
Published as a conference paper at ICLR 2026

PONDERLM: PRETRAINING LANGUAGE MODELS TO
PONDER IN CONTINUOUS SPACE

Boyi Zeng1, Shixiang Song1,2,3, Siyuan Huang1, Yixuan Wang1,3, He Li1,
Ziwei He3,Xinbing Wang4, Zhiyu Li2, Zhouhan Lin1,2,3∗
1LUMIA Lab, Shanghai Jiao Tong University,
2Institute for Advanced Algorithms Research, Shanghai,
3Shanghai Innovation Institute, 4Shanghai Jiao Tong University
boyizeng@sjtu.edu.cn ∗lin.zhouhan@gmail.com

ABSTRACT

Humans ponder before articulating complex sentence elements, enabling deeper
cognitive processing through focused effort. In this work, we introduce this pon-
dering process into language models by repeatedly invoking the forward process
within a single token generation step. During pondering, instead of generating
an actual token sampled from the prediction distribution, the model ponders by
yielding a weighted sum of all token embeddings according to the predicted to-
ken distribution. The generated embedding is then fed back as input for another
forward pass. We show that the model can learn to ponder in this way through
self-supervised learning, without any human annotations. Experiments across
three widely used open-source architectures—GPT-2, Pythia, and LLaMA—and
extensive downstream task evaluations demonstrate the effectiveness and gener-
ality of our method. On 9 downstream benchmarks, our pondering-enhanced
Pythia models significantly outperform the official Pythia models. Notably, our
PonderPythia models demonstrate remarkable effectiveness: PonderPythia-2.8B
surpasses Pythia-6.9B and rivals Pythia-12B, while our PonderPythia-1B matches
TinyLlama-1.1B, a model trained on 10 times more data.1
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Figure 1: Scaling curves comparing PonderPythia with the official Pythia suite on the 300B Pile.
Our 2.55B model matches the loss of Pythia-6.9B with 63% fewer parameters (left), while our
PonderPythia-1B model reaches the baseline’s final performance with 59% less training data (mid-
dle). Furthermore, for the same computational budget (FLOPs), PonderPythia consistently achieves
a lower loss than the baseline (right).

1 INTRODUCTION

In the pursuit of improving model performance, scaling up model parameters and data sizes has long
been the most widely adopted and accepted approach (Kaplan et al., 2020; Brown et al., 2020; Liu
et al., 2024). However, this approach faces several bottlenecks, including the exhaustion of high-
quality data (Villalobos et al., 2022; Muennighoff et al., 2023), the observed saturation in scaling
laws (Hackenburg et al., 2025; Hoffmann et al., 2022a) and substantial communication overhead in

∗Zhouhan Lin is the corresponding author.
1The code is available at https://github.com/LUMIA-Group/PonderingLM.
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class PonderLanguageModel(nn.Module):
def init (self, lm, v, h, s):

self.lm = lm # language model
self.vocab size = v
self.hidden dim = h
self.pondering steps = s
self.embedding = nn.Parameter(torch.

randn(v, h), requires grad=True)

def forward(self, input tokens):
input embedding =
self.embedding[input tokens]
#Iterative pondering
for t in range(self.pondering steps):

predicted prob = self.lm(
input embedding)

pondering embedding = torch.matmul
(predicted prob, self.
embedding)

input embedding = input embedding
+ pondering embedding

#Final forward pass
final prob = self.lm(input embedding)
return final prob

Figure 2: Overview of the PonderLM. Given input token embeddings, the base LM produces a
probability distribution over the vocabulary, which is used to compute a continuous “pondering
embedding” via a weighted sum of all token embeddings. This embedding is then added residually to
the original input embeddings and fed back into the LM. By repeating this process for k steps within
a single token prediction, the model iteratively refines its output distributions. The pseudocode on
the right illustrates the implementation details.

distributed pre-training that grows super-linearly with model size (Narayanan et al., 2021; Pati et al.,
2023; Li et al., 2024).

On the other hand, if we look at humans, the growth of human capabilities does not stem from simply
increasing the number of neurons in the brain. Instead, when faced with complex problems, humans
often enhance their problem-solving abilities by repeatedly pondering, engaging in deep cognitive
processing before articulating their thoughts.

Analogously, in large language models, the most relevant research direction is test-time scaling. In
particular, following the advancements in o1 and R1 (Jaech et al., 2024; DeepSeek-AI et al., 2025),
generating long chains of thought (CoT) has emerged as the mainstream approach for scaling test-
time computation. However, CoT-based methods also exhibit several drawbacks: they often require
curated human-annotated datasets (Allen-Zhu & Li, 2023) and carefully designed reinforcement
learning algorithms (Pang et al., 2025). Moreover, small models rarely benefit from CoT (Li et al.,
2023), and the upper bound of performance remains constrained by the base pretrained model (Yue
et al., 2025). Additionally, current language models employing CoT are still confined to discrete
language spaces with fixed vocabularies, which, according to recent studies (Fedorenko et al., 2024;
Hao et al., 2024; Pfau et al., 2024), are primarily optimized for communication rather than for
internal computational thinking.

To overcome these challenges and inspired by human pondering, we introduce the Pondering Lan-
guage Model (PonderLM), which relies solely on self-supervised learning. PonderLMs can be
naturally learned through pretraining on large-scale general corpora, without the need for human-
annotated datasets or reinforcement learning.

During pondering, instead of generating a discrete token sampled from the prediction distribution,
the model produces a weighted sum of all token embeddings based on the predicted probabilities.
This generated embedding is then fed back into the language model, allowing it to iteratively refine
its predictions. As the weighted embedding is continuous, PonderLMs overcome the expressive lim-
itations of discrete token vocabularies and enable fully differentiable, end-to-end pretraining via gra-
dient descent. Furthermore, by performing more computations per parameter, PonderLMs achieve
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Figure 3: The inference process of a pondering language model, illustrated with an actual example
from PonderPythia-2.8B, shows how the model dynamically corrects its predictions over several
pondering steps to arrive at the correct answer. Crucially, the intermediate probability distributions
and their top candidate tokens offer a potentially interpretable view into the model’s inference.

higher parameter knowledge density (Allen-Zhu & Li, 2024), potentially reducing communication
costs at scale.

Experimentally, by introducing the pondering process during pretraining, our Ponder GPT-2,
LLaMA, and Pythia models achieve pretraining perplexity comparable to that of vanilla models
with twice as many parameters. Furthermore, PonderPythia models significantly outperform the
official Pythia models across nine popular downstream tasks, PonderPythia-2.8B surpasses Pythia-
6.9B, and PonderPythia-1B is comparable to TinyLlama-1.1B, which is trained on 10 times more
data. Notably, increasing the number of pondering steps consistently enhances model performance,
underscoring the substantial potential of this approach.

Moreover, our method is orthogonal to traditional scaling strategies, including parameter scaling
and inference-time scaling via CoT, and thus can complement existing techniques, potentially intro-
ducing a third scaling axis to enhance model performance.

2 PONDERING LANGUAGE MODEL

In this section, we introduce our proposed PonderLM (Figure 2), which integrates a pondering
mechanism into language models via pretraining. Given that pretraining fundamentally constitutes
a language modeling task, we briefly review this task before detailing our proposed model.

Language Modeling. Given a sequence of tokens X = [x1, x2, . . . , xn], the primary objective of
language modeling is typically to maximize the likelihood of predicting each token based on its
preceding tokens. Formally, this is expressed through the joint probability factorization:

P (x1, x2, . . . , xn) =

n∏
t=1

P (xt | x<t) (1)

Current language models first map tokens to input embeddings E0 = [e01, e
0
2, . . . , e

0
n], where each

embedding e0i ∈ Rd is selected from a vocabulary embedding matrix V = [e1, e2, . . . , e|V |], with
vocabulary size |V | and hidden dimension d. The language model then generates output probabilities
P for predicting the next token at each position:

P = LM(E0), P ∈ Rn×|V | (2)

The cross-entropy loss is computed directly from these predicted probabilities P to pretrain the
language model.

Pondering Mechanism. In our proposed method, instead of directly using the predicted output
probabilities P to compute the cross-entropy loss, we utilize these probabilities as weights to sum
embeddings of all candidate tokens, forming what we call a ”pondering embedding”. Given the
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probability distribution p ∈ R|V | at each position, the pondering embedding t is:

t =

|V |∑
i=1

piei, pi ∈ R, ei ∈ Rd (3)

For computational efficiency, pondering embeddings t for all positions can be calculated simultane-
ously via matrix multiplication2:

T = PV, T ∈ Rn×d (4)
Through these pondering embeddings, we effectively map predicted probabilities back into the em-
bedding space, preserving embedding information from all possible candidate tokens. To maintain
the information from the original input embeddings, we integrate the pondering embeddings using
a residual connection:

E1 = E0 +T = [e01 + t1, e
0
2 + t2, . . . , e

0
n + tn] (5)

We then feed the updated embeddings E1 back into the same language model to obtain refined
output probabilities:

P1 = LM(E1), P1 ∈ Rn×|V | (6)

After obtaining P1, we can iteratively repeat the previous process to achieve multi-step pondering.
Specifically, given a predefined number of pondering steps s3, we iteratively compute new ponder-
ing embeddings and integrate them with the original input embeddings using residual connections,
feeding the result back into the same language model until s steps are reached:

E0 = [e01, e
0
2, . . . , e

0
n], P0 = LM(E0), T1 = P0V

E1 = E0 +T1 = [e01 + t11, e
0
2 + t12, . . . , e

0
n + t1n], P1 = LM(E1), T2 = P1V

. . .

Es = E0 +

s∑
i=1

Ti = [e01 + t11 + · · ·+ ts1, . . . , e
0
n + t1n + · · ·+ tsn], Ps = LM(Es)

(7)

This iterative pondering mechanism progressively refines the model’s predictions. Finally, we can
use the refined output probabilities Ps after s pondering steps to compute the cross-entropy loss and
optimize the language model to perform s-step pondering.

3 EXPERIMENTS

Our experiments consist of 3 parts. First, we validate the scaling curves of pondering models on
widely used GPT-2 and LLaMA architectures. Second, we perform large-scale pretraining of Pon-
derPythia models on the Pile dataset and compare their scaling curves and language modeling ca-
pabilities with those of the official Pythia suite (Biderman et al., 2023). Third, we evaluate the
downstream task performance of PonderPythia models, including 9 popular general tasks and an
instruction-following task, and compare the results with official Pythia, OPT (Zhang et al., 2022),
Bloom (Le Scao et al., 2023) and TinyLLaMA (Zhang et al., 2024).

3.1 SMALL SCALE VALIDATION ON GPT-2 AND LLAMA

We apply our proposed method to two popular Transformer architectures, GPT-2 and LLaMA, to
investigate its general applicability and effectiveness.

Experimental Settings. We trained both models from 405M to 1.4B parameters from scratch on
a subset of the Pile dataset using the same tokenizer. The amount of training data for each model
follows the Chinchilla (Hoffmann et al., 2022b) scaling laws, with a fixed context length of 2048.
Detailed configurations are specified in Appendix B.

2In practice, we use only the top-K tokens with highest probabilities at each position to compute the pon-
dering embedding, reducing complexity from O(n|V |d) to O(nKd). With K = 100 ≪ |V |, this does
not degrade LM performance and makes the matrix multiplication overhead negligible within the overall LM
computations. We have done the ablation study in Section 4.4.

3Unless otherwise specified, we set s = 3 for subsequent experiments.
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Figure 5: PonderPythia demonstrates substantial perplexity improvements over the official Pythia
across all model sizes and datasets. Our PonderPythia-2.8B even surpasses the official Pythia-6.9B.
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Figure 4: Scaling curves of GPT3 LLaMA and
their corresponding pondering models.

Results. As shown in Figure 4, the pondering
mechanism significantly improves the perfor-
mance of GPT-2 and LLaMA models across the
405M to 1.4B parameter range. For instance, an
834M pondering model achieves a loss compa-
rable to a vanilla model trained with over 2×
the parameter-token product.

3.2 LARGE-SCALE PRETRAINING ON PILE

We further validate the effectiveness of our
pondering method by conducting large-scale
pretraining experiments on the entire Pile
dataset (300B tokens) (Gao et al., 2020). We
train a new model, named PonderPythia, from
scratch using exactly the same architectural
components (parallel attention and MLP layers, rotary embeddings with 1/4 head dimensions), same
tokenizer and training hyperparameters (optimizer settings, learning rate schedule, batch size, and
context length) as the original Pythia models. We then compare PonderPythia models’ scaling curves
and language modeling capabilities with the official Pythia model suite.

3.2.1 SCALING CURVES

We plot the scaling curves of the PonderPythia and official Pythia models with respect to parameter
size, training tokens, and training FLOPs. As shown in Figure 1 (left), the fitted curves indicate
that a 2.55B-parameter PonderPythia model achieves a validation loss comparable to that of the
6.9B-parameter official Pythia model, while requiring 63% fewer parameters. In Figure 1 (middle),
the fitted curves show that PonderPythia achieves performance comparable to the official Pythia
model while using 59% fewer training tokens. In Figure 1 (right), we report the language modeling
loss of vanilla Pythia-70M4 and PonderPythia-70M under the same computational budget during
pretraining. It can be observed that PonderPythia-70M consistently outperforms vanilla Pythia-70M
when trained with the same number of FLOPs.

3.2.2 LANGUAGE MODELING ABILITY EVALUATION

We measure the perplexity on several language modeling datasets to reflect general language model-
ing capabilities. Specifically, we report perplexity scores on the Pile validation set, Wikitext, and the
Lambada dataset (both OpenAI and standard versions), detailed in Figure 5. The results demonstrate
significant perplexity improvements across all datasets and model sizes. Notably, the perplexity
achieved by the PonderPythia-2.8B model is even better than that of the official Pythia-6.9B model.

3.3 DOWNSTREAM TASKS EVALUATION

We use previously pretrained PonderPythia models for downstream task evaluations.

4To match the training FLOPs of vanilla Pythia-70M with PonderPythia-70M, we trained the vanilla model
for 4 epochs.
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Table 1: Five-shot and zero-shot evaluations on downstream NLP tasks. All pretrained model
weights used for comparison are obtained from their official repositories. ∆acc is compared to
the official Pythia models. Models in italics are excluded from bolding, as they use significantly
larger training data or parameters.

Model (#training tokens)
Lambada
OpenAI

ARC
-E

Lambada
Standard

ARC
-C

Wino
Grande PIQA Hella

Swag SciQ RACE Avg acc /
∆acc ↑

5-shot

Pythia-410M (300B) 43.9 54.7 32.8 22.3 53.4 68.0 33.8 88.9 30.4 47.6
OPT-350M (300B) 38.3 45.4 32.1 20.5 53.0 65.8 31.9 85.7 29.5 44.7
Bloom-560M (366B) 29.4 50.2 29.7 21.9 52.7 64.2 31.4 88.0 30.0 44.2
PonderPythia-410M (300B) 48.9 58.7 43.7 26.1 54.0 70.5 37.3 91.0 32.4 51.4 /+3.8

Pythia-1B (300B) 48.3 58.6 35.8 25.4 52.8 71.3 37.7 91.6 31.7 50.4
OPT-1.3B (300B) 54.0 60.4 49.0 26.9 56.9 72.4 38.5 91.8 35.4 52.7
Bloom-1.1B (366B) 36.3 54.9 37.4 24.9 53.4 67.6 34.8 88.7 33.0 47.9
Tinyllama-1.1B (3T) 53.8 64.8 45.0 31.1 59.4 73.8 44.9 94.0 36.4 55.9
PonderPythia-1B (300B) 57.7 63.2 52.5 28.6 58.6 73.3 41.9 93.4 36.3 56.2 / +5.8

Pythia-1.4B (300B) 54.5 63.1 44.5 28.8 57.1 71.0 40.5 92.4 34.6 54.1
Bloom-1.7B (366B) 42.5 58.8 41.5 26.2 57.7 68.7 37.6 91.9 33.5 50.9
PonderPythia-1.4B (300B) 59.2 67.5 49.9 32.4 60.4 73.5 44.2 94.3 37.1 57.6 / +3.5

Pythia-2.8B (300B) 59.0 67.0 50.7 31.0 61.1 74.4 45.3 93.7 35.9 57.6
OPT-2.7B (300B) 60.2 64.7 55.0 29.8 62.2 75.1 46.1 93.0 37.5 58.2
Bloom-3B (366B) 46.2 63.8 47.1 31.7 57.8 70.8 41.4 93.4 34.6 54.1
Pythia-6.9B (300B) 62.5 69.6 54.8 35.6 62.9 76.6 48.0 94.6 36.7 60.1
Pythia-12B (300B) 66.5 71.0 57.1 36.0 64.8 76.5 50.7 94.9 37.4 61.7
PonderPythia-2.8B (300B) 64.2 70.6 58.7 35.8 65.3 76.7 49.0 94.3 39.0 61.5 / +3.9

0-shot

Pythia-410M (300B) 51.4 52.2 36.4 21.4 53.8 66.9 33.7 81.5 30.9 47.6
OPT-350M (300B) 45.2 44.0 35.8 20.7 52.3 64.5 32.0 74.9 29.8 44.4
Bloom-560M (366B) 34.3 47.5 33.3 22.4 51.5 63.8 31.5 80.3 30.5 43.9
PonderPythia-410M (300B) 56.9 51.9 45.3 22.6 56.0 68.7 37.0 81.4 33.8 50.4 / +2.8

Pythia-1B (300B) 55.9 56.8 42.0 24.2 52.5 70.5 37.7 83.3 32.7 50.6
OPT-1.3B (300B) 57.9 57.1 52.5 23.4 59.7 71.8 41.6 84.3 34.3 53.6
Bloom-1.1B (366B) 42.6 51.5 42.9 23.6 54.9 67.3 34.5 83.6 32.6 48.2
Tinyllama-1.1B (3T) 58.8 60.3 49.3 28.0 59.0 73.3 45.0 88.9 36.4 55.4
PonderPythia-1B (300B) 62.3 60.5 51.9 27.0 56.5 72.2 41.8 87.4 35.4 55.0 / +4.4

Pythia-1.4B (300B) 61.6 60.4 49.7 25.9 57.5 70.8 40.4 86.4 34.1 54.1
Bloom-1.7B (366B) 46.2 56.4 44.5 23.7 56.8 68.5 37.5 85.0 33.2 50.2
PonderPythia-1.4B (300B) 65.2 62.0 53.8 27.0 60.1 72.6 44.0 89.0 35.2 56.5 / +2.4

Pythia-2.8B (300B) 64.6 64.4 54.3 29.5 60.2 73.8 45.4 88.5 34.9 57.3
OPT-2.7B (300B) 63.5 60.8 56.0 26.8 61.2 73.8 45.9 85.8 36.2 56.7
Bloom-3B (366B) 51.7 59.4 50.9 28.0 58.7 70.8 41.4 88.8 35.2 53.9
Pythia-6.9B (300B) 67.2 67.3 55.9 31.4 61.0 75.2 48.1 89.3 36.9 59.1
Pythia-12B (300B) 70.4 70.6 58.9 31.7 61.0 75.2 50.4 89.3 36.9 60.5
PonderPythia-2.8B (300B) 68.9 66.5 60.8 32.5 63.6 75.0 48.6 91.0 36.5 60.4 / +3.1

3.3.1 GENERAL DOWNSTREAM TASKS

We consider various widely-used benchmarks, including the tasks originally used by Pythia (LAM-
BADA (Paperno et al., 2016), PIQA (Bisk et al., 2020), WinoGrande (Sakaguchi et al., 2021), ARC-
E and ARC-C (Clark et al., 2018), SciQ (Welbl et al., 2017). We also include HellaSwag (Zellers
et al., 2019) for commonsense reasoning and RACE (Lai et al., 2017) for reading comprehension.

We evaluate both 0-shot and 5-shot learning performance using the LM evaluation harness (Gao
et al., 2023). Detailed results are shown in Table 1. Across all evaluated model sizes, PonderPythia
consistently and significantly outperforms the official Pythia models, as well as comparable OPT and
Bloom models. Remarkably, with only 1/10 of the training data (300B tokens) and fewer parameters,
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Figure 6: Instruction-following abilities evaluated on MT-Bench. PonderPythia-1B and 1.4B con-
sistently outperform their corresponding official Pythia models across all subtasks.

our PonderPythia-1B achieves results comparable to, or even surpassing, TinyLlama-1.1B—which
uses a more advanced LLaMA architecture and 3T tokens. Furthermore, PonderPythia-2.8B not
only surpasses Pythia-6.9B but also achieves performance nearly on par with Pythia-12B.

3.3.2 INSTRUCTION-FOLLOWING ABILITY EVALUATION

To assess the instruction-following capability of our model, we further fine-tuned PonderPythia-1B
and 1.4B, as well as the corresponding official Pythia models, on the Alpaca dataset using the same
settings (Taori et al., 2023). The fine-tuned models were evaluated with MT-Bench (Zheng et al.,
2023), a popular multi-turn question benchmark. The experimental results are shown in Figure 6. As
illustrated, both PonderPythia-1B and 1.4B consistently outperform their official Pythia counterparts
across all subtasks, achieving average improvements of 0.33 and 0.55, respectively.5

4 ABLATION STUDY

In this section, we conduct a series of ablation studies to dissect the components of our proposed
pondering language model. We use a 70M parameter Pythia model trained on a 30B-token subset of
the Pile dataset as our primary testbed to ensure controlled and efficient experimentation.

4.1 COMPARISON WITH RELATED BASELINES

First, we compare our pondering mechanism against several baselines designed to increase compu-
tation per token. The goal is to verify that the performance gains come from our specific approach
rather than merely from additional computation. The baselines include:

• Last Hidden State as Embedding: Replacing the pondering embedding with the last hidden state
from the previous step, similar to Coconut (Hao et al., 2024).

• Projected Hidden State: A variant of the above where a linear projector (like LLaVA (Liu et al.,
2023)) maps the last hidden state to the embedding space.

• Looped Transformer (Giannou et al., 2023; Saunshi et al.): Increases computation by iteratively
reusing the full stack of transformer layers.

• Pause Token (Goyal et al., 2023): A method that inserts a special learnable ”pause” token after
each original token to encourage extra computation.

As shown in Table 2, our method significantly outperforms all baselines across every benchmark
given the same number of additional steps/loops/pauses. Notably, our model with only 3 pondering
steps is more effective than baselines with 6 loops, steps or pauses, confirming that the performance
gains are attributable to our specific approach rather than just added computation.

5The marginal gains on Coding and Math tasks may be attributed to the limited coding and mathematical
abilities of the Pythia models.
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Table 2: Comparison on various benchmarks. PonderPythia-70M consistently outperforms all base-
line methods, with the 3-step version already surpassing 6-step/loop/pauses baselines.

Model Pile(↓) Wikitext(↓) Lambada
OpenAI(↓)

Lambada
Standard(↓)

Avg Acc
0 shot(↑)

Avg Acc
5 shot(↑)

Pythia-70M (baseline) 16.95 51.68 101.34 481.04 21.04 14.12

Models with 3 additional steps/loops/pauses
Looped Pythia-70M (3 loops) 15.33 44.56 74.75 438.62 22.67 17.21
Pause Pythia-70M (3 pauses) 16.53 49.85 80.77 374.97 21.62 15.67
Last Hidden State (3 steps) 15.64 45.60 78.11 479.85 22.11 15.44
+ Linear Projector (3 steps) 15.64 46.10 81.94 453.78 21.62 17.69
PonderPythia (3 steps) 14.16 39.63 56.01 238.45 25.13 20.64

Models with 6 additional steps/loops/pauses
Looped Pythia-70M (6 loops) 15.18 43.91 71.78 355.64 22.50 17.44
Pause Pythia-70M (6 pauses) 16.55 49.66 80.79 460.80 21.61 15.88
Last Hidden State (6 steps) 15.30 44.48 78.87 393.03 22.46 18.18
+ Linear Projector (6 steps) 15.29 44.24 74.36 474.15 21.69 17.61
PonderPythia (6 steps) 13.56 37.57 49.15 196.67 25.58 21.71

4.2 IMPACT OF PONDERING STEPS

To further investigate the effect of pondering steps on model performance, we trained several 70M-
parameter Pythia from scratch with different numbers of pondering steps: 0 (baseline), 1, 2, 3, 4, 5,
and 10. The results in Figure 7 (top) show that increasing pondering steps consistently reduces the
language modeling loss on the Pile validation set, demonstrating the potential of our method.

4.3 TRAINING WITH RANDOMIZED PONDERING STEPS

0 1 2 3 4 5 10
Pondering Steps (0 = Baseline)

2.60
2.70
2.80

Lo
ss

1 3 5 7 10
Inference Time Pondering Steps

2.58
2.64
2.70
2.76

Lo
ss

Figure 7: (Top) Increasing the number of pon-
dering steps consistently reduces the validation
loss. (Bottom) Inference-time scaling of a model
trained with randomized pondering steps.

In our main experiments, the number of ponder-
ing steps is fixed during training and inference
due to source limit. To build a more flexible
model, we also experimented with randomiz-
ing the number of pondering steps during train-
ing. We trained a Pythia-70M model where the
number of steps for each training batch was ran-
domly sampled from the range [1, 10].

This strategy yields a single model that can
operate with a variable number of steps at in-
ference. As shown in Figure 7 (bottom), this
model exhibits test-time scaling: its perfor-
mance progressively improves as we increase
the number of pondering steps, and thus the
computational budget, at test time.

4.4 INFLUENCE OF TOP-K TOKEN SELECTION

To balance performance and efficiency, we evaluated the effect of the hyperparameter K on model
perplexity. Increasing K from 10 to 100 substantially reduced perplexity from 15.18 to 14.21.
However, expanding the selection to the full vocabulary yielded only a negligible improvement to
14.20. This indicates that tokens with ranks between 10 and 100 contribute substantially, while those
beyond offer negligible benefit. We thus adopt K = 100 in our main experiments.

5 RELATED WORK

Test-Time Compute Scaling. Scaling computation at test time has proven effective for improving
model performance without adding parameters (Snell et al., 2024), with existing methods mainly
categorized into parallel and sequential scaling (Zeng et al., 2024; Muennighoff et al., 2025).
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Table 3: A Comparison of PonderLM with Related Methods.

Method Training Data Computation Space Application Level Training Method

CoT CoT data Explicit Token Per question RL/SFT
LoopedLM General corpus Hidden State Per token Pretrain
Pause Tokens General corpus Fixed Token Per token Pretrain
Quiet-STaR General corpus Explicit Token Per token RL
Coconut CoT data Hidden State Per question SFT

PonderLM General corpus Weight Sum of Embeddings Per token Pretrain

Parallel scaling generates multiple candidates simultaneously and selects the best via strategies like
Best-of-N (BoN) (Cobbe et al., 2021; Sun et al., 2024; Gui et al., 2024; Amini et al., 2024; Sessa
et al., 2024) or Majority Voting (Wang et al., 2022), but faces the challenge of reliably identifying
the optimal candidate (Stroebl et al., 2024; Hassid et al., 2024).

Sequential scaling methods improve reasoning by iteratively refining a model’s output over multiple
steps. This broad category includes foundational techniques like Chain of Thought (CoT) as well as
more recent iterative revision strategies (Wei et al., 2022; Nye et al., 2021; Huang et al., 2022; Min
et al., 2024; Madaan et al., 2024; Wang et al., 2024b; Lee et al., 2025; Hou et al., 2025; Muennighoff
et al., 2025; Li et al., 2025). State-of-the-art models also scale computation at test-time through
extensive multi-step reasoning (OpenAI, 2024; DeepSeek-AI et al., 2025; Comanici et al., 2025).
However, these methods often depend on specialized datasets (Allen-Zhu & Li, 2023), require long
context windows (Zhu et al., 2025), or involve complex reinforcement learning (Pang et al., 2025).
Our method is designed to overcome these limitations.

Latent Thinking in Language Models. Latent thinking refers to the intermediate computational
processes that occur within a language model’s internal representations, separate from the explicit
generation of text tokens (Yang et al., 2024; Biran et al., 2024). Prior work can be broadly catego-
rized by the computational space in which this additional thinking occurs.

Discrete Token Space. One line of research elicits intermediate reasoning by manipulating discrete
tokens. This includes predicting dedicated planning tokens (Wang et al., 2024a), using filler tokens
to allocate more computation (Pfau et al., 2024), or inserting learnable ”pause” tokens during train-
ing to encourage latent computation (Zhou et al., 2024; Goyal et al., 2023). More complex methods
like Quiet-STaR use reinforcement learning to generate and then condense rationales at each token,
embedding the reasoning process directly into generation (Zelikman et al., 2024).

Continuous Space. Another research direction explores reasoning directly within the model’s con-
tinuous hidden states. One prominent approach involves iteratively refining these states. This is
achieved through recurrent structures that reuse hidden states over time (Dehghani et al.; Hutchins
et al., 2022), by recycling model outputs back as inputs, a technique effective for reasoning tasks (Gi-
annou et al., 2023; Yang et al., 2023; Saunshi et al.), or by iterating over model layers to refine in-
termediate representations (Geiping et al., 2025). More recently, methods like Coconut (Hao et al.,
2024) train models to reason entirely in the latent space, while CoCoMix (Tack et al., 2025) extract
the ”concept” from the hidden states to improve language modeling.

In contrast to these approaches that operate on hidden states, our method operates on pondering
embeddings derived from the model’s predictive probability distributions. We further compare our
method with the most relevant prior work in Table 3.

6 CONCLUSION

In this paper, we introduce the pondering process into language models through solely self-
supervised learning. PonderLM can be naturally learned through pretraining on large-scale general
corpora. Our extensive experiments across three widely adopted architectures—GPT-2, Pythia, and
LLaMA—highlight the effectiveness and generality of our proposed method. Notably, our Pon-
derPythia consistently outperforms the official Pythia model on language modeling tasks, scaling
curves, downstream tasks, and instruction-following abilities when pretrained on the large-scale
Pile dataset. As increasing the number of pondering steps further improves language model per-
formance, we posit that our approach introduces a promising new dimension along which language
model capabilities can be scaled.
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To facilitate reproducibility, the source code for our core models and experiments is available in the
supplementary material. We have documented all essential hyperparameters and implementation
details in the appendix. We believe this provides sufficient information for the research community
to verify and reproduce the results presented in this work.

10 THE USE OF LARGE LANGUAGE MODELS

The core methodology and conceptual framework presented in this paper were developed without
the assistance of Large Language Models (LLMs). The use of LLMs was strictly limited to refining
grammatical structure and enhancing the academic expression of the text.
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A TRAINING DETAILS OF THE MAIN RESULT

The main computational cost was incurred during the pretraining of PonderPythia-1B, 1.4B, and
2.8B on the 300B-token Pile dataset. We pretrained these models on a cluster of high-performance
GPUs with 64GB memory, which required 19,886, 31,680, and 109,570 GPU hours, respectively.

B TRAINING DETAILS OF THE SCALING LAW

In Section 3.1, we have discussed the basic scaling law of our pondering models. These hyperpa-
rameters primarily follow the GPT-3 specifications (Brown et al., 2020). However, unlike GPT-3,
we untie the input and output embedding matrices. We specify the parameters of our models and the
training hyperparameters in Table 4.

Table 4: Model sizes and hyperparameters for scaling experiments.

params nlayers dmodel nheads
learning

rate
batch size
(in tokens) tokens

405M 24 1024 16 3e-4 0.5M 7B
834M 24 1536 24 2.5e-4 0.5M 15B
1.4B 24 2048 32 2e-4 0.5M 26B

C LIMITATIONS AND FUTURE WORK

C.1 LIMITATIONS

There are two limitations to our work. Firstly, due to computational constraints, we only scaled our
method up to a 2.8B-parameter model trained on 300B tokens from the Pile dataset. It would be
interesting to extend our approach to larger models and larger-scale datasets in the future. Secondly,
although our results demonstrate that the proposed method scales better than vanilla models under
the same training FLOPs (Figure 1), it also introduces additional inference overhead (increasing
roughly linearly with the number of pondering steps), similar to test-time scaling methods.

C.2 FUTURE WORK

There are several promising directions for future work. Firstly, our proposed method is not limited
to decoder-only architectures or language modeling; it has the potential to be applied to a wide
range of model types and domains. For example, it could be adapted to state-space models such
as Mamba (Gu & Dao, 2023), encoder models, or RWKV (Peng et al., 2023), as well as extended
to other areas. Another promising direction is the introduction of token-adaptive pondering, which
may significantly reduce computation and further enhance our method. It would also be interesting
to investigate the interpretability of the pondering process, such as how the model ”thinks” during
pondering, the semantics of the pondering embedding, and whether the model learns to reflect on its
predictions through pondering. Finally, exploring the combination of our method with orthogonal
approaches such as CoT and other test-time scaling methods could also be an interesting direction.

D INTEGRATING PONDERING VIA CONTINUAL PRETRAINING

To investigate if our pondering mechanism can be integrated into existing large language models, we
conducted a continual pretraining experiment. We started with the pre-trained Pythia-1B model and
continued its training on a 30-billion-token subset of The Pile. We compare two approaches: a stan-
dard continual pretraining of the vanilla model (Pythia-1B-Vanilla-CPT) and continual pretraining
with our pondering mechanism (PonderPythia-1B-CPT).

Our results show that this integration is effective. As seen in the training loss curves in Figure 8,
PonderPythia consistently achieves a lower loss, demonstrating superior learning efficiency. This
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Figure 8: Training loss during continual pretraining. PonderPythia-1B achieves a lower loss than
the vanilla baseline, suggesting greater learning efficiency.

efficiency translates to improved downstream performance, as detailed in Table 5. The Ponder-
Pythia model achieves a higher average accuracy in both 5-shot and 0-shot settings across a suite of
benchmarks.

Collectively, these findings confirm that continual pretraining is a viable and effective strategy for
equipping pre-trained models with our pondering mechanism, enhancing both adaptation efficiency
and downstream capabilities.

Table 5: Downstream task performance after continual pretraining on 30B tokens. PonderPythia-1B
shows improved average accuracy in both 5-shot and 0-shot evaluations.

Model (#training tokens)
Lambada
OpenAI

ARC
-E

Lambada
Standard

ARC
-C

Wino
Grande PIQA Hella

Swag SciQ RACE Avg acc /
∆acc ↑

5-shot

Pythia-1B-Vanilla-CPT 49.4 60.0 36.5 27.1 51.9 71.4 37.9 90.4 31.9 50.7
PonderPythia-1B-CPT 49.5 58.8 42.6 25.4 54.3 69.2 37.9 91.2 34.7 51.5 (+0.8)

0-shot

Pythia-1B-Vanilla-CPT 56.7 56.3 42.7 24.6 52.5 70.6 37.7 83.6 32.6 50.8
PonderPythia-1B-CPT 56.7 56.3 45.4 23.8 55.6 68.3 37.8 86.3 33.0 51.5(+0.7)

E SCALING LAWS WITH DIFFERENT PONDERING STEPS

To further validate the robustness of our method, we extended our analysis to LLaMA models trained
with different numbers of pondering steps. Specifically, we tested configurations with 2 and 4 steps
while keeping all other experimental settings constant. As illustrated in Figure 9, our method re-
mains consistently effective, with model performance improving further as the number of pondering
steps increases.

F ANALYSIS ON INPUT EMBEDDINGS AND OUTPUT DISTRIBUTIONS

To better understand the dynamics of the pondering process, we analyze the properties of input
embeddings and output distributions using the Pythia-70M model trained with 10 pondering steps
(as described in Section 4.2). We conduct the evaluation on a batch of 64 validation sequences with
a context length of 2048 tokens.

F.1 INPUT EMBEDDINGS

We first examine the evolution of the input embeddings Es across pondering steps.
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Figure 9: Scaling curves of LLaMA with different pondering steps.

Cosine Similarity. To measure the convergence of the embeddings, we calculate the cosine sim-
ilarity between consecutive steps, Cosine(Es−1, Es). Here we define s = 0 as the original input
embedding (before pondering). As shown in Figure 10, the similarity starts at approximately 0.88
and gradually converges to 1.0, indicating that the input representations stabilize over time.
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Figure 10: The cosine similarity between con-
secutive embedding states Es−1 and Es across
pondering steps.
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Figure 11: KL divergence between consecutive
output distributions, averaged over tokens.

Spectral Properties. We further analyze the geometry of the embeddings. Figure 12 visualizes
the spectral energy distribution (explained variance ratio) of the top singular values. Consistent
with this distribution, we observe a steady decrease in Effective Rank and a simultaneous increase
in Cumulative Variance (Figure 12). This collective evidence indicates that the embedding energy
progressively concentrates into dominant components during the pondering process.

F.2 OUTPUT DISTRIBUTIONS

We also monitor the changes in the model’s predictions by calculating the Kullback-Leibler (KL)
divergence between the output probability distributions P s of consecutive steps, DKL(P

s−1∥P s).

As illustrated in Figure 11, the KL divergence exhibits large variations in the initial steps (starting
around 0.35) and decreases monotonically thereafter, suggesting that the model’s predictions refine
quickly and then settle into a stable state.

G CASE STUDIES

To provide a deeper insight into the internal pondering process of PonderLM, we present case stud-
ies derived from the pre-trained PonderPythia-2.8B model. The following tables visualize the evolu-
tion of the top-3 candidate tokens and their corresponding probabilities across sequential pondering
steps.
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Figure 12: Left: Spectral energy (explained variance ratio, log scale) of the top-8 singular values
of the token-embedding matrix at each pondering step s. Right: Effective rank (↓ more spiky) and
cumulative variance of the top-8 components (↑ more spiky) versus step s, indicating progressive
concentration of energy into few dominant directions.

The speed of light in vacuum is approximately 3 times ten to the power
of

Output Probs Pondering steps 1 Pondering steps 2 Pondering steps 3 Final predicted
Rank 1 logarithm (0.45) ˆ - (0.38) 8 (0.48) 8 (0.55)
Rank 2 , (0.38) aggreg (0.32) 8 (0.36) eight (0.23)
Rank 3 ten (0.18) approximately (0.31) tion (0.17) 10 (0.22)

The chemical symbol for silver is

Output Probs Pondering steps 1 Pondering steps 2 Pondering steps 3 Final predicted
Rank 1 symbol (0.47) atoms (0.39) Ag (0.40) Ag (0.94)
Rank 2 symbols (0.32) atomic (0.32) symbol (0.33) ” (0.04)
Rank 3 nickname (0.20) elemental (0.30) elements (0.27) S (0.02)

The largest ocean on Earth is the

Output Probs Pondering steps 1 Pondering steps 2 Pondering steps 3 Final predicted
Rank 1 oceans (0.66) Pacific (0.40) Pacific (0.59) Pacific (0.77)
Rank 2 ocean (0.32) oceans (0.32) oceans (0.21) Atlantic (0.19)
Rank 3 seas (0.02) Antarctic (0.28) ocean (0.20) Indian (0.03)

The derivative of sin x is

Output Probs Pondering steps 1 Pondering steps 2 Pondering steps 3 Final predicted
Rank 1 differentiable (0.55) homework (0.61) approximately (0.37) cos (0.36)
Rank 2 the (0.23) differentiable (0.21) cos (0.32) x (0.34)
Rank 3 derivatives (0.21) basics (0.17) differentiable (0.31) (0.30)

The opposite of north is

Output Probs Pondering steps 1 Pondering steps 2 Pondering steps 3 Final predicted
Rank 1 directions (0.41) directions (0.40) south (0.92) south (0.95)
Rank 2 compass (0.36) noun (0.32) unclear (0.04) east (0.02)
Rank 3 the (0.22) idiot (0.28) South (0.03) not (0.02)

The chemical symbol for gold is
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Output Probs Pondering steps 1 Pondering steps 2 Pondering steps 3 Final predicted
Rank 1 symbol (0.48) atoms (0.45) Au (0.78) Au (0.87)
Rank 2 symbols (0.40) elemental (0.28) Au (0.17) ” (0.09)
Rank 3 approximately (0.12) metals (0.27) element (0.05) the (0.04)

H GRADIENT NORMS COMPARISON

In this section, we take a closer look at training stability by comparing the gradient norms of the PonderLM
against the vanilla GPT-2 1.4B model (Section 3.1). Both models were trained from scratch on the Pile using
the exact same data and hyperparameters. As shown in Figure 13, while the pondering model shows a few
minor spikes early on, it quickly recovers and maintains a stable training trajectory similar to the baseline.
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Figure 13: Gradient norms during pre-training for vanilla vs. PonderLM 1.4B.
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