Published as a conference paper at ICLR 2026

PONDERLM: PRETRAINING LANGUAGE MODELS TO
PONDER IN CONTINUOUS SPACE

Boyi Zeng', Shixiang Song!:?-3, Siyuan Huang', Yixuan Wang'-3, He Li',
Ziwei He? Xinbing Wang*, Zhiyu Li?, Zhouhan Lin'2:3*

'L UMIA Lab, Shanghai Jiao Tong University,

2Institute for Advanced Algorithms Research, Shanghai,

3Shanghai Innovation Institute, *Shanghai Jiao Tong University
boyizeng@sjtu.edu.cn *lin.zhouhan@gmail.com

ABSTRACT

Humans ponder before articulating complex sentence elements, enabling deeper
cognitive processing through focused effort. In this work, we introduce this pon-
dering process into language models by repeatedly invoking the forward process
within a single token generation step. During pondering, instead of generating
an actual token sampled from the prediction distribution, the model ponders by
yielding a weighted sum of all token embeddings according to the predicted to-
ken distribution. The generated embedding is then fed back as input for another
forward pass. We show that the model can learn to ponder in this way through
self-supervised learning, without any human annotations. Experiments across
three widely used open-source architectures—GPT-2, Pythia, and LLaMA—and
extensive downstream task evaluations demonstrate the effectiveness and gener-
ality of our method. On 9 downstream benchmarks, our pondering-enhanced
Pythia models significantly outperform the official Pythia models. Notably, our
PonderPythia models demonstrate remarkable effectiveness: PonderPythia-2.8B
surpasses Pythia-6.9B and rivals Pythia-12B, while our PonderPythia-1B matches
TinyLlama-1.1B, a model trained on 10 times more data.!

—— Pythia 2.25 — Pythia-1B —e— Vanilla Pythia-70M
—— PonderPythia —— PonderPythia-18 275 —e— PonderPythia-70M
® Pythia 2.20 ® Pythia-1B :

® PonderPythia 225 ® PonderPythia-1B

2.5

2.4

23
"
322 8210
3
21 2.05

59% fewer training tokens
2.00

2.0
1.9

63% fewer param: 1.95 2.55

8 200M 500M 1B 2B 3B 7B 60B 100B 2008 3008 100 200 300 400
#Parameters (log scale) #Training tokens (log scale) FLOPs (EFLOPs)

Figure 1: Scaling curves comparing PonderPythia with the official Pythia suite on the 300B Pile.
Our 2.55B model matches the loss of Pythia-6.9B with 63% fewer parameters (left), while our
PonderPythia-1B model reaches the baseline’s final performance with 59% less training data (mid-
dle). Furthermore, for the same computational budget (FLOPs), PonderPythia consistently achieves
a lower loss than the baseline (right).

1 INTRODUCTION

In the pursuit of improving model performance, scaling up model parameters and data sizes has long
been the most widely adopted and accepted approach (Kaplan et al., 2020; Brown et al., 2020; Liu
et al., 2024). However, this approach faces several bottlenecks, including the exhaustion of high-
quality data (Villalobos et al., 2022; Muennighoff et al., 2023), the observed saturation in scaling
laws (Hackenburg et al., 2025; Hoffmann et al., 2022a) and substantial communication overhead in

*Zhouhan Lin is the corresponding author.
"The code is available at ht tps: //github.com/LUMIA-Group/PonderingLM.

https://github.com/LUMIA-Group/PonderingLM

Published as a conference paper at ICLR 2026

0.6 02 0.7 0.1 08 class PonderLanguageModel (nn.Module) :
redicled
= probability def __init__(self, 1m, v, h, s):
0.5 0.1 0.4 0.1 o
1 1 1 1 self.lm = 1m # language model
- self.vocab_size = v
Pondering Language Model J celf hidden. dim = h
@ @ @) bonderine self.pondering steps = s
IJ"”I““";TL‘ self.embedding = nn.Parameter(torch.
D D D ecce randn(v, h), requires_grad=True)
02 915 ?j,l o ord || XN def forward(self, input_tokens):
0.4 0.1 0.2 input_embedding =
self.embedding[input_tokens
1f .embedding[inp kens]
Pondering Language Model #Iterative pondering
{ for t in range(self.pondering steps):
® §Z N2 Pondering predicted_prob = self.lm(
Embedding input,embedding)
pondering_embedding = torch.matmul
0.1 0.2 0.1 0.3 Word | |Vocab (predicted,prob, self.
Embed| | Size embedding)
°~2 02 0-1 0-2 input_embedding = input_embedding
Hidden + pondering embedding
Pondenng Langlage MOdel Size #Final forward pass

final prob = self.lm(input_embedding)
Input return final_prob
Embedding

Figure 2: Overview of the PonderLM. Given input token embeddings, the base LM produces a
probability distribution over the vocabulary, which is used to compute a continuous “pondering
embedding” via a weighted sum of all token embeddings. This embedding is then added residually to
the original input embeddings and fed back into the LM. By repeating this process for k steps within
a single token prediction, the model iteratively refines its output distributions. The pseudocode on
the right illustrates the implementation details.

distributed pre-training that grows super-linearly with model size (Narayanan et al., 2021; Pati et al.,
2023; Li et al., 2024).

On the other hand, if we look at humans, the growth of human capabilities does not stem from simply
increasing the number of neurons in the brain. Instead, when faced with complex problems, humans
often enhance their problem-solving abilities by repeatedly pondering, engaging in deep cognitive
processing before articulating their thoughts.

Analogously, in large language models, the most relevant research direction is test-time scaling. In
particular, following the advancements in ol and R1 (Jaech et al., 2024; DeepSeek-Al et al., 2025),
generating long chains of thought (CoT) has emerged as the mainstream approach for scaling test-
time computation. However, CoT-based methods also exhibit several drawbacks: they often require
curated human-annotated datasets (Allen-Zhu & Li, 2023) and carefully designed reinforcement
learning algorithms (Pang et al., 2025). Moreover, small models rarely benefit from CoT (Li et al.,
2023), and the upper bound of performance remains constrained by the base pretrained model (Yue
et al., 2025). Additionally, current language models employing CoT are still confined to discrete
language spaces with fixed vocabularies, which, according to recent studies (Fedorenko et al., 2024;
Hao et al., 2024; Pfau et al., 2024), are primarily optimized for communication rather than for
internal computational thinking.

To overcome these challenges and inspired by human pondering, we introduce the Pondering Lan-
guage Model (PonderLM), which relies solely on self-supervised learning. PonderLMs can be
naturally learned through pretraining on large-scale general corpora, without the need for human-
annotated datasets or reinforcement learning.

During pondering, instead of generating a discrete token sampled from the prediction distribution,
the model produces a weighted sum of all token embeddings based on the predicted probabilities.
This generated embedding is then fed back into the language model, allowing it to iteratively refine
its predictions. As the weighted embedding is continuous, PonderLLMs overcome the expressive lim-
itations of discrete token vocabularies and enable fully differentiable, end-to-end pretraining via gra-
dient descent. Furthermore, by performing more computations per parameter, PonderLMs achieve

Published as a conference paper at ICLR 2026

The longest river in the world is the Nile
il t | il i t | i i}
Pondering; Pondering, Pondering; Pondering, Ponderings; Ponderings Pondering,
Ponderingg
LM Output LM Output LM Output LM Output
LM river 0.60 LM Amazon 0.41 LM Amazon 0.30 LM Nile 0.54
the rivers 0.36 @ river 0.35 @@ river 0.33 & Amazon 0.23
Nile 0.04 Nile 0.24 Nile 0.27 Yang 0.23
pondering step1 I pondering step2 pondering step3 |

residual connection

Figure 3: The inference process of a pondering language model, illustrated with an actual example
from PonderPythia-2.8B, shows how the model dynamically corrects its predictions over several
pondering steps to arrive at the correct answer. Crucially, the intermediate probability distributions
and their top candidate tokens offer a potentially interpretable view into the model’s inference.

higher parameter knowledge density (Allen-Zhu & Li, 2024), potentially reducing communication
costs at scale.

Experimentally, by introducing the pondering process during pretraining, our Ponder GPT-2,
LLaMA, and Pythia models achieve pretraining perplexity comparable to that of vanilla models
with twice as many parameters. Furthermore, PonderPythia models significantly outperform the
official Pythia models across nine popular downstream tasks, PonderPythia-2.8B surpasses Pythia-
6.9B, and PonderPythia-1B is comparable to TinyLlama-1.1B, which is trained on 10 times more
data. Notably, increasing the number of pondering steps consistently enhances model performance,
underscoring the substantial potential of this approach.

Moreover, our method is orthogonal to traditional scaling strategies, including parameter scaling
and inference-time scaling via CoT, and thus can complement existing techniques, potentially intro-
ducing a third scaling axis to enhance model performance.

2 PONDERING LANGUAGE MODEL

In this section, we introduce our proposed PonderLM (Figure 2), which integrates a pondering
mechanism into language models via pretraining. Given that pretraining fundamentally constitutes
a language modeling task, we briefly review this task before detailing our proposed model.

Language Modeling. Given a sequence of tokens X = [z1, %2, ..., 2], the primary objective of
language modeling is typically to maximize the likelihood of predicting each token based on its
preceding tokens. Formally, this is expressed through the joint probability factorization:

n

P(xy,xa,...,x,) = HP(xt | z<t) (1)

t=1
Current language models first map tokens to input embeddings E° = [e?, €9, ..., €], where each
embedding e? € R? is selected from a vocabulary embedding matrix V = [ey, eq, . .. ,e|v|, with

vocabulary size | V| and hidden dimension d. The language model then generates output probabilities
P for predicting the next token at each position:

P =LM(E’), P ecR™VI)

The cross-entropy loss is computed directly from these predicted probabilities P to pretrain the
language model.

Pondering Mechanism. In our proposed method, instead of directly using the predicted output
probabilities P to compute the cross-entropy loss, we utilize these probabilities as weights to sum
embeddings of all candidate tokens, forming what we call a ”pondering embedding”. Given the

Published as a conference paper at ICLR 2026

probability distribution p € RIVI at each position, the pondering embedding t is:

4

t=) pei, pi€Re R 3)

i=1
For computational efficiency, pondering embeddings t for all positions can be calculated simultane-
ously via matrix multiplication’:

T =PV, TeR™ 4)
Through these pondering embeddings, we effectively map predicted probabilities back into the em-
bedding space, preserving embedding information from all possible candidate tokens. To maintain
the information from the original input embeddings, we integrate the pondering embeddings using
a residual connection:

E'=E’+T=[e) +t1,e] +to,...,e0 +t,] 6))
We then feed the updated embeddings E' back into the same language model to obtain refined

output probabilities:
P! =LM(E'), P'eRr™I (6)

After obtaining P, we can iteratively repeat the previous process to achieve multi-step pondering.
Specifically, given a predefined number of pondering steps s*, we iteratively compute new ponder-
ing embeddings and integrate them with the original input embeddings using residual connections,
feeding the result back into the same language model until s steps are reached:

e’ PY=LM(E"), T'=P°V
E'=E°+T'=[e) +tl,ed+ti,....e2 +t.], P'=LM(E!), T?=P'V

0 0 .0
E” = [e],e,,. ..

)

E°+ZT1— [+t 4t e+t +-- +t3], P°=LM(E®)

This iterative pondering mechanism progressively refines the model’s predictions. Finally, we can
use the refined output probabilities P* after s pondering steps to compute the cross-entropy loss and
optimize the language model to perform s-step pondering.

3 EXPERIMENTS

Our experiments consist of 3 parts. First, we validate the scaling curves of pondering models on
widely used GPT-2 and LLaMA architectures. Second, we perform large-scale pretraining of Pon-
derPythia models on the Pile dataset and compare their scaling curves and language modeling ca-
pabilities with those of the official Pythia suite (Biderman et al., 2023). Third, we evaluate the
downstream task performance of PonderPythia models, including 9 popular general tasks and an
instruction-following task, and compare the results with official Pythia, OPT (Zhang et al., 2022),
Bloom (Le Scao et al., 2023) and TinyLLaMA (Zhang et al., 2024).

3.1 SMALL SCALE VALIDATION ON GPT-2 AND LLAMA

We apply our proposed method to two popular Transformer architectures, GPT-2 and LLaMA, to
investigate its general applicability and effectiveness.

Experimental Settings. We trained both models from 405M to 1.4B parameters from scratch on
a subset of the Pile dataset using the same tokenizer. The amount of training data for each model
follows the Chinchilla (Hoffmann et al., 2022b) scaling laws, with a fixed context length of 2048.
Detailed configurations are specified in Appendix B.

?In practice, we use only the top-K tokens with highest probabilities at each position to compute the pon-
dering embedding, reducing complexity from O(n|V|d) to O(nKd). With K = 100 < |V, this does
not degrade LM performance and makes the matrix multiplication overhead negligible within the overall LM
computations. We have done the ablation study in Section 4.4.

3Unless otherwise specified, we set s = 3 for subsequent experiments.

Published as a conference paper at ICLR 2026

——- Pythia-6.98
mmm Pythia
14.06 mmm PonderPythia

w
=)

N
o

[
o

-6.77

Perplexity
Perplexity
Perplexity

-
5

-1.99

ISEERN)
o U

0
410M 1B 1.4B 2.8B 410M 1B 1.48 2.8B

410M 1B 1.4B 2.8B
(a) Lambada Standard, PPL ({) (b) Wikitext, PPL (1) (c) Pile, PPL (1) (d) Lambada OpenAl, PPL ({)

410M 1B 1.48B 2.8B

Figure 5: PonderPythia demonstrates substantial perplexity improvements over the official Pythia
across all model sizes and datasets. Our PonderPythia-2.8B even surpasses the official Pythia-6.9B.

Results. As shown in Figure 4, the pondering

: e 3 2.64 --- GPT fitted
mechanism significantly improves the perfor- ——— LLaMA fitted
mance of GPT-2 and LLaMA models across the 251 —-e— GPT
405M to 1.4B parameter range. For instance, an —8- PonderGPT

. . —*— LLaMA
834M pondering model achieves a loss compa- 2.4 e PondorLLaMA
rable to a vanilla model trained with over 2x 8§ -
the parameter-token product. 231

2.21
3.2 LARGE-SCALE PRETRAINING ON PILE -
We further validate the effectiveness of our 405M+78 834M*15B 1.48%268

pondering method by conducting large-scale Parameters * Tokens

pretraining experiments on the entire Pile . . .

dataset (300B tokens) (Gao et al., 2020). We g;fﬁrfofr'eSifﬁé‘;fg?gggiﬁgﬁgjeII;LaMA and
train a new model, named PonderPythia, from ’
scratch using exactly the same architectural
components (parallel attention and MLP layers, rotary embeddings with 1/4 head dimensions), same
tokenizer and training hyperparameters (optimizer settings, learning rate schedule, batch size, and
context length) as the original Pythia models. We then compare PonderPythia models’ scaling curves
and language modeling capabilities with the official Pythia model suite.

3.2.1 SCALING CURVES

We plot the scaling curves of the PonderPythia and official Pythia models with respect to parameter
size, training tokens, and training FLOPs. As shown in Figure | (left), the fitted curves indicate
that a 2.55B-parameter PonderPythia model achieves a validation loss comparable to that of the
6.9B-parameter official Pythia model, while requiring 63% fewer parameters. In Figure 1 (middle),
the fitted curves show that PonderPythia achieves performance comparable to the official Pythia
model while using 59% fewer training tokens. In Figure 1 (right), we report the language modeling
loss of vanilla Pythia-70M* and PonderPythia-70M under the same computational budget during
pretraining. It can be observed that PonderPythia-70M consistently outperforms vanilla Pythia-70M
when trained with the same number of FLOPs.

3.2.2 LANGUAGE MODELING ABILITY EVALUATION

‘We measure the perplexity on several language modeling datasets to reflect general language model-
ing capabilities. Specifically, we report perplexity scores on the Pile validation set, Wikitext, and the
Lambada dataset (both OpenAl and standard versions), detailed in Figure 5. The results demonstrate
significant perplexity improvements across all datasets and model sizes. Notably, the perplexity
achieved by the PonderPythia-2.8B model is even better than that of the official Pythia-6.9B model.

3.3 DOWNSTREAM TASKS EVALUATION

We use previously pretrained PonderPythia models for downstream task evaluations.

“To match the training FLOPs of vanilla Pythia-70M with PonderPythia-70M, we trained the vanilla model
for 4 epochs.

Published as a conference paper at ICLR 2026

Table 1: Five-shot and zero-shot evaluations on downstream NLP tasks. All pretrained model
weights used for comparison are obtained from their official repositories. Aacc is compared to
the official Pythia models. Models in italics are excluded from bolding, as they use significantly
larger training data or parameters.

- Lambada ARC Lambada ARC Wino Hella . Avg acc/

Model (#training tokens) OpenAl -E Standard -C Grande PIQA Swag SciQ RACE Aacc T
5-shot
Pythia-410M (300B) 439 547 328 223 534 68.0 338 889 304 47.6
OPT-350M (300B) 383 454 321 205 53.0 658 319 857 295 44.7
Bloom-560M (366B) 294 502 297 219 527 642 314 88.0 30.0 44.2
PonderPythia-410M (300B)| 489 58.7 437 261 540 705 373 91.0 324 51.4/+3.8
Pythia-1B (300B) 483 58.6 358 254 528 71.3 37.7 916 31.7 50.4
OPT-1.3B (300B) 540 604 490 269 569 724 385 918 354 52.7
Bloom-1.1B (366B) 363 549 374 249 534 67.6 348 887 33.0 47.9
Tinyllama-1.1B (3T) 53.8 64.8 450 31.1 594 738 449 94.0 364 55.9
PonderPythia-1B (300B) 577 632 525 28.6 58.6 733 419 934 363 56.2/+5.8
Pythia-1.4B (300B) 545 63.1 445 288 57.1 710 405 924 346 54.1
Bloom-1.7B (366B) 425 588 415 262 577 68.7 37.6 919 335 50.9
PonderPythia-1.4B (300B) 592 675 499 324 604 735 442 943 37.1 57.6/+3.5
Pythia-2.8B (300B) 590 67.0 507 31.0 6l1.1 744 453 937 359 57.6
OPT-2.7B (300B) 60.2 647 550 29.8 622 751 46.1 93.0 375 58.2
Bloom-3B (366B) 462 63.8 47.1 31.7 578 70.8 41.4 934 34.6 54.1
Pythia-6.9B (300B) 62.5 69.6 548 356 629 76.6 48.0 94.6 36.7 60.1
Pythia-12B (300B) 66.5 71.0 57.1 360 648 765 50.7 94.9 374 61.7
PonderPythia-2.8B (3008) 642 70.6 587 358 653 76.7 49.0 943 39.0 61.5/+3.9
0-shot

Pythia-410M (300B) 514 522 364 214 538 669 337 81.5 309 47.6
OPT-350M (300B) 452 440 358 20.7 523 645 320 749 29.8 44 .4
Bloom-560M (366B) 343 475 333 224 51.5 638 31.5 803 305 439
PonderPythia-410M (300B)| 569 519 453 22.6 56.0 68.7 37.0 814 33.8 50.4/+2.8
Pythia-1B (300B) 559 56.8 420 242 525 705 3777 833 327 50.6
OPT-1.3B (300B) 579 57.1 525 234 59.7 718 416 843 343 53.6
Bloom-1.1B (366B) 426 515 429 23.6 549 673 345 836 326 48.2
Tinyllama-1.1B (3T) 588 60.3 493 280 59.0 733 450 889 364 554
PonderPythia-1B (300B) 623 605 519 27.0 56.5 722 41.8 874 354 55.0/+4.4
Pythia-1.4B (300B) 61.6 604 497 259 575 708 404 86.4 34.1 54.1
Bloom-1.7B (366B) 46.2 564 445 237 568 68.5 37.5 850 332 50.2
PonderPythia-1.4B (300B) 652 62.0 538 27.0 60.1 72.6 44.0 89.0 352 56.5/+2.4
Pythia-2.8B (300B) 646 644 543 295 602 73.8 454 885 349 57.3
OPT-2.7B (300B) 63.5 60.8 560 268 612 738 459 858 36.2 56.7
Bloom-3B (366B) 517 594 509 28.0 587 708 414 888 352 53.9
Pythia-6.9B (300B) 67.2 673 559 314 610 752 481 89.3 36.9 59.1
Pythia-12B (300B) 704 70.6 589 31.7 61.0 752 504 89.3 36.9 60.5
PonderPythia-2.8B (300B) 689 665 608 325 63.6 750 48.6 91.0 36.5 60.4/+3.1

3.3.1 GENERAL DOWNSTREAM TASKS

We consider various widely-used benchmarks, including the tasks originally used by Pythia (LAM-
BADA (Paperno et al., 2016), PIQA (Bisk et al., 2020), WinoGrande (Sakaguchi et al., 2021), ARC-
E and ARC-C (Clark et al., 2018), SciQ (Welbl et al., 2017). We also include HellaSwag (Zellers
et al., 2019) for commonsense reasoning and RACE (Lai et al., 2017) for reading comprehension.

We evaluate both 0-shot and 5-shot learning performance using the LM evaluation harness (Gao
et al., 2023). Detailed results are shown in Table 1. Across all evaluated model sizes, PonderPythia
consistently and significantly outperforms the official Pythia models, as well as comparable OPT and
Bloom models. Remarkably, with only 1/10 of the training data (300B tokens) and fewer parameters,

Published as a conference paper at ICLR 2026

Writing Writing
Humanities Roleplay Humanities Roleplay
STEM Reasoning STEM Reasoning

0 0.5 52253 0051 25335

Extraction Math Extraction Math
Coding Coding

Pythia-1B, avg score=1.89 Pythia-1.4B, avg score=2.2
PonderPythia-1B, avg score=2.22 PonderPythia-1.4B, avg score=2.75

Figure 6: Instruction-following abilities evaluated on MT-Bench. PonderPythia-1B and 1.4B con-
sistently outperform their corresponding official Pythia models across all subtasks.

our PonderPythia-1B achieves results comparable to, or even surpassing, TinyLlama-1.1B—which
uses a more advanced LLaMA architecture and 3T tokens. Furthermore, PonderPythia-2.8B not
only surpasses Pythia-6.9B but also achieves performance nearly on par with Pythia-12B.

3.3.2 INSTRUCTION-FOLLOWING ABILITY EVALUATION

To assess the instruction-following capability of our model, we further fine-tuned PonderPythia-1B
and 1.4B, as well as the corresponding official Pythia models, on the Alpaca dataset using the same
settings (Taori et al., 2023). The fine-tuned models were evaluated with MT-Bench (Zheng et al.,
2023), a popular multi-turn question benchmark. The experimental results are shown in Figure 6. As
illustrated, both PonderPythia-1B and 1.4B consistently outperform their official Pythia counterparts
across all subtasks, achieving average improvements of 0.33 and 0.55, respectively.’

4 ABLATION STUDY

In this section, we conduct a series of ablation studies to dissect the components of our proposed
pondering language model. We use a 70M parameter Pythia model trained on a 30B-token subset of
the Pile dataset as our primary testbed to ensure controlled and efficient experimentation.

4.1 COMPARISON WITH RELATED BASELINES

First, we compare our pondering mechanism against several baselines designed to increase compu-
tation per token. The goal is to verify that the performance gains come from our specific approach
rather than merely from additional computation. The baselines include:

» Last Hidden State as Embedding: Replacing the pondering embedding with the last hidden state
from the previous step, similar to Coconut (Hao et al., 2024).

* Projected Hidden State: A variant of the above where a linear projector (like LLaVA (Liu et al.,
2023)) maps the last hidden state to the embedding space.

* Looped Transformer (Giannou et al., 2023; Saunshi et al.): Increases computation by iteratively
reusing the full stack of transformer layers.

» Pause Token (Goyal et al., 2023): A method that inserts a special learnable “pause” token after
each original token to encourage extra computation.

As shown in Table 2, our method significantly outperforms all baselines across every benchmark
given the same number of additional steps/loops/pauses. Notably, our model with only 3 pondering
steps is more effective than baselines with 6 loops, steps or pauses, confirming that the performance
gains are attributable to our specific approach rather than just added computation.

The marginal gains on Coding and Math tasks may be attributed to the limited coding and mathematical
abilities of the Pythia models.

Published as a conference paper at ICLR 2026

Table 2: Comparison on various benchmarks. PonderPythia-70M consistently outperforms all base-
line methods, with the 3-step version already surpassing 6-step/loop/pauses baselines.

Lambada Lambada Avg Acc Avg Acc

Model Pile(l) Wikitext() penAl(]) Standard()) 0 shot(t) 5 shot()
Pythia-70M (baseline) | 16.95 51.68 101.34 481.04 21.04 14.12
Models with 3 additional steps/loops/pauses
Looped Pythia-70M (3 loops) | 15.33 44.56 74.75 438.62 22.67 17.21
Pause Pythia-70M (3 pauses) 16.53 49.85 80.77 374.97 21.62 15.67
Last Hidden State (3 steps) 15.64 45.60 78.11 479.85 22.11 15.44
+ Linear Projector (3 steps) 15.64 46.10 81.94 453.78 21.62 17.69
PonderPythia (3 steps) 14.16 39.63 56.01 238.45 25.13 20.64
Models with 6 additional steps/loops/pauses
Looped Pythia-70M (6 loops) | 15.18 43.91 71.78 355.64 22.50 17.44
Pause Pythia-70M (6 pauses) 16.55 49.66 80.79 460.80 21.61 15.88
Last Hidden State (6 steps) 15.30 44.48 78.87 393.03 22.46 18.18
+ Linear Projector (6 steps) 15.29 44.24 74.36 474.15 21.69 17.61
PonderPythia (6 steps) 13.56 37.57 49.15 196.67 25.58 21.71

4.2 IMPACT OF PONDERING STEPS

To further investigate the effect of pondering steps on model performance, we trained several 70M-
parameter Pythia from scratch with different numbers of pondering steps: 0 (baseline), 1, 2, 3, 4, 5,
and 10. The results in Figure 7 (top) show that increasing pondering steps consistently reduces the
language modeling loss on the Pile validation set, demonstrating the potential of our method.

4.3 TRAINING WITH RANDOMIZED PONDERING STEPS

In our main experiments, the number of ponder-
ing steps is fixed during training and inference
due to source limit. To build a more flexible
model, we also experimented with randomiz-
ing the number of pondering steps during train-
ing. We trained a Pythia-70M model where the
number of steps for each training batch was ran-
domly sampled from the range [1, 10].

This strategy yields a single model that can
operate with a variable number of steps at in-
ference. As shown in Figure 7 (bottom), this
model exhibits test-time scaling: its perfor-
mance progressively improves as we increase
the number of pondering steps, and thus the
computational budget, at test time.

2.804
@
© 2.704
-

2.604

0o 1 2 3 4 5 10
Pondering Steps (0 = Baseline)

2.76-
$ 2,701
S

2.644

2.58

1 3 5 7 10
Inference Time Pondering Steps

Figure 7: (Top) Increasing the number of pon-
dering steps consistently reduces the validation
loss. (Bottom) Inference-time scaling of a model
trained with randomized pondering steps.

4.4 INFLUENCE OF TOP-K TOKEN SELECTION

To balance performance and efficiency, we evaluated the effect of the hyperparameter K on model
perplexity. Increasing K from 10 to 100 substantially reduced perplexity from 15.18 to 14.21.
However, expanding the selection to the full vocabulary yielded only a negligible improvement to
14.20. This indicates that tokens with ranks between 10 and 100 contribute substantially, while those
beyond offer negligible benefit. We thus adopt K = 100 in our main experiments.

5 RELATED WORK

Test-Time Compute Scaling. Scaling computation at test time has proven effective for improving
model performance without adding parameters (Snell et al., 2024), with existing methods mainly
categorized into parallel and sequential scaling (Zeng et al., 2024; Muennighoff et al., 2025).

Published as a conference paper at ICLR 2026

Table 3: A Comparison of PonderLM with Related Methods.

Method \ Training Data Computation Space Application Level Training Method
CoT CoT data Explicit Token Per question RL/SFT
LoopedLM General corpus Hidden State Per token Pretrain

Pause Tokens | General corpus Fixed Token Per token Pretrain
Quiet-STaR | General corpus Explicit Token Per token RL

Coconut CoT data Hidden State Per question SFT

PonderLM \ General corpus Weight Sum of Embeddings Per token Pretrain

Parallel scaling generates multiple candidates simultaneously and selects the best via strategies like
Best-of-N (BoN) (Cobbe et al., 2021; Sun et al., 2024; Gui et al., 2024; Amini et al., 2024; Sessa
et al., 2024) or Majority Voting (Wang et al., 2022), but faces the challenge of reliably identifying
the optimal candidate (Stroebl et al., 2024; Hassid et al., 2024).

Sequential scaling methods improve reasoning by iteratively refining a model’s output over multiple
steps. This broad category includes foundational techniques like Chain of Thought (CoT) as well as
more recent iterative revision strategies (Wei et al., 2022; Nye et al., 2021; Huang et al., 2022; Min
et al., 2024; Madaan et al., 2024; Wang et al., 2024b; Lee et al., 2025; Hou et al., 2025; Muennighoff
et al., 2025; Li et al., 2025). State-of-the-art models also scale computation at test-time through
extensive multi-step reasoning (OpenAl, 2024; DeepSeek-Al et al., 2025; Comanici et al., 2025).
However, these methods often depend on specialized datasets (Allen-Zhu & Li, 2023), require long
context windows (Zhu et al., 2025), or involve complex reinforcement learning (Pang et al., 2025).
Our method is designed to overcome these limitations.

Latent Thinking in Language Models. Latent thinking refers to the intermediate computational
processes that occur within a language model’s internal representations, separate from the explicit
generation of text tokens (Yang et al., 2024; Biran et al., 2024). Prior work can be broadly catego-
rized by the computational space in which this additional thinking occurs.

Discrete Token Space. One line of research elicits intermediate reasoning by manipulating discrete
tokens. This includes predicting dedicated planning tokens (Wang et al., 2024a), using filler tokens
to allocate more computation (Pfau et al., 2024), or inserting learnable “pause” tokens during train-
ing to encourage latent computation (Zhou et al., 2024; Goyal et al., 2023). More complex methods
like Quiet-STaR use reinforcement learning to generate and then condense rationales at each token,
embedding the reasoning process directly into generation (Zelikman et al., 2024).

Continuous Space. Another research direction explores reasoning directly within the model’s con-
tinuous hidden states. One prominent approach involves iteratively refining these states. This is
achieved through recurrent structures that reuse hidden states over time (Dehghani et al.; Hutchins
etal., 2022), by recycling model outputs back as inputs, a technique effective for reasoning tasks (Gi-
annou et al., 2023; Yang et al., 2023; Saunshi et al.), or by iterating over model layers to refine in-
termediate representations (Geiping et al., 2025). More recently, methods like Coconut (Hao et al.,
2024) train models to reason entirely in the latent space, while CoCoMix (Tack et al., 2025) extract
the “concept” from the hidden states to improve language modeling.

In contrast to these approaches that operate on hidden states, our method operates on pondering
embeddings derived from the model’s predictive probability distributions. We further compare our
method with the most relevant prior work in Table 3.

6 CONCLUSION

In this paper, we introduce the pondering process into language models through solely self-
supervised learning. PonderLM can be naturally learned through pretraining on large-scale general
corpora. Our extensive experiments across three widely adopted architectures—GPT-2, Pythia, and
LLaMA—highlight the effectiveness and generality of our proposed method. Notably, our Pon-
derPythia consistently outperforms the official Pythia model on language modeling tasks, scaling
curves, downstream tasks, and instruction-following abilities when pretrained on the large-scale
Pile dataset. As increasing the number of pondering steps further improves language model per-
formance, we posit that our approach introduces a promising new dimension along which language
model capabilities can be scaled.

Published as a conference paper at ICLR 2026

7 ACKNOWLEDGEMENTS

This work is sponsored by the National Natural Science Foundation of China (NSFC) grant
(No. 62576211) and the National Key Research and Development Program of China (No.
20237ZD0121402).

8 ETHICS STATEMENT

This paper introduces a novel pre-training architecture for language models that achieves significant
performance improvements at a given parameter scale. However, we acknowledge that, like other
powerful language models, this technology is susceptible to misuse for malicious or illegal pur-
poses. Furthermore, as a new architecture, our proposed method may contain unforeseen security
vulnerabilities, posing potential risks to data privacy and system integrity.

9 REPRODUCIBILITY STATEMENT

To facilitate reproducibility, the source code for our core models and experiments is available in the
supplementary material. We have documented all essential hyperparameters and implementation
details in the appendix. We believe this provides sufficient information for the research community
to verify and reproduce the results presented in this work.

10 THE USE OF LARGE LANGUAGE MODELS

The core methodology and conceptual framework presented in this paper were developed without
the assistance of Large Language Models (LLMs). The use of LLMs was strictly limited to refining
grammatical structure and enhancing the academic expression of the text.

10

Published as a conference paper at ICLR 2026

REFERENCES

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.2, knowledge manipulation.
arXiv preprint arXiv:2309.14402, 2023.

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.3, knowledge capacity
scaling laws. arXiv preprint arXiv:2404.05405, 2024.

Afra Amini, Tim Vieira, Elliott Ash, and Ryan Cotterell. Variational best-of-n alignment. arXiv
preprint arXiv:2407.06057, 2024.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pp. 2397-2430. PMLR, 2023.

Eden Biran, Daniela Gottesman, Sohee Yang, Mor Geva, and Amir Globerson. Hopping too
late: Exploring the limitations of large language models on multi-hop queries. arXiv preprint
arXiv:2406.12775, 2024.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piga: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 74327439, 2020.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems, 2021. URL https.//arxiv. org/abs/2110.14168, 9, 2021.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. arXiv preprint arXiv:2507.06261, 2025.

DeepSeek-Al, Daya Guo, Dejian Yang, and Haowei Zhang et al. Deepseek-r1: Incentivizing reason-
ing capability in llms via reinforcement learning. 2025. URL https://arxiv.org/abs/
2501.12948.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser. Universal
transformers. In International Conference on Learning Representations.

Evelina Fedorenko, Steven T Piantadosi, and Edward AF Gibson. Language is primarily a tool for
communication rather than thought. Nature, 630(8017):575-586, 2024.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text
for language modeling. arXiv preprint arXiv:2101.00027, 2020.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lin-
tang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
for few-shot language model evaluation, 12 2023. URL https://zenodo.org/records/
10256836.

Jonas Geiping, Sean McLeish, Neel Jain, John Kirchenbauer, Siddharth Singh, Brian R Bartoldson,
Bhavya Kailkhura, Abhinav Bhatele, and Tom Goldstein. Scaling up test-time compute with
latent reasoning: A recurrent depth approach. arXiv preprint arXiv:2502.05171, 2025.

11

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://zenodo.org/records/10256836
https://zenodo.org/records/10256836

Published as a conference paper at ICLR 2026

Angeliki Giannou, Shashank Rajput, Jy-yong Sohn, Kangwook Lee, Jason D Lee, and Dimitris
Papailiopoulos. Looped transformers as programmable computers. In International Conference
on Machine Learning, pp. 11398-11442. PMLR, 2023.

Sachin Goyal, Ziwei Ji, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar, and Vaishnavh
Nagarajan. Think before you speak: Training language models with pause tokens. arXiv preprint
arXiv:2310.02226, 2023.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Lin Gui, Cristina Garbacea, and Victor Veitch. Bonbon alignment for large language models and
the sweetness of best-of-n sampling. arXiv preprint arXiv:2406.00832, 2024.

Kobi Hackenburg, Ben M Tappin, Paul Réttger, Scott A Hale, Jonathan Bright, and Helen Margetts.
Scaling language model size yields diminishing returns for single-message political persuasion.
Proceedings of the National Academy of Sciences, 122(10):e2413443122, 2025.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
Tian. Training large language models to reason in a continuous latent space. arXiv preprint
arXiv:2412.06769, 2024.

Michael Hassid, Tal Remez, Jonas Gehring, Roy Schwartz, and Yossi Adi. The larger the better?
improved Ilm code-generation via budget reallocation. arXiv preprint arXiv:2404.00725, 2024.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022a.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. An
empirical analysis of compute-optimal large language model training. Advances in Neural Infor-
mation Processing Systems, 35:30016-30030, 2022b.

Zhenyu Hou, Xin Lv, Rui Lu, Jiajie Zhang, Yujiang Li, Zijun Yao, Juanzi Li, Jie Tang, and Yux-
iao Dong. Advancing language model reasoning through reinforcement learning and inference
scaling. arXiv preprint arXiv:2501.11651, 2025.

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun Yu, and Jiawei
Han. Large language models can self-improve. arXiv preprint arXiv:2210.11610, 2022.

DeLesley Hutchins, Imanol Schlag, Yuhuai Wu, Ethan Dyer, and Behnam Neyshabur. Block-
recurrent transformers. Advances in neural information processing systems, 35:33248-33261,
2022.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai ol system card. arXiv
preprint arXiv:2412.16720, 2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. Race: Large-scale reading
comprehension dataset from examinations. arXiv preprint arXiv:1704.04683, 2017.

Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ili¢, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, Frangois Yvon, Matthias Gallé, et al. Bloom: A 176b-
parameter open-access multilingual language model. 2023.

Kuang-Huei Lee, Ian Fischer, Yueh-Hua Wu, Dave Marwood, Shumeet Baluja, Dale Schuurmans,
and Xinyun Chen. Evolving deeper 1lm thinking. arXiv preprint arXiv:2501.09891, 2025.

12

Published as a conference paper at ICLR 2026

Dacheng Li, Shiyi Cao, Tyler Griggs, Shu Liu, Xiangxi Mo, Shishir G Patil, Matei Zaharia, Joseph E
Gonzalez, and Ion Stoica. Llms can easily learn to reason from demonstrations structure, not
content, is what matters! arXiv preprint arXiv:2502.07374, 2025.

Liunian Harold Li, Jack Hessel, Youngjae Yu, Xiang Ren, Kai-Wei Chang, and Yejin Choi. Symbolic
chain-of-thought distillation: Small models can also “’think” step-by-step. In Proceedings of the
61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp- 2665-2679, Toronto, Canada, jul 2023. Association for Computational Linguistics.

Wenxue Li, Xiangzhou Liu, Yuxuan Li, Yilun Jin, Han Tian, Zhizhen Zhong, Guyue Liu, Ying
Zhang, and Kai Chen. Understanding communication characteristics of distributed training. In
Proceedings of the 8th Asia-Pacific Workshop on Networking, pp. 1-8, 2024.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances
in neural information processing systems, 36:34892-34916, 2023.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36, 2024.

Yingqian Min, Zhipeng Chen, Jinhao Jiang, Jie Chen, Jia Deng, Yiwen Hu, Yiru Tang, Jiapeng
Wang, Xiaoxue Cheng, Huatong Song, et al. Imitate, explore, and self-improve: A reproduction
report on slow-thinking reasoning systems. arXiv preprint arXiv:2412.09413, 2024.

Niklas Muennighoff, Alexander Rush, Boaz Barak, Teven Le Scao, Nouamane Tazi, Aleksandra
Piktus, Sampo Pyysalo, Thomas Wolf, and Colin A Raffel. Scaling data-constrained language
models. Advances in Neural Information Processing Systems, 36:50358-50376, 2023.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and Tatsunori Hashimoto. sl: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley, Mostofa Patwary, Vijay
Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer, Bryan Catanzaro, et al. Effi-
cient large-scale language model training on gpu clusters using megatron-lm. In Proceedings of
the international conference for high performance computing, networking, storage and analysis,
pp- 1-15, 2021.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin,
David Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, et al. Show
your work: Scratchpads for intermediate computation with language models. arXiv preprint
arXiv:2112.00114, 2021.

OpenAl. New reasoning models: OpenAl ol-preview and ol-mini. https://openai.com/
research/ol-preview—and-ol-mini, 2024.

Bo Pang, Hanze Dong, Jiacheng Xu, Silvio Savarese, Yingbo Zhou, and Caiming Xiong.
Bolt: Bootstrap long chain-of-thought in language models without distillation. arXiv preprint
arXiv:2502.03860, 2025.

Denis Paperno, Germédn Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Ferndndez. The lambada dataset:
Word prediction requiring a broad discourse context. arXiv preprint arXiv:1606.06031, 2016.

Suchita Pati, Shaizeen Aga, Mahzabeen Islam, Nuwan Jayasena, and Matthew D Sinclair. Com-
putation vs. communication scaling for future transformers on future hardware. arXiv preprint
arXiv:2302.02825, 2023.

13

https://openai.com/research/o1-preview-and-o1-mini
https://openai.com/research/o1-preview-and-o1-mini

Published as a conference paper at ICLR 2026

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman,
Huangi Cao, Xin Cheng, Michael Chung, Matteo Grella, et al. Rwkv: Reinventing rnns for
the transformer era. arXiv preprint arXiv:2305.13048, 2023.

Jacob Pfau, William Merrill, and Samuel R Bowman. Let’s think dot by dot: Hidden computation
in transformer language models. arXiv preprint arXiv:2404.15758, 2024.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99-106, 2021.

Nikunj Saunshi, Nishanth Dikkala, Zhiyuan Li, Sanjiv Kumar, and Sashank J Reddi. Reasoning with
latent thoughts: On the power of looped transformers. In The Thirteenth International Conference
on Learning Representations.

Pier Giuseppe Sessa, Robert Dadashi, Léonard Hussenot, Johan Ferret, Nino Vieillard, Alexandre
Ramé, Bobak Shariari, Sarah Perrin, Abe Friesen, Geoffrey Cideron, et al. Bond: Aligning llms
with best-of-n distillation. arXiv preprint arXiv:2407.14622, 2024.

Charlie Snell, Jaechoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Benedikt Stroebl, Sayash Kapoor, and Arvind Narayanan. Inference scaling flaws: The limits of llm
resampling with imperfect verifiers. arXiv preprint arXiv:2411.17501, 2024.

Hanshi Sun, Momin Haider, Ruiqi Zhang, Huitao Yang, Jiahao Qiu, Ming Yin, Mengdi Wang, Peter
Bartlett, and Andrea Zanette. Fast best-of-n decoding via speculative rejection. arXiv preprint
arXiv:2410.20290, 2024.

Jihoon Tack, Jack Lanchantin, Jane Yu, Andrew Cohen, Ilia Kulikov, Janice Lan, Shibo Hao, Yuan-
dong Tian, Jason Weston, and Xian Li. Llm pretraining with continuous concepts. arXiv preprint
arXiv:2502.08524, 2025.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Pablo Villalobos, Jaime Sevilla, Lennart Heim, Tamay Besiroglu, Marius Hobbhahn, and Anson Ho.
Will we run out of data? an analysis of the limits of scaling datasets in machine learning. arXiv
preprint arXiv:2211.04325, 1, 2022.

Xinyi Wang, Lucas Caccia, Oleksiy Ostapenko, Xingdi Yuan, William Yang Wang, and Alessandro
Sordoni. Guiding language model reasoning with planning tokens, 2024a. URL https://
arxiv.org/abs/2310.05707.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Yifei Wang, Yuyang Wu, Zeming Wei, Stefanie Jegelka, and Yisen Wang. A theoretical understand-
ing of self-correction through in-context alignment. arXiv preprint arXiv:2405.18634, 2024b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

Johannes Welbl, Nelson F Liu, and Matt Gardner. Crowdsourcing multiple choice science questions.
arXiv preprint arXiv:1707.06209, 2017.

Liu Yang, Kangwook Lee, Robert Nowak, and Dimitris Papailiopoulos. Looped transformers are
better at learning learning algorithms. arXiv preprint arXiv:2311.12424, 2023.

Sohee Yang, Elena Gribovskaya, Nora Kassner, Mor Geva, and Sebastian Riedel. Do large language
models latently perform multi-hop reasoning? arXiv preprint arXiv:2402.16837, 2024.

14

https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/2310.05707
https://arxiv.org/abs/2310.05707

Published as a conference paper at ICLR 2026

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does re-
inforcement learning really incentivize reasoning capacity in llms beyond the base model? arXiv
preprint arXiv:2504.13837, 2025.

Eric Zelikman, Georges Harik, Yijia Shao, Varuna Jayasiri, Nick Haber, and Noah D. Goodman.
Quiet-star: Language models can teach themselves to think before speaking, 2024. URL https:
//arxiv.org/abs/2403.09629.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Zhiyuan Zeng, Qinyuan Cheng, Zhangyue Yin, Bo Wang, Shimin Li, Yunhua Zhou, Qipeng Guo,
Xuanjing Huang, and Xipeng Qiu. Scaling of search and learning: A roadmap to reproduce ol
from reinforcement learning perspective. arXiv preprint arXiv:2412.14135, 2024.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small
language model. arXiv preprint arXiv:2401.02385, 2024.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595-46623, 2023.

Junkai Zhou, Liang Pang, Huawei Shen, and Xueqi Cheng. Think before you speak: Cultivating
communication skills of large language models via inner monologue, 2024. URL https://
arxiv.org/abs/2311.07445.

Dawei Zhu, Xiyu Wei, Guangxiang Zhao, Wenhao Wu, Haosheng Zou, Junfeng Ran, Xun Wang,
Lin Sun, Xiangzheng Zhang, and Sujian Li. Chain-of-thought matters: Improving long-context
language models with reasoning path supervision. arXiv preprint arXiv:2502.20790, 2025.

15

https://arxiv.org/abs/2403.09629
https://arxiv.org/abs/2403.09629
https://arxiv.org/abs/2311.07445
https://arxiv.org/abs/2311.07445

Published as a conference paper at ICLR 2026

A TRAINING DETAILS OF THE MAIN RESULT

The main computational cost was incurred during the pretraining of PonderPythia-1B, 1.4B, and
2.8B on the 300B-token Pile dataset. We pretrained these models on a cluster of high-performance
GPUs with 64GB memory, which required 19,886, 31,680, and 109,570 GPU hours, respectively.

B TRAINING DETAILS OF THE SCALING LAW

In Section 3.1, we have discussed the basic scaling law of our pondering models. These hyperpa-
rameters primarily follow the GPT-3 specifications (Brown et al., 2020). However, unlike GPT-3,
we untie the input and output embedding matrices. We specify the parameters of our models and the
training hyperparameters in Table 4.

Table 4: Model sizes and hyperparameters for scaling experiments.

learning batch size
rate (in tokens)

405M 24 1024 16 3e-4 0.5M 7B
834M 24 1536 24 2.5¢e-4 0.5M 15B
1.4B 24 2048 32 2e-4 0.5M 26B

params njayers dmodel Nheads tokens

C LIMITATIONS AND FUTURE WORK

C.1 LIMITATIONS

There are two limitations to our work. Firstly, due to computational constraints, we only scaled our
method up to a 2.8B-parameter model trained on 300B tokens from the Pile dataset. It would be
interesting to extend our approach to larger models and larger-scale datasets in the future. Secondly,
although our results demonstrate that the proposed method scales better than vanilla models under
the same training FLOPs (Figure 1), it also introduces additional inference overhead (increasing
roughly linearly with the number of pondering steps), similar to test-time scaling methods.

C.2 FUTURE WORK

There are several promising directions for future work. Firstly, our proposed method is not limited
to decoder-only architectures or language modeling; it has the potential to be applied to a wide
range of model types and domains. For example, it could be adapted to state-space models such
as Mamba (Gu & Dao, 2023), encoder models, or RWKYV (Peng et al., 2023), as well as extended
to other areas. Another promising direction is the introduction of token-adaptive pondering, which
may significantly reduce computation and further enhance our method. It would also be interesting
to investigate the interpretability of the pondering process, such as how the model ’thinks” during
pondering, the semantics of the pondering embedding, and whether the model learns to reflect on its
predictions through pondering. Finally, exploring the combination of our method with orthogonal
approaches such as CoT and other test-time scaling methods could also be an interesting direction.

D INTEGRATING PONDERING VIA CONTINUAL PRETRAINING

To investigate if our pondering mechanism can be integrated into existing large language models, we
conducted a continual pretraining experiment. We started with the pre-trained Pythia-1B model and
continued its training on a 30-billion-token subset of The Pile. We compare two approaches: a stan-
dard continual pretraining of the vanilla model (Pythia-1B-Vanilla-CPT) and continual pretraining
with our pondering mechanism (PonderPythia-1B-CPT).

Our results show that this integration is effective. As seen in the training loss curves in Figure 8,
PonderPythia consistently achieves a lower loss, demonstrating superior learning efficiency. This

16

Published as a conference paper at ICLR 2026

2.25+ Continue Pretrain: Loss & LR
—— Vanilla Loss
—— PonderLM Loss

N

=

w
L

N

=

o
!

Training Loss

NN
o ©
S o
L L

x1074

=
o

— Vanilla LR
—— PonderLM LR

Learning Rate
o
w

o
=)

5 10 15 20 25 30

Training Tokens (B)

Figure 8: Training loss during continual pretraining. PonderPythia-1B achieves a lower loss than
the vanilla baseline, suggesting greater learning efficiency.

efficiency translates to improved downstream performance, as detailed in Table 5. The Ponder-
Pythia model achieves a higher average accuracy in both 5-shot and 0-shot settings across a suite of
benchmarks.

Collectively, these findings confirm that continual pretraining is a viable and effective strategy for
equipping pre-trained models with our pondering mechanism, enhancing both adaptation efficiency
and downstream capabilities.

Table 5: Downstream task performance after continual pretraining on 30B tokens. PonderPythia-1B
shows improved average accuracy in both 5-shot and 0-shot evaluations.

Lambada ARC Lambada ARC Wino Hella . Avg acc/
OpenAl -E Standard -C Grande PIQA Swag SciQ RACE Aacc T

5-shot

Pythia-1B-Vanilla-CPT| 494 60.0 365 27.1 519 714 379 904 319 50.7
PonderPythia-1B-CPT | 495 58.8 426 254 543 692 379 912 347 51.5(+0.8)

0-shot

Pythia-1B-Vanilla-CPT| 56.7 563 427 246 525 70.6 37.7 83.6 32.6 50.8
PonderPythia-1B-CPT 56.7 563 454 238 556 683 378 863 33.0 51.5(+0.7)

Model (#training tokens)

E SCALING LAWS WITH DIFFERENT PONDERING STEPS

To further validate the robustness of our method, we extended our analysis to LLaMA models trained
with different numbers of pondering steps. Specifically, we tested configurations with 2 and 4 steps
while keeping all other experimental settings constant. As illustrated in Figure 9, our method re-
mains consistently effective, with model performance improving further as the number of pondering
steps increases.

F ANALYSIS ON INPUT EMBEDDINGS AND OUTPUT DISTRIBUTIONS
To better understand the dynamics of the pondering process, we analyze the properties of input
embeddings and output distributions using the Pythia-70M model trained with 10 pondering steps

(as described in Section 4.2). We conduct the evaluation on a batch of 64 validation sequences with
a context length of 2048 tokens.

F.1 INPUT EMBEDDINGS

We first examine the evolution of the input embeddings £° across pondering steps.

17

Published as a conference paper at ICLR 2026

-=-- LLaMA fitted
—k— LLaMA

PonderLLaMA (2 steps)
—%— PonderLLaMA (3 steps)
—k— PonderLLaMA (4 steps)

2.6

2.59

2.44

Loss

2.3

2.2

2.1

405M*7B 834M*15B 1.4B*26B
Parameters * Tokens

Figure 9: Scaling curves of LLaMA with different pondering steps.

Cosine Similarity. To measure the convergence of the embeddings, we calculate the cosine sim-
ilarity between consecutive steps, Cosine(E*~!, E*). Here we define s = 0 as the original input
embedding (before pondering). As shown in Figure 10, the similarity starts at approximately 0.88
and gradually converges to 1.0, indicating that the input representations stabilize over time.

1.00 Cosine vs pondering step KL vs pondering step
~1
€
§0.98 0.3
5 N
30.96 Q
T 0.04 702
»
= 2
0 0.92 =
5 ~0.1
<0.90
S
0.88
2 4 6 8 10 2 4 6 8 10
pondering step (s) pondering step (s)
Figure 10: The cosine similarity between con- Figure 11: KL divergence between consecutive

secutive embedding states °~! and E* across output distributions, averaged over tokens.
pondering steps.

Spectral Properties. We further analyze the geometry of the embeddings. Figure 12 visualizes
the spectral energy distribution (explained variance ratio) of the top singular values. Consistent
with this distribution, we observe a steady decrease in Effective Rank and a simultaneous increase
in Cumulative Variance (Figure 12). This collective evidence indicates that the embedding energy
progressively concentrates into dominant components during the pondering process.

F.2 OuTtpPUT DISTRIBUTIONS

We also monitor the changes in the model’s predictions by calculating the Kullback-Leibler (KL)
divergence between the output probability distributions P* of consecutive steps, Dy, (P*~1||P?).

As illustrated in Figure 11, the KL divergence exhibits large variations in the initial steps (starting
around 0.35) and decreases monotonically thereafter, suggesting that the model’s predictions refine
quickly and then settle into a stable state.

G CASE STUDIES

To provide a deeper insight into the internal pondering process of PonderLM, we present case stud-
ies derived from the pre-trained PonderPythia-2.8B model. The following tables visualize the evolu-
tion of the top-3 candidate tokens and their corresponding probabilities across sequential pondering
steps.

18

Published as a conference paper at ICLR 2026

107!

6x 1072

4x1072

explained variance ratio (log scale)

Spectral energy (top-8)

—o— step0

step 1
~o— step2
—e— step3
~o— step4
—o— step 5

step 6

~o— step 7
step s
step9
step 10

N
3

o o effective rank
S w N
o o o

cum var (top-8)

N
IS
o

Figure 12: Left: Spectral energy (explained variance ratio, log scale) of the top-8 singular values
of the token-embedding matrix at each pondering step s. Right: Effective rank (] more spiky) and
cumulative variance of the top-8 components (T more spiky) versus step s, indicating progressive

3 4 5 6
singular value index

concentration of energy into few dominant directions.

Effective rank & cumulative variance vs step

—e— effective rank (1 more spiky)

cum. var (top-8) (T more spiky)

0 2 4

6 8 10

pondering step s

The speed of light in vacuum is approximately 3 times ten to the power

of
Output Probs Pondering steps 1 Pondering steps 2 | Pondering steps 3 Final predicted
Rank 1 logarithm (0.45) "-(0.38) -8 (0.48) 8 (0.55)
Rank 2 , (0.38) aggreg (0.32) 8 (0.36) eight (0.23)
Rank 3 ten (0.18) approximately (0.31) tion (0.17) 10 (0.22)
The chemical symbol for silver is
Output Probs Pondering steps 1 | Pondering steps 2 | Pondering steps 3 Final predicted
Rank 1 symbol (0.47) atoms (0.39) Ag (0.40) Ag (0.94)
Rank 2 symbols (0.32) atomic (0.32) symbol (0.33) ” (0.04)
Rank 3 nickname (0.20) | elemental (0.30) | elements (0.27) S (0.02)

The largest ocean on Earth is

the

Output Probs

Pondering steps 1

Pondering steps 2

Pondering steps 3

Final predicted

Rank 1

oceans (0.66)

Pacific (0.40)

Pacific (0.59)

Pacific (0.77)

Rank 2

ocean (0.32)

oceans (0.32)

oceans (0.21)

Atlantic (0.19)

Rank 3

seas (0.02)

Antarctic (0.28)

ocean (0.20)

Indian (0.03)

The derivative of sin x is

Output Probs Pondering steps 1 | Pondering steps 2 | Pondering steps 3 Final predicted
Rank 1 differentiable (0.55) homework (0.61) approximately (0.37) cos (0.36)
Rank 2 the (0.23) differentiable (0.21) cos (0.32) x (0.34)
Rank 3 derivatives (0.21) basics (0.17) differentiable (0.31) (0.30)

The opposite of north is

Output Probs Pondering steps 1 | Pondering steps 2 | Pondering steps 3 Final predicted
Rank 1 directions (0.41) | directions (0.40) south (0.92) south (0.95)
Rank 2 compass (0.36) noun (0.32) unclear (0.04) east (0.02)
Rank 3 the (0.22) idiot (0.28) South (0.03) not (0.02)

The chemical symbol for gold is

19

Published as a conference paper at ICLR 2026

Output Probs Pondering steps 1 | Pondering steps 2 | Pondering steps 3 Final predicted
Rank 1 symbol (0.48) atoms (0.45) _Au (0.78) Au (0.87)
Rank 2 symbols (0.40) elemental (0.28) Au (0.17) ”(0.09)
Rank 3 approximately (0.12) metals (0.27) element (0.05) the (0.04)

H GRADIENT NORMS COMPARISON

In this section, we take a closer look at training stability by comparing the gradient norms of the PonderLM
against the vanilla GPT-2 1.4B model (Section 3.1). Both models were trained from scratch on the Pile using
the exact same data and hyperparameters. As shown in Figure 13, while the pondering model shows a few

minor spikes early on, it quickly recovers and maintains a stable training trajectory similar to the baseline.

Grad Norm

—— Vanilla Grad Norm
—— PonderLM Grad Norm

0.15

Training Steps

0 2500 5000 7500 10000 12500 15000 17500 20000

Figure 13: Gradient norms during pre-training for vanilla vs. PonderLM 1.4B.

20

