function class
Θ is bounded by a universal constant M , i.e., supθ∈Θ;x∈V≤T−1 maxv∈V | logPθ(v|x)| ≤M.

Bounded loss assumption is common in the literature which holds, e.g., by clipping the loss by a large
constant or by perturbing predictions with a small amount of noise (Lotfi et al., 2024a). We now state
an informal version of our excess risk bound, with a formal statement and proof in Appendix B.1.

Theorem 3.2 (Informal). Let θ̂ & θ∗ be as defined in (7) and δ ∈ (0, 1). Define fθ(x) :=
ℓω(x;θ), ∀x ∈ VT ,θ ∈ Θ. Then, under Assumption 3.1, with probability at least 1 − δ, we have

R(θ̂)−R(θ∗) ≤ c2M

N − 1
· log(M(N)/δ) +

4Mω

T

∑
t∈[T ]

E
[
DTV

(
Pζρ(·|x≤t−1),D(·|x≤t−1)

)]
+ c1/

√
N ·

(√
UN (f θ̂) log (2M(N)/δ) +

√
UN (fθ∗) log (4/δ)

)
,

where c1 & c2 are universal constants; UN (fθ) = 1
N(N−1)

∑
1≤i<j≤N

(
fθ(x(i))− fθ(x(j))

)2
is

sample variance; DTV is TV distance; andM(N) depends on the growth function of
{
fθ : θ ∈ Θ

}
.

3.2 EXCESS SURROGATE RISK BOUND FOR LM IN TERMS OF NUMBER OF TOKENS

For an LM θ ∈ Θ and a training sequence x = [x1, x2, . . . , xT ] ∈ VT , define

ξt(x;θ) = Ez∼D [ℓω(z;θ)|z≤t−1 = x≤t−1]− Ez∼D [ℓω(z;θ)|z≤t = x≤t] , t ∈ [T ]. (8)
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Note that ξt(x;θ) does not depend on x>t. For t ∈ [T ], ξt(x;θ) measures the expected KD loss
deviation for the student when we condition on the context up to (t−1)-th vs. t-th token, respectively,
and sample the remaining tokens from D. In general, the deviation can be large as changing a single
token in the context can significantly alter LM’s distribution. However, a well-behaved LM should be
robust to such perturbations. Motivated by this, we introduce the following assumption.

Assumption 3.3. Given the data distribution D and a finite function class Θ, ∃ {Ct}t∈[T ] and
{Vt}t∈[T ] such that the following holds for any x ∈ Support(D), θ ∈ Θ, and t ∈ [T ]:

|ξt(x;θ)| ≤ Ct ≤ C; E
[
ξ2t (x;θ)|x≤t−1

]
≤ Vt. (9)
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Figure 2: Histograms of ξ̂t, t ∈ {1, 5, 10, 100, 300, 640},
for a 2.8B LM. In the bottom histograms, we reduce the x-
axis range for better granularity. See Appendix C for details.

We empirically validate that Assump-
tion 3.3 is reasonable: Fig. 2 shows the
distribution of ξ̂t(x;θ) – a plugin estima-
tor of ξt(x;θ) – for θ denoting the BASE-
LINE 2.8B LM in §5. Note that ξ̂t(x;θ)
concentrates around 0 as t increases. Thus,
the upper bounds Ct and Vt in (9) should
also decrease with t, which, as discussed
in Remark 3.5, would lead to favorable
risk bounds for LM via our analysis. Ap-
pendix C provides the procedure for esti-
mating ξt(x;θ). We now state an excess
risk bound for a student LM under Assump-
tion 3.3; see Appendix B.2 for the proof.

Theorem 3.4. Let Θ be a finite function class. Under Assumptions 3.1 and 3.3, with probability at
least 1− δ, the following holds for the student LM θ̂ ∈ Θ obtained via KD:

R(θ̂)−R(θ∗) ≤ 2C

3N
·
(
log

(
2|Θ|
δ

)
+ log

(
2

δ

))
+

4Mω

T
·
∑
t

E
[
DTV

(
Pζρ(·|x≤t−1),D(·|x≤t−1)

)]
+

√
2
∑

t
Vt/N ·

(√
log (2|Θ|/δ) +

√
log (2/δ)

)
Remark 3.5 (Dependence of C, {Vt} on T ). Thm. 3.4 captures a fine-grained dependence on C and
{Vt} from Assumption 3.3. For a robust LM, when C is O(1/T ) and {Vt} are O(1/T 2) (note the
scaling of ℓω by T ), we get the tightest bound decaying with NT . For a non-robust LM, in the worst
case, C and {Vt} can be as large as O(1). The bound is not tight anymore and we fall back to the
bound in Thm. 3.2 that only decays with N instead of NT .
Remark 3.6. Replacing Assumption 3.3 with a subgaussian assumption leads to an alternative bound
that depends on the mean of variance proxies instead of the maximal quantities C, Vt (Appendix B.3).

Recently, Lotfi et al. (2024b) obtained generalization bounds for LMs trained without KD in terms
NT . However, specializing Thm. 3.4 to standard pre-training by setting ω to 0 provides a bound that
significantly differs from theirs both in terms of proof technique as well as its implications. Crucially,
results in Lotfi et al. (2024b) only hold for the contexts seen during training whereas our bound holds
for novel contexts generated from the data distribution during the test time. In a concurrent work,
Zekri et al. (2024) provide generalization bounds for LMs by connecting auto-regressive models to
finite state Markov chains. Notably, Zekri et al. (2024) do not explore KD for language modeling.

3.3 KD OUT-PERFORMING STANDARD PRE-TRAINING: A BIAS-VARIANCE TRADE-OFF

Empowered by our novel risk bounds, we now provide justification for why KD can outperform
standard pre-training. Specifically, we base our analysis on Thm. 3.4, but similar conclusions
also follow from Thm. 3.2. As per Thm. 3.4, three key quantities control the generalization of
the student: (1)

∑
t Vt which relates to loss variance; (2) C which relates to extreme loss values;

and (3) divergence between the teacher-provided distribution and the ground truth distribution:
DIV(ζ, ω) = ω ·

∑
t E [DTV (Pζ,ρ(·|x≤t−1),D(·|x≤t−1))] . Under Assumption 3.1, only

∑
t Vt and

DIV(ζ, ω) are crucial in distinguishing KD and standard pre-training.

Since DIV(ζ, 0) = 0, one may surmise that standard pre-training (i.e., ω = 0) leads to a tighter
bound. But as we detail in Appendix D due to the page limit, the variance term becomes smaller as
we increase ω. Thus, with a careful selection of ω, the variance reduction via KD can offset the bias

4
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Algorithm 1 Small model aided large model training (SALT)

Input: Training data SN = {x(i)}i∈[N ] ⊂ VT , gradient-based optimization algorithm A, SLM
parameterized by ζ, distillation loss weight ω ∈ [0, 1], teacher temperature ρ > 0, batch size B,
training step budget n, learning rate schedule {ηj}j∈[n], and nKD ≤ n.

Output: Pre-trained LLM parameterized by θ̂ ∈ Θ.
1: Initialize θ0 ∈ Θ.
2: for j = 1, 2, . . . , nKD do // First stage of LLM pre-training via KD
3: Construct a new batch of B training sequences Bj = {x(i)}i∈[B] ⊂ SN .
4: Update θj+1 with step size ηj via one step of A on LKD(Bj) =

1
B

∑
x∈Bj

ℓω(x;θj).
5: end for
6: for j = nKD + 1, nKD + 2, . . . , n do // Second stage: standard pre-training
7: Construct a new batch of B training sequences Bj = {x(i)}i∈[B] ⊂ SN .
8: Update θj+1 with step size ηj via one step of A on LStd(Bj) =

1
B

∑
x∈Bj

ℓ(x;θj).
9: end for

10: θ̂ ← θn

DIV(ζ, ω). In particular, if the teacher closely approximates the ground truth distribution so that the
bias DIV(ζ, ω) is small even for large ω, then the variance reduction via KD becomes prominent,
resulting in significantly smaller excess risk compared to standard pre-training.

Performance gain from an SLM as teacher. While small teacher LMs – the main interest of this
work – also lead to variance reduction, they are typically not powerful enough to model the true
distribution over the entire data domain very well. Thus, any effect of variance reduction via KD
with such a teacher would be washed away by a large bias DIV(ζ, ω). This highlights the need
for an adaptive form of KD from SLMs. Even SLMs with their limited capacity can approximate
the true distribution well on certain regions of the data domain, which we call the “easy” regions.
Thus, one can employ KD from SLMs on the easy regions to benefit from the variance reduction
without incurring large bias and guarantee improved student LLM performance on these regions. For
the remaining (“hard”) regions, where the bias is large enough to overshadow the contributions of
variance reduction, one should not perform KD from SLMs and utilize the standard pre-training loss.

4 SALT: SMALL MODEL AIDED LARGE MODEL TRAINING

We now operationalize the key takeaway from §3 by proposing SALT – a simple yet effective two-
stage pre-training method. SALT relies on the inherent tendency of a model to first focus on easier
supervision before fitting more complex supervision during training (Kalimeris et al., 2019; Refinetti
et al., 2023) to perform selective KD from a teacher SLM.

Two-stage LLM pre-training via SALT. Inspired by our analysis, we propose a two-stage pre-
training method for LLMs in Alg. 1. The algorithm employs KD with SLM as a teacher in the
first stage comprising nKD training steps, and transitions to standard pre-training without KD in the
second stage. We are interested in the selective transfer of predictive distribution from teacher SLM
to student LLM in those regions where SLM performs well by capturing true distribution. By design,
KD aims to align predictive distributions of the teacher and student. On the regions where SLM
performs well, we expect it to exhibit reasonably confident predictive distribution that should align
with ground truth next-token (Gupta et al., 2024), thereby constituting an easier supervision signal for
the LLM. In contrast, on hard instances where SLM’s predictive distribution is not confident enough
or does not align well with the ground truth next-token, learning will be delayed to the later phase of
the training (Kalimeris et al., 2019; Refinetti et al., 2023). Thus, SALT relies on the tendency of
neural networks to focus on easier instances early during the training to perform desirable knowledge
transfer from SLM in the first stage. Once the student LLM is sufficiently aligned with teacher SLM
on easier regions, it starts utilizing its model capacity to further align with SLM on more complex
regions where high divergence between SLM and ground truth distribution can become detrimental
to the LLM’s performance. Switching to standard pre-training in the second stage prevents this
undesirable over-alignment. We empirically verify the above intuition behind SALT in §5.4.

SALTDS: SALT with data selection. We now endow SALT (cf. Alg. 1) with explicit selection
of examples where we want to transfer teacher SLM’s predictive distribution on, with SLM itself
enabling the selection. In particular, we want to select the most informative (or challenging) examples

5
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among the ones that SLM performs well on. Towards this, given the SLM ζ and a positive integer k,
we assign a score Sζ,k(x) to training sequence x, with a higher score indicating a higher likelihood
to be selected for training. More specifically, we compute the per-token cross-entropy losses of SLM
on x and aggregate them into a sequence-level score. This encourages selecting more challenging
examples. However, in the spirit of selecting examples that are still learnable, we remove all losses
where the ground-truth token is not in top-k outputs of the SLM before aggregating:

Sζ,k(x) = median
({
− 1{xt ∈ argtopk(Pζ(·|x<t))} · logPζ(xt|x<t) : t ∈ [T ]

})
, (10)

where argtopk(Pζ(·|x<i)) denotes the top-k scoring tokens at position i as per SLM. Given a scored
pool of sequences, we select the top-m scoring sequences so that m suffices to complete the first
stage of Alg. 1. The reader may note that if the SLM has been trained with the same dataset that it
is scoring, then the computed sequence score may be biased. To circumvent that, we use an “early
checkpoint” of the SLM after n0 steps, i.e., ζn0

, which has trained on a small number of examples
from the overall training set with n0B ≪ N . We then sample from the remainder of the training
examples using score Sζn0

,k(·). Although ζn0 may have lower quality, it is only the relative ordering
of examples that is important when computing a score, rather than the absolute score.

5 EXPERIMENTS
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Figure 3: Next-token prediction accu-
racy on the Pile training set for 2.8B LMs
trained with the help of a 1.5B SLM.

We now showcase the potential of SALT for improving
LLM pre-training, by realizing both better quality and im-
proved training efficiency. In our study, we compare with a
natural baseline (denoted BASELINE) where one pre-trains
an LLM in a standalone manner with a self-supervised
objective over a pre-training set. We also compare SALT
with RKD (standing for reverse KD) where we perform
KD with teacher SLM throughout pre-training.

The key takeaways from our study are: (1) SALT &
SALTDS attain BASELINE performance with less than
70% of training steps, and significantly outperform BASE-
LINE with the same number of training steps (§ 5.2). Ad-
ditionally, SALT leverages an improved teacher SLM to
further enhance LLM performance (Appendix K). (2) SALT & SALTDS pre-trained LMs outperform
BASELINE after SFT (§ 5.3). (3) SALT is robust to key design choices. Step transition from KD to
standard training in Alg. 1 is a good design choice as it outperforms other natural alternatives. More-
over, SALT continues to outperform BASELINE for a wide range of values for nKD (Appendix K).

5.1 EXPERIMENTAL SETUP

Model architectures, pre-training data, and hyperparameters. We pre-train decoder-only
Transformer-based LMs with 2.8B and 8.6B parameters. For the small teacher model (SLM), we
primarily utilize 1.5B and 2.8B parameter LMs. We pre-train all LMs on the Pile dataset (Gao et al.,
2020) for 545 billion tokens via UL2 objective (Tay et al., 2023) with a mixture of causal LM, prefix
LM, and span corruption tasks. For SALTDS, we score examples with SLM trained for n0 = 26K
steps and set k = 10 in (10). Based on our hyperparameter search at small scale (see Appendix G),
we set the distillation weight ω = 0.667 and teacher temperature ρ = 0.25 in all of our experiments.
As for the remaining hyperparameters such as peak LR and LR schedule, we do not optimize those
for our proposed method and use the same values for all of our experiments involving different model
sizes. This along with the consistent quality & efficiency improvements realized via SALT in § 5.2
shows the robustness of SALT to various hyperparameter choices. See Appendix E for further details.

Few-shot evaluation tasks. As per the literature (see, e.g., Anil et al., 2023; Touvron et al., 2023),
we perform few-shot evaluation of pre-trained LMs on a wide range of benchmarks, which can be
categorized into: (1) world knowledge, (2) reading comprehension, (3) commonsense reasoning, (4)
natural language generation (NLG), and (5) SuperGLUE. We also consider LAMBADA (Paperno
et al., 2016) and MBPP (Austin et al., 2021) which are Cloze and code generation tasks, respectively.
See Appendix F for the full list of benchmarks and the corresponding evaluation metrics. We focus
on English benchmarks as the Pile data is mostly English.

Fine-tuning tasks. We focus on (arithmetic) reasoning, summarization, and NLI tasks during SFT,
covering GSM8K (Nie et al., 2020), XSum (Narayan et al., 2018), CNN/DailyMail (Nallapati et al.,
2016), and ANLI-R1/R2/R3 (Nie et al., 2020) benchmarks.
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5.2 RESULTS: SALT IMPROVES BOTH QUALITY AND EFFICIENCY

Table 1: Accuracy and log-perplexity on a held-
out set of Pile while training 2.8B LM by using a
1.5B SLM. We evaluate 2.8B LMs at an early and
the final step. At the final step, SALT & SALTDS
outperform BASELINE in terms of both next-
token prediction accuracy and log-perplexity.

Model Evaluation
stage (steps) Accuracy (↑) Log (↓)

perplexity

SLM Final
(208K) 57.70 1.951

BASELINE
Early
(36K)

56.68 2.011
RKD 57.21 2.160
SALT 57.21 2.160
SALTDS 56.47 2.188

BASELINE
Final

(208K)

58.99 1.868
RKD 58.46 2.071
SALT 59.10 1.863
SALTDS 59.17 1.857

As reflected in the next-token prediction accuracy
in Fig. 3, KD from the seemingly weaker 1.5B
SLM does improve 2.8B larger LM training in the
beginning compared to BASELINE (cf. Fig. 8 in
Appendix L for the log-perplexity plot). However,
continuing KD from the weaker teacher eventu-
ally become detrimental. As evident in Fig. 3 and
Tab. 1, RKD significantly underperforms BASE-
LINE on both training and validation set. In con-
trast, SALT leverages KD from SLM only during
first nKD training steps (cf. Alg. 1).

Quality improvements via SALT. Unlike RKD,
SALT (with nKD=36K steps) yields a pre-trained
LLM that improves upon BASELINE on both
training set (Fig. 3) and held-out validation set
(Tab. 1). Tab. 2 presents domain-wise few-shot
performance of BASELINE, RKD, SALT, and
SALTDS (see Tab. 12 in Appendix H for per-task

performance). Both SALT & SALTDS consistently outperform BASELINE (and RKD) @100% train-
ing steps, i.e., 208K steps. Besides improving overall average, SALT and SALTDS outperform
BASELINE in 5 out of 7 domains and 6 out of 7 domains, respectively. Similar gains are evident for
training an 8.6B LM with the aid of a 2.8B SLM from Tab. 13 & 14 in Appendix I. This establishes
the utility of SALT approaches in successfully leveraging SLMs to boost the quality of LLMs.
Remark 5.1. One can assess the significance of the performance improvements via SALT by contextu-
alizing the improvements relative to the gains from model scaling. From Tab. 2, @100% steps, SALT
has a gain of 47.94 − 47.32 = 0.62 in terms of overall average over BASELINE, which is ∼13% of
the gain from nearly doubling the model size, from 42.56 for 1.5B to 47.32 for 2.8B. Similarly, from
Tab. 13 in Appendix I, SALT realizes a gain of 52.96 − 51.73 = 1.23, which is ∼28% of the gain of
51.73 − 47.32 = 4.41 realized by increasing model size ∼3x from 2.8B to 8.6B.

Table 2: Domain-wise few-shot performance of 2.8B pre-trained LMs. Using a 1.5B SLM as a
teacher in the KD phase, SALT and SALTDS already outperform BASELINE in terms of average
few-shot performance at 70% of the training step budget, thereby improving both training efficiency
and model quality. RKD (i.e., naïvely distilling from the 1.5B SLM throughout pre-training) performs
much worse than BASELINE. The (second-)best results for each domain are (underlined) boldfaced.

Domain (# Tasks) SLM BASELINE RKD SALT SALTDS

@100% @100% @70% @100% @70% @100%
steps steps steps steps steps steps

World Knowledge (4) 15.90 22.19 18.69 21.59 22.70 20.64 21.72
Reading Comprehension (4) 46.30 53.00 51.00 53.55 54.55 54.35 54.93
Commonsense Reasoning (7) 57.76 61.99 58.30 61.27 61.67 62.00 62.10
LAMBADA (1) 26.90 36.20 31.10 50.70 48.30 48.00 53.00
SuperGLUE (8) 61.59 65.53 62.91 66.30 65.28 65.99 65.58
NLG (3) 3.13 4.60 3.40 4.63 4.73 4.80 4.83
MBPP (1) 9.60 16.20 11.40 15.60 17.00 16.60 17.80
Average (28) 42.56 47.32 44.39 47.86 47.94 47.89 48.26

Training efficiency via SALT. As per Tab. 2, SALT surpasses BASELINE at 146K steps on average
performance, suggesting a savings of 30% training steps. While nKD = 36K of those 146K steps
involve KD (which is computationally costlier than standard training), as shown in Appendix J, we
still realize efficiency gains via SALT as our teacher is an SLM. With our implementation based on
rematerialization (Chen et al., 2016), SALT realizes a wall clock saving of ∼ 25% for training a 2.8B
LM, and ∼ 28% for training an 8.6B LM with the aid of a 2.8B LM (see Appendix J). In summary,
SALT results in improved training efficiency while still outperforming the (overtrained) BASELINE.
Remark 5.2 (Training cost of SLM). As discussed in the introduction, suitable SLMs for SALT are
often available without incurring additional training cost. Even if one has to train an SLM specifically
for SALT, its training cost can be amortized across multiple LLM training runs as the same SLM can
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Table 4: Supervised fine-tuning (SFT) results for 2.8B LMs. Performance of pre-trained LMs on
downstream tasks after SFT. For each benchmark, pre-trained 2.8B models are fine-tuned on the
corresponding train split and evaluated on the validation split (test split in case of GSM8K). Acc, Rg1,
Rg2, and RgL represent the Accuracy, Rouge-1, Rouge-2, and Rouge-Lsum metrics, respectively.

GSM8K XSum CNN/DailyMail ANLI-R1 ANLI-R2 ANLI-R3
Acc Rg1 Rg2 RgL Rg1 Rg2 RgL Acc Acc Acc

BASELINE 31.84 43.39 21.09 35.91 42.84 20.43 40.38 63.70 56.90 57.83

SALT 34.87 43.45 21.21 36.04 43.19 20.65 40.74 67.00 57.80 59.67
SALTDS 35.25 43.77 21.44 36.24 43.41 20.87 40.95 67.30 57.70 59.58

be used to train multiple larger LMs, potentially of varying sizes; e.g., we used the same 1.5B LM to
train 2.8B LM (cf. Tab. 2) and 8.6B LM (cf. Tab. 16 in Appendix I.3).

Table 3: Average few-shot performance
for 8.6B student LM trained via SALT
with teacher models of different sizes.

Method
Teacher size

(student-teacher
size ratio)

@70%
steps

@100%
steps

BASELINE – 51.21 51.73

SALT
0.5B (17.2) 50.68 51.62
1.5B (5.5) 51.82 52.80
2.8B (3.0) 52.24 52.96

Ablation on student-teacher size ratios. We now ex-
plore the effectiveness of SALT as the gap between the
sizes of the teacher and student increases. Table 3 shows
the average few-shot performance for 8.6B student LM
trained via SALT with 0.5B, 1.5B, and 2.8B teacher LMs
(see Appendix I for full results). As expected, the per-
formance of SALT improves as the gap between student
and teacher sizes decreases. SALT leads to both quality
and efficiency gains with 3× and 5.5× smaller teacher.
At the extreme end, with ∼17× smaller 0.5B teacher, the
average score does not improve with SALT, but notably,
the performance improves on 4 out of 7 domains (cf. Tab. 18, Appendix I). This hints at the utility of
multiple small teachers – each an expert in its own domain.

5.3 IMPROVED POST SFT PERFORMANCE REALIZED VIA SALT
Tab. 2 and Tab. 13 (in Appendix I) already show the utility of SALT in out-performing BASELINE.
However, all the pre-trained LMs (including BASELINE) exhibit relatively poor few-shot performance
on certain benchmarks, e.g., NLG or summarization tasks (Tab. 2), MATH (Hendrycks et al., 2021),
and ANLI (Nie et al., 2020). To establish the value of SALT for these domains, we employ SFT on
downstream tasks covering arithmetic reasoning, NLG, and NLI domains.

For each task, we perform SFT on the pre-trained LMs obtained via BASELINE, SALT, and
SALTDS. During SFT, we train for 10K steps by using Adafactor (Shazeer & Stern, 2018) and
cosine learning rate schedule (Loshchilov & Hutter, 2017) with a peak learning rate of 10−4 and
linear warm-up for 200 steps. These hyperparameters were optimized for BASELINE, without further
tuning for SALT and SALTDS. Finally, we employ greedy decoding during the evaluation of the
fine-tuned LMs. Post-SFT results for 2.8B LMs in Tab. 4 show that SALT consistently outperforms
BASELINE on all benchmarks, and is often the best-performing method. (See Tab. 15 in Appendix I
for 8.6B results.) Thus, SALT (with or without data selection) enables significant improvements for
several difficult downstream domains.

5.4 SLM ENABLES FAST LEARNING ON EASY EXAMPLES

Table 5: Per-bucket few-shot evaluation on
XLSum-EN (Rouge-2). Gray , green , and
red mark results on-par, better than, and

worse than BASELINE, respectively.
Evaluation stage Easy Medium Hard

SLM Final (208K) 8.04 0.43 0.00

BASELINE Early
(36K steps)

6.15 1.61 0.71
BASELINEEZ 6.43 1.54 0.69
RKD 6.76 1.40 0.58
SALT 6.76 1.40 0.58

BASELINE Final
(208K steps)

8.80 2.52 0.97
BASELINEEZ 9.37 2.51 0.91
RKD 7.87 1.68 0.74
SALT 9.68 2.67 0.99

Recall that SALT aims to improve quality and effi-
ciency of LLM pre-training by quickly transferring
the predictive distribution of an SLM to the LLM via
KD, focusing on the “easy” regions of the data distri-
bution where the SLM performs well. Subsequently,
SALT falls back on ground truth next-token-based
supervision to refine LLM’s performance on the
‘hard’ regions where the SLM fares poorly. Here,
we empirically demonstrate that this key intuition
behind SALT is indeed borne out in practice. Fur-
thermore, to highlight the importance of leveraging
teacher-provided supervision on the “easy” regions,
we consider another baseline, namely BASELINEEZ,
that explicitly trains on only the “easy” regions of
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the training data during the first stage (i.e., first nKD steps) without performing distillation (see
Appendix M for a formal description of BASELINEEZ).

Focusing on various few-shot benchmarks, we partition instances in each benchmark into “easy”,
“medium”, and “hard” buckets based on the teacher SLM’s performance (see Appendix M for details).
We then evaluate BASELINE, BASELINEEZ, SALT, and RKD pre-trained LMs on these buckets after
nKD = 36K training steps when the KD phase of SALT ends as well as at the end of the pre-training,
i.e., after 208K steps. Tab. 5 presents these results on XLSum-EN (see Appendix M for results on
other benchmarks), which validate: (1) KD from SLM quickly enables LLM to perform well on
“easy” instances; and (2) standard pre-training after KD phase ending at nKD-th step helps LLM
performance on ‘hard’ instances the most. In contrast, BASELINEEZ does not exhibit the same trend,
and focusing only on the easy instances during the first stage without KD seems to hurt the final
performance on non-easy slices. In fact, Tab. 27 in Appendix M shows that BASELINEEZ is even
worse than BASELINE in terms of general few-shot performance.

6 RELATED WORK

Aiding large model training with small models. Small models often help inform hyper-parameter
selection for large model training (Yang et al., 2021). Progressive or stage-wise training (Gong et al.,
2019; Reddi et al., 2023; Yao et al., 2023; Li et al., 2023; Du et al., 2024; Agarwal et al., 2024a)
develops a large model in stages, with model parameters at a stage getting initialized based on the
parameters of a smaller model from the previous stage. Chen et al. (2022); Trockman & Kolter
(2023); Wang et al. (2023b;a); Samragh et al. (2024) initialize large model based on a smaller model
without employing progressive training. Most such works crucially rely on architectural overlaps
between the small and large models. That said, such approaches are complementary to SALT, and
can be explored together to boost LLM performance, e.g., by progressively growing an LLM during
pre-training while utilizing an SLM as a teacher during the early stages of the progressive growth.
Closer to our work, Yuan et al. (2020); Xie et al. (2020) consider KD from a weaker model, albeit for
image classification. In the work that is closest to our proposal, Qin et al. (2022) distill an LM from a
smaller LM during the early phase of pre-training. We show the utility of such an approach with larger
models, larger datasets, and a wider range of evaluation benchmarks. We also provide a statistical
framework to rigorously justify the value of a weaker teacher during pre-training. Other recent efforts
on using SLMs to boost LLMs mainly consider fine-tuning (Yang et al., 2024; Mitchell et al., 2024)
or alignment (Burns et al., 2023), while we focus on compute and data intensive pre-training.

Data Selection. Ankner et al. (2024) perform sequence selection by aggregating per-token log-
perplexities of a reference model by taking the mean, whereas we take the median and crucially
exclude noisy (unlearnable) tokens from the aggregation. Mindermann et al. (2022) select sequences
and Lin et al. (2024) select tokens based on excess training loss over a reference model. Unlike our
offline data selection approach, these works select data from training batches on the fly. While Gu
et al. (2025) also perform offline data selection, unlike our work, they rely on two models for data
selection – a smaller reference model and a larger teacher model. SALTDS can further benefit from
diversity encouraging methods (see, e.g., Abbas et al., 2023; Tirumala et al., 2024). Please refer to
Albalak et al. (2024) for a comprehensive survey of data selection techniques for LMs.

Due to page limit, we defer the discussion of literature on theoretical results for KD to Appendix A.
Existing works do not provide a statistical treatment of KD in a sequence learning setting such as
language modeling. We provide the first generalization bounds for KD in such a setting.

7 CONCLUSION

We explored the utility of SLMs for improving the LLM pre-training. Towards this, we introduced a
statistical framework for KD in language modeling, which guided the design of SALT to selectively
transfer predictive distribution from an SLM to LLM. We further enhanced SALT by performing
data selection via SLMs to effectively transfer knowledge from SLMs to LLMs. SALT significantly
reduces the pre-training time for LLMs while ensuring good overall quality as measured by the
LLM’s few-shot performance as well as downstream performance after fine-tuning.

An interesting direction for future work is efficiently improving LLMs by leveraging multiple SLMs,
each an expert in its own domain. Building on our positive results with SALTDS, exploring and
extending data selection approaches tailored to SALTDS is also a promising avenue to enhance LLM
quality. Another fruitful direction is to study SALT in conjunction with progressive training to
leverage their complementary nature for LLM pre-training.
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REPRODUCIBILITY STATEMENT

Our submission provides the details required to reproduce our pre-training results, including model
architectures, pre-training data, hyperparameters, and training setup in § 5.1 and Appendix E.
Appendix F describes the few-shot evaluation benchmarks considered in our submission along with
the corresponding evaluation metrics. § 5.3 discusses the hyperparameters for the SFT experiments.
As for our theoretical results, § 3 clearly states various assumptions and Appendix B provides detailed
proofs of the claims. Appendix C details our methodology to verify the feasibility of Assumption 3.3.
Appendix M provides details to reproduce the per-bucket analysis in § 5.4.
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Appendix

A LANGUAGE MODELING AND KNOWLEDGE DISTILLATION

A.1 LANGUAGE MODELING VIA TRANSFORMER-BASED MODELS

Here, we briefly discuss how Transformers are typically employed for language modeling in modern
systems. Given a context x≤t = [x1, . . . , xt] ∈ Vt, a Transformer-based LM first produces a
sequence of d-dimensional token embeddings E(x≤t) = [e⊤x1

, e⊤x2
, . . . , e⊤xt

] ∈ Rd×t, where ev ∈ Rd

denotes the token embedding for v ∈ V . A Transformer network fψ then processes E(x≤t) to
produce a target embedding fψ

(
E(x≤t)

)
∈ Rd, which is multiplied by W ∈ RV×d, namely

a classification layer, to obtain a logit vector ux≤t
= (ux≤t

(v))v∈V := Wfψ
(
E(x≤t)

)
∈ RV .

Accordingly, we have θ = {E,ψ,W} as the parameters of the LM. Applying softmax operation
on the logit vector produces the probability that the LM assigns to each token in V as the possible
continuation (also known as next token) to the context x≤t:

Pθ(v|x≤t) =
exp(ux≤t

(v)/τ)∑
v′∈V exp(ux≤t

(v′)/τ)
, ∀v ∈ V. (11)

Here, τ denotes the (inverse) temperature associated with the softmax operation. Unless stated
otherwise, we assume that τ = 1.

A.2 OTHER COMMON VARIANTS OF KNOWLEDGE DISTILLATION FOR LM

Top-k token-level KD. Instead of aligning the teacher and student’s full per-token predictive distribu-
tions, one could only match these distribution on T ⊂ V , e.g., k ≪ V elements of V that receive the
highest scores from the teacher:

ℓζ(x;θ) = −
T∑

t=1

(∑
v∈T

P T
ζ (v|x≤t−1) · logP T

θ (v|x≤t−1)
))

, (12)

where P T denotes the restriction of P (defined over V) to T :

P T (v) =

{
P (v)∑

v′∈T P (v′) if v ∈ T ,
0 otherwise.

(13)

Sequence-level KD. Unlike token-level KD, sequence-level KD aims to align teacher and student’s
distributions on all sequences up to sequence length T . In particular, the sequence-level KD loss
takes the form:

ℓζ(x;θ) = −
∑

x̃∈V≤n

Pζ(x̃) · logPθ(x̃) (14)

In practice, it’s natural to focus on a subset of all candidate target sequences U ⊂ V≤T :

ℓζ(x;θ) = −
∑
x̃∈U

Pζ(x̃) · logPθ(x̃)

A common choice for U is the set of say k most likely sequences under the teacher’s distribution Pζ .

A.3 RECENT LITERATURE ON KNOWLEDGE DISTILLATION (KD) FOR LANGUAGE MODELING

A large body of literature focuses on utilizing KD (Bucilǎ et al., 2006; Hinton et al., 2015) as a core
technique to improve LMs (Kim & Rush, 2016; Gou et al., 2021; Xu et al., 2024). For instance, Sanh
et al. (2019); Turc et al. (2019); Wang et al. (2020); Sun et al. (2019); Jiao et al. (2019) relied on KD
to compress BERT-style LMs during pre-training, fine-tuning, or both. More recently, KD has been
primarily employed in the instruction-tuning or fine-tuning phase where a general purpose LM is
adapted to a specific collection of tasks (Xu et al., 2024). Black-box KD methods for LM only assume
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access to training sequences sampled from a teacher LM (Taori et al., 2023; Fu et al., 2023; Peng
et al., 2023). With access to token-level distributions from teacher LM, token-level distillation from
teacher LM to student LM is possible (Kim & Rush, 2016). In contrast, sequence-level distillation
involves sampling training sequences from the teacher LM, the student LM, or both before aligning
teacher and student’s predictive distribution on such sequences (Kim & Rush, 2016; Agarwal et al.,
2024b; Gu et al., 2024; Wen et al., 2023).

A.4 PRIOR WORK ON THEORETICAL UNDERSTANDING OF KD

Multiple works focus on explaining the widespread success of KD. Phuong & Lampert (2019) connect
the effectiveness of KD to data geometry and optimization bias. Menon et al. (2021); Ren et al. (2022b)
show that KD leads to reduced variance of training objective. Dao et al. (2021b) study KD from
the lens of semiparameteric inference. Mobahi et al. (2020) show that KD enhances regularization.
Allen-Zhu & Li (2023) explain the utility of KD via better feature learning. Harutyunyan et al. (2023)
attribute the success of KD to the reduced supervision complexity. More recently, Safaryan et al.
(2023) argue that KD can act as a form of partial variance reduction to improve convergence. Notably,
existing literature does not provide a statistical treatment of KD in a sequence learning setting such as
language modeling, and we provide the first generalization bounds for KD in such a setting. Similar
to our work, Xu et al. (2020); Nagarajan et al. (2023) also explore the utility of KD only during an
early-phase of student training, albeit not in a language modeling setting.

B PROOFS DEFERRED FROM §3

B.1 PROOF OF THEOREM 3.2

Before stating the formal version of Theorem 3.2 and its proof, let us recall the necessary notation.
Given a function class for student LMs Θ, θ̂ denotes the LM obtained by minimizing the training
objective for KD in (6), i.e.,

θ̂ := argmin
θ∈Θ

Rω
N (θ). (15)

Further, θ∗ represents the optimal or best performing LM in Θ, i.e.,

θ∗ = argmin
θ∈Θ

R(θ). (16)

Finally, recall our assumption regarding the bounded loss values.

Assumption B.1. Given a function class Θ for (student) LM, the per-token log-loss with at most
T -token long sequences for the underlying function class Θ is bounded by a universal constant M ,
i.e.,

sup
θ∈Θ;x∈V≤T−1

max
v∈V
| logPθ(v|x)| ≤M. (17)

Towards establishing Theorem 3.2, we first state the following intermediate result.

Proposition B.2. Let θ̂ and θ∗ be as defined in (15) and (16), respectively. Then, under Assump-
tion B.1, the excess surrogate risk for θ̂ satisfies the following.

R(θ̂)−R(θ∗) ≤ 4Mω

T
·

T∑
t=1

Ex≤t−1∼DDTV

(
Pζρ(·|x≤t−1),D(·|x≤t−1)

)
+
(
Rω(θ̂)−Rω

N (θ̂)
)

+ (Rω
N (θ∗)−Rω(θ∗)) , (18)

where DTV(·, ·) denotes the total-variation distance between two probability distributions.
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Proof of Proposition B.2. For convenience, recall that

Rω(θ) = Ex

[
(1− ω) · ℓ(x;θ) + ω · ℓζ

ρ

(x;θ)
]

= Ex∼D

[
1

T

T∑
t=1

CE
(
P

(xt,ω)
ζρ , Pθ(·|x≤t−1)

)]

=
1

T

T∑
t=1

Ex≤t−1∼D

[
CE
(
(1− ω) ·D(·|x≤t−1) + ω · Pζρ(·|x≤t−1)︸ ︷︷ ︸

P
(D,ω)

ζρ (·|x≤t−1)

, Pθ(·|x≤t−1)
)]

=
1

T

T∑
t=1

Ex≤t−1∼D

[
CE
(
P

(D,ω)
ζρ (·|x≤t−1), Pθ(·|x≤t−1)

)]
.

Note that we have

R(θ̂)−R(θ∗)

(i)
= R(θ̂)−R(θ∗)−

(
Rω(θ̂)−Rω(θ∗)

)
+
(
Rω(θ̂)−Rω(θ∗)

)
(ii)
=

1

T

T−1∑
t=0

Ex1:t∼D

[∑
v∈V

(
P

(D,ω)
ζρ (v|x1:t)−D(v|x1:t)

)
·
(
logPθ̂(v|x1:t)− logPθ∗(v|x1:t)

)]
+

Rω(θ̂)−Rω(θ∗)

(iii)

≤ 1

T

T−1∑
t=0

Ex1:t∼D

[∥∥∥P (D,ω)
ζρ (·|x1:t)−D(·|x1:t)

∥∥∥
1
·
∥∥∥ logPθ̂(·|x1:t)− logPθ∗(·|x1:t)

∥∥∥
∞

]
+

Rω(θ̂)−Rω(θ∗)

(iv)

≤ 4Mω

T
·
T−1∑
t=0

Ex1:t∼D

[
DTV

(
Pζρ(·|x1:t),D(·|x1:t)

)]
+Rω(θ̂)−Rω(θ∗)︸ ︷︷ ︸

(I)

, (19)

where (i) follows from adding and subtracting Rω(θ̂) − Rω(θ∗); (ii) employs the definition of
R(θ̂), R(θ∗), Rω(θ̂), and Rω(θ∗); (iii) invokes Hölder’s inequality; and (iv) follows from the
definition of total-variation distance DTV(·, ·) and the fact that underlying per-token loss terms are
bounded by M .

Next, we focus on the term (I) in (19):

Rω(θ̂)−Rω(θ∗)
(i)
= Rω(θ̂)−Rω

N (θ̂) +Rω
N (θ̂)−Rω

N (θ∗) +Rω
N (θ∗)−Rω(θ∗)

=
(
Rω(θ̂)−Rω

N (θ̂)
)
+
(
Rω

N (θ∗)−Rω(θ∗)
)

+Rω
N (θ̂)−Rω

N (θ∗)

(ii)

≤
(
Rω(θ̂)−Rω

N (θ̂)
)
+
(
Rω

N (θ∗)−Rω(θ∗)
)

(20)

where (i) follows by adding and subtracting Rω
N (θ̂) and Rω

N (θ∗); and (ii) holds as θ̂ is the minimizer
of Rω

N (·) in Θ which implies that Rω
N (θ̂) − Rω

N (θ∗) ≤ 0. Now, the statement in Proposition B.2
follows by combining (19) and (20).

Note that the bound on excess surrogate risk in Proposition B.2 decomposes into three terms:

• First term captures the divergence between the ground truth per-token distribution and the
teacher-induced per-token distribution leveraged during KD; and

• The last two terms corresponds to the deviation between empirical and population surrogate
risks for the empirical risk minimizer θ̂ and population risk minimzer θ∗ within the function
class Θ. Note that since, θ̂ is a a random variable in itself (which depends on the training
sample SN ), one typically needs to bound the deviation uniformly over all functions θ ∈ Θ. As
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we will see next, one can bound these deviations in terms of the properties of both model class
Θ as well as the teacher-induced per-token distributions.

In order to make the excess surrogate risk bound in Proposition B.2 explicit, we need to bound the
third term via a computable quantity. We apply sample variance-based bounds from (Maurer & Pontil,
2009) to get the following result.

Theorem B.3 (Formal version of Theorem 3.2). Suppose Assumption B.1 holds. Let Fζ,ρ,ω be a
function class that maps elements in VT to [0,M ] as defined below:

Fω := Fζ,ρ,ω ≜

{
x 7→ 1

T

T∑
t=1

CE
(
P

(D,ω)
ζρ (·|x≤t−1), Pθ(·|x≤t−1)

)
, ∀x ∈ VT ,θ ∈ Θ

}
. (21)

For ϵ > 0, let N∞(ϵ,Fζ,ρ,ω, N) denote the growth function for the function class Fζ,ρ,ω , i.e.,

N∞(ϵ,Fζ,ρ,ω, N) ≜ sup
X=(x(1),...,x(N))∈VT×N

N (ϵ,Fζ,ρ,ω(X), ∥ · ∥∞), (22)

where N (ϵ,Fζ,ρ,ω(X), ∥ · ∥∞) denotes the smallest ϵ-cover of the set

Fζ,ρ,ω(X) =
{(

f(x(1)), f(x(2)), . . . , f(x(N))
)
: f ∈ Fζ,ρ,ω

}
⊆ RN

with respect to ∥ · ∥∞ norm. Then, with probability at least 1− δ, for all θ ∈ Θ, we have

R(θ̂)−R(θ∗) ≤ 4Mω

T
·

T∑
t=1

Ex≤t−1∼DDTV

(
Pζρ(·|x≤t−1),D(·|x≤t−1)

)

+

√√√√18UN (f θ̂, SN ) log
(

2M(N)
δ

)
N

+
15M log

(
2M(N)

δ

)
N − 1

+

√
2UN (fθ∗ , SN ) log

(
4
δ

)
N

+
7M log

(
4
δ

)
3(N − 1)

, (23)

whereM(N) ≜ 10 · N∞(1/N,Fζ,ρ,ω, 2N); fθ denotes the function in Fζ,ρ,ω that corresponds to
θ, as per (21); and UN (fθ, SN ) denotes the sample variance

UN (fθ, SN ) =
1

N(N − 1)

∑
1≤i<j≤N

(
fθ(x(i))− fθ(x(j))

)2
. (24)

Proof of Theorem B.3. As discussed earlier, in light of Proposition B.2, we only need to bound two
terms Rω(θ̂)−Rω

N (θ̂) and Rω
N (θ∗)−Rω(θ∗) to obtain the desired result. Now utilizing Theorem 6

and Theorem 4 (with δ replaced with δ/2) in (Maurer & Pontil, 2009) to bound the two terms,
respectively, completes the proof of Theorem B.3.

B.2 PROOF OF TOKEN-LEVEL EXCESS RISK BOUND IN THEOREM 3.4

Before providing a proof of Theorem 3.4, we first introduce some intermediate results that are needed
to prove the theorem. Recall that our training sample SN = {x(i) = [x

(i)
1 , . . . , x

(i)
T ]}i∈[N ] comprises

N independent sequences such that x(i) ∼ D,∀i ∈ [N ]. With ℓω(x(i);θ) representing the KD loss
on i-th sequence, we define the random variables

Z
(i)
0 = E[ℓω(x(i);θ)],

Z
(i)
t = E

[
ℓω(x(i);θ) | x(i)

≤t

]
, for 1 ≤ t ≤ T, (25)

where Z
(i)
T = E

[
ℓω(x(i);θ) | x(i)

]
= ℓω(x(i);θ). Note that {Z(i)

t }0≤t≤T is a Doob mar-

tingale sequence with respect to the natural filtration {F (i)
t }0≤t≤T of the random variables

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

{x(i)
1 , . . . , x

(i)
t } (Ross, 1983, pg 297). Accordingly, we define a martingale difference sequence

{ξ(i)t ,F (i)
t }t∈[T ] such that for t ∈ [T ],

ξ
(i)
t := ξt(x

(i);θ) = Z
(i)
t−1 − Z

(i)
t = E

[
ℓω(x;θ)|x(i)

≤t−1

]
− E

[
ℓω(x;θ)|x(i)

≤t

]
. (26)

As per Assumption 3.3, the following holds for each t ∈ [T ]:

|ξ(i)t (x;θ)| ≤ Ct ≤ C, (27)

E
[(

ξ
(i)
t

)2
|x≤t−1

]
≤ Vt. (28)

We are ready to state the first intermediate result which bounds the moment generating function for
the following random variable associated with the KD loss on the i-th training sequence:

Z
(i)
0 − Z

(i)
T = E

[
ℓω(x(i);θ)

]
− ℓω(x(i);θ).

Lemma B.4. Under Assumption 3.3, the following holds for each i ∈ [N ]:

E
[
eλ·(Z

(i)
0 −Z

(i)
T )/C

]
≤ exp

(
T · f

(
λ,

1

T

T∑
t=1

Vt

C2

))
, (29)

where, for λ ≥ 0 and s ≥ 0,

f(λ, s) ≜ log

(
1

1 + s
· exp(−λs) + s

1 + s
· exp(λ)

)
. (30)

Proof. Note that

E
[
eλ·(Z

(i)
0 −Z

(i)
T )/C

]
= E

[
eλ·

∑T
t=1 ξ

(i)
t /C

]
= E

[
E
[
eλ·

∑T
t=1 ξ

(i)
t /C |x(i)

≤T−1

]]
(i)
= E

[
eλ·

∑T−1
t=1 ξ

(i)
t /C · E

[
eλ·ξ

(i)
T /C |x(i)

≤T−1

]]
(ii)

≤ E

[
eλ·

∑T−1
t=1 ξ

(i)
t /C · e

f
(
λ, 1

C2 ·E
[(

ξ
(i)
T

)2
|x(i)

≤T−1

])]
(iii)

≤ E
[
eλ·

∑T−1
t=1 ξ

(i)
t /C · ef(λ,

VT
C2 )
]

= E
[
eλ·

∑T−1
t=1 ξ

(i)
t /C

]
· ef(λ,

VT
C2 ) (31)

where (i) follows as eλ·
∑T−1

t=1 ξ
(i)
t is F (i)

T−1-measurable; (ii) follows from (Fan et al., 2012, Lemma
3.1); and (iii) follows from Assumption 3.3 and the fact that, for λ > 0 and s ≥ 0, f(λ, s) is an
increasing function in its second argument (Fan et al., 2012, Lemma 3.2). By following the similar
steps in (31) for ξi,T−1, ξi,T−2, . . . , ξi,1, we obtain that

E
[
eλ·(Z

(i)
0 −Z

(i)
T )/C

]
≤ e

∑T
t=1 f(λ,

Vt
C2 ). (32)

According to (Fan et al., 2012, Lemma 3.2) that, for λ ≥ 0 and s ≥ 0, f(λ, s) is a concave function
in its second argument. Thus, it follows from Jensen’s inquality that

1

T

T∑
t=1

f

(
λ,

Vt

C2

)
≤ f

(
λ,

1

T

T∑
t=1

Vt

C2

)
. (33)

By combining (32) and (33), we have

E
[
eλ·(Z

(i)
0 −Z

(i)
T )/C

]
≤ eT ·f

(
λ, 1

T

∑T
t=1

Vt
C2

)
, (34)

which completes the proof.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Now we can leverage Lemma B.4 to obtain the following concentration inequality for the KD training
objective.

Lemma B.5. Let ζ and θ ∈ Θ denote the teacher and student LM, respectively. Then, for ϵ > 0, the
following holds under Assumption 3.3.

P

(
N∑
i=1

(
E
[
ℓω(x(i);θ)

]
− ℓω(x(i);θ)

)
/C ≥ Nϵ

)
≤ exp

(
− Nϵ2

2(
∑

t
Vt

C2 + 1
3ϵ)

)
. (35)

Proof. Recall that, as per our notation, we have

E
[
ℓω(x(i);θ)

]
− ℓω(x(i);θ) = Z

(i)
0 − Z

(i)
T .

Thus,

P

(
N∑
i=1

(
E
[
ℓω(x(i);θ)

]
− ℓω(x(i);θ)

)
/C ≥ Nϵ

)
= P

(
N∑
i=1

(
Z

(i)
0 − Z

(i)
T

)
/C ≥ Nϵ

)
. (36)

It follows from Markov’s inequality that, for λ ≥ 0,

P

(
N∑
i=1

(
Z

(i)
0 − Z

(i)
T

)
/C ≥ Nϵ

)
= P

(
eλ·

∑N
i=1

(
Z

(i)
0 −Z

(i)
T

)
/C ≥ eNλϵ

)

≤
E
[
eλ·

∑N
i=1

(
Z

(i)
0 −Z

(i)
T

)
/C

]
eNλϵ

(i)
=

∏
i∈[N ] E

[
eλ·
(
Z

(i)
0 −Z

(i)
T

)
/C

]
eNλϵ

, (37)

where (i) follows as {Z(i)
0 − Z

(i)
T

}
i∈[N ]

are independent random variables. By combining (37) with
Lemma B.4, we obtain that

P

(
N∑
i=1

(
Z

(i)
0 − Z

(i)
T

)
/C ≥ Nϵ

)
≤ e−N ·

(
λϵ−T ·f(λ, 1

T

∑T
t=1

Vt
C2 )
)
. (38)

Since (38) holds for each λ ≥ 0, we have

P

(
N∑
i=1

(
Z

(i)
0 − Z

(i)
T

)
/C ≥ Nϵ

)
≤ inf

λ≥0
e−N ·

(
λϵ−T ·f(λ, 1

T

∑T
t=1

Vt
C2 )
)

(39)

Now as argued in the Proof of Remark 2.1 in (Fan et al., 2012), for 0 ≤ λ < 3, s ≥ 0, we have

f(λ, s) ≤ (eλ − 1− λ)s ≤ λ2s

2(1− 1
3λ)

. (40)

Thus, it follows from (39) that

P

(
N∑
i=1

(
Z

(i)
0 − Z

(i)
T

)
/C ≥ Nϵ

)
≤ inf

0≤λ<3
exp

(
−N ·

(
λϵ− λ2

2(1− 1
3λ)
·
∑
t

Vt

C2

))

≤ exp

(
− Nϵ2

2(
∑

t
Vt

C2 + 1
3ϵ)

)
. (41)

This completes the proof.

Equipped with Lemma B.5, we are now ready to prove Theorem 3.4 below.
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Proof of Theorem 3.4. Note that, we have the following from Proposition B.2.

R(θ̂)−R(θ∗) ≤ 4Mω

T
·

T∑
t=1

Ex≤t−1∼DDTV

(
Pζρ(·|x≤t−1),D(·|x≤t−1)

)
+
(
Rω(θ̂)−Rω

N (θ̂)
)

︸ ︷︷ ︸
(I)

+(Rω
N (θ∗)−Rω(θ∗))︸ ︷︷ ︸

(II)

. (42)

Next, we focus on bounding the term (I). As per notation, for any θ ∈ Θ, we have

Rω(θ)−Rω
N (θ) =

1

N

N∑
i=1

(
E
[
ℓω(x(i);θ)

]
− ℓω(x(i);θ)

)
. (43)

Thus, for a fixed θ ∈ Θ, we have

P (Rω(θ)−Rω
N (θ) ≥ γ) = P

(
1

N

N∑
i=1

(
E
[
ℓω(x(i);θ)

]
− ℓω(x(i);θ)

)
≥ γ

)

= P

(
N∑
i=1

(
E
[
ℓω(x(i);θ)

]
− ℓω(x(i);θ)

)
/C ≥ N · γ

C

)
(i)

≤ exp

(
− Nγ2

2(
∑

t Vt +
1
3Cγ)

)
, (44)

where (i) follows from (35) with ϵ = γ
C . With some algebra, one can see that the right hand side of

(44) is bounded by δ/(2|Θ|) when

γ ≥ 2C

3N
· log (2|Θ|/δ) +

√
2

N
·
∑
t

Vt · log (2|Θ|/δ). (45)

(To see this, set the right hand side of (44) to δ/(2|Θ|) to get a quadratic of the form γ2 = aγ + b

with a, b ≥ 0 and note that its non-negative root is ≤ a+
√
b. All γ ≥ a+

√
b will make the right

hand side of (44) ≤ δ/(2|Θ|).)
Now, by taking union bound, with probability at least 1− δ/2, for all θ ∈ Θ, we have the following.

Rω(θ)−Rω
N (θ) ≤ 2C

3N
· log (2|Θ|/δ) +

√
2

N
·
∑
t

Vt · log (2|Θ|/δ). (46)

Since the minimizer of the KD training objective θ̂ is in Θ, with probablity at least 1− δ/2, we have

(I) = Rω(θ̂)−Rω
N (θ̂) ≤ 2C

3N
· log (2|Θ|/δ) +

√
2

N
·
∑
t

Vt · log (2|Θ|/δ). (47)

As for the term (II), one can follow the arguments in Lemma B.4 and B.5 with Z
(i)
T − Z

(i)
0 instead of

Z
(i)
0 − Z

(i)
T to obtain that, with probability at least 1− δ/2, we have

(II) = Rω
N (θ∗)−Rω(θ∗) ≤ 2C

3N
· log (2/δ) +

√
2

N
·
∑
t

Vt · log (2/δ). (48)

Note that, since θ∗ is a fixed element in Θ, we do not need to take a union bound over all elements in
Θ (as in (47)) to obtain (48). Now, the statement of Theorem 3.4 follows by combining (42), (47),
and (48).

B.3 ALTERNATIVE EXCESS SURROGATE RISK BOUND

In this section, we derive an excess risk bound similar to Theorem 3.4 with a subgaussian assumption
on ξt(x;θ) (Assumption B.6) instead of Assumption 3.3. The derived bound depends on the mean of
certain subgaussian variance proxies, instead of the supremal quantities C, Vt from Assumption 3.3.
The subgaussian assumption is as follows.
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Assumption B.6. For i ∈ [N ], t ∈ [T ], for a all θ in a finite class Θ, let ξt(x(i);θ) satisfy:

E
[
eλξt(x

(i);θ)|x(i)
≤t−1

]
≤ e

1
2λ

2σ
(i)
t for all λ ≥ 0, (49)

for a finite variance proxy σ
(i)
t ≥ 0.

Now we state the alternative excess risk bound based on Assumption B.6.
Theorem B.7. Let Θ be the finite function class in Assumption B.6. Under Assumption B.6, with
probability at least 1− δ, the following holds for the student LM θ̂ ∈ Θ obtained via KD:

R(θ̂)−R(θ∗) ≤ 1

N

√√√√2

N∑
i=1

T∑
t=1

σ
(i)
t ·

(√
log (2|Θ|/δ) +

√
log (2/δ)

)
+

(4Mω)/T ·
∑

t∈[T ]
Ex≤t−1∼DDTV

(
Pζρ(·|x≤t−1),D(·|x≤t−1)

)
. (50)

Remark B.8 (Dependence on mean subgaussian variance proxy). Theorem B.7 gives a bound that
depends on the mean subgaussian variance proxy σ := 1

NT

∑
i,t σ

(i)
t instead of the supremal

quantities C, Vt that appear in Theorem 3.4. Therefore, this bound is potentially sharper than the one
in Theorem 3.4.

The proof of Theorem B.7 follows the same steps as that of Theorem 3.4, except in some arguments
where we naturally replace Assumption 3.3 with Assumption B.6. However, we write down almost
all the steps for the reader’s convenience.

Proof of Theorem B.7. Note that, we have the following from Proposition B.2.

R(θ̂)−R(θ∗) ≤ 4Mω

T
·

T∑
t=1

Ex≤t−1∼DDTV

(
Pζρ(·|x≤t−1),D(·|x≤t−1)

)
+
(
Rω(θ̂)−Rω

N (θ̂)
)

︸ ︷︷ ︸
(I)

+(Rω
N (θ∗)−Rω(θ∗))︸ ︷︷ ︸

(II)

. (51)

Next, we focus on bounding the term (I). As per notation, for any θ ∈ Θ, we have

Rω(θ)−Rω
N (θ) =

1

N

N∑
i=1

(
E
[
ℓω(x(i);θ)

]
− ℓω(x(i);θ)

)
. (52)

Thus, for a fixed θ ∈ Θ, we have

P (R(θ)−Rω
N (θ) ≥ γ) = P

(
1

N

N∑
i=1

(
E
[
ℓω(x(i);θ)

]
− ℓω(x(i);θ)

)
≥ γ

)

≤ exp

(
− N2γ2

2
∑

i,t σ
(i)
t

)
(53)

where the inequality follows from Lemma B.9 below (we utilize (58) with ϵ = γ). One can see that
the right hand side of (53) is bounded by δ/(2|Θ|) when

γ ≥ 1

N

√
2
∑

i,t
σ
(i)
t · log (2|Θ|/δ). (54)

Now, by taking union bound, with probability at least 1− δ/2, for all θ ∈ Θ, we have

Rω(θ)−Rω
N (θ) ≤ 1

N

√
2
∑

i,t
σ
(i)
t · log (2|Θ|/δ). (55)

Since the minimizer of the KD training objective θ̂ is in Θ, with probablity at least 1− δ/2, we have

(I) = Rω(θ̂)−Rω
N (θ̂) ≤ 1

N

√
2
∑

i,t
σ
(i)
t · log (2|Θ|/δ). (56)
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As for the term (II), one can follow the arguments in Lemma B.10 and B.9 with Z
(i)
T − Z

(i)
0 instead

of Z(i)
0 − Z

(i)
T to obtain that, with probability at least 1− δ/2, we have

(II) = Rω
N (θ∗)−Rω(θ∗) ≤ 1

N

√
2
∑

i,t
σ
(i)
t · log (2/δ). (57)

Now, the statement of Theorem B.7 follows by combining (51), (56), and (57).

Lemma B.9. Let ζ and θ ∈ Θ denote the teacher and student LM, respectively. Then, under the
Assumption B.6, for any ϵ > 0, the following holds:

P

(
N∑
i=1

(
E
[
ℓω(x(i);θ)

]
− ℓω(x(i);θ)

)
≥ Nϵ

)
≤ exp

(
− N2ϵ2

2
∑

i

∑
t σ

(i)
t

)
. (58)

Proof of Lemma B.9. Recall that, as per our notation, we have

E
[
ℓω(x(i);θ)

]
− ℓω(x(i);θ) = Z

(i)
0 − Z

(i)
T .

Thus,

P

(
N∑
i=1

(
E
[
ℓω(x(i);θ)

]
− ℓω(x(i);θ)

)
≥ Nϵ

)
= P

(
N∑
i=1

(
Z

(i)
0 − Z

(i)
T

)
≥ Nϵ

)
.

It follows from Markov’s inequality that, for λ ≥ 0,

P

(
N∑
i=1

(
Z

(i)
0 − Z

(i)
T

)
≥ Nϵ

)
= P

(
eλ·

∑N
i=1

(
Z

(i)
0 −Z

(i)
T

)
≥ eNλϵ

)

≤
E
[
eλ·

∑N
i=1

(
Z

(i)
0 −Z

(i)
T

)]
eNλϵ

(i)
=

∏
i∈[N ] E

[
eλ·
(
Z

(i)
0 −Z

(i)
T

)]
eNλϵ

, (59)

where (i) follows as {Z(i)
0 − Z

(i)
T

}
i∈[N ]

are independent random variables. By combining (59) with
Lemma B.10, we write

P

(
N∑
i=1

(
Z

(i)
0 − Z

(i)
T

)
≥ Nϵ

)
≤ e−N ·

(
λϵ− 1

2λ
2 ∑

i,t σ
(i)
t

)
. (60)

Since (60) holds for each λ ≥ 0, we get the desired bound by minimizing the right hand side with
respect to λ ≥ 0. This completes the proof.

Lemma B.10. Under Assumption B.6, the following holds for any i ∈ [N ], λ ≥ 0:

E
[
eλ·(Z

(i)
0 −Z

(i)
T )
]
≤ exp

(
1

2
λ2

T∑
t=1

σ
(i)
t

)
. (61)

Proof of Lemma B.10. Note that

E
[
eλ·(Z

(i)
0 −Z

(i)
T )
]
= E

[
eλ·

∑T
t=1 ξ

(i)
t

]
= E

[
E
[
eλ·

∑T
t=1 ξ

(i)
t |x(i)

≤T−1

]]
(i)
= E

[
eλ·

∑T−1
t=1 ξ

(i)
t · E

[
eλ·ξ

(i)
T |x(i)

≤T−1

]]
(ii)

≤ E
[
eλ·

∑T−1
t=1 ξ

(i)
t · e 1

2λ
2σ

(i)
T

]
= E

[
eλ·

∑T−1
t=1 ξ

(i)
t

]
· e 1

2λ
2σ

(i)
T (62)
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where (i) follows as eλ·
∑T−1

t=1 ξ
(i)
t is F (i)

T−1-measurable; (ii) follows from (49). Repeatedly peeling
out the terms for ξi,T−1, ξi,T−2, . . . , ξi,1, we obtain

E
[
eλ·(Z

(i)
0 −Z

(i)
T )
]
≤ e

1
2λ

2 ∑T
t=1 σ

(i)
t .

B.4 BOUNDING EXCESS RISK FOR KD

Different from the surrogate (empirical or population) risks utilized in the main text (cf. §3), which
employs the cross-entropy loss as a surrogate loss, one could directly work with the risk defined with
respect to a particular evaluation metric (and the corresponding loss) that one cares about. Since our
training focuses on correct next-token prediction, we can focus on the accuracy of the next-token
prediction under greedy-decoding as one such metric. This amounts to the following (population)
risk with respect to 0/1-loss.

R0/1(θ) := Ex∼D

[ T∑
t=1

1{argmax
v

Pθ(v|x≤t−1) ̸= xt

]
=

T∑
t=1

Ex≤t−1∼D

[∑
v∈V

D(v|x≤t−1) · 1{argmax
v′

Pθ(v
′|x≤t−1) ̸= v}

]
, (63)

where 1{·} denotes the indicator function. A large body of literature (see, e.g., Bartlett et al.,
2006; Zhang, 2004; Steinwart, 2007; Pires & Szepesvári, 2016, and references therein) has studied
calibration functions that enable converting bounds on excess surrogate risk to control the excess
risk. Applying the calibration functions for the cross-entropy loss (Pires & Szepesvári, 2016), we
obtain the following bound on the excess risk for next-token prediction:

R0/1(θ̂)−R0/1(θ
∗) ≤ g−1

(
R(θ̂)−R(θ∗)

)
, (64)

where g−1(·) denotes the inverse of the function g : ϵ 7→ 1
2

(
(1− ϵ) log(1− ϵ) + (1+ ϵ) log(1 + ϵ)

)
.
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C DISTRIBUTION OF ξt AND Vt

In this section, we attempt to understand the distribution of ξt(x;θ) as x ∼ D for a learned model
parameterized by θ to validate Assumption 3.3 in §3. Recall from (8) that

ξt(x;θ) = Ez∼D [ℓω(z;θ)|z≤t−1 = x≤t−1]− Ez∼D [ℓω(z;θ)|z≤t = x≤t] , t ∈ [T ]. (65)

In order to estimate ξt(x;θ), we intend to use a plugin estimator for the two expectations in this
equation. To estimate, say, the second expectation above with a Monte-Carlo average, we need to be
able to sample completions of x≤t so that the completed sequence follows the distribution D. The
best access to data distribution D is via the training data; however, it is generally not possible to
sample multiple completions starting with the same prefix x≤t from the training data. Due to this
difficulty, we sample completions from an oracle language model, as an approximation to the true
data distribution. We use the BASELINE 8.6B model described in Appendix I as our oracle.

For a sequence x and prefix length t ∈ [T ], we employ the plugin estimate

ξ̂t(x;θ) :=
1

ncom

ncom∑
i=1

ℓω([x1:t−1,y
i(x1:t−1)];θ)−

1

ncom

ncom∑
i=1

ℓω([x1:t,y
i(x1:t)];θ) (66)

where yi(x1:s), for s ∈ [T ], is a completion of x1:s, generated by the oracle, with a length of
|yi(x1:s)| = (T − s) so that the concatenation [x1:s,y

i(x1:s)] has length T . ncom denotes the
number of completions sampled from the oracle for estimating the expectations. We also compute
the estimate V̂t(x;θ) of Vt(x;θ) := E[ξ2t (x;θ)|x≤t−1] from ξ̂t(x;θ).

We compute ξ̂t(x;θ) and V̂t(x;θ) for two models: BASELINE 1.5B and BASELINE 2.8B LMs. As
for x, we employ sequences in the validation set (held out from training any model, including the
oracle). The number of completions is ncom = 64. The validation set size nval ≈ 200K.

In Figure 4, we observe that for 2.8B LM the estimates of ξ̂t increasingly concentrate around 0 as
t increases. We compute the mean |ξ̂t| with 1

nval

∑nval

i=1 |ξ̂t(x(i);θ)| where
{
x(i), i ∈ [nval]

}
is the

validation set. From the rightmost panel of Figure 4, we see that the mean |ξ̂t| decreases quickly with
t. For the first few tokens of the sequence, it is hard to predict the next token, because the context is
not sufficient to make a good prediction. Hence the loss and variation are high for small t. These
observations suggest that the magnitude of ξt decreases with t. Intuitively, the upper bounds Ct

and Vt defined in Assumption 3.3 should also decrease with t. Similar results hold for 1.5B LM in
Figure 6. The plots in Figure 5 for 2.8B model (and Figure 7 for 1.5B model) show that the variance
is small and decreases with t as well.

Table 6 shows that for the 2.8B LM, the mean |ξ̂t| decreases as the sequence length T increases from
64 to 1280. For modern LMs configured to train on much longer sequences, the table indicates that
the mean |ξt| are likely to be small. Table 8 shows similar behavior for 1.5B LM. Similar comments
apply to the variance terms in Tables 7 and 9.

Table 6: Mean |ξ̂t| for 2.8B parameter model decreases as we increase the sequence length T .
Conversely, for a fixed sequence length T , mean |ξ̂t| decreases with prefix length t. “−” indicates
that the entry is not meaningful because the prefix length t is more than the sequence length.

T t = 1 t = 5 t = 10 t = 30 t = 100 t = 300 t = 640

64 0.338 0.133 0.106 0.087 − − −
128 0.261 0.099 0.074 0.057 0.042 − −
256 0.188 0.082 0.060 0.044 0.033 − −
512 0.134 0.071 0.053 0.039 0.031 0.019 −
1280 0.109 0.058 0.041 0.031 0.027 0.023 0.016
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Figure 4: Histograms of ξ̂t, for prefix lengths t ∈ {1, 5, 10, 100, 300, 640} for BASELINE 2.8B
parameter model, estimated with ncom = 64 completions for each expectation in (65). The sequence
length is 1280. The distribution gets concentrated around 0 as t increases. In the bottom histograms,
we reduce the x-axis range to one-fifth that of the top histograms, to focus on the trend within the
bottom row. In the rightmost plot, the mean of |ξ̂t| over validation set decreases rapidly with t.
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Figure 5: Histograms of V̂t(x;θ), for prefix lengths t ∈ {1, 5, 10, 100, 300, 640} for BASELINE

2.8B parameter model, estimated from ξ̂t(x;θ). The sequence length is 1280. The distribution
gets concentrated around 0 as t increases. In the bottom histograms, we reduce the x-axis range to
one-fourth that of the top histograms, to focus on the trend within the bottom row. In the rightmost
plot, the mean of V̂t over validation set decreases rapidly with t.
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Figure 6: Histograms of ξ̂t, t ∈ {1, 5, 10, 100, 300, 640} for BASELINE 1.5B parameter model,
estimated with ncom = 64 completions for each expectation in (65). The sequence length is 1280.
The distribution gets concentrated around 0 as t increases. In the bottom histograms, we reduce the
x-axis range to about one-fifth that of the top histograms, to focus on the trend within the bottom row.
In the rightmost plot, the mean of |ξ̂t| over validation set decreases rapidly with t.
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Figure 7: Histograms of V̂t(x;θ), for prefix lengths t ∈ {1, 5, 10, 100, 300, 640} for BASELINE

1.5B parameter model, estimated from ξ̂t(x;θ). The sequence length is 1280. The distribution
gets concentrated around 0 as t increases. In the bottom histograms, we reduce the x-axis range to
one-fourth that of the top histograms, to focus on the trend within the bottom row. In the rightmost
plot, the mean of V̂t over validation set decreases rapidly with t.

Table 7: Mean V̂t for 2.8B parameter model decreases as we increase the sequence length T .
Conversely, for a fixed sequence length T , mean Vt decreases with prefix length t. “−” indicates that
the entry is not meaningful because the prefix length t is more than the sequence length.

T t = 1 t = 5 t = 10 t = 30 t = 100 t = 300 t = 640

64 0.1597 0.0351 0.0221 0.0154 − − −
128 0.1015 0.0209 0.0114 0.0065 0.0038 − −
256 0.0613 0.0146 0.0078 0.0039 0.0022 − −
512 0.0386 0.0111 0.0060 0.0030 0.0019 0.0007 −

1280 0.0262 0.0078 0.0039 0.0018 0.0013 0.0010 0.0005

Table 8: Mean |ξ̂t| for 1.5B parameter model decreases as we increase the sequence length T .
Conversely, for a fixed sequence length T , mean |ξ̂t| decreases with prefix length t. “−” indicates
that the entry is not meaningful because the prefix length t is more than the sequence length.

T t = 1 t = 5 t = 10 t = 30 t = 100 t = 300 t = 640

64 0.345 0.135 0.108 0.087 − − −
128 0.267 0.102 0.076 0.058 0.042 − −
256 0.194 0.085 0.062 0.045 0.033 − −
512 0.138 0.074 0.055 0.040 0.032 0.019 −
1280 0.113 0.061 0.043 0.032 0.028 0.024 0.017

Table 9: Mean V̂t for 1.5B parameter model decreases as we increase the sequence length T .
Conversely, for a fixed sequence length T , mean Vt decreases with prefix length t. “−” indicates that
the entry is not meaningful because the prefix length t is more than the sequence length.

T t = 1 t = 5 t = 10 t = 30 t = 100 t = 300 t = 640

64 0.1675 0.0366 0.0229 0.0154 − − −
128 0.1082 0.0221 0.0120 0.0066 0.0038 − −
256 0.0665 0.0156 0.0083 0.0041 0.0022 − −
512 0.0422 0.0120 0.0065 0.0032 0.0020 0.0007 −

1280 0.0287 0.0085 0.0042 0.0020 0.0014 0.0011 0.0005
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D KD CAN IMPROVE GENERALIZATION VIA VARIANCE REDUCTION

Here, we leverage our novel risk bounds to provide a theoretical justification for why KD can result in
better generalization behavior compared to standard pre-training. In particular, we will focus on our
bound in Theorem 3.4.* Note that, besides |Θ|, N , and T which are independent of the underlying
training approach, there are three key quantities that dictate the generalization gap: (1)

∑
t Vt which

is related to the loss variance; (2) C which is related to the extreme values that loss can take; and (3)
the divergence between the teacher-provided next-token predictive distribution and the ground truth
next-token distribution:

DIV(ζ, ω) := ω ·
T∑

t=1

E [DTV (Pζρ(·|x≤t−1),D(·|x≤t−1))] .

Note that, under Assumption 3.1, both KD and standard pre-training loss terms are bounded by M ,
allowing us to provide the same C (as a function of M and T ) for both KD and standard pre-training.
Thus, we focus on the remaining two terms which relate to

∑
t Vt and DIV(ζ, ω).

Note that standard pre-training, i.e., training without KD, corresponds to ω = 0, which leads to
DIV(ζ, ω = 0) = 0. In contrast, with ω > 0, KD would incur a non-zero value for DIV(ζ, ω). On
the other hand, as we will argue next, KD can lead to smaller value of the variance term

∑
t Vt. Thus,

as long as the underlying teacher LM approximates the true next-token distribution well enough, it
can lead to improved (student) performance or equivalently smaller generalization gap by striking a
balance between the divergence (or bias) DIV(ζ, ω) and variance

∑
t Vt; as a result, realizing a form

of bias vs. variance trade-off for LM pre-training.

The variance reduction in the case of KD is the cleanest to observe by focusing on the last summand
in
∑

t Vt, i.e., VT . Towards this, recall from Assumption 3.3 that, for each θ ∈ Θ, VT bounds the
second-order moment of ξT (x;θ). Define the short-hand

P
(xt,ω)
ζρ (·|x≤t−1) := (1− ω) · 1xt(·) + ω · Pζρ(·|x≤t−1) (67)

and write

ξT (x;θ) = E [ℓω(x;θ)|x≤T−1]− E [ℓω(x;θ)|x≤T ]

= E

[
1

T

T∑
t=1

CE
(
P

(xt,ω)
ζρ (·|x≤t−1), Pθ(·|x≤t−1)

)
|x≤T−1

]
−

E

[
1

T

T∑
t=1

CE
(
P

(xt,ω)
ζρ (·|x≤t−1), Pθ(·|x≤t−1)

)
|x≤T

]
(i)
=

1

T

T−1∑
t=1

CE
(
P

(xt,ω)
ζρ (·|x≤t−1), Pθ(·|x≤t−1)

)
+ E

[
1

T
CE
(
P

(xT ,ω)
ζρ (·|x≤T−1), Pθ(·|x≤T−1)

)
|x≤T−1

]

− 1

T

T∑
t=1

CE
(
P

(xt,ω)
ζρ (·|x≤t−1), Pθ(·|x≤t−1)

)
(ii)
= E

[
1

T
CE
(
P

(xT ,ω)
ζρ (·|x≤T−1), Pθ(·|x≤T−1)

)
|x≤T−1

]
− 1

T
CE
(
P

(xT ,ω)
ζρ (·|x≤T−1), Pθ(·|x≤t−1)

)
= (1− ω) ·

(
E
[
− 1

T
· logPθ(xT |x≤t−1)|x≤T−1

]
+

1

T
· logPθ(xT |x≤T−1)

)
(68)

where (i) follows we can remove expectation for those terms that are functions of those random
variables that we condition on; and (ii) follows by removing the terms that cancel each other; and the
last line follows as we have

P
(xT ,ω)
ζρ (·|x≤T−1) = (1− ω) · 1xT

(·) + ω · Pζρ(·|x≤T−1).

*One could draw similar conclusion from Theorem 3.2 by extending the arguments from Menon et al. (2021)
to the language modeling setting.
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It follows from (68) that, for any θ ∈ Θ, we have

E
[
ξ2T (x;θ, ζ)

]
= (1− ω) ·Var

[
1

T
· logPθ(xT |x≤t−1)

∣∣∣ x≤T−1

]
, (69)

where Var [·|·] denotes conditional variance. Note that (69) shows that VT decreases with ω in [0, 1].
This highlights that KD, i.e., ω > 0, would realize a smaller variance than standard pre-training, i.e.,
ω = 0. Thus, to realize improved generalization via KD, one needs to select the distillation weight
ω so that the variance reduction via KD offsets the divergence term DIV(ζ, ω). In particular, when
the teacher LM approximates the ground truth next-token distribution very well, i.e., DIV(ζ, ω) term
is small even for a relatively large value of ω, the variance reduction via KD becomes prominent,
ensuring significant improvement over standard pre-training in terms of generalization performance.
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E EXPERIMENTAL SETUP DETAILS

Model architectures. We work with standard decoder-only Transformer-based LMs. In our exper-
imental evaluations, we collectively explored student LMs with 1.5B, 2.8B and 8.6B parameters.
As for the small teacher LMs, our results covered LMs with 0.5B, 1.5B, and 2.8B parameters. Ta-
ble 10 presents the key design parameters regarding the architecture of all these models. Note that,
through our experiments we cover a wide range of model architecture, including deep & narrow
models, shallow & wide models, multi-head attention (Vaswani et al., 2017), and multi-query atten-
tion (Shazeer, 2019). This demonstrates that the proposed SALT method is robust to the underlying
model architecture.

Table 10: Model architecture parameters.

Model size

0.5B 1.5B 2.8B 8.6B

Number of Layers 32 44 92 32
Model dimension 768 1024 1024 4096
MLP hidden dimension 3072 8192 8192 16384
Number of attention heads 6 4 4 32
Attention type Multi-head Multi-head Multi-query Multi-query

We use a SentencePiece tokenizer (Kudo & Richardson, 2018) from Du et al. (2022) with a vocabulary
size of 256K. Similar vocabulary size was also utilized in (Chowdhery et al., 2022; Team et al., 2025).
We employ weight tying (Press & Wolf, 2017), i.e., the same vocabulary embedding parameters are
used for input token embedding and output embedding layers.

Pre-training data. We pre-train all LMs on ThePile dataset (Gao et al., 2020) by minimizing the
UL2 objective (Tay et al., 2023) with a mixture of four tasks: (1) causal LM task; (2) prefix LM task
with mean prefix length of 1/4th the sequence length, (3) span corruption task with r = 15% of the
tokens corrupted and mean corrupted span length µ = 3; and (4) span corruption task with r = 50%
of the tokens corrupted and mean corrupted span length µ = 32. The four tasks are mixed at a ratio
of 6:2:1:1.

Training setup. We pre-train LMs for approximately 545 billion tokens, with a batch size of 2048
and input sequence length of 1280. This translates to a little over two epochs on ThePile data. As for
the optimization method, we utilize Adafactor algorithm (Shazeer & Stern, 2018), as per (Chowdhery
et al., 2022; Du et al., 2022). We use a cosine learning rate decay schedule with a peak learning rate
of 0.001, 4000 warmup steps and final learning rate of 0.0001. Training is done on 1024 TPU-v5e
chips with JAX (Bradbury et al., 2018) and SeqIO (Roberts et al., 2022).

F FEW-SHOT EVALUATION TASKS AND METRICS

We performed a comprehensive few-shot evaluation of pre-trained LMs on 28 benchmarks. Below,
we list these by organizing them according to the corresponding domain.

World Knowledge: NQ-Open (Lee et al., 2019), TriviaQA (Joshi et al., 2017), TyDiQA-NoContext
(English)(Clark et al., 2020), Web Questions (Berant et al., 2013).

Reading Comprehension: RACE-M, RACE-H (Lai et al., 2017), SQuADv2 (Lee et al., 2020),
TyDiQA-GoldP (English)(Clark et al., 2020).

Commonsense Reasoning: ARC (Easy) and ARC (Challenge) (Clark et al., 2018), HellaSwag
(Zellers et al., 2019), OpenBookQA (Mihaylov et al., 2018), PiQA (Bisk et al., 2020), StoryCloze
(Mostafazadeh et al., 2016), Winogrande (Sakaguchi et al., 2020).

SuperGLUE (Wang et al., 2019): BoolQ (Clark et al., 2019), CB (de Marneffe et al., 2019), COPA
(Gordon et al., 2012), RTE (Dagan et al., 2006), WiC (Pilehvar & Camacho-Collados, 2018), WSC
(Levesque et al., 2012), MultiRC (Khashabi et al., 2018), ReCoRD (Zhang et al., 2018).
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Natural Language Generation (NLG): English portions of the three benchmarks – XLSum (Hasan
et al., 2021), XSum (Narayan et al., 2018) and WikiLingua (Ladhak et al., 2020).

Open-ended Cloze task: LAMBADA Paperno et al. (2016).

Code generation: Mostly Basic Python Problems (MBPP) (Austin et al., 2021).

In our exploration, we conduct 1-shot evaluation for all the above benchmarks, except for MBPP
which is 3-shot.

For MBPP, the metric is the fraction of success ignoring challenge problems. For each benchmark,
we typically report the corresponding prevalent metric in the literature. For TyDiQA benchmarks, we
report the F1 score as opposed to EM as it is the primary metric in (Clark et al., 2020). For MultiRC
in SuperGLUE, we report F1 metric as per (Du et al., 2022).

G HYPERPARAMETER SEARCH FOR DISTILLATION WEIGHT AND TEACHER
TEMPERATURE

In the section, we conduct a search to identify two key hyperparameters related to the knowledge
distillation process, namely distillation weight ω and teacher temperature ρ (cf. (2) and (3)). Given
the resource extensive nature of pre-training experiments, we perform the hyperparameter search
with relatively smaller scale experiments. In particular, we employed a 0.5B teacher LM to train a
larger student LM with 1.5B parameters. We train the 0.5B teacher with configuration specified in
Appendix E. For each (ω, ρ) pair, we train the student LM for 40K steps with a batch size of 1024
and sequence length of 1280, amounting to ∼52B tokens. As for the evaluation criterion, we track
the average few-shot performance on a smaller set of evaluation tasks, namely NQ-Open, TriviaQA,
Web Questions, SQuADv2, LAMBADA, BoolQ, CB, COPA, RTE, WiC, WSC, MultiRC, ReCoRD,
and HellaSwag. Table 11 shows the average 1-shot performance for different choices of (ω, ρ) as the
training progresses.

Table 11: Average 1-shot performance as training progresses for different values of distillation weight
ω and teacher temperature ρ.

Evaluation step
ω ρ 8000 12000 16000 20000 24000 40000

0.333

0.1 36.90 38.28 39.83 39.86 40.78 41.69
0.25 37.43 39.05 40.36 40.73 41.01 41.96

1 37.82 39.21 38.86 40.66 41.57 42.04
2 37.84 39.64 38.79 41.00 41.57 42.12

0.667

0.1 37.59 39.32 40.13 39.64 40.90 41.92
0.25 39.43 39.73 40.50 41.02 41.56 41.87

1 38.53 39.49 40.27 40.76 40.97 41.83
2 38.28 39.39 40.17 39.96 41.05 42.38

1

0.1 37.01 38.05 38.47 39.14 38.92 39.46
0.25 37.94 38.18 39.10 39.38 39.68 40.39

1 38.88 39.60 39.03 39.64 40.72 40.03
2 38.18 39.38 38.84 38.16 39.68 39.63

Note that ω = 0.667 and ρ = 0.25 ensure the best performance during most of the training. Based
on this observation and the fact that the proposed SALT method (cf. Algorithm 1) employs KD only
during the early phase of pre-training, we work with ω = 0.667 and ρ = 0.25 in our empirical
exploration of SALT. As evident from our experimental results (cf. §5), SALT with this choice of
hyperparameters consistently leads to both improved quality and efficiency for different teacher-
student pairs and longer pre-training. This suggests the robustness of SALT with a particular choice
of ω and ρ.
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H ADDITIONAL FEW-SHOT EVALUATION RESULTS FOR 2.8B LMS

Table 12 is an expansion of Table 2 in the main text. All evaluations are 1-shot, except for MBPP
which is 3-shot. In the metric column, EM, Acc, and Rg2 are abbreviations for Exact Match, Accuracy,
and Rouge2, respectively.

Table 12: Comprehensive few-shot performance of 2.8B pre-trained LMs. A 1.5B SLM serves
as the teacher LM for SALT & SALTDS during the KD phase of their pre-training and for RKD
throughout its pre-training. BASELINE employs standard pre-training without KD from SLM. SALT
and SALTDS already outperform BASELINEin terms of average few-shot performance at 70% of their
training step budget, thereby improving both training efficiency and model quality. RKD, i.e., naively
preforming KD from the small model through the pre-training, performs much worse than BASELINE.
The best and second-best results for each domain are boldfaced and underlined, respectively.

Domain Dataset Metric SLM BASELINE RKD SALT SALTDS

@100% @100% @70% @100% @70% @100%
steps steps steps steps steps steps

W
or

ld
K

no
w

le
dg

e NaturalQuestions-Open EM 5.90 8.70 6.70 9.40 10.10 8.40 9.00
TriviaQA EM 30.09 43.15 34.87 39.87 43.71 39.37 41.27

TyDiQA-NoContext F1 22.20 28.20 26.10 27.90 27.10 25.90 27.20
WebQuestions EM 5.40 8.70 7.10 9.20 9.90 8.90 9.40

Domain average 15.90 22.19 18.69 21.59 22.70 20.64 21.72

R
ea

di
ng

C
om

pr
eh

en
si

on RACE-M Acc 52.60 57.00 54.00 58.60 58.90 57.90 58.40
RACE-H Acc 37.50 42.30 39.70 42.20 42.30 42.10 42.30

SQuADv2 EM 43.30 54.80 50.90 54.60 55.90 57.60 57.90
TyDiQA-GoldP F1 51.80 57.90 59.40 58.80 61.10 59.80 61.10

Domain average 46.30 53.00 51.00 53.55 54.55 54.35 54.93

C
om

m
on

se
ns

e
R

ea
so

ni
ng

ARC-E Acc 64.60 68.40 66.00 67.60 67.60 69.40 69.00
ARC-C Acc 32.40 37.10 33.70 38.00 38.40 38.10 37.30

HellaSwag Acc 56.00 62.80 56.20 62.00 63.30 63.10 63.80
OpenBookQA Acc 48.00 50.00 45.80 47.20 48.20 47.60 48.20

PiQA Acc 72.00 75.40 72.60 73.20 73.70 74.10 73.90
StoryCloze Acc 73.10 77.20 73.70 76.90 76.80 77.00 77.10

WinoGrande Acc 58.20 63.00 60.10 64.00 63.70 64.70 65.40
Domain average 57.76 61.99 58.30 61.27 61.67 62.00 62.10

LAMBADA Acc 26.90 36.20 31.10 50.70 48.30 48.00 53.00

Su
pe

rG
L

U
E

BoolQ Acc 63.40 64.30 62.50 64.10 62.30 65.50 64.30
CB Acc 37.50 58.90 50.00 60.70 53.60 55.40 53.60

COPA Acc 77.00 79.00 71.00 76.00 77.00 81.00 77.00
MultiRC F1 53.80 54.20 53.50 57.50 58.60 50.70 53.00

RTE Acc 55.20 55.60 59.90 57.80 58.50 54.20 58.50
ReCoRD Acc 84.80 87.10 85.20 86.60 86.90 87.20 87.30

WiC Acc 48.40 47.20 47.20 49.80 48.10 50.00 50.90
WSC Acc 72.60 77.90 74.00 77.90 77.20 83.90 80.00

Domain average 61.59 65.53 62.91 66.30 65.28 65.99 65.58

N
L

G

GEM-XLSum Rg2 2.80 4.10 3.40 4.40 4.40 4.60 4.60
GEM-XSum Rg2 2.80 5.10 3.20 5.00 5.10 5.40 5.40
WikiLingua Rg2 3.80 4.60 3.60 4.50 4.70 4.40 4.50

Domain average 3.13 4.60 3.40 4.63 4.73 4.80 4.83

MBPP Acc 9.60 16.20 11.40 15.60 17.00 16.60 17.80

Average (28 tasks) 42.56 47.32 44.39 47.86 47.94 47.89 48.26
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I RESULTS FOR 8.6B PARAMETER LM PRE-TRAINING

In order to further validate the utility of the proposed SALT framework, we utilize it to train a larger
LM. In particular, we train a 8.6B parameter LM on the Pile dataset with the help of a 2.8B parameter
small LM via SALT with nKD = 36K. In addition, we also explore SALTDS in this setting where, as
per the discussion in §4, we utilize an early checkpoint (corresponding to n0 = 26K steps) of the
2.8B parameter model for data selection with k = 10 in (10).

Appendix I.1 and Appendix I.2 present the few-shot performance and post-SFT performance, respec-
tively, for the 8.6B LMs trained via SALT and SALTDS while contrasting those with the performance
of the natural baseline – an 8.6B LM trained via the standard pre-training approach. See §5.3 for
more details about the SFT procedure.

Finally, we also explore the utility of SALT as we scale the student-teacher size ration. Appendix I.3
and I.4 present few-shot evaluations for the 8.6B LMs trained via 1.5B (nKD = 14K) and 0.5B
(nKD = 7K) SLM teachers, respectively.

I.1 FEW-SHOT EVALUATIONS FOR 8.6B MODELS PRE-TRAINED VIA 2.8B SLM TEACHER

Please see Table 16 for domain-wise few-shot performance results and Table 17 for the full few-shot
performance results.

Table 13: Domain-wise few-shot performance of pre-trained 8.6B parameter LMs. SALT and
SALTDS utilize a 2.8B parameter SLM during their pre-training. Note that SALT and SALTDS
already outperform BASELINE in terms of average few-shot performance at 70% of their training
step budget, thereby improving both training efficiency and model quality. The best and second-best
results for each domain are boldfaced and underlined, respectively.

Domain # Tasks SLM BASELINE SALT SALTDS

@100% @70% @100% @70% @100%
steps steps steps steps steps

World Knowledge 4 22.19 26.91 27.66 28.97 28.04 28.47
Reading Comprehension 4 53.00 56.40 56.83 57.42 56.10 57.48
Commonsense Reasoning 7 61.99 66.01 66.89 67.09 66.61 67.24
LAMBADA 1 36.20 58.70 65.50 64.80 54.30 55.00
SuperGLUE 8 65.53 69.69 69.19 70.38 71.06 71.26
NLG 3 4.60 5.40 5.97 5.97 5.23 5.30
MBPP 1 16.20 20.80 19.80 22.00 22.80 23.20
Average 28 47.32 51.73 52.24 52.96 52.29 52.81

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Table 14: Comprehensive few-shot performance of pre-trained 8.6B parameter LMs. SLM is a
2.8B parameter model that serves as the teacher LM for SALT & SALTDS during the KD phase of
their pre-training and for RKD throughout its pre-training. BASELINE employs standard pre-training
without KD from SLM. SALT and SALTDS already outperform BASELINE in terms of average
few-shot performance at 70% of their training step budget, thereby improving both training efficiency
and model quality. The best and second-best results for each domain are boldfaced and underlined,
respectively.

Domain Dataset Metric SLM BASELINE SALT SALTDS

@100% @70% @100% @70% @100%
steps steps steps steps steps

W
or

ld
K

no
w

le
dg

e NaturalQuestions-Open EM 8.70 10.50 11.80 11.50 12.00 12.30
TriviaQA EM 43.15 54.86 55.16 57.07 56.85 58.99

TyDiQA-NoContext F1 28.20 30.40 29.70 32.30 32.00 30.60
WebQuestions EM 8.70 11.90 14.00 15.00 11.30 12.00

Domain average 22.19 26.91 27.66 28.97 28.04 28.47

R
ea

di
ng

C
om

pr
eh

en
si

on RACE-M Acc 57.00 60.70 61.70 62.40 59.60 60.70
RACE-H Acc 42.30 45.40 44.90 45.70 43.30 44.20

SQuADv2 EM 54.80 61.20 56.50 57.00 56.90 61.50
TyDiQA-GoldP F1 57.90 58.30 64.20 64.60 64.60 63.50

Domain average 53.00 56.40 56.83 57.42 56.10 57.48

C
om

m
on

se
ns

e
R

ea
so

ni
ng

ARC-E Acc 68.40 73.30 74.10 74.60 73.00 74.00
ARC-C Acc 37.10 42.70 45.00 46.20 43.90 44.50

HellaSwag Acc 62.80 70.40 70.00 70.80 70.70 71.60
OpenBookQA Acc 50.00 51.20 53.40 53.20 53.00 52.80

PiQA Acc 75.40 77.30 76.60 76.40 76.80 77.70
StoryCloze Acc 77.20 80.00 80.20 80.00 80.20 80.30

WinoGrande Acc 63.00 67.20 68.90 68.40 68.70 69.80
Domain average 61.99 66.01 66.89 67.09 66.61 67.24

LAMBADA Acc 36.20 58.70 65.50 64.80 54.30 55.00

Su
pe

rG
L

U
E

BoolQ Acc 64.30 70.70 74.20 74.70 76.80 76.00
CB Acc 58.90 60.70 53.60 58.90 64.30 64.30

COPA Acc 79.00 87.00 87.00 84.00 85.00 86.00
MultiRC F1 54.20 55.90 52.60 55.80 59.90 61.70

RTE Acc 55.60 61.40 64.60 67.10 62.50 62.50
ReCoRD Acc 87.10 89.20 89.40 89.30 89.50 89.20

WIC Acc 47.20 50.50 50.00 50.00 47.30 47.20
WSC Acc 77.90 82.10 82.10 83.20 83.20 83.20

Domain average 65.53 69.69 69.19 70.38 71.06 71.26

N
L

G

GEM-XLSum Rg2 4.10 4.90 5.30 5.40 4.80 4.70
GEM-XSum Rg2 5.10 6.10 7.20 7.00 6.00 6.20
WikiLingua Rg2 4.60 5.20 5.40 5.50 4.90 5.00

Domain average 4.60 5.40 5.97 5.97 5.23 5.30

MBPP Acc 16.20 20.80 19.80 22.00 22.80 23.20

Average (28 tasks) 47.32 51.73 52.24 52.96 52.29 52.81
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I.2 POST SFT RESULTS FOR 8.6B MODELS PRE-TRAINED VIA 2.8B SLM TEACHER

Please see Table 15 for post-SFT performance of various 8.6B LMs.

Table 15: Supervised fine-tuning (SFT) results. Performance of various 8.6B pre-trained LMs
on downstream tasks after SFT. SALT and SALTDS employ an 2.8B SLM as teacher. For each
benchmark, pre-trained 8.6B models are fine-tuned on the corresponding train split and evaluated on
the validation split (test split in case of GSM8K). Acc, Rg1, Rg2, and RgL represent the Accuracy,
Rouge-1, Rouge-2, and Rouge-Lsum metrics, respectively.

GSM8K XSum CNN/DailyMail ANLI-R1 ANLI-R2 ANLI-R3
Acc Rg1 Rg2 RgL Rg1 Rg2 RgL Acc Acc Acc

BASELINE 41.85 45.10 22.68 37.36 43.73 21.19 41.29 68.80 58.90 60.58

SALT 42.84 45.37 23.04 37.69 43.69 21.16 41.22 70.20 59.30 63.25
SALTDS 42.23 45.81 23.34 38.14 43.80 21.28 41.35 69.30 59.50 62.17

39



2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

I.3 FEW-SHOT EVALUATIONS FOR 8.6B MODELS PRE-TRAINED VIA 1.5B SLM TEACHER

Here we tabulate the results for the 8.6B model trained via SALT from a 1.5B teacher. Please see
Table 16 for domain-wise few-shot performance results and Table 17 for the full few-shot performance
results.

Table 16: Domain-wise few-shot performance of 8.6B LMs (1.5B SLM teacher). SALT already
outperforms BASELINE in terms of average few-shot performance at 70% of their training step budget,
thereby improving both training efficiency and model quality. The best and second-best results for
each domain are boldfaced and underlined, respectively.

Domain # Tasks SLM BASELINE SALT
@100% @70% @100%

steps steps steps

World Knowledge 4 15.90 26.91 27.96 28.57
Reading Comprehension 4 46.30 56.40 55.67 57.10
Commonsense Reasoning 7 57.76 66.01 66.39 66.73
LAMBADA 1 26.90 58.70 66.30 65.80
SuperGLUE 8 61.59 69.69 68.67 70.38
NLG 3 3.13 5.40 4.77 4.87
MBPP 1 9.60 20.80 21.60 25.20
Average 28 42.56 51.73 51.82 52.80
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Table 17: Comprehensive few-shot performance of 8.6B LMs (1.5B SLM teacher). SLM serves as
the teacher LM for SALT during the KD phase of their pre-training. BASELINE employs standard
pre-training without KD from SLM. SALT outperforms BASELINE in terms of average few-shot
performance at 70% of training step budget, thereby improving both training efficiency and model
quality. The best and second-best results for each task are boldfaced and underlined, respectively.

Domain Dataset Metric SLM BASELINE SALT

@100% @70% @100%
steps steps steps

W
or

ld
K

no
w

le
dg

e NaturalQuestions-Open EM 5.90 10.50 11.50 12.10
TriviaQA EM 30.09 54.86 55.05 57.38

TyDiQA-NoContext F1 22.20 30.40 31.40 31.60
WebQuestions EM 5.40 11.90 13.90 13.20

Domain average 15.90 26.91 27.96 28.57

R
ea

di
ng

C
om

pr
eh

en
si

on RACE-M Acc 52.60 60.70 61.00 61.40
RACE-H Acc 37.50 45.40 44.30 45.00

SQuADv2 EM 43.30 61.20 57.00 59.20
TyDiQA-GoldP F1 51.80 58.30 60.40 62.80

Domain average 46.30 56.40 55.67 57.10

C
om

m
on

se
ns

e
R

ea
so

ni
ng

ARC-E Acc 64.60 73.30 72.90 74.10
ARC-C Acc 32.40 42.70 44.80 45.30

HellaSwag Acc 56.00 70.40 69.70 70.70
OpenBookQA Acc 48.00 51.20 52.80 53.80

PiQA Acc 72.00 77.30 77.80 77.10
StoryCloze Acc 73.10 80.00 78.70 78.90

WinoGrande Acc 58.20 67.20 68.00 67.20
Domain average 57.76 66.01 66.39 66.73

LAMBADA Acc 26.90 58.70 66.30 65.80

Su
pe

rG
L

U
E

BoolQ Acc 63.40 70.70 72.60 74.80
CB Acc 37.50 60.70 55.40 64.30

COPA Acc 77.00 87.00 84.00 87.00
MultiRC F1 53.80 55.90 53.90 56.70

RTE Acc 55.20 61.40 63.20 62.50
ReCoRD Acc 84.80 89.20 89.10 89.20

WIC Acc 48.40 50.50 49.10 46.40
WSC Acc 72.60 82.10 82.10 82.10

Domain average 61.59 69.69 68.67 70.38

N
L

G

GEM-XLSum Rg2 2.80 4.90 4.60 4.60
GEM-XSum Rg2 2.80 6.10 4.50 4.70
WikiLingua Rg2 3.80 5.20 5.20 5.30

Domain average 3.13 5.40 4.77 4.87

MBPP Acc 9.60 20.80 21.60 25.20

Average (28 tasks) 42.56 51.73 51.82 52.80
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I.4 FEW-SHOT EVALUATIONS FOR 8.6B MODELS PRE-TRAINED VIA 0.5B SLM TEACHER

Here we tabulate the results for the 8.6B model trained via SALT with the help of a 0.5B teacher.
Please see Table 18 for domain-wise few-shot performance results and Table 19 for the full few-shot
performance results.

Table 18: Domain-wise few-shot performance of 8.6B LMs (0.5B SLM teacher). With ∼17×
smaller teacher LM, SALT does not outperform the BASELINEon average few-shot performance.
That said, it leads to improvement on 4 out 7 domains. The best and second-best results for each
domain are boldfaced and underlined, respectively.

Domain # Tasks SLM BASELINE SALT
@100% @70% @100%

steps steps steps

World Knowledge 4 8.18 26.91 26.96 28.01
Reading Comprehension 4 40.23 56.40 56.35 57.00
Commonsense Reasoning 7 50.26 66.01 65.99 65.94
LAMBADA 1 10.30 58.70 59.60 64.30
SuperGLUE 8 57.77 69.69 65.77 67.86
NLG 3 1.80 5.40 5.17 5.13
MBPP 1 3.60 20.80 22.60 21.00

Average 28 36.68 51.73 50.68 51.62
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Table 19: Comprehensive few-shot performance of 8.6B LMs (0.5B SLM teacher). SLM serves as
the teacher LM for SALTduring the KD phase of their pre-training.

Domain Dataset Metric SLM BASELINE SALT

@100% @70% @100%
steps steps steps

W
or

ld
K

no
w

le
dg

e NaturalQuestions-Open EM 2.40 10.50 11.70 11.10
TriviaQA EM 12.52 54.86 54.35 56.75

TyDiQA-NoContext F1 13.40 30.40 29.50 31.10
WebQuestions EM 4.40 11.90 12.30 13.10

Domain average 8.18 26.91 26.96 28.01

R
ea

di
ng

C
om

pr
eh

en
si

on RACE-M Acc 44.20 60.70 60.00 60.00
RACE-H Acc 33.20 45.40 43.10 43.50

SQuADv2 EM 41.60 61.20 60.70 61.90
TyDiQA-GoldP F1 41.90 58.30 61.60 62.60

Domain average 40.23 56.40 56.35 57.00

C
om

m
on

se
ns

e
R

ea
so

ni
ng

ARC-E Acc 53.50 73.30 72.50 72.60
ARC-C Acc 28.40 42.70 43.30 42.70

HellaSwag Acc 42.40 70.40 69.90 70.70
OpenBookQA Acc 40.00 51.20 52.00 52.20

PiQA Acc 68.00 77.30 76.80 76.90
StoryCloze Acc 66.90 80.00 78.90 79.30

WinoGrande Acc 52.60 67.20 68.50 67.20
Domain average 50.26 66.01 65.99 65.94

LAMBADA Acc 10.30 58.70 59.60 64.30

Su
pe

rG
L

U
E

BoolQ Acc 51.70 70.70 70.30 71.30
CB Acc 42.90 60.70 33.90 41.10

COPA Acc 73.00 87.00 84.00 84.00
MultiRC F1 52.10 55.90 53.70 58.00

RTE Acc 49.10 61.40 59.20 65.00
ReCoRD Acc 78.70 89.20 89.20 89.10

WIC Acc 50.50 50.50 50.30 49.80
WSC Acc 64.20 82.10 85.60 84.60

Domain average 57.77 69.69 65.77 67.86

N
L

G

GEM-XLSum Rg2 1.50 4.90 5.10 4.80
GEM-XSum Rg2 1.90 6.10 5.60 5.60
WikiLingua Rg2 2.00 5.20 4.80 5.00

Domain average 1.80 5.40 5.17 5.13

MBPP Acc 3.60 20.80 22.60 21.00

Average (28 tasks) 36.68 51.73 50.68 51.62
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J WALL-CLOCK TIME SAVING VIA SALT

As evident in Tab. 2 and 13, SALT surpasses fully trained BASELINE after 146K training steps (i.e.,
70% of the total step budget of 208K training steps) for both 2.8B and 8.6B LM pre-training. This
suggests a saving of 30% training compute cost. That said, it is important to note that nKD = 36K
of these 146K steps involve KD from a teacher SLM (cf. Algorithm 1). Each of these KD steps
typically incurs higher computational cost compared to a single step of the standard pre-training as
KD requires a forward pass of the teacher as an additional overhead. As we argue next, the fact that
our teacher is a smaller LM ensures that we still realize training efficiency gains via SALT.

As a rule of thumb, depending on the application of gradient checkpointing/rematerialization Chen
et al. (2016), the cost of a forward pass is α times the cost of a standard training step (that comprises
both forward and backward passes) and such α ∈ [1/4, 1/3]. In SALT, as the teacher is smaller
than the student, the additional cost of teacher’s forward pass is further smaller as a fraction of the
student’s standard step time (w/o KD). That said, the actual ratio between the teacher’s forward pass
time and student’s standard training step time can depend on various implementation details.

For training a 2.8B LM by using a 1.5B teacher SLM, in our implementation on TPU-v5e chips, the
wall-clock time of each KD step was ∼ 1.27x that of a standard training step for 2.8B LM. Thus,
the wall-clock time of 146K steps of SALT with nKD = 36K translates to a wall-clock time of
approximately (110 + 36× 1.27) = 155.7K standard pre-training steps. Given that BASELINE has
the training step budget of 208K steps, SALT realizes ∼ 25% savings in terms of wall-clock time
to surpass BASELINE while training a 2.8B LM with the help of a 1.5B teacher SLM.

As for training a 8.6B LM by using a 2.8B teacher SLM, a KD step incurs ∼ 1.12x wall-clock time
compared to a standard training step for 8.6B. Repeating the calculation given in the above paragraph,
we see a ∼ 28% savings in terms of wall-clock time to surpass BASELINE. With the 1.5B teacher,
a KD step incurs ∼ 1.07x time compared to a standard training step for 8.6B. Considering that the
first stage of SALT is run for 14K steps, we get∼ 29% savings in terms of wall-clock time to surpass
BASELINE. Please see Table 20 for a summary of the wall-clock time savings.

Table 20: Wall-clock time savings with SALT. The SALT trained student at 146K steps (70%
training steps) surpasses BASELINE trained for 208K steps. We realize wall-clock time savings of
25-29%, after accounting for the additional cost of teacher forward pass during KD stage.

Student Teacher nKD KD step time / Wall-clock time savings
size size Regular step time to surpass BASELINE

2.8B 1.5B 36K 1.27 25%
8.6B 2.8B 36K 1.12 28%
8.6B 1.5B 14K 1.07 29%
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K ABLATION STUDY OF VARIOUS DESIGN CHOICES IN SALT

In this section, we explore how various design choices pertaining to SALT affect its final performance.
Given the large cost of pre-training runs, we only conduct ablations for training 2.8B LMs with the
help of 1.5B SLM teacher.

Distillation from a better quality small model. So far we assumed that SLM is also pre-trained
for the same number of tokens as the LLM. Since training for SLM is relatively cheaper, one could
consider a scenario where one invests more compute resources in improving the small model if it
can eventually be beneficial in improving the LLM quality via SALT. Towards this, we employ a
small LM that is trained for ∼ 2.5 times longer – 498K steps vs. 208K steps in §5.2.† As evident
in Table 21, SALT is indeed able to utilize the better small model as a teacher in the KD phase to
further improve the LLM quality, as measured by the average few-shot performance.

Varying transition point. A key design choice for SALT is the selection of the transition point nKD

from KD phase (first stage) to standard training (second stage). Table 22 shows few-shot performance
of SALT as we vary the transition point. Note that SALT ensures quality gains for LLM with a
wide range of values for nKD while demonstrating an inverted U-shape for LLM quality. We see
consistent performance improvement from nKD = 0 (equivalent to BASELINE) to nKD = 60K which
eventually degrades at nKD = 208K (equivalent to RKD). Given the training overhead of KD phase
(see discussion in §5.2 and Appendix J), smaller value of nKD helps ensure training efficiency gains
via SALT. Thus, we worked with nKD = 36K in §5.2 as nKD = 60K only provides marginal quality
gains if one takes into account the increased training cost due to longer KD phase.

Different transition strategies. In our study thus far, we have worked with Step transition between
the two training stages in SALT where we abruptly stop performing KD after nKD training steps.
Looking at Figure 3, this causes an abrupt change in the model behavior during training, as observed
in the next-token prediction accuracy curve for the training set (Figure 8 in Appendix L shows a
similar behavior for log-perplexity). This raises a question if a smoother transition between the two
stages can improve the training stability and thereby ensure higher final LLM quality. While there is
a large space of potential choices of such smooth transition strategies, here we explore two natural
candidates: (1) Linear decay where we linearly decrease the distillation loss weight to 0 between
nKD,1 = 32K and nKD,2 = 36K steps; and (2) Linear ratio decay where we linearly decrease
the ratio of distillation loss weight and standard loss weight ω

1−ω to 0 between nKD,1 = 32K and
nKD,2 = 36K training steps. As recorded in Table 23, the step transition constitutes a reasonable
design choice for SALT as it outperforms both the considered alternatives in terms of average few-shot
performance of the resulting pre-trained LLM.

†This approach aligns with the recent studies (Touvron et al., 2023; Gadre et al., 2024) that train small LMs
well beyond the optimal compute budget predicted by neural scaling laws (Hoffmann et al., 2022).
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Table 21: Effect of improved SLM (comprehensive few-shot evaluation). SALT with a better
teacher – a 1.5B SLM trained for 498K steps as opposed to 208K steps – yields 2.8B LM with better
average few-shot performance. For each benchmark, the best and second best results are boldfaced
and underlined, respectively.

Domain Dataset Metric
SLM trained

for
208K steps

SLM trained
for

498K steps

SALT w/ KD from
SLM trained for

208K steps

SALT w/ KD from
SLM trained for

498K steps

W
or

ld
K

no
w

le
dg

e NaturalQuestions-Open EM 5.90 6.30 10.10 9.00
TriviaQA EM 30.09 31.74 43.71 41.61

TyDiQA-NoContext F1 22.20 23.80 27.10 26.20
WebQuestions EM 5.40 7.60 9.90 9.10

Domain average 15.90 17.36 22.70 21.48

R
ea

di
ng

C
om

pr
eh

en
si

on RACE-M Acc 52.60 54.40 58.90 57.00
RACE-H Acc 37.50 39.40 42.30 42.00

SQuADv2 EM 43.30 49.00 55.90 57.90
TyDiQA-GoldP F1 51.80 55.90 61.10 56.80

Domain average 46.30 49.67 54.55 53.43

C
om

m
on

se
ns

e
R

ea
so

ni
ng

ARC-E Acc 64.60 65.50 67.60 69.30
ARC-C Acc 32.40 34.30 38.40 39.10

HellaSwag Acc 56.00 57.80 63.30 63.20
OpenBookQA Acc 48.00 46.40 48.20 49.00

PiQA Acc 72.00 72.90 73.70 74.60
StoryCloze Acc 73.10 75.00 76.80 76.90

WinoGrande Acc 58.20 59.40 63.70 63.80
Domain average 57.76 58.76 61.67 62.27

LAMBADA Acc 26.90 37.80 48.30 47.80

Su
pe

rG
L

U
E

BoolQ Acc 63.40 61.40 62.30 65.80
CB Acc 37.50 42.90 53.60 73.20

COPA Acc 77.00 78.00 77.00 79.00
MultiRC F1 53.80 48.40 58.60 53.20

RTE Acc 55.20 52.30 58.50 61.70
ReCoRD Acc 84.80 85.50 86.90 87.10

WIC Acc 48.40 47.30 48.10 49.20
WSC Acc 72.60 72.30 77.20 79.30

Domain average 61.59 61.01 65.28 68.56

N
L

G

GEM-XLSum Rg2 2.80 3.50 4.40 4.30
GEM-XSum Rg2 2.80 3.10 5.10 5.60
WikiLingua Rg2 3.80 3.80 4.70 4.40

Domain average 3.13 3.47 4.73 4.77

MBPP Acc 9.60 12.80 17.00 17.40

Average (28 tasks) 42.56 43.88 47.94 48.70
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Table 22: Effect of varying transitions step (comprehensive few-shot evaluation). While training
a 2.8B LM with the aid of a 1.5B SLM, the performance improvement via SALT over BASELINE
is stable in a wide range of nKD (20k to 60k steps). Eventually, with much larger nKD, SALT
performance degrades significantly (208k steps). For each benchmark, the best and second best
results are boldfaced and underlined, respectively.

Domain Dataset Metric SLM BASELINE
SALT w/

nKD = 20K
SALT w/

nKD = 36K
SALT w/

nKD = 60K

SALT w/
nKD = 208K

(RKD)

W
or

ld
K

no
w

le
dg

e NaturalQuestions-Open EM 5.90 8.70 8.90 10.10 9.30 6.70
TriviaQA EM 30.09 43.15 41.52 43.71 42.84 34.87

TyDiQA-NoContext F1 22.20 28.20 26.40 27.10 26.60 26.10
WebQuestions EM 5.40 8.70 8.20 9.90 8.60 7.10

Domain average 15.90 22.19 21.26 22.70 21.83 18.69

R
ea

di
ng

C
om

pr
eh

en
si

on RACE-M Acc 52.60 57.00 58.70 58.90 58.60 54.00
RACE-H Acc 37.50 42.30 41.00 42.30 42.10 39.70

SQuADv2 EM 43.30 54.80 55.30 55.90 55.50 50.90
TyDiQA-GoldP F1 51.80 57.90 56.50 61.10 59.30 59.40

Domain average 46.30 53.00 52.88 54.55 53.88 51.00

C
om

m
on

se
ns

e
R

ea
so

ni
ng

ARC-E Acc 64.60 68.40 67.80 67.60 68.40 66.00
ARC-C Acc 32.40 37.10 38.10 38.40 38.70 33.70

HellaSwag Acc 56.00 62.80 62.80 63.30 62.90 56.20
OpenBookQA Acc 48.00 50.00 48.00 48.20 48.20 45.80

PiQA Acc 72.00 75.40 75.40 73.70 74.40 72.60
StoryCloze Acc 73.10 77.20 76.90 76.80 76.50 73.70

WinoGrande Acc 58.20 63.00 63.40 63.70 62.00 60.10
Domain average 57.76 61.99 61.77 61.67 61.59 58.30

LAMBADA Acc 26.90 36.20 44.70 48.30 53.30 31.10

Su
pe

rG
L

U
E

BoolQ Acc 63.40 64.30 63.90 62.30 63.80 62.50
CB Acc 37.50 58.90 60.70 53.60 55.40 50.00

COPA Acc 77.00 79.00 76.00 77.00 77.00 71.00
MultiRC F1 53.80 54.20 53.80 58.60 55.20 53.50

RTE Acc 55.20 55.60 52.30 58.50 59.90 59.90
ReCoRD Acc 84.80 87.10 86.90 86.90 86.70 85.20

WIC Acc 48.40 47.20 51.30 48.10 50.00 47.20
WSC Acc 72.60 77.90 77.50 77.20 77.90 74.00

Domain average 61.59 65.53 65.30 65.28 65.74 62.91

N
L

G

GEM-XLSum Rg2 2.80 4.10 4.50 4.40 4.70 3.40
GEM-XSum Rg2 2.80 5.10 5.80 5.10 4.80 3.20
WikiLingua Rg2 3.80 4.60 4.30 4.70 4.60 3.60

Domain average 3.13 4.60 4.87 4.73 4.70 3.40

MBPP Acc 9.60 16.20 16.60 17.00 16.40 11.40

Average (28 tasks) 42.56 47.32 47.40 47.94 47.99 44.39
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Table 23: Effect of different transition strategies (comprehensive few-shot evaluation). While
training a 2.8B LM with the aid of a 1.5B SLM, the Step transition used in this work (cf. Algorithm 1)
performs well compared to two natural alternative strategies, namely Linear decay and Linear
ratio decay. For each benchmark, the best and second best results are boldfaced and underlined,
respectively.

Domain Dataset Metric SLM BASELINE SALT w/ SALT w/ SALT w/
Step Linear decay Linear ratio decay

W
or

ld
K

no
w

le
dg

e NaturalQuestions-Open EM 5.90 8.70 10.10 8.20 8.10
TriviaQA EM 30.09 43.15 43.71 43.46 43.51

TyDiQA-NoContext F1 22.20 28.20 27.10 28.40 27.20
WebQuestions EM 5.40 8.70 9.90 8.20 8.40

Domain average 15.90 22.19 22.70 22.07 21.80

R
ea

di
ng

C
om

pr
eh

en
si

on RACE-M Acc 52.60 57.00 58.90 57.90 57.40
RACE-H Acc 37.50 42.30 42.30 42.10 43.50

SQuADv2 EM 43.30 54.80 55.90 56.40 57.10
TyDiQA-GoldP F1 51.80 57.90 61.10 58.30 57.80

Domain average 46.30 53.00 54.55 53.68 53.95

C
om

m
on

se
ns

e
R

ea
so

ni
ng

ARC-E Acc 64.60 68.40 67.60 68.60 68.70
ARC-C Acc 32.40 37.10 38.40 38.60 39.80

HellaSwag Acc 56.00 62.80 63.30 63.30 63.50
OpenBookQA Acc 48.00 50.00 48.20 48.00 47.40

PiQA Acc 72.00 75.40 73.70 74.60 73.90
StoryCloze Acc 73.10 77.20 76.80 76.60 76.50

WinoGrande Acc 58.20 63.00 63.70 62.70 63.10
Domain average 57.76 61.99 61.67 61.77 61.84

LAMBADA Acc 26.90 36.20 48.30 40.50 42.60

Su
pe

rG
L

U
E

BoolQ Acc 63.40 64.30 62.30 67.90 66.50
CB Acc 37.50 58.90 53.60 44.60 46.40

COPA Acc 77.00 79.00 77.00 79.00 81.00
MultiRC F1 53.80 54.20 58.60 53.90 61.60

RTE Acc 55.20 55.60 58.50 56.30 55.20
ReCoRD Acc 84.80 87.10 86.90 87.00 87.30

WIC Acc 48.40 47.20 48.10 46.60 50.50
WSC Acc 72.60 77.90 77.20 78.60 78.90

Domain average 61.59 65.53 65.28 64.24 65.92

N
L

G

GEM-XLSum Rg2 2.80 4.10 4.40 4.70 4.50
GEM-XSum Rg2 2.80 5.10 5.10 4.60 5.10
WikiLingua Rg2 3.80 4.60 4.70 4.80 4.60

Domain average 3.13 4.60 4.73 4.70 4.73

MBPP Acc 9.60 16.20 17.00 15.20 17.00

Average (28 tasks) 42.56 47.32 47.94 47.11 47.75
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L LOG PERPLEXITY OF THE MODELS

For pre-training 2.8B LM, Figure 8 shows the log perplexity of the SALT and RKD pre-trained models
along with BASELINE as the training progresses. We also provide the evolution of the log-perplexity
of SLM during its training. Note that the log perplexity for RKD stays at a higher level than even SLM.
Recall that RKD optimizes a sum of two losses – KD loss with weight ω = 0.667 and the standard
one-hot training loss with weight 1− ω.
Remark L.1. As the training log perplexity plotted in Figure 8 is the same as the standard hot
training loss, the methods which directly optimize for that alone (BASELINE, SLM and in the second
stage, SALT) have lower log perplexity on training set than RKD which optimizes additionally for
distillation loss.

0 50K 100K 150K 200K
Step

1.8

1.9

2.0

2.1

2.2

2.3
L
og
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p
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ty

SLM

Baseline

RKD

SALT

Figure 8: Log perplexity for different 2.8B LMs during their pre-training, as measured on a subset of
the Pile training set. We also showcase the log-perplexity for 1.5B SLM (as its training progresses),
which is utilized by SALT and RKD as a teacher.
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M ADDITIONAL RESULTS: LEARNING EASY VS. HARD INSTANCE VIA SALT

Creation of different hardness buckets. For each evaluation benchmark, we first assign a relative
rank to each test instance/example in the benchmark, representing its degree of difficulty. A test
example with the lowest rank (easiest) is the one on which the small teacher LM achieves the largest
task evaluation score, e.g., Rouge-2 metric for the XLSum task. Similarly, subsequent test examples
are assigned ranks in descending order of the task evaluation score achieved by the small teacher
LM. If two examples have the same evaluation score, the one with higher confidence score from the
teacher (on its generated output) is deemed to have a lower rank. Each test example is assigned to
one of the three buckets: ‘easy‘, ‘medium‘, or ‘hard‘, according to whether its difficulty rank is in the
first, second, or third tertile, respectively.

Description of BASELINEEZ. Recall that SALT aims to implicitly utilize small teacher LM provided
supervision on the easy regions of the data distribution. To highlight the value of leveraging the
teacher-provided supervision on these regions, we consider a natural baseline, namely BASELINEEZ,
that explicitly train on only easy training instance during the early phase of pre-training without KD.
In particular, while pre-training of 2.8B LM, BASELINEEZ consists of two stages: 1) Stage 1 (first
36K steps) trains on only easy instances without KD; and 2) Stage 2 (last 172K steps) performs
standard pre-training. For Stage 1, we select easy instances as follows. Each sequence x in the Pile
dataset is assigned a score equal to the fraction of times the ground truth token is in top-k predictions
of the selection model ζn0 :

Sζn0
,k(x) = mean

(
1
{
xt ∈ argtopk(Pζn0

(·|x<t)); t ∈ [T ]
})

(70)

Then we select the top-40% sequences based on this score. As per the above selection criterion, a
sequence is more likely to be selected for Stage 1 if a selection model finds it easy to predict most of
the tokens in the sequence. The selection model ζn0 is an early checkpoint of 1.5B SLM, similar to
SALTDS (cf. § 5.1).

Additional results. In Tables 24, 25 and 26, we report the results for SQuAD-v2, TriviaQA and
LAMBADA respectively, sliced by difficulty level. Note that we focus on the 2.8B parameter LMs,
with a 1.5B LM serving as the SLM teacher for SALT and RKD. See § 5.4 for the discussion on the
key takeaways.

Table 24: Few-shot evaluation on different buckets of SQuAD-v2 for 2.8B LMs. Each number
shows average Exact Match scores on the corresponding bucket. We use gray , green , and red to
highlight the results similar to, better than, and worse than BASELINE performance, respectively.

Evaluation stage (steps) Easy Medium Hard
SLM Final (208K) 1.00 0.30 0.00

BASELINE
Early (36K)

0.86 0.41 0.23
BASELINEEZ 0.72 0.30 0.13
RKD 0.86 0.37 0.17
SALT 0.86 0.37 0.17

BASELINE
Final (208K)

0.89 0.47 0.28
BASELINEEZ 0.86 0.43 0.23
RKD 0.91 0.42 0.20
SALT 0.89 0.50 0.29
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Table 25: Few-shot evaluation on different buckets of TriviaQA for 2.8B LMs. Each number
shows average Exact Match scores on the corresponding bucket. We use gray , green , and red to
highlight the results similar to, better than, and worse than BASELINE performance, respectively.

Evaluation stage (steps) Easy Medium Hard
SLM Final (208K) 0.90 0.00 0.00

BASELINE
Early (36K)

0.63 0.11 0.08
BASELINEEZ 0.28 0.11 0.05
RKD 0.67 0.10 0.06
SALT 0.67 0.10 0.06

BASELINE
Final (208K)

0.80 0.28 0.22
BASELINEEZ 0.80 0.26 0.17
RKD 0.79 0.14 0.11
SALT 0.81 0.27 0.23

Table 26: Few-shot evaluation on different buckets of LAMBADA for 2.8B LMs. Each number
shows average Accuracy on the corresponding bucket. We use gray , green , and red to highlight
the results similar to, better than, and worse than BASELINE performance, respectively.

Evaluation stage (steps) Easy Medium Hard
SLM Final (208K) 0.87 0.00 0.00

BASELINE
Early (36K)

0.47 0.12 0.12
BASELINEEZ 0.31 0.08 0.07
RKD 0.56 0.11 0.12
SALT 0.56 0.11 0.12

BASELINE
Final (208K)

0.70 0.29 0.28
BASELINEEZ 0.71 0.29 0.27
RKD 0.65 0.17 0.17
SALT 0.78 0.38 0.36

Table 27: Domain-wise few-shot performance of 2.8B pre-trained LMs. This table is an expansion
of Table 2 as it also includes the performance of a 2.8B LM trained via BASELINEEZ. Notably,
BASELINEEZ leads to significantly poorer performance even compared to BASELINE. In contrast,
using a 1.5B SLM as a teacher in the KD phase, SALT and SALTDS already outperform BASELINE
in terms of average few-shot performance at 70% of the training step budget, thereby improving both
training efficiency and model quality. RKD (i.e., naïvely distilling from the 1.5B SLM throughout
pre-training) performs much worse than BASELINE. The (second-)best results for each domain are
(underlined) boldfaced.

Domain (# Tasks) SLM BASELINE BASELINEEZ RKD SALT SALTDS

@100% @100% @100% @70% @100% @70% @100%
steps steps steps steps steps steps steps

World Knowledge (4) 15.90 22.19 19.19 18.69 21.59 22.70 20.64 21.72
Reading Comprehension (4) 46.30 53.00 51.38 51.00 53.55 54.55 54.35 54.93
Commonsense Reasoning (7) 57.76 61.99 60.64 58.30 61.27 61.67 62.00 62.10
LAMBADA (1) 26.90 36.20 40.40 31.10 50.70 48.30 48.00 53.00
SuperGLUE (8) 61.59 65.53 64.20 62.91 66.30 65.28 65.99 65.58
NLG (3) 3.13 4.60 4.47 3.40 4.63 4.73 4.80 4.83
MBPP (1) 9.60 16.20 13.40 11.40 15.60 17.00 16.60 17.80
Average (28) 42.56 47.32 45.98 44.39 47.86 47.94 47.89 48.26
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