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ABSTRACT

The assumption of Gaussian or Gaussian mixture data has been extensively ex-
ploited in a long series of precise performance analyses of machine learning (ML)
methods, on large datasets having comparably numerous samples and features. To
relax this restrictive assumption, subsequent efforts have been devoted to establish
“Gaussian equivalent principles” by studying scenarios of Gaussian universality
where the asymptotic performance of ML methods on non-Gaussian data remains
unchanged when replaced with Gaussian data having the same mean and covari-
ance. Beyond the realm of Gaussian universality, there are few exact results on
how the data distribution affects the learning performance.
In this article, we provide a precise high-dimensional characterization of empirical
risk minimization, for classification under a general mixture data setting of linear
factor models that extends Gaussian mixtures. The Gaussian universality is shown
to break down under this setting, in the sense that the asymptotic learning perfor-
mance depends on the data distribution beyond the class means and covariances.
To clarify the limitations of Gaussian universality in classification of mixture data
and to understand the impact of its breakdown, we specify conditions for Gaussian
universality and discuss their implications for the choice of loss function.

1 INTRODUCTION

Modern machine learning (ML) is dealing with increasingly larger datasets having high-dimensional
features, using large-scale models of increasing complexity. Understanding the generalization ability
of these large-scale ML models has become a major focus of research efforts (Bartlett et al., 2020;
Loog et al., 2020; Nakkiran et al., 2021). One analysis approach of growing popularity is the high-
dimensional asymptotic analysis (Liao & Couillet, 2019; Taheri et al., 2021a; Celentano & Montanari,
2022; Hastie et al., 2022; Loureiro et al., 2022; Celentano et al., 2023), by considering the regime
where the number n of samples and the dimension p of feature vectors are commensurately large.
Despite its asymptotic nature, this approach turns out to be surprisingly effective in explaining and
predicting modern ML practice: the asymptotic performance curves are repetitively observed to
closely match the average empirical performance curves on realistic datasets of only moderate size
and dimension (Couillet & Liao, 2022), and are particularly different from those offered by, e.g.,
classical maximum likelihood theory (Bean et al., 2013; Sur & Candès, 2019; Taheri et al., 2021b).

To analytically characterize the generalization performance of large-scale ML models in the afore-
mentioned high-dimensional regime, advanced statistical tools such as the approximate message pass-
ing (Donoho & Montanari, 2016; Barbier et al., 2019), convex Gaussian min-max theorem (Thram-
poulidis et al., 2018; Salehi et al., 2019; Deng et al., 2022; Javanmard & Soltanolkotabi, 2022),
replica method (Huang, 2017; Gerace et al., 2020; Maillard et al., 2020), and random matrix theory
(RMT) (Couillet & Liao, 2022; Mai et al., 2019; Mai & Couillet, 2021) have been carefully adapted
to take nonlinear ML models into account. As these tools apply directly on Gaussian data, a majority
of high-dimensional asymptotic analyses are performed under Gaussian data models in the context of
regression (El Karoui et al., 2013; Donoho & Montanari, 2016; Taheri et al., 2021a; Celentano &
Montanari, 2022) or Gaussian mixture models (GMMs) in the context of classification (Mignacco
et al., 2020; Thrampoulidis et al., 2020; Refinetti et al., 2021).

Despite this seemingly restrictive assumption of data Gaussianity, the derived high-dimensional
asymptotic results have been empirically observed to remain valid on non-Gaussian data, including
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both synthetic non-Gaussian data and samples drawn from realistic (say image) datasets (Sur &
Candès, 2019; Loureiro et al., 2021; Taheri et al., 2021b), hinting at a phenomenon of Gaussian
universality. This motivated a series of recent works establishing, through, e.g., an one-directional
central limit theorem (CLT) argument, a Gaussian equivalent principal (GEP) for high-dimensional
ML models ranging from generalized linear models to shallow neural networks (Gerace et al.,
2020; Goldt et al., 2022; Hu & Lu, 2022; Montanari & Saeed, 2022; Schröder et al., 2023; Han
& Shen, 2023). According to the GEP, the performance of ML methods on non-Gaussian data
is asymptotically the same under an equivalent Gaussian model with matching first and second
order moments. Assuming a conditional one-directional CLT, Dandi et al. (2024) put forward a
conditional Gaussian equivalent principle (CGEP) stating that the asymptotic classification error
for non-Gaussian mixtures remains unchanged when replaced by a Gaussian mixture model with
identical class-conditional means and covariances. This contribution however did not specify the
conditions required on the mixture data model for this conditional one-directional CLT to hold.

This work is driven by the need to investigate the applicability of CGEP under mixture models
and to characterize the impact of non-Gaussian data variations when the CGEP does not apply.
By considering a more general mixture model (see Definition 1) where classes are described by
linear factor models – a fundamental probabilistic framework in statistical inference and generative
models (Goodfellow et al., 2016, Chapter 13), our analysis extends a long line of high-dimensional
asymptotic performance analyses in classification of Gaussian mixtures (Dobriban & Wager, 2018;
Huang, 2017; Liao & Couillet, 2019; Mai & Liao, 2019; Huang & Yang, 2021; Kammoun & Alouini,
2021; Wang & Thrampoulidis, 2021; Pesce et al., 2023). We discuss the validity of CGEP under this
linear factor mixture model and specify its conditions. On a technical level, we develop a flexible
“leave-one-out” analysis approach, in a similar spirit to the analysis of robust linear regression by
El Karoui et al. (2013). The elementary nature of this leave-one-out procedure allows us to extend
the approach of high-dimensional asymptotic analysis beyond the realm of Gaussian universality.

Our Contributions. The main findings of this paper are summarized below.

1. We provide in Theorem 1 an asymptotic characterization of ridge-regularized empirical risk
minimization (ERM) for classification on data drawn from a linear factor mixture model
(LFMM, see Definition 1 below, that generalizes the GMM). This precise characterization
gives access to the asymptotic performance on mixture data beyond Gaussian universality.

2. Based on the proposed analysis, we study Gaussian universality in the sense of CGEP
and provide conditions on LFMM under which the data distribution affects the asymptotic
learning behavior via its first two class-conditional moments.

• We first discuss in Section 5.1 the Gaussian universality on in-distribution performance
and conclude in Corollary 2 that the training and generalization performances of ERM
under a given LFMM remain unchanged under its equivalent GMM (with identical
class means and covariances, see Definition 2), if all informative factors of the LFMM
significantly correlated with the class label are class-conditional normal variables.

• We then investigate in Section 5.2 the Gaussian universality of classifier (see Defini-
tion 3) and conclude in Corollary 3 that on a given test set (of arbitrary distribution),
the ERM classifier trained on data drawn from an LFMM gives the same asymptotic
classification error as the one trained on its equivalent GMM, whenever the square loss
is used and/or in the case of class-conditional Gaussian informative factors for LFMM.

3. While it has been known that for high-dimensional GMM, the square loss is optimal in
unregularized (Taheri et al., 2021b) or ridge-regularized (Mai & Liao, 2019) classification, it
is no longer the case under the general LFMM due to the breakdown of Gaussian universality.
We discuss in Section 5.2 how the suboptimality of square loss under LFMM is related to its
particular effect on the Gaussian universality of the ERM classifier. Our analysis thus opens
the door to future investigation on the optimal loss design for non-Gaussian data.

2 BACKGROUND ON GAUSSIAN UNIVERSALITY IN HIGH DIMENSIONS

The Gaussian universality phenomenon was observed in many high-dimensional inference or ML
problems, where some key statistics such as estimation error or classification accuracy exhibit
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universal behaviors independent of the data distribution. This phenomenon was extensively exploited
to relax the data Gaussianity assumption that underlined many results in high-dimensional statistics,
through a universality argument often established with two key ingredients - the law of large numbers
(LLN) and the central limit theorem (CLT). Here we briefly review previous findings on Gaussian
universality in the high-dimensional regime.

Universality of large sample covariance matrices. It has been long known in RMT that the
eigenspectra of large random matrices enjoy universal properties for Gaussian and non-Gaussian
entries (Tao et al., 2010; Pastur & Shcherbina, 2011). Fundamentally, Marchenko & Pastur (1967)
put forward that for sample covariance matrices of the type 1

n

∑n
i=1 xix

T
i ∈ Rp×p obtained from n

i.i.d. data vectors xi of dimension p, the universality on the limiting eigenvalue distribution hinges on
the concentration of quadratic forms of xi around their expectations

limn,p→∞(xT
i Mxi − E[xT

i Mxi])/E[xT
i Mxi] = 0, (1)

for deterministic M ∈ Rp×p. This LLN-type result holds for a wide family of high-dimensional
random vectors xi. An important example studied in (Bai & Silverstein, 2008) is xi = Σ

1
2 zi with zi

of i.i.d. standardized entries with bounded fourth moments and non-negative definite symmetric Σ.

Universality of empirical risk minimization. In line with the universal behavior of large sample
covariance matrices, it has been recently demonstrated in a series of works (Gerace et al., 2020; Goldt
et al., 2022; Hu & Lu, 2022; Montanari & Saeed, 2022; Schröder et al., 2023) that random (and
deterministic under certain conditions) feature maps can produce feature matrices that, when replaced
by “equivalent” Gaussian features with the same first and second moments, yield the same training
or/and generalization performance for many ML methods. This Gaussian equivalent principle (GEP)
has also been proven for data vectors of independent entries in the context of regularized regression
(Montanari & Nguyen, 2017; Panahi & Hassibi, 2017; Han & Shen, 2023).

In the context of ERM, the GEP traced back to a CLT on the inner product xTβ for feature vector
x ∈ Rp independent of classifier β living in a subspace B ⊂ Rp containing the ERM solution β̂:

limn,p→∞ supβ∈B
(
E[f(xTβ)]− E[f(gTβ)]

)
= 0, (2)

with g ∼ N (E[x],Cov[x]) being the “equivalent” Gaussian vector, for any bounded Lipschitz
function f : R → R. The one-directional CLT in (2) requires the ERM solution β̂ to not particularly
aligned with any non-Gaussian variation in the feature vector x, in order to ensure the asymptotic
normality of xTβ per a CLT-type argument.

Universality of empirical risk minimization on mixture data. Inspired by the findings of GEP in
ERM, Dandi et al. (2024) demonstrated the Gaussian universality for mixture models under a key
assumption that is a conditional version of (2):

limn,p→∞ supβ∈B

(
E
[
f(xTβ)|yx = C

]
− E

[
f
(
gT
[C]β

)])
= 0, (3)

where yx is the class label of x , C a class modality, and g[C] ∼ N (E[x|yx = C],Cov[x|yx = C]).
Under this conditional one-directional CLT in (3), Dandi et al. (2024) showed that the asymptotic
training and generalization errors only depend on the class-conditional means and covariances of the
mixture model, obeying thus a conditional Gaussian equivalent principle (CGEP).

For a given mixture distribution, it is however far from evident to check whether the condition in
(3) is verified. Proving the CGEP is simpler when it is reduced to the GEP in scenarios where
the mixture structure is irrelevant to the ML task. For classification with random labels yx ∼
Unif({−1, 1}) generated independently of x, Gerace et al. (2024) proved that the training loss on
GMM is asymptotically equal to that on a single Gaussian. Pesce et al. (2023) considered a teacher-
student model and showed that when the target label y is generated by a teacher model uncorrelated
with cluster means, the same asymptotic performance can be obtained by replacing a homoscedastic
(i.e., having identical covariance) Gaussian mixture with a single Gaussian.

Universality under elliptical distributions. For “elliptic-like” data vectors of form x = aMu
with a ∈ R a random scaling variable, M ∈ Rp×d a deterministic matrix and u ∈ Rd a vector of
standardized variables satisfying the concentration of quadratic forms in (1) (e.g., u ∼ N (0d, Id)),
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El Karoui (2009) revealed a universal limiting spectrum for the sample covariance matrix that is
insensitive to the distribution of u but depends on the scaling variable a.

Due to the existence of the scaling variable a, one should consider the CGEP, rather than the GEP,
for elliptically distributed x, as the one-directional CLT in (2) can not hold unless when conditioned
on a. This remark was confirmed by the findings of El Karoui (2018); Adomaityte et al. (2024).
For M = Ip and u of i.i.d. entries, El Karoui (2018) characterized the asymptotic error of ridge-
regularized regression, which is universal with respect to the distribution of u but not a. In other
words, the GEP collapses while the CGEP can still apply in this setting. Adomaityte et al. (2024)
considered a mixture model x ∼ N (yµ, aIp) with label y = ±1 and random scaling factor a, under
which the asymptotic classification error is non-universal with respect to the distribution of a. Here,
we show that Gaussian universality may breakdown even in the absence of such scaling factor, with
the proposed “leave-one-out” analysis.

3 PROBLEM SETUP

For a set of n training samples {(xi, yi)}ni=1 with feature vectors xi ∈ Rp and binary labels
yi ∈ {±1}, a classifier is trained by minimizing the following ridge-regularized empirical risk:

β̂ℓ,λ = argminβ∈Rp
1
n

∑n
i=1 ℓ(x

T
i β, yi) +

λ
2 ∥β∥

2, (4)

for some non-negative loss function ℓ : R× {±1} → R+ that evaluates the difference between the
classification score ŷi = βTxi and the corresponding ground-truth label yi. Data instances x with
negative scores βTx will be assigned to the class of label y = −1, and those with positive scores to
the class annotated by y = 1. The addition of the l2 regularization term with λ > 0 can improve the
generalization through a better bias-variance trade-off, and also ensures the uniqueness of the solution
β̂ℓ,λ in the over-parametrized regime where the feature dimension p is greater than the sample size n.

In this paper, we consider convex and continuously differentiable loss functions.
Assumption 1 (Loss function). The function ℓ(·, y) : R → R+ in (4) is convex and continuously
differentiable with its derivative different from 0 at the origin. Its second and third derivatives exist
and are bounded, except on a finite set of points.

Assumption 1 holds for the logistic loss ℓ(ŷ, y) = − ln(1/(1 + e−yŷ)) used in logistic regression,
the square loss ℓ(ŷ, y) = (y − ŷ)2/2 for least-squares classifier, and the square hinge loss ℓ(ŷ, y) =
max{0, 1 − yŷ}2. Non-smooth losses such as the hinge loss ℓ(ŷ, y) = max{0, 1 − yŷ} used in
SVMs (Schölkopf & Smola, 2018), and the absolute loss ℓ(ŷ, y) = |ŷ−y|, fail to meet Assumption 1.1

In the following, we focus on the ERM in (4), and use the shorthand notation β̂ for β̂ℓ,λ in (4) unless
there is a risk of confusion. We consider the following linear factor mixture model.
Definition 1 (Linear factor mixture model, LFMM). We say that a data instance (x, y) ∼ D(x,y) with
class label y ∈ {±1} and class priors Pr(y = −1) = ρ, Pr(y = 1) = 1− ρ, follows a linear factor
mixture model if the corresponding feature vector x ∈ Rp can be expressed as a linear mapping of p
independent factors z1, . . . , zp as

x =
∑p

k=1 zkvk =
∑p

k=1(ysk + ek)vk, (5)

for linearly independent deterministic vectors v1, . . . ,vp ∈ Rp and standardized independent 2

noises e1, . . . , ep ∈ R of symmetric distribution. Among the p factors z1, . . . , zp, we have

• q informative factors z1, . . . , zq with deterministic signals sk > 0, ∀k ∈ {1, . . . , q}; and

• p− q noise factors zq+1, . . . , zp with sk = 0, ∀k ∈ {q + 1, . . . , p}.

Note that (5) can be compactly written as x = Vz, with V = [v1, . . . ,vp] ∈ Rp×p and z =
[z1, . . . , zp]

T = [ys1 + e1, . . . , ysq + eq, eq+1, . . . , ep]
T ∈ Rp. The class-conditional means and

1A workaround would be to study instead a series of smooth functions that gradually approach these non-
smooth functions, so as to retrieve their performance in some carefully taken limit. Such consideration is
however beyond the focus of this paper.

2In other words, E[ek] = 0, Var[ek] = 1, ∀k ∈ {1, . . . , p}.
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covariances of x are therefore given as

µ ≡ E[x|y = 1] =
∑q

k=1 skvk ∈ Rp, E[x|y = −1] = −µ, (6)

Σ ≡ Cov[x|y = ±1] = VVT =
∑p

k=1 vkv
T
k ∈ Rp×p. (7)

Notice that GMM of form x ∼ N (yµ,Σ) is a special case of LFMM in Definition 1 with exclusively
Gaussian noises e1, . . . , ep. See also Definition 2 below for the associated equivalent GMM.

Linear factor models are among the most basic probabilistic models with latent variables, which
underlie many ML methods such as PCA and ICA, and serve as building blocks of deep generative
models (Goodfellow et al., 2016, Chapter 13). They are often expressed in the following form:

x = Wh+ b+ noise,

where h is a vector of latent variables, b a constant bias, and noise stands for an uninformative term
of independent Gaussian noises. The LFMM in Definition 1 can be related to this form minus the
bias b. Our framework requires the clusters to have opposite means (therefore b = 0p), which can
be satisfied through a centering operation on the original data space.

Our analysis applies under the following assumption on the distribution of LFMM.
Assumption 2 (Distribution of LFMM). We consider, for the LFMM in Definition 1, that (i) the
factors z1, . . . , zp have bounded fourth moments and (ii) the signal subspace Span{v1, . . . ,vq} is
orthogonal to the noise subspace Span{vq+1, . . . ,vp}.

The condition of bounded fourth moment for z1, . . . , zp in Item (i) of Assumption 2 is required
for some concentration results in our high-dimensional asymptotic analysis and Item (ii) separates
the informative signal subspace from the noise subspace (in which no classifier can achieve better
performance than random guess).

We position ourselves under the following high-dimensional asymptotic setting, where the feature
dimension p and sample size n are both large and comparable.
Assumption 3 (High-dimensional regime). As n → ∞ with fixed n/p ∈ (0,∞), we have, for the
LFMM in Definition 1 that (i) ∥µ∥, ∥Σ∥, ∥Σ−1∥ = Θ(1) and (ii) s1, . . . , sq = Θ(1) with fixed q.

In plain words, Assumption 3 says that the ratio n/p, or the number of samples per dimension, remains
finite in high dimensions. Item (i) of Assumption 3 ensures, by bounding ∥µ∥ and ∥µ∥−1, that the
distance between the LFMM class centers is comparable to 1. It also guarantees, by controlling
∥Σ∥ and ∥Σ−1∥, that the variation of feature vector x on any direction in Rp is also comparable
to 1. This implies that the feature vector x does not live in a subspace of smaller dimension than
p. The fixed number q of informative factors in Item (ii) of Assumption 3 is a consequence of
∥µ∥ = ∥

∑q
k=1 skvk∥ = Θ(1).

4 HIGH-DIMENSIONAL ASYMPTOTIC PERFORMANCE UNDER LFMM

In this section, we present a self-consistent system of equations that gives access to the high-
dimensional training and generalization performances of the ERM classifier in (4), under the LFMM
in Definition 1. The characterization of high-dimensional asymptotic performance via a system
of equations is reminiscent of previous analyses under GMM (Mai & Liao, 2019; Mignacco et al.,
2020; Pesce et al., 2023), but our equations are different due to the collapse of the conditional
one-dimensional CLT in (3) required for applying the CGEP.

Before presenting our system of equations, let us introduce first some mathematical objects involved
in these equations. With the proximal operator proxτ,f (t) = argmina∈R

[
f(a) + 1

2τ (a− t)2
]

for
τ > 0 and convex f : R → R, we define the mapping

hκ(t, y) = (proxκ,ℓ(·,y)(t)− t)/κ, (8)

for some constant κ > 0. Let r ∈ R be a random variable of form

r = ym+ σẽ+
∑q

k=1 ψkek, (9)

for constants m,σ, ψ1, . . . , ψq, with label y and e1, . . . , eq the corresponding noise variables in the
informative factors z1, . . . , zq of the LFMM in Definition 1, as well as ẽ ∼ N (0, 1) independent of
y, z1, . . . , zq . Remark that the distribution of r is parameterized by m,σ2, ψ1, . . . , ψq .
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Self-consistent system of equations. Our system of equations is on the q+3 deterministic constants
θ, η, γ, ω1, . . . , ωq that fully characterize the asymptotic performance of ERM classifier trained on
high-dimensional LFMM3:

θ = −E
[
∂hκ(r, y)

∂r

]
, η = E[yhκ(r, y)], γ =

√
E[h2κ(r, y)],

ωk = E[hκ(r, y)ek] + θ · vT
kQξ, ∀k ∈ {1, . . . , q}, (10)

where
ξ = ηµ+

∑q
k=1 ωkvk, Q = (λIp + θΣ)

−1
, (11)

the mapping hκ(r, y) is as defined in (8) for
κ = 1

n trΣQ, (12)
and the random variable r as defined in (9) with

m = µTQξ, σ2 = γ2

n tr (QΣ)
2
, ψk = vT

kQξ, ∀k ∈ {1, . . . , q}. (13)

We are now ready to present our Theorem 1 on the asymptotic distributions of in-sample and
out-of-sample predicted scores. The proof of Theorem 1 is provided in Appendix A.1.

Theorem 1 (Asymptotic distribution of predicted scores). Let Assumptions 1, 2, and 3 hold, for β̂
solution to the ERM problem in (4) on a training set {(xi, yi)}ni=1 of size n drawn i.i.d. (xi, yi) ∼
D(x,y) from the LFMM in Definition 1, we have that, for any bounded Lipschitz function f : R → R,

E
[
f(β̂Tν)

]
− E

[
f(β̃Tν)

]
→ 0, (14)

for any deterministic feature vector ν ∈ Rp, and

E[f(β̂Txi)]− E[f(proxκ,ℓ(·,yi)(β̃
Txi))] → 0, ∀i ∈ {1, . . . , n}, (15)

where
β̃ = (λIp + θΣ)

−1
(
ηµ+

∑q
k=1 ωkvk + γΣ

1
2u
)
, (16)

for Gaussian vector u ∼ N (0p, Ip/n) independent of {(xi, yi)}ni=1 and constants θ, η, γ, ω1, . . . , ωq

determined by the self-consistent system of equations in (10), with κ given in (12).

According to (14) in Theorem 1, for a fresh test sample (x′, y′) (which might be drawn from a distri-
bution different from D(x,y) of training samples, as in the case of transfer learning), the out-of-sample
predicted scores β̂Tx′, β̃Tx′ produced by the ERM classifier β̂ and its high-dimensional “equivalent”
β̃ given in (16) have asymptotically the same distribution in the sense of (14). Furthermore, (15) tells
us that the in-sample predicted score β̂Txi of β̂ on a training sample (xi, yi) follows asymptotically
the same distribution as proxκ,ℓ(·,yi)(β̃

Txi). Since the distribution of β̃ is given in (16), we obtain
directly from Theorem 1 the asymptotic training and generalization errors of the ERM classifier β̂.

Furthermore, it follows from LLN and CLT that (β̃Tx, y) with (x, y) ∼ D(x,y) independent of β̃
converges in distribution to (r, y) with r as defined in (9) with m,σ2, ψ1, . . . , ψq given in (13). We
thus obtain the following corollary on the asymptotic classification accuracy of β̂ on any training
sample (xi, yi) and test sample (x′, y′) drawn from the same distribution D(x,y). The proof of
Corollary 1 is deferred to Appendix A.2.1.
Corollary 1 (Asymptotic generalization and training performances). Under the conditions and
notations of Theorem 1, we have that, for any bounded Lipschitz function f : R → R,

E
[
f(β̃Tx)|y

]
− E

[
f(r)|y

]
→ 0, (17)

for (x, y) ∼ D(x,y) independent of β̃, where r is as defined in (9) with m,σ2, ψ1, . . . , ψq given in
(13). Consequently, we have

Pr(y′β̂Tx′ > 0)− Pr(yr > 0) → 0, (18)
for some test sample (x′, y′) ∼ D(x,y) independent of {(xi, yi)}ni=1, and

Pr(yiβ̂
Txi > 0)− Pr(y proxκ,ℓ(·,y)(r) > 0) → 0, ∀i ∈ {1, . . . , n}. (19)

3According to Assumption 1, ∂h(r,y)
∂r

exists except on a finite set of points. On those points, we use the left
derivative of h(r, y) with respect r, i.e., limt→r− (h(t, y)− h(r, y)) /(t− r).
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Remark 1 (On classifier bias under GMM and LFMM). Taking expectation on both sides of (16), we
get E[β̃] = (λIp + θΣ)

−1
(ηµ+

∑q
k=1 ωkvk). It follows from (10) and Stein’s lemma (Ingersoll,

1987) that ω1, . . . , ωq = 0 in the case of Gaussian informative factors z1, . . . , zq. As GMM is a
special case of LFMM with exclusively Gaussian (informative and noise) factors, we have that β̃
aligns, in expectation, with (λIp + θΣ)

−1
µ under GMM. For non-Gaussian informative factors, we

generally have non-zero ω1, . . . , ωq that account for the non-Gaussian variation in data, making β̂
more or less aligned with the directions v1, . . . ,vq of the informative factors.

5 CONDITIONS AND IMPLICATIONS OF GAUSSIAN UNIVERSALITY

In this section, we exploit our high-dimensional asymptotic analysis in Section 4 to derive the
conditions of Gaussian universality under LFMM in Definition 1. To discuss the Gaussian universality
in classification of mixture data, we introduce the notion of equivalent Gaussian mixture model (to a
given LFMM), in a similar spirit to (Dandi et al., 2024).
Definition 2 (Equivalent Gaussian mixture model). For an LFMM D(x,y) as in Definition 1, we define
its equivalent Gaussian mixture model (GMM) D(g,y) as the GMM with the same class-conditional
means and covariances as the LFMM D(x,y). Namely,

g ∼ N (yµ,Σ), (20)

for µ,Σ given in (6) and (7) of Definition 1, respectively. We denote by β̂g the ERM solution
to (4) obtained on n i.i.d. GMM samples (g1, y1), . . . , (gn, yn) ∼ D(g,y), and similarly its high-
dimensional “equivalent” β̃g as in (16) of Theorem 1.

Notice importantly from Definition 1 that the equivalent GMM D(g,y) to an LFMM D(x,y) can be
obtained by taking e1, . . . , ep of the LFMM D(x,y) to be standard Gaussian variables.

We define two types of Gaussian universality considered in this paper as follows.

Definition 3 (Gaussian universality under LFMM). For an ERM solution β̂ obtained on a gen-
eral LFMM D(x,y) in Definition 1 and an ERM solution β̂g obtained on the equivalent GMM in
Definition 2, we say that the Gaussian universality holds

• on classifier if β̂ has asymptotically the same predictive ability as β̂g on a given test set,
as a consequence of their high-dimensional equivalents β̃ℓ,λ, β̃

g
ℓ,λ provided in Theorem 1

following the same distribution;

• on in-distribution performance if the respective training and generalization performances
under D(x,y) are asymptotically the same as under D(g,y), that is

Pr(yix
T
i β̂ > 0)− Pr(yig

T
i β̂

g > 0) → 0, (21)

and
Pr(y′x′Tβ̂ > 0)− Pr(y′g′Tβ̂g > 0) → 0, (22)

for (x′, y′) ∼ D(x,y) a test sample independent of {(xi, yi)}ni=1, and (g′, y′) ∼ D(g,y)

independent of {(gi, yi)}ni=1.

In the following, we study first in Section 5.1 the Gaussian universality in the sense of in-distribution
performance, and discuss our results with respect to the conditional one-directional CLT and the
CGEP in (Dandi et al., 2024). We then reveal in Section 5.2 the key role of square loss in inducing
the Gaussian universality of classifier, and discuss its implication for the choice of loss function.

Throughout this section, our discussions are illustrated through numerical experiments on datasets of
moderately large size, with n, p only in hundreds. A close match is consistently observed between
the proposed asymptotic analysis and the empirical results.

5.1 GAUSSIAN UNIVERSALITY OF IN-DISTRIBUTION PERFORMANCE

Notice from (18) in Corollary 1 that the in-distribution generalization performance of β̂ under an
LFMM D(x,y) is determined by the random variable r in (9), the distribution of which depends solely
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Universality GMM Breakdown
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Figure 1: Theoretical and empirical distribution of predicted scores β̂Tx′ for some fresh (x′, y′) ∼
D(x,y) independent of β̂. The theoretical probability densities (red) are obtained from Theorem 1,
and the empirical histograms (blue) are the values of β̂Tx′ over 106 independent copies of x′, for
three different LFMMs as in Definition 1 with n = 600, p = 200, ρ = 0.5, s = [

√
2;0p−1] (so

that q = 1), and Haar distributed V. Left: normal e1 and uniformly distributed e2, . . . , ep; Middle:
normal e1, . . . , ep; Right: uniformly distributed e1, and normal e2, . . . , ep.

on (i) the distributions of y, e1, . . . , eq in the LFMM and (ii) the values of m,σ2, ψ1, . . . , ψq given
in (13). Remark also that the values of m,σ2, ψ1, . . . , ψq in (13) are determined by the system of
equations in (10), which concerns only the distributions of r, y, e1, . . . , eq , as well as the deterministic
parameters µ,Σ,v1, . . . ,vq of the LFMM.

We thus conclude that the distribution of r is insensitive to the distributions of noise factors
zq+1, . . . , zp. In other words, an LFMM with Gaussian noises e1, . . . , eq in its informative factors
z1, . . . , zq has the same asymptotic generalization performance as its equivalent GMM in Definition 2,
regardless of the distributions of the noise factors zq+1, . . . , zp.

A similar conclusion can be drawn from (19) of Corollary 1 on the asymptotic in-distribution training
performance, by studying also the distribution of r but through a proximal mapping proxκ,ℓ(·,y). We
formalize these conclusions on the universality of in-distribution performance in Corollary 2, the
proof of which is given in Appendix A.2.2.
Corollary 2 (Condition of Gaussian universality on in-distribution performance). Under the settings
and notations of Theorem 1 and Definition 2, the Gaussian universality of in-distribution performance
in Definition 3 holds if and only if noises e1, . . . , eq of LFMM informative factors in (5) are Gaussian.

Figure 1 provides numerical illustrations of Corollary 2, where we compare the empirical histograms
and the asymptotic distributions of the out-of-sample predicted scores β̂Tx′ for data drawn from
three different LFMMs: an LFMM satisfying the in-distribution performance universality condition
in Corollary 2 (left), an LFMM sharing the same parameters (µ,Σ, ρ) with the first but violating the
condition in Corollary 2 (right), and their equivalent GMM in the sense of Definition 2 (middle).
Remark 2 (Connection to conditional one-directional CLT in (3)). Our universality results on the
in-distribution performance in Corollary 2 are related to the CGEP proven by Dandi et al. (2024)
under the presumed validity of a conditional one-directional CLT in (3). Under our notations, the
conditional one-directional CLT in (3) translates to the convergence of y′β̂Tx′ and y′β̂T

gx
′ to the

same normal distribution, i.e.,

y′x′Tβ̂ −m√
σ2 +

∑q
k=1 ψ

2
k

d→ N (0, 1) ,
y′g′Tβ̂g −m√
σ2 +

∑q
k=1 ψ

2
k

d→ N (0, 1) , (23)

as it can be shown from (14),(17) that y′β̂Tx′ has asymptotically the same distribution as yr, which is
of meanm and variance σ2+

∑q
k=1 ψ

2
k. It is easy to see from (9) that yr is normally distributed if and

only if e1, . . . , eq are Gaussian, which is exactly the condition of universality stated in Corollary 2.

5.2 GAUSSIAN UNIVERSALITY OF CLASSIFIER AND IMPLICATION FOR CHOICE OF LOSS

As discussed in Section 5.1, the system of equations in (10) does not depend on the distributions
of noise factors zq+1, . . . , zp. As the distribution of the high-dimensional equivalent β̃ to β̂ given
in (16) is controlled by the constants θ, η, γ, ω1, . . . , ωq that are determined by (10), it is therefore
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Universality Breakdown
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Figure 2: Empirical and theoretical results under an LFMM with p = 200, ρ = 0.5, s = [
√
2;0p−1],

Rademacher e1, normal e2, . . . , ep, and Haar distributed V. Top: scatter plot of 200 independent[
r, hκ(r,±1)

]
. Bottom: histograms of predicted scores on 106 fresh samples (x′, y′) ∼ D(x,y) given

by β̂ and β̂g, versus theoretical densities obtained from Theorem 1. Left: n = 100, square loss
ℓ(ŷ, y) = (ŷ − y)2/2. Right: n = 600, square hinge loss ℓ(ŷ, y) = max{0, (1− ŷy)}2.

also universal over the distributions of zq+1, . . . , zp. Then, by a similar reasoning to Corollary 2,
we conclude that the Gaussian universality of classifier in Definition 3 holds in the case of normally
distributed e1, . . . , eq .

This is however not the only case of Gaussian universality on classifier. Note from (9) and (10) that,
even though the system of equations in (10) does depend on the distributions of e1, . . . , eq, it only
involves their means and variances if hκ(r, y) is linear in r. Remark also from (8) that hκ(r, y) varies
linearly with r if and only if the square loss ℓ(ŷ, y) = (ŷ − y)2/2 (or its rescaled version) is used.

These two conditions for the Gaussian universality of classifier as understood in Definition 3 are
made precise in the following result, proven in Appendix A.2.3.
Corollary 3 (Condition of Gaussian universality on classifier). Under the settings and notations
of Theorem 1 and Definition 2, the Gaussian universality of classifier in Definition 3 holds if and
only if one of the following two conditions is met: (i) e1, . . . , eq in (5) are normally distributed; (ii)
∂ℓ(ŷ, y)/∂ŷ is a linear function of ŷ, e.g., ℓ(ŷ, y) = (ŷ − y)2/2.
Remark 3 (Limitation of square loss). As an important consequence of Corollary 3, any classifier
β̂ trained using the square loss on generic LFMM samples {(xi, yi)}ni=1 ∼ D(x,y) and β̂g trained
on equivalent GMM samples {(gi, yi)}ni=1 ∼ D(g,y) have asymptotically the same probability of
correctly classifying a fresh LFMM test sample (x′, y′) ∼ D(x,y). That is, ERM classifiers trained
with square loss are unable to adapt to non-Gaussian informative factors of LFMM, contrarily to
other (non-square) losses.

The particular effect of square loss discussed in Remark 3 is numerically demonstrated in Figure 2.
On the left hand side, the square loss ℓsqr(ŷ, y) = (ŷ − y)2/2 is used, and hκ(r, y) varies linearly
with r as in the top left plot (the two elongated scatter plots are associated respectively with y = ±1),
so that the distribution of x′Tβ̂ℓsqr,λ and x′Tβ̂g

ℓsqr,λ
are indistinguishable in the bottom left plot of

Figure 2; On the right hand, the square hinge loss ℓshg(ŷ, y) = max{0, 1 − ŷy}2 is used, and we
observe drastically different behaviors for x′Tβ̂ℓshg,λ and x′Tβ̂g

ℓshg,λ
in the right column of Figure 2,

when the points
[
r, hκ(r,±1)

]
are highly nonlinear.

Remark 3, supported by the numerically results in Figure 2, points to the insensitivity of least-square
classifiers to the distributions of non-Gaussian informative factors, despite their non-universal impact
on the in-distribution performance as discussed in Section 5.1. The incapacity of square loss to account
for non-Gaussian variations in the informative factors sheds light on the suboptimality of square
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Figure 3: Empirical classification accuracy of β̂ℓ,λ computed over 105 independent copies of
(x′, y′) ∼ D(x,y) and averaged over 100 trials with a width of ±1 standard deviation, versus
theoretical performance given in Theorem 1, given by the square loss ℓ(ŷ, y) = (y − ŷ)2/2 and the
logistic loss ℓ(ŷ, y) = − ln(1/(1 + e−yŷ)) and on n = 800 training samples. Left: GMM under
Definition 1 with p = 200, ρ = 0.5, s = [1, 5; 0.5;0p−2] (so that q = 2), and V = diag(2,1p−1)H
with Haar distributed H. Right: LFMM identical to the GMM in the left, but with Rademacher e1.

loss observed in the right display of Figure 3, where the logistic loss yields better performance than
the square loss with optimally chosen regularization λ on LFMM having non-Gaussian informative
factors, while the logistic loss fails to do better than the square loss under the equivalent GMM in the
left-hand figure. Further experiments on real-world datasets are given in Appendix B.

This finding on the suboptimality of square loss under LFMM provide new insights on the impact of
loss function beyond previous optimality results of square loss under GMM. For high-dimensional
GMM data, the square loss has been proven optimal, see (Taheri et al., 2021b) for the case of
unregularized ERM, and (Mai & Liao, 2019) for ridge-regularized ERM, in the n, p→ ∞ limit. That
is, the square loss not only gives the best unbiased classifier, but also allows for an optimal bias-
variance trade-off with well calibrated ridge-regularization. As a result of the Gaussian universality
breakdown discussed above, the optimality of square loss is no longer valid under the more general
LFMM. This motivates a few open questions on the optimal loss:

• Is the square loss optimal only under GMM, or when the Gaussian universality of in-
distribution performance in Definition 3 holds?

• In the case of Gaussian universality breakdown, does the optimal loss depend on the sample
ratio n/p as in the setting of linear regression in (Bean et al., 2013)?

• Is it possible, in the large n, p regime, to propose an optimal design of classification loss
adapted to the data distribution and sample size?

6 CONCLUDING REMARKS

Our analysis considered a basic framework of linear factor mixture models (LFMM) and showed that
the Gaussian universality can already break down under this natural extension of GMM. Based on the
precise performance characterization, we derived conditions of Gaussian universality to shed light on
the limit of the widely observed and extensively studied Gaussian universality phenomenon.

Breaking the Gaussian universality in classification of mixture models allows also deeper insight
into the choice of classification loss beyond the optimality of square loss under GMM (Taheri et al.,
2021b; Mai & Liao, 2019). The suboptimality of square loss under LFMM can be further investigated
in future works, to propose, for instance, an optimal design of loss function that takes into account
the data distribution and the sample size, as done in (Bean et al., 2013) for linear regression.

Several simplifications made in our analysis can be removed more or less easily. For instance, while
the extension to multi-classification is fairly straightforward, the generalization to non-smooth losses
is less direct: even though our system of equations in (10) does not require access to the derivatives
of the loss function, they are involved in the establishment of these equations.
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A PROOFS

Here, we present the detailed proofs of our theoretical results in the paper. Precisely, the proof of
Theorem 1 is given in Appendix A.1 and the proofs of corollaries are given in Appendix A.2 (the
proof of Corollary 1 in Appendix A.2.1, the proof of Corollary 2 in Appendix A.2.2 and that of
Corollary 3 in Appendix A.2.3, respectively).

Notations. Before getting into the proofs, we first introduce the following asymptotic notations. The
big O notation O(un) is understood here in probability. We specify that when multidimensional
objects are concerned, O(un) is understood entry-wise. The notation O∥·∥(·) is understood as
follows: for a vector v, v = O∥·∥(un) means its Euclidean norm is O(un) and for a square matrix M,
M = O∥·∥(un) means that the operator norm of M is O(un). The small o notation and Big-Theta
Θ are understood likewise. Note that under Assumption 3 it is equivalent to use either O(un) or
O(up) since n, p scales linearly. In the following we shall use constantly O(up) for simplicity of
exposition. The symbol ≃ is used in the following sense: for a scalar s = O(1), s ≃ s̃ indicates
that s− s̃ = o(1), and for a vector v with ∥v∥ = O(1), v ≃ ṽ means ∥v − ṽ∥ = o(1). For random
variable r ∼ N (m,σ2) with potentially random m and σ2, the expectation E[f(r)] should be
understood as conditioned on m,σ2, so that, E[r] is equal to m instead of E[m]. When parametrized
functions fτ (·) are involved, E[fτ (r)] is computed by taking the integral over r.

A.1 PROOF OF THEOREM 1

In this section, we will provide the proof of Theorem 1. We start by explaining the main idea of
leave-one-out and laying out the key steps as a guide of our proof.

A.1.1 MAIN IDEA AND KEY STEPS

Taking λ > 0 in the optimization problem (4) ensures a unique solution β̂. Cancelling the gradient
(with respect to β) of the objective function in (4), we obtain the following stationary-point expression
of β̂

λβ̂ = − 1

n

n∑
i=1

ℓ′(β̂Txi, yi)xi, (24)

where we denote ℓ′(t, yi) =
∂ℓ(t,yi)

∂t .

To characterize the behavior of β̂ from (24), we need to assess the statistical behavior of β̂Txi, which
is not directly tractable due to the intricate dependence between β̂ on xi resulted from the implicit
optimization (4). To tackle this complication, we make use of a “leave-one-out” version β̂−i of β̂
with respect to the i-th training sample (xi, y), obtained by solving (4) with all the remaining n− 1
training samples (xj , yj) for j ̸= i. Again we have

λβ̂−i = − 1

n

∑
j ̸=i

ℓ′(β̂T
−ixj , yj)xj . (25)

This leave-one-out solution β̂−i has two crucial properties: (i) it is by definition independent of the
left-out data sample (xi, yi); and (ii) it is asymptotically close to the original solution β̂ as removing
one among n training samples has a negligible effect as n → ∞. These two properties imply that
β̂−i and β̂ behave similarly on all training or test samples, except on (xi, yi), which is a training
sample for β̂ and a new observation for β̂−i.

Our proof relies on these two properties to derive a series of equations characterizing the limiting
behavior of β̂Txi and β̂Tx′. Below is an overview of our key steps to guide the readers through the
proof.

Key steps:

1. Establishing the high-dimensional approximation

β̂Txi − β̂T
−ixi ≃ −κℓ′(β̂Txi, yi), (26)
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for some constant κ independent of i.

2. Obtaining from (26) that

β̂Txi ≃ proxκ,ℓ(·,yi)(β̂
T
−ixi, yi),

and therefore

−ℓ′(β̂Txi, yi) ≃ h(β̂T
−ixi, yi) ≡

proxκ,ℓ(·,yi)(β̂
T
−ixi, yi)− β̂T

−ixi

κ
,

where we recall h(t, y) = (proxκ,ℓ(·,y)(t) − t)/κ with proximal operator proxτ,f (t) =

argmina∈R
[
f(a) + 1

2τ (a− t)2
]
, for τ > 0 and convex f : R → R.

3. Using the approximation in Step 2 to rewrite (24) as

λβ̂ ≃ 1

n

n∑
i=1

h(β̂T
−ixi, yi)xi,

for
xi = Vzi = yiµ+Vei,

with ei the noise vector e = [e1, . . . , ep]
T ∈ Rp for xi, thereby replacing the intractable

β̂Txi in (24) with a tractable function of β̂T
−ixi.

4. Demonstrating the concentration result

1

n

n∑
i=1

h(β̂T
−ixi, yi)yi ≃ η,

for some deterministic η.

5. Demonstrating the concentration results

1

n

n∑
i=1

h(β̂T
−ixi, yi)[ei]k ≃ ϕk, ∀k ∈ {1, . . . , q},

for some deterministic ϕ1, . . . , ϕq , and

1

n

n∑
i=1

h(β̂T
−ixi, yi)[ei]k ≃ 0, ∀k ∈ {q + 1, . . . , p}.

6. Demonstrating with concentration arguments and CLT that

1

n

n∑
i=1

h(β̂T
−ixi, yi)ẽi ≃ −θ ·Vnoiseβ̂ + ϵ,

where ẽi = [ei]q+1:p, Vnoise = [vq+1, . . . ,vp] and ϵ ∈ Rp−q a random vector such that,
for any deterministic vector t = [tq+1, . . . , tp]

T ∈ Rp−q of unit norm,
√
ntTϵ/γ → N (0, 1)

in distribution, for some deterministic θ and γ.

7. Demonstrating

κ ≃ 1

n
trΣ(λIp + θΣ).

8. Establishing asymptotic equations on η, θ, γ and ϕ from the results of the above steps, which
characterize the limiting behavior of the solution β̂.

In the following, we present the detailed proof of Theorem 1.
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A.1.2 DETAILED PROOF OF THEOREM 1

We start by establishing the following bound on the difference between β̂ and its leave-one-out
version β̂−i.

Lemma 1 (Bound on ∥β̂ − β̂−i∥). For β̂ ∈ Rp the unique solution to (4) and β̂−i ∈ Rp the
associated leave-one-out solution as defined in (25) that is independent of xi, we have,∥∥∥β̂ − β̂−i

∥∥∥ = O(p−1/2), (27)

in probability as n, p→ ∞.

Proof of Lemma 1. We define first

Rj =β̂
Txj ,

cj =− ℓ′(β̂Txj , yj),

for all j ∈ {1, . . . , n}, and their leave-one-out versions

Rj(−i) =β̂
T
−ixj ,

cj(−i) =− ℓ′(β̂T
−ixj , yj),

for all j ∈ {1, . . . , n}.

According to Assumption 1, ℓ(·, y) is continuously differentiable and has bounded second derivative
except on a finite points of set, therefore there exists universal constantK such that |ℓ′(t1)−ℓ′(t2)| ≤
K|t1 − t2|. As a result, for every pair of i, j ∈ {1, . . . , n}, there exists a finite positive (due to the
convexity of ℓ(·, y)) value aj(−i) such that

cj − cj(−i) = −aj(−i)

(
β̂Txj − β̂T

−ixj

)
. (28)

Taking (24)−(25), we obtain

λβ̂ − λβ̂−i =
1

n
cixi +

1

n

∑
j ̸=i

(cj − cj(−i))xj

=
1

n
cixi −

 1

n

∑
j ̸=i

aj(−i)xjx
T
j

 (β̂ − β̂−i).

Therefore λIp + 1

n

∑
j ̸=i

aj(−i)xjx
T
j

 (β̂ − β̂−i) =
1

n
cixi,

and

β̂ − β̂−i =

λIp + 1

n

∑
j ̸=i

aj(−i)xjx
T
j

−1

1

n
cixi. (29)

Since 1
n

∑
j ̸=i aj(−i)xjx

T
j is non-negative definite, all eigenvalues of

(
λIp +

1
n

∑
j ̸=i aj(−i)xjx

T
j

)
are greater than or equal to λ, so that∥∥∥β̂ − β̂−i

∥∥∥ ≤ 1

λn
ci∥xi∥ = O(p−

1
2 ),

where we use the fact that β̂ has bounded norm as n, p→ ∞, which is easy to check for λ > 0, to
prove the boundedness of ci. This concludes the proof of Lemma 1.
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As a consequence of the proof of Lemma 1, we have, by (28) that

aj(−i) = ℓ′′(β̂T
−ixj , y) +O(p−

1
2 )

where ℓ′′(t, y) = ∂ℓ′(t,y)
∂t . This equation is however only valid when ℓ′′(·, y) exists, while in

Assumption 1, we allow ℓ′′(·, y) to not exist on a finite set of points. Actually, as the number l of
Ri falling on this set of point is also finite, we can take ℓ′′(t, y) = ∂−ℓ′(t,y)

∂−t without any asymptotic
impact on our results. To see that l is finite, we use (24) to establish n linearly independent equations
on R1, . . . , Rn:

λRi = − 1

n

n∑
j=1

ℓ′(Rj , yj)x
T
i xj , ∀i ∈ {1, . . . , n}.

As x1, . . . ,xn are i.i.d. feature vectors drawn from the high-dimensional LFMM, the number of Ri

having the same value is finite with probability 1 at large p.

With a slight abuse of notation, let us set from now on

aj(−i) = ℓ′′(β̂T
−ixj , y).

Then, (29) writes

β̂ − β̂−i =
1

n
ciG

−1
−ixi +O∥·∥(p

−1), (30)

where
G−i = λIp +

1

n

∑
j ̸=i

aj(−i)xjx
T
j .

Notice that G(−i) is independent of (xi, yi). For Ri = β̂Txi and ri = Ri(−i) = β̂T
−ixi , we have,

by the law of large numbers on xi (recall that E[xix
T
i ] = µµ

T +Σ), that

Ri − ri =
1

n
cix

T
i G

−1
−ixi +O(p−

1
2 ) =

1

n
cie

T
i V

TG−1
−iVei +O(p−

1
2 )

=
1

n
ci tr

(
G−1

−iΣ
)
+O(p−

1
2 ), (31)

where the last equality is a classical concentration result as a consequence of the independent entries
in ei. It is understandable that ri is significantly different from Ri, as the latter is the predicted
score of β̂ on one of its training sample and the former the predicted score of β̂−i on a test sample
independent of its training set.

Let us define
κi =

1

n
tr
(
G−1

−iΣ
)
, κ =

1

n
tr
(
G−1Σ

)
,

where

G = λIp +
1

n

n∑
i=1

aixix
T
i ,

with aj = ℓ′′(β̂Txj , y). It follow from (30) that β̂Txj − β̂T
−ixj = O(p−

1
2 ), therefore aj =

aj(−i) +O(p−
1
2 ). It is then easy to check that

κi = κ+O(p−
1
2 ).

We can thus rewrite (31) as
Ri − ri = κci +O(p−

1
2 ). (32)

We arrive thus at the end of Step 1. At this point, we do not have access to the statistical behavior of
κ, only the fact that it is independent of the data index i.

Recall
hκ(t, y) = (proxκ,ℓ(·,y)(t)− t)/κ, (33)

we obtain from (32)
ci = hκ(ri, yi) +O(p−

1
2 ).
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It then follow from the above equation and (24) that

λβ̂ =
1

n

n∑
i=1

hκ(ri, y)xi +O∥·∥(p
− 1

2 ). (34)

Set from now on
ci = hκ(ri, yi),

and rewrite (24) as

λβ̂ =
1

n

n∑
i=1

cixi +O∥·∥(p
− 1

2 ). (35)

We arrive thus at the end of Step 3.

We will now demonstrate
1

n

n∑
i=1

yici = E[yici] +O(p−
1
4 ) (36)

by showing the variance of 1
n

∑n
i=1 yici is of order O(p−

1
2 ).

To do so, we need to introduce the definition of leave-two-out solution β̂−ij obtained by removing
not one but two training samples (xi, yi) and (xj , yj). The subscript −ij is understood similarly to
the subscript −i, but associated with the statistical objects dependent of β̂−ij .

Similarly to (30), we have

β̂−i − β̂−ij =
1

n
c(−i)jG

−1
−ijxj +O∥·∥(p

−1), (37)

where
c(−i)j = hκ(r(−i)j , y), r(−i)j = β̂

T
−ijxj .

Multiplying (37) with xT
i from the left side, we get

ri − r(−j)i =
1

n
c(−i)jx

T
i G

−1
−ijxj +O(p−

1
2 ) = O(p−

1
2 ).

Then for i ̸= j, we observe from the above equation that

E[yiciyjcj ] = E[yiyjhκ(ri, yi)hκ(rj , yj)]

= E[yiyjhκ(r(−j)i, yi)hκ(r(−i)j , yj)] +O(p−
1
2 ).

Note importantly that, conditioned on β̂−ij , r(−j)i and r(−i)j are independent. We have thus

E[yiyjhκ(r(−j)i, yi)hκ(r(−i)j , yj)] = E
[
E[yiyjhκ(r(−j)i, yi)hκ(r(−i)j , yj)|β̂−ij ]

]
= E

[
E[yihκ(r(−j)i, yi)|β̂−ij ]E[yjhκ(r(−i)j , yj)|β̂−ij ]

]
= E[yihκ(r(−j)i, yi)]E[yjhκ(r(−i)j , yj)].

Since hκ(r(−i)j , yj) = hκ(rj , yj) + O(p−
1
2 ), we get from the above equation and the one before

that
E[yiciyjcj ] = E[yici]E[yjcj ] +O(p−

1
2 ).

It follow directly that

Var

[
1

n

n∑
i=1

yici

]
= O(p−

1
2 ). (38)

Therefore
1

n

n∑
i=1

yici = η +O(p−
1
4 ), with η ≡ E[yici]. (39)

We prove thus (39), which brings us to the end of Step 4.
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By the same reasoning, we obtain also

1

n

n∑
i=1

ci[ei]k = ϕk +O(p−
1
4 ), with ϕk ≡ E[ci[ei]k]. (40)

To see that
ϕk ≃ 0,∀k ∈ {q + 1, . . . , p},

we define first the leave-one-variable-out classifier β̂−k as the solution to (4) on a training set
generated from a slightly differently distribution than D(x,y), with ek constantly equal to zero. The
superscript −k is understood similarly to the subscript −i in the statistical objects dependent of
β̂−i, with their leave-one-variable-out version obtained by replacing β̂−i with β̂−k. Similarly to the
leave-one-out reasoning with respect to the data samples, the same asymptotic arguments can be
applied to control the difference between β̂ and β̂−k. In the same spirit as (30), we have

β̂ − β̂−k =
1

n
G−ke[k] +O∥·∥(p

−1) (41)

where e[k] ∈ Rn is a vector with its i-th element being [ei]k, and G−k a matrix of bounded norm
with high probability and independent of [ei]k.

Note first from (35) that

λVnoiseβ̂ =
1

n

n∑
i=1

ciVnoisexi +O∥·∥(p
− 1

2 )

=
1

n

n∑
i=1

ciVnoiseV
T
noiseẽi +O∥·∥(p

− 1
2 ) (42)

where we have Vnoisexi = VnoiseV
T
noiseẽi according to the orthogonality between the signal sub-

space and the noise subspace stated in Item (ii) of Assumption 2. As the eigenvalues of VnoiseV
T
noise

are comparable to 1 according to Item (ii) of Assumption 3, we get

λ
(
VnoiseV

T
noise

)−1
Vnoiseβ̂ =

1

n

n∑
i=1

ciẽi +O∥·∥(p
− 1

2 ). (43)

Similarly, we have, for β̂−k, that

λ
(
VnoiseV

T
noise

)−1
Vnoiseβ̂

−k =
1

n

n∑
i=1

ciẽ
−k
i +O∥·∥(p

− 1
2 ). (44)

Combining (41), (43) and (44), we obtain that, for k ∈ {q + 1, . . . , p},

ϕk =λ
[(
VnoiseV

T
noise

)−1
VnoiseE[β̂]

]
k−q

+O(p−
1
2 )

=λ

[(
VnoiseV

T
noise

)−1
Vnoise

(
E[β̂−k]− 1

n
E[G−ke[k]]

)]
k−q

+O(p−
1
2 )

=O(p−
1
2 ), (45)

where we used the fact that[(
VnoiseV

T
noise

)−1
VnoiseE[β̂−k]

]
k−q

=
1

n

n∑
i=1

E[ci[ẽ−k
i ]k−q] = 0,

since [ẽ−k
i ]k−q = [e−k

i ]k = 0 for all i ∈ {1, . . . , n} according to the definition of the leave-one-
variable-out classifier β̂−k.

We arrive thus at the end of Step 5.
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Recall from (45) that ϕk = O(p−
1
2 ) for k ∈ {q + 1, . . . , p}, we have thus from (40) that

1

n

n∑
i=1

ci[ei]k = O(p−
1
4 ), ∀k ∈ {q + 1, . . . , p}.

It follows then from (42) that

β̂Tvk = O(p−
1
4 ), ∀k ∈ {q + 1, . . . , p}. (46)

We observe then, for k ∈ {q + 1, . . . , p},

1

n

n∑
i=1

ci[ei]k =
1

n

n∑
i=1

hκ(ri, yi)[ei]k =
1

n

n∑
i=1

hκ

(
p∑

k=1

(β̂Tvk)[ei]k, yi

)
[ei]k

=
1

n

n∑
i=1

hκ

∑
d ̸=k

(β̂Tvd)[ei]d, yi

 [ei]k

+
1

n

n∑
i=1

h′κ

∑
d̸=k

(β̂Tvd)[ei]d, yi

 (β̂Tvk)[ei]
2
k (47)

+
1

n

n∑
i=1

h′′κ

∑
d̸=k

(β̂Tvd)[ei]d, yi

 (β̂Tvk)
2[ei]

3
k +O(p−

3
4 ), (48)

where we denote h′′κ(r, y) =
∂h′

κ(r,y)
∂r .

We denote the first term by

ϵk =
1

n

n∑
i=1

hκ

∑
d̸=k

(β̂Tvd)[ei]d, yi

 [ei]k.

Note from (41) that

ϵk =
1

n

n∑
i=1

hκ

∑
d̸=k

(vT
d β̂

−k)[ei]d, yi

 [ei]k +O(p−1). (49)

Since β̂−k is by definition independent of all [ei]k for i ∈ {1, . . . , n}, we notice
that all hκ

(∑
d̸=k(v

T
d β̂

−k)[ei]d, yi

)
[ei]k, i ∈ {1, . . . , n} are independent conditioned on

{e[d]}d∈{q+1,...,p}\k.We assess the conditional mean of ϵk as follows

E [ϵk|{ e[d]}d∈{q+1,...,p}\k] =
1

n

n∑
i=1

hκ

∑
d̸=k

(vT
d β̂

−k)[ei]d, yi

E [[ei]k] +O(p−
1
2 )

=O(p−1). (50)

Similarly we have

Var [ϵk|{ e[d]}d∈{q+1,...,p}\k] =
1

n2

n∑
i=1

hκ

∑
d̸=k

(vT
d β̂

−k)[ei]d, yi

2

E
[
[ei]

2
k

]

=
1

n
E

hκ
∑

d̸=k

(vT
d β̂

−k) +O(p−
5
4 )[ei]d, yi

2
+O(p−

5
4 ),
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where the second line is obtained by a similar reasoning to (39) We remark thus that the concentra-
tions of the conditional mean E [ϵk|{ e[d]}d∈{q+1,...,p}\k] and variance Var [ϵk|{ e[d]}d∈{q+1,...,p}\k]
around the same limits:

E [ϵk|{ e[d]}d∈{q+1,...,p}\k] =O(p−1)

Var [ϵk|{ e[d]}d∈{q+1,...,p}\k] =
1

n
γ2 +O(p−

5
4 ), with γ2 ≡ E[c2i ]. (51)

In summary, when conditioned on {e[d]}d∈{q+1,...,p}\k, the sum of independent
1
nhκ

(∑
d̸=k(v

T
d β̂

−k)[ei]d, yi

)
[ei]k, i ∈ {1, . . . , n} is of mean asymptotically equal to 0

and variance asymptotically equal to γ2. Then, by the central limit theorem, we have
√
nϵk/γ

d→ N (0, 1), ∀k ∈ {q + 1, . . . , p}, (52)

in distribution as n, p→ ∞ at the same pace.

Now we wish to show that
√
n

p∑
k=q+1

tkϵk/γ
d→ N (0, 1) (53)

for any deterministic vector t = [tq+1, . . . , tp]
T ∈ Rp−q of unit norm. To this end, we introduce

the leave-two-variables-out solution β̂−kd obtained similarly to β̂−k but with both ek, ed constantly
set to 0. The superscript −kd is understood similarly to the superscript −k, but associated with the
statistical objects dependent of β̂−kd. It is easy to see that

E

√n p∑
k=q+1

tkϵk

 =

p∑
k=q+1

tkE [ϵk] = O(p−
1
2 ).

To approximate the variance of
√
n
∑p

k=q+1 tkϵk, let us define first

ϵ−k2

k1
=

1

n

n∑
i=1

hκ

 ∑
d ̸=k1,k2

(vT
d β̂

−k2)[ei]d, yi

 [ei]k1
, (54)

for which we have
ϵk1

= ϵ−k2

k1
+ (p−

3
4 ) (55)

from (41) and (46). Similarly to (49), we have

ϵ−k2

k1
=

1

n

n∑
i=1

hκ

 ∑
d̸=k1,k2

(vT
d β̂

−k1k2)[ei]d, yi

 [ei]k1
+O(p−1).

Therefore

ϵk1
=

1

n

n∑
i=1

hκ

 ∑
d̸=k1,k2

(vT
d β̂

−k1k2)[ei]d, yi

 [ei]k1
+ (p−

3
4 )

ϵk2
=

1

n

n∑
i=1

hκ

 ∑
d̸=k1,k2

(vT
d β̂

−k1k2)[ei]d, yi

 [ei]k2
+ (p−

3
4 ),

where we notice that
∑n

i=1 hκ

(∑
d̸=k1,k2

(vT
d β̂

−k1k2)[ei]d, yi

)
[ei]k1

is independent of∑n
i=1 hκ

(∑
d̸=k1,k2

(vT
d β̂

−k1k2)[ei]d, yi

)
[ei]k2

. We obtain thus

Var

√n p∑
k=q+1

tkϵk

 = n

p∑
k1,k2=q+1

t2kE [ϵk1ϵk2 ] = n

p∑
k=q+1

t2kE
[
ϵ2k
]
+ n

p∑
k1 ̸=k2=q+1

t2kE [ϵk1
ϵk2

]

= γ2 +O(p−
1
4 ).
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To obtain (53), it suffices now to demonstrate the asymptotic mutual independence of ϵq+1, . . . , ϵq
by showing that ϵk is asymptotically independent of {ϵd}d̸=k=q+1 for all k ∈ {q + 1, . . . , p}. Let
k = q + 1 without the loss of generality, observe from (49) and (52) that

ϵq+1 ≃ 1

n

n∑
i=1

hκ

 p∑
d ̸=q+1

(vT
d β̂

−(q+1))[ei]d, yi

 [ei]q+1,

and recall from (55) that 
ϵq+2

ϵq+3

...
ϵp

 ≃


ϵ
−(q+1)
q+2

ϵ
−(q+1)
q+3

...
ϵ
−(q+1)
p

 .
It is easy to see from (54) that ϵ−(q+1)

q+2 , . . . , ϵ
−(q+1)
p is independent of eq+1. Therefore

1
n

∑n
i=1 hκ

(∑p
d̸=q+1(v

T
d β̂

−(q+1))[ei]d, yi

)
[ei]q+1 is independent of ϵ−(q+1)

q+2 , . . . , ϵ
−(q+1)
p . We

obtain thus (53).

Now we turn to the second term of (48). In a similar manner to (39), we have

1

n

n∑
i=1

h′κ

∑
d̸=k

(β̂Tvd)[ei]d, yi

 [ei]
2
k =

1

n

n∑
i=1

h′κ

∑
d̸=k

(vT
d β̂

−k)[ei]d, yi

 [ei]
2
k +O(p−1)

=E

h′κ
∑

d ̸=k

(vT
d β̂

−k)[ei]d, yi

E
[
[ei]

2
k

]
+O(p−

1
4 ).

Consequently,

1

n

n∑
i=1

h′κ

∑
d̸=k

(β̂Tvd)[ei]d, yi

 [ei]
2
kβ̂

Tvk =
(
−θ +O(p−

1
4 )
)
β̂Tvk, with θ ≡ −E[h′κ(ri, yi)].

(56)

To control the third term of (48), it suffices to prove that its second moment is of o(p−
1
2 ) by using the

concentration arguments with the leave-one-variable-out manipulation as before, and the fact that
β̂Tvk = O(p−

1
4 ) for k ∈ {q + 1, . . . , p}.

We arrive thus at the end of Step 6.

Rewrite now (35) as

λβ̂ =
1

n

n∑
i=1

ciyiµ+
1

n

n∑
i=1

ciVei +O∥·∥(p
− 1

2 ). (57)

Summarizing (39), (40), (48), (52), nd (56), we obtain

λβ̂ ≃ ηµ+

q∑
k=1

ϕkvk + θVnoiseV
T
noiseβ̂ +Vnoiseϵ,

with ϵ = [ϵq+1, . . . , ϵp]
T. Therefore

β̂ ≃ (λIp + θΣ)
−1

(
ηµ+

q∑
k=1

ωkvk +Vnoiseϵ

)
, (58)

where ωk ≡ ϕk + θE[β̂]Tvk, and
√
ntTϵ/γ

d→ N (0, 1)
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for any deterministic vector t = [tq+1, . . . , tp]
T ∈ Rp−q of unit norm according to (53). Similarly,

we have, for the leave-one-out solution, that

β̂−i ≃ (λIp + θΣ)
−1

(
ηµ+

q∑
k=1

ωkvk +Vnoiseϵ−i

)
(59)

where ϵ−i = [ϵq+1(−i), . . . , ϵp(−i)]
T with

ϵk(−i) =
1

n

∑
j ̸=i

hκ

∑
d̸=k

(β̂T
−ivd)[ej ]d, yj

 [ej ]k.

We get from (30) that

ϵk − ϵk(−i) ≃
1

n
hκ

∑
d ̸=k

(β̂Tvd)[ei]d, yi

 [ei]k.

Hence
β̂ − β̂−i ≃ (λIp + θΣ)

−1 1

n
Vnoiseciẽi,

leading to

xT
i β̂ − xT

i β̂−i ≃(yiµ+Vei)
T (λIp + θΣ)

−1 1

n
Vnoiseciẽi

≃ci
n
trΣ(λIp + θΣ).

Comparing the above equation with (32), we observe

κ ≃ 1

n
trΣ(λIp + θΣ).

We are now at the end of Step 7.

It is easy to see from (59) that

ri = β̂
T
−ixi ≃ yim+

p∑
k=1

ψk[ei]k + σẽ,

where ẽ a random variable independent of [ei]1, . . . , [ei]q with

ẽ
d→ N (0, 1),

and

m = µTQξ, σ2 = γ2

p tr (QΣ)
2
, ψk = vT

kQξ, ∀k ∈ {1, . . . , q},

with

Q = (λIp + θΣ)
−1
, ξ = ηµ+

q∑
k=1

ωkvk.

We obtain thus the system of equations in (10) from (39), (40), (51) and (56), which gives access to
the values of θ, η, γ, ω1, . . . , ωq .

Set

β̃ ≡ (λIp + θΣ)
−1

(
ηµ+

q∑
k=1

ωkvk + γΣ
1
2u

)
(60)

where u ∼ N (0p, Ip/n). We obtain (14) from (60) and (58) by a simple application of CLT, and
(15) from (60), (59) and (32).

This concludes the proof of Theorem 1.
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A.2 PROOFS OF COROLLARIES

A.2.1 PROOF OF COROLLARY 1

Recall from Theorem 1 that

β̃ = (λIp + θΣ)
−1

(
ηµ+

q∑
k=1

ωkvk + γΣ
1
2u

)
,

for Gaussian vector u ∼ N (0p, Ip/n) independent of {(xi, yi)}ni=1. For (x, y) ∼ D(x,y) indepen-
dent of β̃, we recall from Definition 1 that

x = yµ+Ve,

with e = [e1, . . . , ep]
T. Then, let Vnoise = [vq+1, . . . ,vp] and ẽ = [eq+1, . . . , ep]

T, we have

β̃Tx = ym+

q∑
k=1

ψkek + ξTQVnoiseẽ+ γuTΣ
1
2QVnoiseẽ,

with m,ψ1, . . . , ψq as given in (13), and Q, ξ as in (11).

Note importantly that
ξTQvk = 0,∀k ∈ {q + 1, . . . , p}

due to the orthogonality of Span{v1, . . . ,vq} to Span{vq+1, . . . ,vp} stated in Item(ii) of Assump-
tion 2

As u, ẽ are independent random vectors of independent entries, we have, by CLT, that

γuTΣ
1
2QVnoiseẽ√

Var
[
γuTΣ

1
2QVnoiseẽ

] d→ N (0, 1).

Remark also that

Var
[
γuTΣ

1
2QVnoiseẽ

]
=
γ2

n
tr
(
ΣQVnoiseV

T
noiseQ

)
≃ γ2

n
tr (ΣQ)

2
.

We thus obtain (17) in Corollary 1.

From (14) in Theorem 1, we have

Pr(y′β̂Tx′ > 0|(x′, y′))− Pr(y′β̃Tx′ > 0|(x′, y′)) → 0.

Taking expectation over (x′, y′) ∼ D(x,y), we get directly from the above equation that

Pr(y′β̂Tx′ > 0)− Pr(y′β̃Tx′ > 0) → 0.

It follows straightforwardly from (17) that

Pr(y′β̃Tx′ > 0)− Pr(yr > 0) → 0,

leading to (18).

Similarly, we obtain (19) from (17) and (15), which concludes the proof.

A.2.2 PROOF OF COROLLARY 2

It is easy to see that, when e1, . . . , eq are normally distributed, the random variable r defined in
(9) follows a Gaussian distribution N (m,σ2 +

∑q
k=1 ψ

2
k). For r ∼ N (m,σ2 +

∑q
k=1 ψ

2
k) with

m,σ, ψ1, . . . , ψq as given in (13), we observe that the system of equations in (10) is invariant to the
distributions of e1, . . . , ep, thus yielding the same values of θ, η, γ, ω1, . . . , ωq, as well as the same
κ,m, σ2, ψ1, . . . , ψq .

Therefore, with Gaussian e1, . . . , eq, r follows a universal distribution N (m,σ2 +
∑q

k=1 ψ
2
k) in-

dependent of the distributions of eq+1, . . . , ep. We have also the same universality result on the
distribution of proxκ,ℓ(·,y)(r) as the value of κ is also insensitive to the distributions of eq+1, . . . , ep.
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Combining the above universal arguments on the distributions of r and proxκ,ℓ(·,y)(r) with Corol-
lary 1, we prove that the Gaussian universality of in-distribution performance in Definition 3 holds if
e1, . . . , eq are Gaussian variables.

It remains to demonstrate the breakdown of Gaussian universality on in-distribution performance if
e1, . . . , eq are non-Gaussian.

Note first ∥β̂ℓ,λ∥ = Θ(1) with λ = Θ(1). The boundedness of ∥β̂ℓ,λ∥ in the large n, p limit is easily
justified from the regularized optimization penalty (4) with λ > 0. Recall also

λβ̂ = − 1

n

n∑
i=1

ℓ′(β̂Txi, yi)xi,

from which we observe that, to ensure ∥β̂ℓ,λ∥ = o(1), we need ℓ′(β̂Txi, yi) = o(1). However
when ∥β̂ℓ,λ∥ = o(1), we have ℓ′(β̂Txi, yi) ≃ ℓ′(0, yi) = Θ(1). We thus get ∥β̂ℓ,λ∥ = Θ(1) by
contradiction. Consequently, we have also ∥β̃ℓ,λ∥ = Θ(1) for the high-dimensional equivalent β̃
given in Theorem 1. Since β̃Tx for x ∼ D(x,y) independent of β̃ has asymptotically the same
distribution as r in (9) according to Corollary 1, it follows from ∥β̃ℓ,λ∥ = Θ(1) that r = Θ(1).
Therefore η = E[hκ(r, y)] = Θ(1).

Let us reorganize the expression (16) as

λβ̃ = ηµ+

q∑
k=1

ϕkvk − θVnoiseV
T
noiseβ̃ + γΣ

1
2u, (61)

with
ϕk = ωk − θvT

kQξ = E[hκ(r, y)ek], ∀k ∈ {1, . . . , q}.
Recall from (8) that

hκ(t, y) = (proxκ,ℓ(·,y)(t)− t)/κ,

where proxτ,f (t) = argmina∈R
[
f(a) + 1

2τ (a− t)2
]

for τ > 0 and convex f : R → R. Due to the
convexity of ℓ(·, y) in Assumption 1, hκ(·, y) is a decreasing function. As e1, . . . , eq are standardized
variables of symmetric distribution according to Definition 1, we have

E
[
hκ(r, y)ek

∣∣∣{ed}d∈{1,...,q}\k, ẽ, y
]
=

∫ +∞

−∞
hκ

(
ym+σẽ+

∑
d∈{1,...,q}\k

ψded+ψkek, y

)
ekPek(dek),

where Pek is the probability measure of ek. As ek is a centered variable of symmetric probability
distribution, we have∫ +∞

−∞
hκ

(
ym+ σẽ+

∑
d∈{1,...,q}\k

ψded + ψkek, y

)
ekPek(dek)

=

∫ +∞

0

hκ

(
ym+ σẽ+

∑
d∈{1,...,q}\k

ψded + ψkek, y

)
ekPek(dek)

−
∫ +∞

0

hκ

(
ym+ σẽ+

∑
d∈{1,...,q}\k

ψded − ψkek, y

)
ekPek(dek).

As hκ(t, y) decreases with t, there exists a positive value a > 0 such that

hκ

(
ym+σẽ+

∑
d∈{1,...,q}\k

ψded+ψkek, y

)
−hκ

(
ym+σẽ+

∑
d∈{1,...,q}\k

ψded−ψkek, y

)
= −2aψkek.

In the end, we have
ϕk = E[hκ(r, y)ek] = −αkψk

where αk > 0 for all k ∈ {1, . . . , q}.
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Plugging in the above expression of ϕk, we rewrite (61) as

λβ̃ = ηµ−
q∑

k=1

αkψkvk − θVnoiseV
T
noiseβ̃ + γΣ

1
2u.

Taking expectation at the both sides of the above equation, we get

λQξ = ηµ−
q∑

k=1

αkψkvk − θVnoiseV
T
noiseβ̃.

Therefore

λVT
infoQξ = λψ = ηVT

infoVinfos−
q∑

k=1

VT
infoVinfodiag(α1, . . . , αq)ψ,

where Vinfo = [v1, . . . ,vq], ψ = [ψ1, . . . , ψq]
T and s = [s1, . . . , sq]. As Vinfo and s are both

deterministic with no presumed relation, we consider them to independent in some probability space.
We obtain thus

ψ = η
(
λIq +VT

infoVinfodiag(α1, . . . , αq)
)−1

VT
infoVinfos = Θ(1).

Therefore r is non-Gaussian unless in the case of Gaussian e1, . . . , eq, leading to the breakdown of
in-distribution performance in Definition 3.

A.2.3 PROOF OF COROLLARY 3

As discussed in Appendix A.2.2, the system of equations in (10), which determines the distribution
of β̃, is universal in the case of normally distributed e1, . . . , eq. We obtain directly the Gaussian
universality of classifier in Definition 3 under the condition of Gaussian e1, . . . , eq

Note importantly that when ∂ℓ(ŷ, y)/∂ŷ is a linear function of ŷ of form

∂ℓ(ŷ, y)/∂ŷ = aŷ + b(y)

for some constant a > 0 (due to the convexity of ℓ(·, y)) and b(y) independent of ŷ, we have

proxκ,ℓ(·,y)(ŷ) =
ŷ − κb(y)

1 + κa
,

which leads to

h(ŷ, y) =
proxκ,ℓ(·,y)(ŷ)− ŷ

κ
=

−aŷ − b(y)

1 + κa
.

Recall from (9) that

r = ym+ σẽ+

q∑
k=1

ψkek.

The equations in (10) thus become

θ = −E[∂hκ(r, y)/∂r] =
a

1 + κa
, η = E[yhκ(r, y)] =

−am− E[yb(y)]
1 + κa

,

γ =
√
E[hκ(r, y)2] =

√
a2 (m2 + σ2 +

∑q
k=1 ψ

2) + E[b(y)2]− 2amE[yb(y)]
1 + κa

ωk = E[hκ(r, y)ek] + θ · vT
kQξ =

−aψk

1 + κa
+ θ · vT

kQξ,

which are independent of the distributions of the noise variables e1, . . . , ep. We prove thus the
Gaussian universality of classifier in Definition 3 when ∂ℓ(ŷ, y)/∂ŷ is a linear function of ŷ.

Conversely, when ∂ℓ(ŷ, y)/∂ŷ is a nonlinear function of ŷ, hκ(r, y) is also a nonlinear function of
r. Consequently, the values of θ, η, γ, ω1, . . . , ωq depend on the higher-order moments of e1, . . . , eq
besides the first two, thus leading to the breakdown of Gaussian universality on classifier in the
presence of non-Gaussian e1, . . . , eq .
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B EXPERIMENTS ON REAL DATA

In this section, we report experimental results on Fashion-MNIST image data (Xiao et al., 2017) to
show how the conditions of Gaussian universality provided in Corollaries 2 and 3 can be used to
understand and predict Gaussian universality phenomena on real data learning problems.

We have discussed two types of universality in this paper: universality on in-distribution perfor-
mance and universality on classifier (see Definition 3 for more details). To discuss these two types
of universality, we distinguish, depending on the Gaussianity of informative factors and the use of
square loss, the following three scenarios:

1. Scenario 1: in the case of non-Gaussian informative factors and when a non-square loss is
used, neither the universality on in-distribution nor the universality on classifier holds;

2. Scenario 2: in the case of non-Gaussian informative factors and when a square loss is used,
the universality on in-distribution breaks down while the universality on classifier still holds;

3. Scenario 3: in the case of Gaussian informative factors and when an arbitrary (square or
non-square) loss is used, both the universality on in-distribution and the universality on
classifier hold.

To see if these three scenarios derived under LFMM can be “reproduced” on realistic Fashion-MNIST
image data, we conduct first a principle component analysis (PCA) on standardized Fashion-MNIST
data to extract the informative factors. To obtain the equivalent GMM in Definition 2 for a mixture
of Fashion-MNIST data, we estimate the class mean and the class covariance for each class of
Fashion-MNIST, using all available samples in that class.

Here, we consider the following two cases to illustrate the different effects of Gaussian and non-
Gaussian informative factors on ERM classification:

1. Case 1: Classes 4&5 of Fashion-MNIST data, as an example of non-Gaussian informative
factor; and

2. Case 2: Classes 3&7 of Fashion-MNIST data, for which approximately Gaussian informa-
tive factors can be observed.

In Figure 4 and Figure 5 we compare, for the aforementioned two cases, the (empirical) distributions
of the first two informative factors obtained from PCA. We observe that the informative factors of
Classes 4&5 have highly asymmetric distributions, corresponding to a strong deviation from the
Gaussianity, while the distribution of informative factors in Classes 3&7 are much closer to the form
of normal density function in comparison.

Figures 6 to 10 then provide empirical results on these two cases to demonstrate the universal or
non-universal behavior with respect to the in-distribution performance and the ERM classifier, under
the three scenarios on informative factors and loss function listed at the beginning of this section.

We discuss first Scenario 1 with non-Gaussian informative factors (Case 1 on Classes 4&5) and non-
square losses. Under this scenario, the in-distribution performance is predicted, as per Corollary 2, to
be different from that under the equivalent GMM, as can be observed in the middle and right plots of
Figure 7. According to Corollary 3, the universality on classifier does not hold in this case either. In
other words, the classifier trained on Fashion-MNIST data and the one trained on data drawn from
the equivalent GMM give different performances on the same test Fashion-MNIST data. This is
empirically manifested in middle and right plots of Figure 9 and suggests an effective learning using
non-square losses from high-order moment information beyond the class mean and covariance.

It is interesting to compare Scenario 1 with Scenario 2, where we use square and non-square losses on
non-Gaussian informative factors. In Scenario 2, while we still do not have a universal in-distribution
performance as evidenced in the left column of Figure 7, the classifier trained on equivalent GMM
data gives practically the same performance on test Fashion-MNIST data as the classifier trained on
realistic Fashion-MNIST data, as shown in the left plot of Figure 9. This means that the square loss
fails to learn from Fashion-MNIST data beyond the information contained in the equivalent GMM
(i.e., the class mean and covariance). Consequently, the square loss yields suboptimal performance as
shown in the left plot of Figure 6.
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Figure 4: Histogram of the first and second information factors of Class 4 and 5, estimated using all
samples from the Fashion-MNIST dataset.

In Scenario 3 with (approximately) Gaussian informative factors (Case 2 on Classes 3&7), the two
types of Gaussian universality (on in-distribution performance and on classifier) hold for any choice
of loss function. The universality on in-distribution performance is demonstrated in Figure 8, where
we observe a much closer match between the in-distribution performance on Fashion-MNIST and the
equivalent GMM, in comparison with the drastically different in-distribution performances reported
in Figure 7 for Case 1 on Classes 4&5 with non-Gaussian informative factors. The universality on
classifier that holds for any loss (square or non-square) in this scenario is empirically confirmed
by comparing Figure 10 with Figure 9. Otherwise speaking, in this case, Fashion-MNIST data are
treated by the ERM classifier as if they were Gaussian mixture data. As a result, we predict that there
is little room in trying to do better than the square loss (that is identified by Taheri et al. (2021b); Mai
& Liao (2019) to be the optimal loss under GMM). This is consistent with the empirical performances
given by different losses displayed in the right plot of Figure 6.

As a side note, the empirical universal results provided in Figure 2 of (Dandi et al., 2024) also
involved Fashion-MNIST data. However as Dandi et al. (2024) trained the classifier on synthetic data
generated by a conditional GAN learned from the Fashion-MNIST dataset, these experimental results
are not directly comparable to ours, which were obtained from a direct training on Fashion-MNIST
data.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

0 0.5 1
0

0.5

1

1.5

2

H
is

to
gr

am

(a) First informative factor of Class 3

−0.5 0 0.5 1
0

0.5

1

1.5

2

(b) Second informative factor of Class 3

−0.6 −0.4 −0.2 0
0

2

4

6

H
is

to
gr

am

(c) First informative factor of Class 7

−0.5 0 0.5
0

1

2

H
is

to
gr

am

(d) Second informative factor of Class 7

Figure 5: Histogram of the first and second information factors of Class 3 and 7, estimated using all
samples from the Fashion-MNIST dataset.
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Figure 6: Classification accuracies as a function of the regularization penalty, for square, logistic,
and square hinge loss, on Fashion-MNIST data of sample size n = 512. Left: Class 4 versus 5, as
an example of non-Gaussian information factors showed in Figure 4. Right: Class 3 versus 7, as an
example of (close-to) Gaussian information factors showed in Figure 5.
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Figure 7: In-distribution classification accuracies as a function of the regularization penalty γ,
for Fashion-MNIST data (Class 4 versus 5, as an illustrating example of non-Gaussian informative
factors as shown in Figure 4) and Equivalent GMM of sample size n = 512, with square (left),
logistic (middle), and square hinge (right) losses.
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Figure 8: In-distribution classification accuracies as a function of the regularization penalty γ, for
Fashion-MNIST data (Class 3 versus 7, as an illustrating example of close-to-Gaussian informative
factors as shown in Figure 5) and Equivalent GMM of sample size n = 512, with square (left),
logistic (middle), and square hinge (right) losses.
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Figure 9: Classification accuracies as a function of the regularization penalty γ, for Fashion-MNIST
data (Class 4 versus 5, as an illustrating example of non-Gaussian informative factors as shown in
Figure 4) and Equivalent GMM of sample size n = 512, with square (left), logistic (middle), and
square hinge (right) losses.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

2−9 20 29

0.99

1

λ

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

(%
)

Fashion-MNIST
Equivalent GMM

2−9 20 29

1

λ

Fashion-MNIST
Equivalent GMM

2−9 20 29

1

λ

Fashion-MNIST
Equivalent GMM

Figure 10: Classification accuracies as a function of the regularization penalty γ, for Fashion-MNIST
data (Class 3 versus 7, as an illustrating example of close-to-Gaussian informative factors as shown
in Figure 5) and Equivalent GMM of sample size n = 512, with square (left), logistic (middle), and
square hinge (right) losses.
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