
Neurocomputing 611 (2025) 128587 

A
0

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

The underlying mechanisms of alignment in error backpropagation through
arbitrary weights
Alireza Rahmansetayesh, Ali Ghazizadeh ∗, Farokh Marvasti
Electrical Engineering Department, Sharif University of Technology, Tehran, Iran

A R T I C L E I N F O

Communicated by M. Bianchini

Dataset link: http://yann.lecun.com/exdb/mni
st/, https://github.com/ARahmansetayesh/The
-underlying-mechanisms-of-alignment-in-error-
backpropagation-through-arbitrary-weights

Keywords:
Backpropagation
Feedback alignment
Weight transport problem
Bio-inspired artificial neural network
Weight normalization

A B S T R A C T

Understanding the mechanisms by which plasticity in millions of synapses in the brain is orchestrated to
achieve behavioral and cognitive goals is a fundamental question in neuroscience. In this regard, insights
from learning methods in artificial neural networks (ANNs) and in particular supervised learning using
backpropagation (BP) seem inspiring. However, the implementation of BP requires exact matching between
forward and backward weights, which is unrealistic given the known connectivity pattern in the brain
(known as the ‘‘weight transport problem’’). Notably, it has been shown that under certain conditions, error
BackPropagation Through Arbitrary Weights (BP-TAW) can lead to a partial alignment between forward and
backward weights (weight alignment or WA). This learning algorithm, which is also known as feedback
alignment (FA), can result in surprisingly good degrees of accuracy in simple classification tasks. However,
the underlying mechanisms and mathematical basis of WA are not thoroughly understood. In this work, we
demonstrate the mathematical basis of WA and answer the question of why and in what conditions WA occurs.
We show that the occurrence of WA in ANNs is induced by statistical properties of the output and error signals
of neurons, such as autocorrelation and cross-correlation, and can happen even in the absence of learning or
reduction of the loss function. Moreover, we show that WA can be improved significantly by limiting the norm
of input weights to neurons and that such a weight normalization (WN) method can improve the classification
accuracy of BP-TAW. The findings presented can be used to further improve the performance of BP-TAW
and open new ways for exploring possible learning mechanisms in biological neural networks without exact
matching between forward and backward weights.
1. Introduction

For the past four decades, backpropagation (BP) has been the dom-
inant learning method used in artificial neural networks [1]. However,
BP is known to be implausible in the nervous system [2–4]. One
of its major issues is known as the ‘‘weight transport problem’’ [5]
which refers to the requirement that backward weights should be
precisely equal to the forward weights so that accurate error signals
are backpropagated to the early layers for efficient supervised learning.
However, in the brain, axons transmit information unidirectionally,
and to date, no explicit mechanism that guarantees a match between
backward and forward weights is reported.

Despite differences in natural and artificial learning mechanisms,
striking similarities between the activity of neurons in the brain and
that of artificial ones trained by BP have been reported [6–10], and
possibilities for the calculation of approximate gradient directions in
the brain are suggested [11–14]. In particular, it has been shown that
learning occurs even without exact weight transport [15,16] and when

∗ Corresponding author at: Sharif University of Technology, Azadi Ave, Tehran, 1458889694, Iran.
E-mail address: ghazizadeh@sharif.edu (A. Ghazizadeh).

arbitrary weights that are distinct from forward ones backpropagate
vectorized error signals to early layers [17], a method which we refer
to as backpropagation through arbitrary weights (BP-TAW).

During the learning process using BP-TAW, the angle between the
forward weight matrices and the transpose of backward weight ma-
trices in each layer decreases (forward and backward weights become
similar to each other) and this partial alignment leads to weight update
directions that are partially aligned with the weight update directions
calculated by BP, thereby providing effective teaching signals [17]. It
has also been shown that by a learning algorithm known as direct feed-
back alignment (DFA), learning can occur even when errors are passed
directly from the output layer to each hidden layer through direct
arbitrary backward weights [18–22]. These sub-optimal calculations of
gradient directions (compared to BP) can lead to a surprisingly good
degree of learning accuracy, comparable to BP in shallow networks
and simple tasks but with a drop in accuracy in deep convolutional
networks and complex tasks [21,23,24].
https://doi.org/10.1016/j.neucom.2024.128587
Received 15 December 2023; Received in revised form 10 June 2024; Accepted 11
vailable online 23 September 2024 
925-2312/© 2024 Elsevier B.V. All rights are reserved, including those for text and
September 2024

 data mining, AI training, and similar technologies. 

https://www.elsevier.com/locate/neucom
https://www.elsevier.com/locate/neucom
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
mailto:ghazizadeh@sharif.edu
https://doi.org/10.1016/j.neucom.2024.128587
https://doi.org/10.1016/j.neucom.2024.128587
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2024.128587&domain=pdf


A. Rahmansetayesh et al.

m
t

t
d
d
c
r
s
f
f

𝛥

Neurocomputing 611 (2025) 128587 
Notably, some special types of reinforcement learning methods
called weight perturbation and node perturbation [25–27] also provide
a solution to the weight transport problem. In these methods, a network
is trained by a global scalar error (or reward) signal. Namely, the
synaptic weights are randomly perturbed, and if the error decreases,
an update in line with the direction of perturbation, and if the error
increases, an update opposite to the direction of perturbation will
be applied. Nevertheless, these methods are not scalable and con-
verge more slowly than gradient-based learning methods in large-scale
networks because of unguided random search in a high-dimensional
weight space [28,29]. There is also biological evidence suggesting that
the brain employs a gradient-based learning method (using vectorized
error signals) to learn new tasks [30,31]. Hence, studying bio-inspired
learning methods such as BP-TAW that approximate vectorized error
signals of gradient descent is of great interest.

Given the potential biological relevance of BP-TAW and weight
alignment (WA), it is valuable to investigate their underlying mech-
anisms and mathematical basis. In a sparsely or locally connected
network of biological neurons, alignment between feedforward and
feedback weights means that computational units (consisting of single
neurons or groups of neurons) that are located in different areas of
a hierarchy tend to form reciprocal connections. The existence of
such connections has been reported in previous works [32–34], and
understanding the mechanisms behind BP-TAW and WA opens new
avenues for studying the existence and emergence of such patterns in
the brain.

Although there are some investigations on the favorable conditions
for WA and for the improvement of learning using BP-TAW [17,19,20,
22,24,35–37], the underlying mathematical basis for the success of BP-
TAW in training ANNs is not fully understood. For instance, previous
works have explored some of the conditions that lead to WA in the
special case of linear networks [17,20]. It has been shown that if all
forward weights are initialized to zero and the input and desired output
of a network are kept constant during iterations, each backward weight
matrix becomes a scalar multiple of the Moore–Penrose pseudo-inverse
of forward weight matrices [17], or a scalar multiple of the Moore–
Penrose pseudo-inverse of the product of forward weight matrices in
the case of DFA [20]. Under these circumstances, the update directions
of BP-TAW are an approximation of the Gauss–Newton optimization
method [17]. However, these proofs cannot explain the occurrence
of WA for arbitrary initialization of weights (supplementary figure 13
of Lillicrap et al. [17]) and nonlinear networks.

There are some preliminary explanations for the occurrence of
alignment. In particular, Lillicrap et al. [17] have provided insight into
the mechanics of feedback alignment (FA) by freezing forward weights
in different stages of the learning process of an ANN trained by BP-
TAW, showing that information about the backward weight matrix of
each layer (𝐵𝓁 in Fig. 1) gradually accumulates in the earlier forward
weight matrix (𝑊𝓁−1 in Fig. 1) and then flows into the next forward
weight (𝑊𝓁 in Fig. 1) such that each forward weight matrix aligns with
its corresponding backward weight matrix (𝑊𝓁 and 𝐵𝓁 in Fig. 1). It has
been also noted that under a particular condition where the input of a
two-layer linear network is white noise and the network is trained to
learn a linear function, the continuous growth of the norm of weight
matrices results in alignment (supplementary note 12 of Lillicrap et al.
[17]). We will show that although the original form of BP-TAW is
accompanied by a growth of the norms of weight matrices, this growth
can be detrimental to WA, and limiting the norms of weights can
improve WA.

In this work, first, we explore the mathematical basis of WA and
show that the occurrence of alignment is driven by statistical properties
of neural activity such as cross-correlation and autocorrelation of error
and output signals of neurons. Afterward, we will use the presented
theoretical results in the context of a practical deep nonlinear ANN to
explore various factors contributing to WA. We will show that the rel-

ative similarity of data points belonging to a single category compared

2 
to the ones belonging to different categories contributes to alignment
by shaping cross-correlated neural activity and the arrangement of
data points among mini-batches contributes to alignment by shaping
autocorrelated neural activity.

2. Results

2.1. Explaining the occurrence of alignment

2.1.1. Notation
Consider a conventional 𝑑-layer ANN. We denote the matrices of

forward weights, internal states of neurons, and output signals of
neurons by 𝑊𝓁 ∈ R𝑛𝓁×𝑛𝓁+1 , 𝑍𝓁 ∈ R𝑛𝑏×𝑛𝓁 , and 𝐿𝓁 = 𝑓

(

𝑍𝓁
)

, respectively,
where 𝑛𝑏 is the batch size, 𝑛𝓁 is the number of neurons in layer 𝓁, and
𝑓
(

⋅
)

is an element-wise activation function (the following analysis still
holds if the batch size is variable among mini-batches; however, for
simplicity, we assume that it is a constant number for all of them). For
0 < 𝓁 ≤ 𝑑, internal states of neurons in layer 𝓁 are calculated according
to 𝑍𝓁 = 𝐿𝓁−1𝑊𝓁−1 + 𝐛𝓁 where 𝐛𝓁 is the bias vector of layer 𝓁 and the
addition of a matrix with a row vector is defined as adding the vector
to each row of the matrix. We denote the input, output, and desired
output matrices of the network by 𝑋 = 𝐿0 ∈ R𝑛𝑏×𝑛0 , 𝑌 = 𝐿𝑑 ∈ R𝑛𝑏×𝑛𝑑 ,
and 𝑌 ∗ ∈ R𝑛𝑏×𝑛𝑑 , respectively.

2.1.2. Deriving alignment terms
In BP-TAW [17], the error is backpropagated through constant

arbitrary matrices (different from forward weights) denoted by 𝐵𝓁 ∈
R𝑛𝓁+1×𝑛𝓁 , and the weight update directions are calculated at each
iteration 𝑘 ≥ 0 according to

𝛥𝑊𝓁,𝐹𝐴[𝑘] = 𝜂𝐿𝓁[𝑘]𝑇 𝛿𝓁+1,𝐹𝐴[𝑘], 0 ≤ 𝓁 < 𝑑, (1)

where 𝜂 is the learning rate and error signals of neurons are

𝛿𝓁,𝐹𝐴[𝑘] =

⎧

⎪

⎨

⎪

⎩

𝛿𝓁+1,𝐹𝐴[𝑘]𝐵𝓁 ⊙ 𝑓 ′(𝑍𝓁[𝑘]
)

0 < 𝓁 < 𝑑

−𝜂 𝜕
𝜕𝑍𝑑

|

|

|

|𝑘
𝓁 = 𝑑,

(2)

where (𝑌 , 𝑌 ∗) is the loss function and ⊙ denotes the element-wise
atrix multiplication (in the order of operations, it has less priority

han matrix multiplication).
To investigate WA, we investigate the alignment of update direc-

ions (𝛥𝑊𝓁,𝐹𝐴∡𝐵𝑇
𝓁 ) because during the learning process, the update

irections accumulate in 𝑊𝓁 and their resultant determines the final
irection of 𝑊𝓁 (if an update direction is aligned with 𝐵𝑇

𝓁 , it injects a
omponent in line with 𝐵𝑇

𝓁 into 𝑊𝓁,𝐹𝐴). To demonstrate why the update
ule of FA aligns with 𝐵𝑇

𝓁 , we expand 𝛥𝑊𝓁,𝐹𝐴[𝑘] by taking successive
teps backward along the iterations and substituting every 𝑊𝓁[𝑘 − 𝑜]
or 0 ≤ 𝑜 < 𝑘. Assuming the update steps to be small, by applying the
irst-order Taylor approximation we have

𝑊𝓁,𝐹𝐴[𝑘] = 𝜂𝐿𝓁[𝑘]𝑇 𝛿𝓁+1,𝐹𝐴[𝑘]

= 𝜂𝑓
(

𝑊𝓁−1[𝑘]𝑇𝐿𝓁−1[𝑘]𝑇 + 𝐛𝓁[𝑘]𝑇
)

𝛿𝓁+1,𝐹𝐴[𝑘]

= 𝜂
(

{𝑊𝓁−1[𝑘 − 1]𝑇 + 𝜂𝛿𝓁,𝐹𝐴[𝑘 − 1]𝑇𝐿𝓁−1[𝑘 − 1]}𝐿𝓁−1[𝑘]𝑇

+ 𝐛𝓁[𝑘]𝑇
)

𝛿𝓁+1,𝐹𝐴[𝑘]

≈ 𝜂
{

𝑓
(

𝑊𝓁−1[𝑘 − 1]𝑇𝐿𝓁−1[𝑘]𝑇 + 𝐛𝓁[𝑘]𝑇
)

+

𝑓 ′(𝑊𝓁−1[𝑘 − 1]𝑇𝐿𝓁−1[𝑘]𝑇 + 𝐛𝓁[𝑘]𝑇
)

⊙ 𝜂𝛿𝓁,𝐹𝐴[𝑘 − 1]𝑇𝐿𝓁−1[𝑘 − 1]

× 𝐿𝓁−1[𝑘]𝑇
}

𝛿𝓁+1,𝐹𝐴[𝑘]

≈ 𝑇 1
𝓁,𝑎𝑙𝑛[𝑘] + 𝑇 2

𝓁,𝑎𝑙𝑛[𝑘] +⋯ + 𝑇 𝑘
𝓁,𝑎𝑙𝑛[𝑘] + 𝜂𝑓

(

𝜁𝑘𝓁 [𝑘]
)𝑇 𝛿𝓁+1,𝐹𝐴[𝑘],

(3)

where 𝜁𝑜𝓁[𝑘] = 𝐿𝓁−1[𝑘]𝑊𝓁−1[𝑘−𝑜]+𝐛𝓁[𝑘] and for 1 ≤ 𝑜 ≤ 𝑘 and 0 < 𝓁 < 𝑑
we define

𝑇 𝑜
𝓁,𝑎𝑙𝑛[𝑘] = 𝜂

{

𝑓 ′(𝜁 𝑜𝓁 [𝑘]
)𝑇 ⊙ 𝜂𝛿𝓁,𝐹𝐴[𝑘 − 𝑜]𝑇𝐿𝓁−1[𝑘 − 𝑜]𝐿𝓁−1[𝑘]𝑇

}

𝛿𝓁+1,𝐹𝐴[𝑘] =

𝜂
{

𝑓 ′(𝜁 𝑜𝓁 [𝑘]
)𝑇 ⊙ 𝜂{𝑓 ′(𝑍𝓁 [𝑘 − 𝑜]

)𝑇 ⊙ 𝐵𝑇
𝓁 𝛿

𝑇
𝓁+1,𝐹𝐴[𝑘 − 𝑜]}𝐿𝓁−1[𝑘 − 𝑜]𝐿𝓁−1[𝑘]𝑇

}

𝛿𝓁+1,𝐹𝐴[𝑘]
(4)



A. Rahmansetayesh et al. Neurocomputing 611 (2025) 128587 
Fig. 1. The underlying mechanism of weight alignment in BP-TAW. Expansion of 𝛥𝑊𝓁,𝐹𝐴[𝑘] reveals alignment terms 𝑇 𝑜
𝓁,𝑎𝑙𝑛[𝑘] (Eqs. (3), (4), and (5)). In linear alignment terms,

𝑀𝑜
𝓁 [𝑘] acts as a transformation matrix on 𝐵𝑇

𝓁 and if it partially preserves the direction of 𝐵𝑇
𝓁 after the matrix multiplication, it propels 𝑊𝓁 [𝑘] towards 𝐵𝑇

𝓁 . 𝐿𝓁 [𝑘] and 𝛿𝓁 [𝑘] denote
the matrices of output and error signals of neurons, respectively, where each row of them corresponds to a data point of the mini-batch at the iteration 𝑘 and each column of
them corresponds to a neuron in layer 𝓁. Due to the structure of 𝑀𝑜

𝓁 [𝑘], alignment terms can robustly propel forward weight matrices (𝑊𝓁) towards the transpose of fixed random
backward weight matrices (𝐵𝑇

𝓁 ) under a variety of conditions depending on neural activity. Note that this is a simplified diagram of the underlying mechanism of WA. In practice,
at each iteration 𝑘, there are 𝑘 alignment terms, and depending on the neural activity, each of them may or may not align with 𝐵𝑇

𝓁 . Moreover, in nonlinear ANNs, nonlinearity
affects the structure of alignment terms to some extent (Eq. (4), see Supplementary Note 3). An order (1 ≤ 𝑜 ≤ 𝑘) is assigned to alignment terms since in each of them the activity
of neurons at iterations of 𝑘 and 𝑘 − 𝑜 (lag of 𝑜) are multiplied together.
as the alignment term of order 𝑜 corresponding to layer 𝓁 (see Supple-
mentary Note 2 for higher-order Taylor approximation and Supplemen-
tary Note 3 for index notation of alignment terms).

2.1.3. Analyzing the linear alignment terms
The alignment terms can provide alignment owing to their structure

(Fig. 1). Consider the linear case of the alignment terms (ignoring the
element-wise matrix multiplications in Eq. (4)) where they reduce to

𝑇 𝑜
𝓁,𝑎𝑙𝑛−𝑙𝑖𝑛[𝑘] = 𝜂2𝐵𝑇

𝓁 𝛿𝓁+1[𝑘 − 𝑜]𝑇𝐿𝓁−1[𝑘 − 𝑜]𝐿𝓁−1[𝑘]𝑇 𝛿𝓁+1[𝑘]. (5)

In this case, the occurrence of alignment depends on the transformation
matrix

𝑀𝑜
𝓁[𝑘] = 𝜂2𝛿𝓁+1[𝑘 − 𝑜]𝑇𝐿𝓁−1[𝑘 − 𝑜]𝐿𝓁−1[𝑘]𝑇 𝛿𝓁+1[𝑘], (6)

which is applied to 𝐵𝑇
𝓁 and if 𝑀𝑜

𝓁[𝑘] partially preserves the direction
of 𝐵𝑇

𝓁 after matrix multiplication, 𝑇 𝑜
𝓁,𝑎𝑙𝑛[𝑘] partially aligns with 𝐵𝑇

𝓁 .
In general, 𝑀𝑜

𝓁[𝑘] can be decomposed into its symmetric and skew-
symmetric parts (𝑀𝑜

𝓁[𝑘] = 𝑀𝑜
𝓁,𝑠𝑘𝑒𝑤[𝑘]+𝑀𝑜

𝓁,𝑠𝑦𝑚[𝑘]). Any skew-symmetric
transformation matrix changes the direction of the transformed matrix
by 90◦ (𝐵𝑇

𝓁∡𝐵
𝑇
𝓁𝑀

𝑜
𝓁,𝑠𝑘𝑒𝑤[𝑘] = 90◦, the proof is provided in Supplemen-

tary Note 4 for), where the angle between two matrices is calculated
using arccosine of their normalized Frobenius product (mathemati-
cal definition is provided in Section 4.2). Hence, the occurrence of
alignment depends on 𝑀𝑜

𝓁,𝑠𝑦𝑚[𝑘].
It is convenient to analyze linear alignment terms from a statistical

perspective and under reasonable simplifying assumptions as analyzing
alignment terms, in general, can be challenging, although not impossi-
ble. Therefore, we investigated under what conditions the occurrence
of alignment is statistically expected and under what statistical assump-
tions the analysis of alignment will become more tractable. In an ANN,
according to random initialization of weights and biases, error and
output signals of neurons and also the evolution of weights and biases
through learning are stochastic processes and statistical properties of
them affect statistical properties of alignment terms.

There are some reasonable statistical assumptions under which the
analysis of alignment terms becomes simpler. One statistical property
that affects the analysis of alignment terms is the presence or absence of
any correlation between different network signals and weights. In gen-
eral, the absence of correlation between different network signals and
weights can simplify the analysis of alignment terms. For example, in
a deep network where there are many neurons in each layer, knowing
the values of one or two backward weights to layer 𝓁 does not provide
us with much information about the error signal of a neuron in layer
𝓁 + 1 or the output signal of a neuron in layer 𝓁 − 1. According to this,

we introduce the two following assumptions that simplify the analysis

3 
of alignment terms (we will investigate the validity of the following
assumptions in the context of practical ANNs in the next sections).

Assumption 1. If one element is arbitrarily selected from each of the
matrices 𝛿𝓁+1,𝐹𝐴[𝑘−𝑜], 𝐿𝓁−1[𝑘−𝑜], 𝐿𝓁−1[𝑘], and 𝛿𝓁+1,𝐹𝐴[𝑘] and the four
selected elements are multiplied together, their product is uncorrelated
with the product of any two arbitrary elements of 𝐵𝓁 as well as with
the square of any arbitrary element of 𝐵𝓁 .

Assumption 2. If one element is arbitrarily selected from each of the
matrices 𝑓

(

𝜁𝑘𝓁 [𝑘]
)

, and 𝛿𝓁+1,𝐹𝐴[𝑘] and the two selected elements are
multiplied together, their product is uncorrelated with any arbitrary
element of (𝐵𝓁).

In addition to these assumptions, some specific network configu-
rations make the analysis of alignment terms simpler. For example,
weight initialization from distributions with a mean of zero is a com-
mon practice in ANNs. Considering such a condition makes the analysis
of alignment terms simpler while explaining alignment in many previ-
ous works where such initialization is used [17,19,20,24,35–37]. Here,
we introduce the following theorem based on these assumptions and
conditions.

Theorem 1. Under Assumptions 1 and 2, in a linear network where the
elements of 𝐵𝓁 are independently initialized from a distribution with a mean
of zero, the alignment between 𝛥𝑊𝓁[𝑘] (𝑘 > 0) and 𝐵𝑇

𝓁 is expected in the
sense that

E(⟨𝛥𝑊𝓁[𝑘], 𝐵𝑇
𝓁 ⟩𝐹 ) > 0 (7)

if and only if

E(
𝑘
∑

𝑜=1

∑

𝑖
𝜆𝑜,𝓁𝑖 [𝑘]) > 0, (8)

where 𝜆𝑜,𝓁𝑖 denotes the 𝑖th eigenvalue of 𝑀𝑜
𝓁,𝑠𝑦𝑚 and < ., . >𝐹 denotes the

Frobenius inner product of two matrices.

Proof. Two random variables being uncorrelated (having covariance
and Pearson’s correlation coefficient of zero) means that the expected
value of their product equals the product of the separate expected
values of them. Accordingly, Assumptions 1 and 2 follow

E(𝐵𝓁𝐵
𝑇
𝓁𝑀

𝑜
𝓁) = E(𝐵𝓁𝐵

𝑇
𝓁 )E(𝑀

𝑜
𝓁) (9)

and

E(𝜁𝑘𝓁 [𝑘]
𝑇 𝛿𝓁+1,𝐹𝐴[𝑘]𝐵𝓁) = E(𝜁𝑘𝓁 [𝑘]

𝑇 𝛿𝓁+1,𝐹𝐴[𝑘])E(𝐵𝓁), (10)
respectively.



A. Rahmansetayesh et al.

E

Neurocomputing 611 (2025) 128587 
According to the condition for the distribution of the elements of
𝐵𝓁 , we can write

(⟨𝜂𝜁𝑘𝓁 [𝑘]
𝑇 𝛿𝓁+1,𝐹𝐴[𝑘], 𝐵𝑇

𝓁 ⟩𝐹 ) = E(𝑡𝑟(𝜂𝜁𝑘𝓁 [𝑘]
𝑇 𝛿𝓁+1,𝐹𝐴[𝑘]𝐵𝓁)) =

𝑡𝑟(E(𝜂𝜁𝑘𝓁 [𝑘]
𝑇 𝛿𝓁+1,𝐹𝐴[𝑘])E(𝐵𝓁)) = 0.

(11)

Therefore,

E(⟨𝛥𝑊𝓁[𝑘], 𝐵𝑇
𝓁 ⟩𝐹 ) = E(⟨

𝑘
∑

𝑜=1
𝑇 𝑜
𝓁,𝑎𝑙𝑛[𝑘] + 𝜂𝜁𝑘𝓁 [𝑘]

𝑇 𝛿𝓁+1,𝐹𝐴[𝑘], 𝐵𝑇
𝓁 ⟩𝐹 ) =

E(⟨
𝑘
∑

𝑜=1
𝑇 𝑜
𝓁,𝑎𝑙𝑛[𝑘], 𝐵

𝑇
𝓁 ⟩𝐹 ) =

𝑘
∑

𝑜=1
𝑡𝑟(E(𝐵𝓁𝐵

𝑇
𝓁 )E(𝑀

𝑜
𝓁)) =

𝑘
∑

𝑜=1
𝑛𝓁𝜎

2
𝐵E(𝑡𝑟(𝑀

𝑜
𝓁)) =

𝑘
∑

𝑜=1
𝑛𝓁𝜎

2
𝐵E(𝑡𝑟(𝑀

𝑜
𝓁,𝑠𝑦𝑚)) =

𝑘
∑

𝑜=1
𝑛𝓁𝜎

2
𝐵E(

∑

𝑖
𝜆𝑜,𝓁𝑖 ) = 𝑛𝓁𝜎

2
𝐵E(

𝑘
∑

𝑜=1

∑

𝑖
𝜆𝑜,𝓁𝑖 [𝑘]),

(12)

where 𝜎2𝐵 is the variance of the distribution of the elements of 𝐵𝓁 . □

Theorem 1 demonstrates the contribution of the eigenvalues of the
symmetric part of the transformation matrices 𝑀𝑜

𝓁,𝑠𝑦𝑚 to alignment. For
example, in an extreme case, if 𝑀𝑜

𝓁,𝑠𝑦𝑚 is positive semidefinite, when it
transforms an arbitrary vector, it scales each component of the vector
with a nonnegative scalar which is the corresponding eigenvalue. In
other words, it keeps each component in its previous direction and does
not flip it by 180◦, which is desirable for alignment. From a statistical
point of view, 𝑀𝑜

𝓁,𝑠𝑦𝑚 being semidefinite is not necessary and given
the above assumptions, on average, alignment is expected if the mean
of the eigenvalues of 𝑀𝑜

𝓁,𝑠𝑦𝑚 is positive. From a deterministic point
of view, there can be more complex conditions where the mean of
the eigenvalues of 𝑀𝑜

𝓁,𝑠𝑦𝑚 is positive, but rows of 𝐵𝑇
𝓁 lie near some

eigenvectors whose corresponding eigenvalues are negative. In such a
case, alignment does not occur despite having a positive mean of the
eigenvalues. However, under Assumption 1, such a condition is not
statistically expected.

2.1.4. Analyzing the nonlinear alignment terms
The analysis of the linear alignment terms can be extended to

the non-linear case under certain conditions. Nonlinearity appears as
two element-wise matrix multiplications that impact the structure of
alignment terms Eq. (4). Under the two assumptions that we introduce
below, we can ignore nonlinearity and analyze the linear version of
alignment terms (where all matrices resulting from 𝑓 ′(⋅

)

are replaced
by all-ones matrices) and be sure that if the alignment is expected in
the linear case, the alignment is also expected in the nonlinear case.

Assumption 3. If one element is arbitrarily selected from each of the
matrices 𝑓 ′(𝜁𝑜𝓁[𝑘]

)

and 𝑓 ′(𝑍𝓁[𝑘−𝑜]
)

and the two selected elements are
multiplied together, the expected value of their product is positive.

Assumption 4. If one element is arbitrarily selected from each of the
matrices 𝑓 ′(𝜁𝑜𝓁[𝑘]

)

and 𝑓 ′(𝑍𝓁[𝑘−𝑜]
)

and the two selected elements are
multiplied together, and also if one element is arbitrarily selected from
each of the matrices 𝐵𝓁 , 𝐵𝑇

𝓁 , 𝛿𝓁+1,𝐹𝐴[𝑘 − 𝑜], 𝐿𝓁−1[𝑘 − 𝑜], 𝐿𝓁−1[𝑘], and
𝛿𝓁+1,𝐹𝐴[𝑘] and the six selected elements are multiplied together, the two
resulting products are uncorrelated with each other.

Assumption 3 implies that the activity of neurons should not be
saturated. Using increasing activation functions, such as ReLU, is a
common practice in ANNs. It causes the elements of the matrices
resulting from 𝑓 ′(⋅

)

to be nonnegative, which alleviates the impact
of nonlinearity and also provides a good context for Assumption 3 to
hold. Assumption 4 implies the absence of correlation between signals
resulting from nonlinearity (𝑓 ′(𝜁𝑜𝓁[𝑘]

)

and 𝑓 ′(𝑍𝓁[𝑘− 𝑜]
)

) and the other
signals of the network (𝐵𝓁 , 𝐵𝑇

𝓁 , 𝛿𝓁+1,𝐹𝐴[𝑘− 𝑜], 𝐿𝓁−1[𝑘− 𝑜], 𝐿𝓁−1[𝑘], and

𝛿𝓁+1,𝐹𝐴[𝑘]). Based on the above assumptions we introduce the following

4 
theorem (we will assess the validity of these assumptions in the context
of practical ANNs in the next sections).

Theorem 2. Under Assumptions 3 and 4, in a feedforward fully connected
ANN where

1. The biases of all neurons within each layer are initialized from the
same distribution

2. The input weights of all neurons within each layer are initialized from
the same distribution

3. Within each mini-batch, the order of data points is uniformly random
such that the probability of a specific data point of the mini-batch
occurring at any position in the mini-batch is the same as any other
position

if the alignment of the linear version of a nonlinear alignment term is
statistically expected, the alignment of the nonlinear alignment term is also
statistically expected.

Proof. Refer to Supplementary Note 3. □

2.1.5. Contribution of the autocorrelation and cross-correlation of neural
activity to alignment

In addition to the eigenvalues of the transformation matrices, we
can extend the result of Theorem 1 to the statistical properties of
neural activity. In particular, the autocorrelation of error (𝛿𝓁+1) and
output signals (𝐿𝓁−1) of neurons and also cross-correlation between
them play an important role in WA. Considering the above simplifying
assumptions, the role of autocorrelation and cross-correlation can be
seen by breaking 𝑀𝑜

𝓁 into its constituent terms as follows

E(
𝑘
∑

𝑜=1

∑

𝑖
𝜆𝑜,𝓁𝑖 [𝑘]) =

𝑘
∑

𝑜=1
𝑛𝓁𝜎

2
𝐵E(𝑡𝑟(𝑀

𝑜
𝓁)) =

𝑘
∑

𝑜=1
𝜂2𝑛𝓁𝜎

2
𝐵E(𝑡𝑟(𝛿𝓁+1[𝑘 − 𝑜]𝑇𝐿𝓁−1[𝑘 − 𝑜]𝐿𝓁−1[𝑘]𝑇 𝛿𝓁+1[𝑘])) =

𝑘
∑

𝑜=1
𝜂2𝑛𝓁𝜎

2
𝐵E(𝑡𝑟(𝛿𝓁+1[𝑘]𝛿𝓁+1[𝑘 − 𝑜]𝑇𝐿𝓁−1[𝑘 − 𝑜]𝐿𝓁−1[𝑘]𝑇 )) =

𝑘
∑

𝑜=1
𝜂2𝑛𝓁𝜎

2
𝐵E

(

𝑡𝑟(𝑆𝑜
𝛿𝓁+1

[𝑘]𝑇𝑆𝑜
𝐿𝓁−1

[𝑘])
)

,

(13)

where we define 𝑆𝑜
𝐿𝓁−1

[𝑘] = 𝐿𝓁−1[𝑘− 𝑜]𝐿𝓁−1[𝑘]𝑇 as the output similarity
matrix of layer 𝓁 − 1 and 𝑆𝑜

𝛿𝓁+1
[𝑘] = 𝛿𝓁+1[𝑘 − 𝑜]𝛿𝓁+1[𝑘]𝑇 as the error

similarity matrix of layer 𝓁+1. The autocorrelation of output and error
signals of neurons contributes to shaping the statistical properties of
these two matrices, and the cross-correlation between them contributes
to shaping the statistical properties of their product. We define the au-
tocorrelation function of a discrete-time stochastic signal as a function
of 𝑘 and 𝑜 to be the expected value of the product of the signal samples
at 𝑘 and 𝑘− 𝑜. We define the cross-correlation function of two discrete-
time stochastic signals as a function of 𝑘 and 𝑜 to be the expected value
of the product of the first signal at 𝑘 and the second signal at 𝑘−𝑜 (refer
to Supplementary Note 3 for more detail).

To show the contribution of cross-correlation and autocorrelation
of neurons to alignment, we performed a simulation using an open-
loop two-layer ANN with ReLU nonlinearity where we manually set the
output signals of input neurons (𝐿0) and error signals of output neurons
(𝛿2) and controlled their autocorrelation and cross-correlation (Fig. 2A).
For example, in an extreme hypothetical condition where we initially
drew elements of 𝐿0 and 𝛿2 independently from  (0, 1) and left them
constant through iterations. In this case, the error and output signals
of neurons are autocorrelated, the expected values of both 𝑆𝑜

𝛿2
[𝑘] and

𝑆𝑜
𝐿0
[𝑘] are scalar multiples of the identity matrix, the transformation

matrix 𝑀𝑜
1 = 𝜂2𝛿𝑇2 𝐿0𝐿𝑇

0 𝛿2 is a symmetric positive semidefinite matrix
(Fig. 2B first row), and alignment happened as predicted (Fig. 2C blue

trace).



A. Rahmansetayesh et al. Neurocomputing 611 (2025) 128587 
Fig. 2. Weight alignment can occur in the absence of meaningful input and error depending on the statistical properties of neural activity. (A) In an open-loop nonlinear
two-layer ANN, hypothetical output signals are imposed on the neurons in the input layer (𝐿0) and hypothetical error signals are imposed on the neurons in the output layer
(𝛿2). In the top row, elements of 𝛿2 and 𝐿0 are independently generated from  (0, 1) at the beginning and left constant across all iterations. In this case, inputs and errors are
autocorrelated. In the middle row, elements of 𝛿2 = 𝐿0 are independently generated from  (0, 1) at each iteration. In this case, elements of 𝛿2 and 𝐿0 are not autocorrelated, but
they are cross-correlated. In the bottom row, elements of 𝛿2 and 𝐿0 are independently generated from  (0, 1) at each iteration. In this case, input and error signals are neither
autocorrelated nor cross-correlated. (B) Histograms of the eigenvalues of random samples of 𝑀𝑜

1,𝑠𝑦𝑚 corresponding to the conditions of panel A. In the top and middle row scenarios,
the mean of the eigenvalues is positive, but, in the bottom row, the mean of them is zero. (C) The angle between forward and backward weights 𝑊1∡𝐵𝑇

1 in the scenarios of panel
A. Each trace is the average over 10 runs and shaded areas are one s.d. around the mean.
In another case, we re-initialized elements of 𝐿0 independently from
 (0, 1) at each iteration and let 𝛿2[𝑘] = 𝐿0[𝑘]. In this case, output
signals of input neurons and error signals of output neurons were white
noise and were not autocorrelated, but they were fully cross-correlated.
Here, although the expected values of elements of 𝑆𝑜

𝛿2
[𝑘] and 𝑆𝑜

𝐿0
[𝑘] at

any given lag 𝑜 ≠ 0 were zero, they were positively cross-correlated,
and alignment happened (Fig. 2C, green trace). In contrast, when we
independently re-initialized all elements of 𝐿0 and 𝛿2 from  (0, 1)
at each iteration, error signals of output neurons and output signals
of input neurons were neither autocorrelated nor cross-correlated and
alignment did not happen (Fig. 2C, orange trace). The occurrence of
alignment in these scenarios can be predicted from the distribution
of the eigenvalues of 𝑀𝑜

1,𝑠𝑦𝑚 as in the last scenario with E(𝜆𝑜,1𝑖 ) = 0
alignment did not happen (Fig. 2B).

Although the network was nonlinear in these three scenarios, we
considered the linearized version of them and ignored the nonlinearity
for the analysis. Given the actual behavior of the nonlinear network,
there was no game-changing correlation between matrices resulting
from 𝑓 ′(⋅

)

and other signals of the network (𝐿0 and 𝛿2) that would
invalidate the conclusion drawn from the linear analysis. According
to the structure of the network used, the conditions of Theorem 2
are true. Assumption 3 also holds since the activation function is
increasing and also we did not observe any situation where all the
neurons are saturated. We performed a statistical hypothesis test to
validate Assumption 4. We obtained the sampling distribution of Pear-
son’s correlation coefficient between the two corresponding terms of
Assumption 4 for 10 different combinations of 𝑘 and 𝑜 by resampling
105 pairs of the two corresponding terms of Assumption 4 for 103 rep-
etitions. The maximum calculated correlation coefficient was less than
0.01 (no strong correlation) and the mean of the sampling distribution
did not differ significantly from zero (𝑝-value > 0.1, one-sample 𝑡-test).

2.1.6. Direct feedback alignment
In DFA [18], instead of backpropagation of error signals step by step

from each layer to its previous layer, error signals are backpropagated
directly from the output layer to each hidden layer through direct fixed
random weights, for instance, 𝐹𝓁 ∈ R𝑛𝑑×𝑛𝓁 . With this method, it has
been reported that the product of forward weights (𝑊 𝑊 ⋯𝑊 )
𝓁 𝓁+1 𝑑−1

5 
aligns with 𝐹 𝑇
𝓁 [38]. In this work, we focus on FA, but it can be shown

that a similar technique with Taylor series expansion can be used to
explain DFA (see Supplementary Note 5).

2.2. Investigating BP-TAW and weight alignment in practical ANNs

In this section, we investigate how the analysis presented above
relates to the BP-TAW in practical ANNs and enables us to understand
factors contributing to WA in them. To provide a concrete example, we
examined the dynamics of alignment terms in the learning process of
a specific five-layer nonlinear fully connected ANN (Fig. 3A) designed
for handwritten digits classification on the MNIST dataset (refer to the
Methods section for the details of the network).

To perform this analysis, we make use of the results of Theorems 1
and 2. To ensure applicability, we validated the assumptions and con-
ditions of these theorems. According to the architecture of the network,
the conditions of the theorems hold. We validated Assumptions 2 and
3 by closely examining the behavior of the network and its associated
attributes (Supplementary Note 7). We performed statistical hypothesis
testing to validate Assumptions 1 and 4 and found no evidence to
reject these assumptions (Supplementary Note 7). These two latter
assumptions allow us to simplify the analysis of alignment terms by
ignoring nonlinearity and also analyzing 𝑀𝑜

𝓁 independently of 𝐵𝑇
𝓁 .

Additionally, We also ensure that the first-order Taylor approximation
used for the extraction of alignment terms is a fair approximation in
the nonlinear network under investigation (Supplementary Note 7).

2.2.1. Factors affecting the dynamics of alignment terms and alignment
2.2.1.1 Autocorrelation of error and output signals of neurons contributes
to alignment One aspect of neural activity that contributes to alignment
and affects the behavior of alignment terms is the autocorrelation
of error and output signals of neurons, and one factor that shapes
autocorrelated neural activity is the arrangement and distribution of
data points across mini-batches. To demonstrate this, in the example
network under investigation, we examined the behavior of alignment
terms under two data point arrangement schemes: with and with-
out data shuffling. With data shuffling, after each epoch, the data



A. Rahmansetayesh et al. Neurocomputing 611 (2025) 128587 
Fig. 3. Repetition of the same data points in each epoch contributes to alignment by shaping autocorrelated neural activity. (A) Layout of the network under investigation.
(B) The training dataset is divided into 60 mini-batches which are the same in all epochs (no data shuffling). As the learning process proceeds, the alignment terms whose orders
are not a multiple of 60 lose their initial amount of alignment, while the one whose order is 60 becomes more aligned. This difference is due to the repetition of the same
mini-batches every 60 iterations which makes neural activity autocorrelated at the lag of 60 and its multiples. (C) The training dataset is divided into 60 mini-batches and shuffled
at the beginning of each epoch (the arrangement of data points across mini-batches is changed). Unlike the case without data shuffling, the alignment term of order 60 does
not behave differently since the same arrangement of mini-batches is not repeated in every epoch. (D) Data shuffling changes the behavior of alignment terms but not the total
alignment since the autocorrelated activity of neurons, which without data shuffling is concentrated in the lags that are a multiple of 60, with data shuffling becomes distributed
among other lags. (B-D) Each dot or trace is the average over 30 runs and error bars are one s.d. around the mean.
points are shuffled across mini-batches, but without data shuffling, the
mini-batches do not change across epochs.

To show the potential contribution of autocorrelation of neural
activity to alignment, in one experimental setup of the example net-
work under investigation, we divided the dataset into 60 mini-batches
and did not perform data shuffling. Therefore, the same mini-batches
were repeated every 60 iterations. As a result, neural activity was
autocorrelated at lags that are a multiple of 60, making the alignment
terms whose orders are a multiple of 60 behave differently from other
alignment terms. In this experimental setup, we observed that in the
initial phase of the learning process, all orders of alignment terms
were considerably aligned, but those whose orders were a multiple
of 60 aligned slightly more than their adjacent orders (Fig. 3B, Fig.
S1A). With the continuation of the learning process, the amount of
alignment of the alignment terms whose orders were not a multiple
of 60 decreased, while the terms whose orders were a multiple of 60
became more aligned (Fig. 3B, Fig. S1A).

Referring back to Eq. (5), an appropriate condition for the occur-
rence of alignment which makes 𝑀𝑜

𝓁 a positive semidefinite matrix
is that 𝐿𝓁−1[𝑘 − 𝑜] and 𝛿𝓁+1[𝑘 − 𝑜] are equal to 𝐿𝓁−1[𝑘] and 𝛿𝓁+1[𝑘],
respectively. Without data shuffling and by having a small learning
rate, this condition is approximately satisfied for lags that are a multiple
of 60. Moreover, as the network learns, its response to data points
(the output and error signals of neurons produced by each data point)
becomes more stable. Hence, in comparison to the initial phase, in the
late phase of the learning process, 𝐿𝓁−1[𝑘−60] and 𝛿𝓁+1[𝑘−60] become
more similar to 𝐿𝓁−1[𝑘] and 𝛿𝓁+1[𝑘], respectively, making the alignment
term of order 60 more aligned (Fig. 3B, Fig. S1A).

With data shuffling, this considerable amount of autocorrelation
does not exist in the activity of neurons at lags that are a multiple of
6 
60, and thus alignment terms whose orders are a multiple of 60 behave
similarly to the other orders of alignment terms and lose their initial
amount of alignment with the continuation of the learning process
(Fig. 3C, Fig. S1B). However, the amount of alignment between 𝛥𝑊𝓁
and 𝐵𝑇

𝓁 does not change with data shuffling (Fig. 3D). Assuming the
update steps to be relatively small, in terms of statistical properties
of neural activity, shuffling is similar to substituting the rows of error
and output matrices across different lags with each other. As a result,
the autocorrelated activity of neurons, which without data shuffling
is concentrated in the lag of 𝑜 = 60, with data shuffling becomes
distributed among the lags of 𝑜 = 60 to 𝑜 = 119 because a specific data
point that appears in the mini-batch of the 𝑘th iteration, will inevitably
be repeated in one of the mini-batches of (𝑘+60)𝑡ℎ to (𝑘+119)𝑡ℎ iteration.
The alignment of 𝑊𝓁 with 𝐵𝑇

𝓁 is influenced by the summation of 𝛥𝑊𝓁
across iterations and the alignment of 𝛥𝑊𝓁 itself is influenced by the
resultant of all orders of alignment terms. Data shuffling changes the
behavior of individual alignment terms but preserves their collective
behavior and has no considerable effect on the amount of alignment
(see Supplementary Note 3).

The distinct behavior of alignment terms whose orders are a mul-
tiple of 60 is specific to the configuration of this specific network
under investigation and can change in other situations based on the
number of mini-batches and the arrangement of data in them. However,
in general, the potential contribution of the autocorrelation of neural
activity to alignment is not disregardable and is not limited to the
example network under investigation.

It is evident in Fig. 3 (and Fig. S1) that alignment terms whose
orders are not a multiple of 60 are aligned in the initial phase of the
learning process but gradually lose their initial amount of alignment.
We will investigate the reasons behind this behavior in the next section.



A. Rahmansetayesh et al. Neurocomputing 611 (2025) 128587 
Fig. 4. The relative similarity of data points belonging to a single category compared to data points belonging to different categories contributes to alignment by
shaping cross-correlated neural activity. (A) As a measure of similarity, 𝑆𝑜

𝛿𝓁+1
[𝑘]𝑝,𝑚 is the dot product between the error signals of neurons in layer 𝓁 + 1 produced by the 𝑝th

data point of the (𝑘 − 𝑜)𝑡ℎ mini-batch and the 𝑚th data point of the 𝑘th mini-batch. Within-category corresponds to the condition that both of these two data points belong to a
single category and between-category corresponds to the condition that they belong to different categories. (B) The same as A but for output signals of neurons. At each iteration,
on average, within-category data points and their representations across layers are more similar to each other than data points belonging to different categories. (C) In the early
phase of the learning process, the cross-correlation between 𝑆1

𝐿𝓁−1
[𝑘]𝑝,𝑚 and 𝑆1

𝛿𝓁+1
[𝑘]𝑝,𝑚 contributes to the positivity of the average of 𝑆1

𝐿𝓁−1
[𝑘]𝑝,𝑚𝑆1

𝛿𝓁+1
[𝑘]𝑝,𝑚 and makes the alignment

to be expected Eq. (14). As the learning process proceeds, the network learns to classify, and it makes the majority of error signals vanish, especially in response to the data points
that are very similar to the other data points of their category (see Supplementary Fig. S2), causing cross-correlation between 𝑆1

𝐿𝓁−1
[𝑘]𝑝,𝑚 and 𝑆1

𝛿𝓁+1
[𝑘]𝑝,𝑚 to become weaker and the

average of 𝑆1
𝐿𝓁−1

[𝑘]𝑝,𝑚𝑆1
𝛿𝓁+1

[𝑘]𝑝,𝑚 to decrease. (A-C) The averages are calculated over 𝑝 and 𝑚. Each dot is the average over 10 runs and error bars are one s.d. around the mean.
2.2.1.2. Cross-correlation between error and output signals of neurons con-
tributes to alignment It is normally the case that data points belonging
to a single category are more similar to each other than the ones belong-
ing to different categories. This property contributes to the alignment
of 𝑊𝓁 with 𝐵𝑇

𝓁 by shaping cross-correlated neural activity between 𝛿𝓁+1
and 𝐿𝓁−1. This can be seen in the elements of similarity matrices (𝑆𝑜

𝛿𝓁+1
and 𝑆𝑜

𝐿𝓁−1
). Referring back to Eq. (13) and considering the mentioned

simplifying (Assumptions 1, 2, 4, 3), alignment is expected if

0 < E(⟨𝑇 𝑜
𝓁 [𝑘], 𝐵

𝑇
𝓁 ⟩𝐹 ) ≈ 𝜂2𝑛𝓁𝜎

2E
(

𝑡𝑟(𝑆𝑜
𝛿𝓁+1

[𝑘]𝑇𝑆𝑜
𝐿𝓁−1

[𝑘])
)

= 𝜂2𝑛𝓁𝜎
2E

(

∑

𝑝,𝑚
𝑆𝑜
𝛿𝓁+1

[𝑘]𝑝,𝑚𝑆𝑜
𝐿𝓁−1

[𝑘]𝑝,𝑚
)

,
(14)

where 𝑆𝑜
𝐿𝓁−1

[𝑘]𝑝,𝑚 denotes the element in the 𝑝th row and the 𝑚th
column of 𝑆𝑜

𝐿𝓁−1
[𝑘]. Namely, as a measure of similarity, 𝑆𝑜

𝐿𝓁−1
[𝑘]𝑝,𝑚 is

the dot product between the output signals of neurons in layer 𝓁 − 1
produced by the 𝑝th data point of the (𝑘 − 𝑜)𝑡ℎ mini-batch and their
output signals produced by the 𝑚th data point of the 𝑘th mini-batch.
𝑆𝑜
𝛿𝓁+1

[𝑘]𝑝,𝑚 denotes a similar dot product but for the error signals of
neurons in layer 𝓁 + 1.

In the summation of Eq. (14), we define 𝑆𝑜
𝛿𝓁+1

[𝑘]𝑝,𝑚𝑆𝑜
𝐿𝓁−1

[𝑘]𝑝,𝑚 as
the similarity term. Based on the categories of the 𝑝th data point of the
(𝑘 − 𝑜)𝑡ℎ mini-batch and the 𝑚th data point of the 𝑘th mini-batch, the
similarity terms have different behaviors. If these two mentioned data
points both belong to the same category, we regard their corresponding
similarity term as a within-category similarity term, and if they belong to
two different categories, we regard their corresponding similarity term
as a between-category similarity term.

Since the activation function used in this network is nonnegative,
the output signals of neurons are always nonnegative, and conse-
quently, 𝑆𝑜

𝐿𝓁−1
[𝑘]𝑝,𝑚 is nonnegative. In within-category similarity terms,

since data points have the same true label, their error signals are mostly
similar to each other and 𝑆𝑜

𝛿𝓁+1
[𝑘]𝑝,𝑚 has a positive mean (Fig. 4A,

Fig. S2A), which is constructive for alignment (referring to Eq. (14)
and given that 𝑆𝑜

𝐿𝓁−1
[𝑘]𝑝,𝑚 is nonnegative). In contrast, in between-

category similarity terms, since data points have different true labels,
7 
their error signals are dissimilar to each other and 𝑆𝑜
𝛿𝓁+1

[𝑘]𝑝,𝑚 has a
negative mean (Fig. 4A, Fig. S2A), which is destructive for alignment
(referring to Eq. (14) and given that 𝑆𝑜

𝐿𝓁−1
[𝑘]𝑝,𝑚 is nonnegative).

However, there is an advantageous cross-correlation between
𝑆𝑜
𝛿𝓁+1

[𝑘]𝑝,𝑚 and 𝑆𝑜
𝐿𝓁−1

[𝑘]𝑝,𝑚 which is that in within-category similarity
terms, 𝑆𝑜

𝐿𝓁−1
[𝑘]𝑝,𝑚 has a higher mean compared to between-category

similarity terms (Fig. 4B, Fig. S2B), strengthening the constructive
effect of 𝑆𝑜

𝛿𝓁+1
[𝑘]𝑝,𝑚 in within-category similarity terms compared to

between-category ones. This cross-correlation originates from the men-
tioned property of the dataset which directly affects the input layer of
the network and makes 𝑆𝑜

𝐿0
[𝑘]𝑝,𝑚 of within-category similarity terms

have a relatively high mean compared to that of between-category
similarity terms (Fig. 4B, Fig. S2B). In the initial phase, although the
network does not discriminate between categories, this feature is still
preserved in the similarity terms of subsequent layers (Fig. 4B, Fig.
S2B). In the summation of Eq. (14), the number of within-category
similarity terms is less than the number of between-category ones.
For example, if there are 10 different categories and an equal number
of data points in each of them, 10% of similarity terms are within-
category, and 90% of them are between-category. Nevertheless, in
the initial phase of the learning process, the cross-correlation between
𝑆𝑜
𝐿𝓁−1

[𝑘]𝑝,𝑚 and 𝑆𝑜
𝛿𝓁+1

[𝑘]𝑝,𝑚 is strong enough to overcome the number
and destructive effect of between-category similarity terms, and on
average, 𝑆𝑜

𝐿𝓁−1
[𝑘]𝑝,𝑚𝑆𝑜

𝛿𝓁+1
[𝑘]𝑝,𝑚 is positive (Fig. 4C).

After the initial phase, this cross-correlation becomes weaker, caus-
ing the alignment terms to lose their initial amount of alignment, except
for those whose orders are a multiple of 60 when no data shuffling is
performed (Fig. 3). The reason for this is that as the network learns
to discriminate between different categories, the response of neurons
to the majority of the data points becomes saturated, and their error
signals vanish (Fig. S2C), while error signals in response to some other
data points, which are not learned well, remain large (Fig. S2C). The
within-category similarity of data points whose corresponding error
signals remain large (and consequently their corresponding similarity

terms are dominant) is less than the data points whose corresponding



A. Rahmansetayesh et al. Neurocomputing 611 (2025) 128587 
Fig. 5. The within-category similarity of data points enhances weight alignment, but a certain amount of weight alignment can happen even using data with random
labels. (A) WA across layers of the example network trained on the MNIST dataset where labels of different percentages of data points are shuffled (in 20% label shuffling, 20%
of the data points are randomly selected, and then available label options are randomly assigned to them with equal probability). Alignment occurs even when 100% of the data
labels are shuffled. (B) Classification error of the same ANN across different percentages of label shuffling. As expected, the error increases for higher percentages of label shuffling
and remains at the chance level (90%) if 100% of data labels are shuffled. (C) The behavior of alignment terms for two sample iterations 𝑘 = 66 and 𝑘 = 1260 when labels of 100%
of the data points are shuffled once at the beginning of the learning process, and after that, no data shuffling is performed. Shuffling all labels spoils the cross-correlation between
error and output signals of neurons and consequently spoils alignment of all orders of alignment terms, except for the alignment term of order 60 because of the repetition of
the same mini-batches every 60 iterations (compare this panel with Fig. 3B). (D) The average of 𝑆𝑜

𝐿0
[𝑘]𝑝,𝑚 for within- and between-category data points in the case of shuffling

100% of data labels. Shuffling all labels creates a situation where data points belonging to different categories become as similar to each other as the data points within a single
category and consequently spoils the cross-correlation between error and output signals of neurons (compare this panel with the leftmost column of Fig. 4B). (A-D) Each dot or
trace is the average over 10 runs and error bars and shaded areas are one s.d. around the mean.
error signals vanish (Fig. S2D,E). This weakens the cross-correlation
between error and output signals of neurons, leading to the mentioned
reduction in alignment. This leads to a reduction in the alignment
of 𝛥𝑊𝓁,𝐹𝐴 with 𝐵𝑇

𝓁 as the learning process proceeds (Fig. 3). In the
graph of the alignment of 𝛥𝑊𝓁,𝐹𝐴 with 𝐵𝑇

𝓁 (Fig. 3), it can also be seen
that in the beginning, they are not aligned, then the alignment peaks
and again decreases. This behavior is because there are 𝑘 alignment
terms in 𝛥𝑊𝓁,𝐹𝐴[𝑘] (according to Eq. (3)), and also there is another
term 𝜂𝑓

(

𝜁𝑘𝓁 [𝑘]
)𝑇 𝛿𝓁+1,𝐹𝐴[𝑘] that does not align (Fig. S9). Hence, in the

beginning, it takes some iterations for the number of alignment terms
to increase and overcome the non-aligned term 𝜂𝑓

(

𝜁𝑘𝓁 [𝑘]
)𝑇 𝛿𝓁+1,𝐹𝐴[𝑘].

To verify the role of within-category similarity in deriving the
alignment, we ran a simulation where we randomly selected different
percentages of the data points and shuffled their true labels once at the
beginning of the learning process. Such shuffling is expected to disrupt
the cross-correlation between 𝑆𝑜

𝐿𝓁−1
[𝑘]𝑝,𝑚 and 𝑆𝑜

𝛿𝓁+1
[𝑘]𝑝,𝑚 and adversely

affect the degree of WA (Fig. 5A). As expected, for high percentages of
data points with randomly assigned labels, the total WA was degraded
across all layers (Fig. 5A).

Shuffling the labels disrupted the learning and increased the test
error (the test dataset was intact). In the case where 100% of data
points were randomly labeled (samples of a given digit were equally
likely to have one of the labels from 0 to 9) test error reached 90%,
representing the chance level (Fig. 5B).

There was still some residual and slow WA even when all labels
were shuffled (Fig. 5A). The reason for the impact of label shuffling
becomes clear by looking at the behavior of alignment terms across
lags. In the case where 100% of the data labels were shuffled and no
data shuffling was performed at the beginning of epochs, alignment
terms, except those whose orders were a multiple of 60, did not align
considerably (Fig. 5C). In this case, 𝑆𝑜

𝐿𝓁−1
[𝑘]𝑝,𝑚 of both within- and

between-category data points had the same distribution and average
(Fig. 5D), and the feature that data points belonging to a single cate-
gory are more similar to each other than those belonging to different
categories was spoiled. Alignment terms whose orders were a multiple
8 
of 60 remained aligned because of the repetition of the identical mini-
batches every 60 iterations, confirming the unignorable contribution
of the autocorrelation of neural activity to alignment in addition to
cross-correlation.

2.2.2. Alignment and the local minimum reached by BP-TAW can be
improved by weight normalization

In the training of the network with the original formulation of BP-
TAW, the Frobenius norms of the forward weight matrices continuously
grew especially in the last layers (Fig. S3). This growth can contribute
to the weakening of alignment by saturating the outputs of neurons and
vanishing error signals as described above. To examine this, we limited
and fixed the Frobenius norm of input weights to each neuron at each
iteration by applying a WN method as follows

𝑊𝓁[𝑘]∗,𝑖 ← 𝛾
𝑊𝓁[𝑘]∗,𝑖

‖(𝑊𝓁[𝑘])∗,𝑖‖𝐹
, (15)

where 𝑊𝓁[𝑘]∗,𝑖 denotes an 𝑛𝓁 ×1 matrix consisting of the 𝑖th column of
𝑊𝓁[𝑘] and 𝛾 is a positive scalar which we refer to as WN gain. To treat
all weights in the same way, we also applied this WN method to back-
ward weights once at the beginning of the learning process. Unlike the
conventional WN method in ANNs [39], which is a reparameterization
of the BP formula, this proposed WN method is an intervention in the
BP-TAW formula, which partially prevents the saturation of neurons
and vanishing of error signals (Fig. S4).

Two aspects of the network that directly and simultaneously af-
fect the amount of alignment are 𝛥𝑊𝓁,𝐹𝐴[𝑘]∡𝐵𝑇

𝓁 and ‖𝛥𝑊𝓁,𝐹𝐴[𝑘]‖𝐹 ∕
‖𝑊𝓁[𝑘]‖𝐹 . This WN method improved both of these aspects (Fig. 6A,B)
and consequently improved the alignment of forward weights with
backward weights (Fig. 6C) and also the alignment between the update
directions of BP-TAW and those of BP (Fig. 6D), making BP-TAW a bet-
ter approximation of BP. In addition to the improvement of alignment,
this WN method also improved test accuracy when the network was
trained by BP-TAW (Fig. 6E).



A. Rahmansetayesh et al. Neurocomputing 611 (2025) 128587 
Fig. 6. Weight normalization in BP-TAW improves alignment and classification accuracy. (A) WN increases the Frobenius norms of the update directions of BP-TAW relative
to the Frobenius norms of forward weights. (B) WN improves the alignment of the update directions of BP-TAW with backward weights. (C) WN improves WA. (D) WN improves
the alignment between the update directions of BP-TAW and those of BP. In the last layer, the update direction of BP-TAW is the same as BP. (E) WN improves the test accuracy
of BP-TAW. (F) Two-dimensional embedding of the trajectories of all learnable parameters of the network (forward weight matrices and bias vectors) for two instances of the
network that are both identically initialized with the same parameters, but one is trained by BP and the other by BP-TAW. The contour map shows the loss function of the network
using the reconstructed parameters. Red asterisks are local minimums in the two-dimensional space. (G) Similar to panel F but for networks trained by BP-TAW, with and without
WN. (A-E) Each trace is the average over 10 runs and the shaded areas are one s.d. around the mean. (A,B,D) Each trace is passed through a moving average filter with a length
of 60.
To make sure that the improvement in the test error and alignment
was not just due to a chance selection of hyperparameters of the
network (𝛾, 𝜂, and initial standard deviation of weights and biases), we
did a sensitivity analysis and parameter sweep (Fig. S5). We examined
a wide range of hyperparameter values with and without WN. In
addition, to make sure that the improvement was not just due to the
specific kind of initialization that the WN method imposes on the
network, in a separate group of experiments, we only applied the WN
at the beginning (at the first iteration) and did not apply it in the rest
of the learning process. Among these cases, the best amounts of the
test error and alignment belonged to the case where WN was applied
throughout the entire learning process (Supplementary Note 1, Fig. S5),
showing that the results were not just due to a chance selection of
hyperparameters or merely the initialization of the network. Moreover,
the sensitivity analysis and parameter sweep showed that the improve-
ment in alignment and test accuracy of BP-TAW is robust for a fairly
large range of hyperparameters.

We examined the generalizability of the effectiveness of WN to other
network architectures. We re-performed the sensitivity analysis and
parameter sweep described above on two other network architectures
and observed that the WN method improved the test accuracy and
alignment in them as well (Supplementary Note 1, Fig. S6, Fig. S7).
Therefore, the application of the WN method in improving alignment
is generalizable to other network architectures.

Low-dimensional embedding of all learnable parameters of the net-
work (forward weight matrices and bias vectors) using principle com-
ponent analysis showed that the initial mismatch between the update
directions of BP-TAW and BP drives the trajectory of the parameters of
BP-TAW into a different local minimum which is less optimal than the
local minimum to which the network converges with BP (Fig. 6F). WN
drives the trajectory of parameters to a more optimal local minimum,
resulting in a better degree of classification accuracy (Fig. 6G).
9 
We observed that without WN, alignment between 𝑊𝓁 and 𝐵𝑇
𝓁

decreases in the early layers of the network. With WN, this reduction
was overcome to some extent, and the first and third layers became
more aligned than the last layer (Fig. 6C). However, we observed that
the amount of alignment between the update directions of BP-TAW and
BP decreases step by step as the error is backpropagated towards the
input layer and even WN could not overcome this effect (Fig. 6D).

The potential increase of 𝛥𝑊𝓁,𝐹𝐴∡𝛥𝑊𝓁,𝐵𝑃 (less alignment) in the
earlier layers can be seen by comparing 𝛥𝑊𝓁,𝐹𝐴 = 𝜂𝐿𝑇

𝓁 𝛿𝓁+1,𝐹𝐴 with
𝛥𝑊𝓁,𝐵𝑃 = 𝜂𝐿𝑇

𝓁 𝛿𝓁+1,𝐵𝑃 . The matrix 𝐿𝑇
𝓁 is identical in both and the factors

that determine the angle between them are 𝛿𝓁+1,𝐵𝑃 and 𝛿𝓁+1,𝐹𝐴. For
simplicity, consider a 𝑑-layer linear ANN. For the last layer (𝓁 = 𝑑), we
have 𝛿𝑑,𝐹𝐴 = 𝛿𝑑,𝐵𝑃 , but for 0 < 𝓁 < 𝑑, by using Eq. (2) successively, we
have

𝛿𝓁,𝐹𝐴 = 𝛿𝑑𝐵𝑑−1𝐵𝑑−2𝐵𝑑−3𝐵𝑑−4 ⋯𝐵𝓁+1𝐵𝓁 (16)

𝛿𝓁,𝐵𝑃 = 𝛿𝑑𝑊
𝑇
𝑑−1𝑊

𝑇
𝑑−2𝑊

𝑇
𝑑−3𝑊

𝑇
𝑑−4 ⋯𝑊 𝑇

𝓁+1𝑊
𝑇
𝓁 . (17)

According to these two successive matrix multiplications of backward
and the transpose of forward weight matrices, as the error is back-
propagated towards the early layers, depending on the pairs of 𝐵𝓁
and 𝑊 𝑇

𝓁 , deviation of 𝛿𝓁,𝐵𝑃 from 𝛿𝓁,𝐹𝐴 potentially tends to increase.
Consequently, deviation of 𝛥𝑊𝓁,𝐹𝐴 from 𝛥𝑊𝓁,𝐵𝑃 potentially increases
as well and it reduces the accuracy of the update directions of BP-TAW
compared to gradient directions computed by BP in the early layers of
deep ANNs.

3. Discussion

Artificial neural networks and their learning paradigms have dif-
ferences and similarities with biological neural networks. Specifically,

the BP method needs a biologically implausible matching between



A. Rahmansetayesh et al.

𝐛

w
a

𝛥

Neurocomputing 611 (2025) 128587 
feedforward and feedback synaptic weights. The BP-TAW learning
method [17] showed that an ANN can be trained with arbitrary feed-
back weights that are distinct from feedforward weights. In BP-TAW,
forward weights partially align with backward weights during itera-
tions, which leads to a partial alignment between the update directions
of BP-TAW and BP and provides an approximation of BP.

3.1. Mathematical basis of alignment

In this work, we demonstrated mathematical and statistical basis
of WA (Fig. 1) and showed that WA is not a direct consequence of
the learning, reduction of loss function, or the growth of the norms
of the weights; rather, it relies on the structure of alignment terms that
are extracted from the update rule of BP-TAW Eqs. (3) and (4), and
according to this structure, alignment happens robustly under a variety
of conditions depending on the statistical properties of neural activity.
Specifically, we showed that the autocorrelation of error and output
signals of neurons and the cross-correlation between them are two
important features of neural activity contributing to alignment (Fig. 2).

We used alignment terms as a tool to analyze BP-TAW in a specific
five-layer nonlinear ANN trained on the MNIST dataset. We showed
how the arrangement of data in mini-batches and the repetition of data
points across epochs contribute to the behavior of alignment terms by
shaping autocorrelated neural activity (Fig. 3). Moreover, we showed
that the relative similarity of data points of a single category and their
differences across categories, which is an intrinsic property of datasets,
contributes to alignment by shaping cross-correlated neural activity
(Fig. 4, Fig. 5).

The demonstrated mathematical framework furthers our under-
standing of FA and WA and makes us capable of analyzing WA in
BP-TAW under various conditions. In general, many aspects of neural
activity influence the behavior of alignment terms and make them act
differently in different situations. For example, the architecture of the
network (activation function, number of neurons in layers, number of
layers, loss function, normalization methods, etc.), hyperparameters
(learning rate, batch size, etc.), and properties of the dataset affect
neural activity and consequently the behavior of alignment terms. The
presented framework can be used in various network architectures and
configurations beyond what was discussed in this work.

A weakness of BP-TAW as an approximation of BP in deep ANNs
is that the amount of alignment between the update directions of BP-
TAW and BP potentially tends to decline as the error is consecutively
backpropagated towards the earlier layers (Fig. 6D). In other words,
with BP-TAW, early layers potentially receive less accurate supervised
error signals compared to the final layers. This potential decline may be
overcome by unsupervised learning under certain conditions, which can
be the subject of future work. Indeed, many aspects of the activity of
neurons in lower areas of the visual system are demonstrated to be at-
tainable with unsupervised learning models [40,41] and there are also
suggestions of efficient network architectures where an ANN trained in
an unsupervised manner is followed by a supervised classifier [42].

3.2. Limitations and future research directions

While we have investigated the validity of the introduced sim-
plifying assumptions for the analysis of WA and alignment terms in
deep feed-forward fully connected ANNs, their validity in biological
neural networks and other types of ANNs remains to be investigated
in future research. The violation of these assumptions does not render
our provided framework useless but makes the analysis of WA and
alignment terms complicated. Exploring mathematical methods to deal
with the complexity of the analysis of alignment terms in their original
form (without simplifying assumptions), and identifying other eligi-
ble assumptions that simplify the analysis under various conditions,

represent two avenues for future studies.

10 
The weight transport problem is one of the biological implausibil-
ities of the BP formula which can be avoided by using BP-TAW, and
there are other biological implausibilities in BP and BP-TAW [2,43].
For instance, the firing rate as the output of each biological neuron
is nonnegative, while error signals in BP and BP-TAW are signed. In
addition, error signals in BP and BP-TAW are distinct from the output
of artificial neurons. In BP-TAW and BP, error signals are internal
attributes of neurons that are backpropagated to other neurons through
feedback weights, whereas in biological networks, the attribute of
neurons that is conveyed explicitly to other neurons by axons and
synapses is their output spikes and it is believed that other internal
attributes of them are mostly local [2,4]. Future experiments and data
analysis are needed to investigate whether a learning method similar
to BP-TAW contributes to shaping synaptic plasticity and learning in
biological neural networks.

Brain-inspired spiking neural networks and neuromorphic hardware
are considered promising candidates to deal with the challenges of
conventional ANNs and realize high-level intelligence and low power
consumption [44–48]. Similar to biological neural networks, having
bidirectional synapses in neuromorphic hardware is challenging [49]
and the application of the FA and DFA learning methods in them is
suggested [49–51]. Application and analysis of FA in neuromorphic
hardware and spiking neural networks warrant an investigation in the
future.

We examined the effect of a WN method, which works by fixing
the Frobenius norm of input weights of each neuron to some constant
and showed that it can improve alignment. Various forms of plasticity,
such as heterosynaptic plasticity, are reported which regulate synaptic
weights in a competitive manner, in which the potentiation of one
synapse can result in the depression of other synapses to keep overall
synaptic strengths under control [52,53]. There are also numerous
reports of normalization mechanisms in biological neural networks
working to regulate the activity of neurons and limit the dynamic range
of synaptic weights [52,54]. The effect of different forms of biologically
relevant WN methods on WA and FA could be explored in future
studies.

3.3. Conclusion

In summary, the analysis done in this study provides a useful
framework for understanding WA in BP-TAW and paves the way for
further research on the relationship between learning methods used in
ANNs and learning mechanisms in the nervous system. While BP-TAW
is capable of approximating the weight update directions proposed by
BP in simple feedforward networks and WN can improve this approx-
imation, it remains to be seen how the addition of other biological
considerations such as lateral connections, sparsity, synaptic pruning
and formation, and the segregation of excitatory and inhibitory neurons
affect the performance of BP-TAW.

4. Methods

4.1. BP and BP-TAW learning methods

In BP, we updated bias vectors and weight matrices at each iteration
as below

𝑊𝓁[𝑘 + 1] = 𝑊𝓁[𝑘] + 𝛥𝑊𝓁[𝑘] (18)

𝓁[𝑘 + 1] = 𝐛𝓁[𝑘] + 𝛥𝐛𝓁[𝑘], (19)

here gradient directions computed by BP for updating bias vectors
nd weight matrices at each iteration 𝑘 are

𝑊𝓁,𝐵𝑃 [𝑘] = −𝜂 𝜕 |

|

|

= 𝜂𝐿𝓁[𝑘]𝑇 𝛿𝓁+1,𝐵𝑃 [𝑘], 0 ≤ 𝓁 < 𝑑 (20)

𝜕𝑊𝓁 |𝑘



A. Rahmansetayesh et al.

r
𝐵
a

w

c
e

l
e
F

a
a

4

c
o
𝑛
f
{
t

i
d
F
a

D

c
i

D

m
u
s
-
e
d

A

a

Neurocomputing 611 (2025) 128587 
𝛥𝐛𝓁,𝐵𝑃 [𝑘] = −𝜂 𝜕
𝜕𝐛𝓁

|

|

|

|𝑘
= 𝜂𝐽1×𝑛𝑏𝛿𝓁,𝐵𝑃 [𝑘], 0 < 𝓁 ≤ 𝑑, (21)

where 𝐽1×𝑛𝑏 is a 1×𝑛𝑏 all-ones matrix and error matrices of neurons are

𝛿𝑑,𝐵𝑃 [𝑘] = 𝐸[𝑘]⊙ 𝑓 ′(𝑍𝑑 [𝑘]
)

(22)

𝛿𝓁,𝐵𝑃 [𝑘] = 𝛿𝓁+1,𝐵𝑃 [𝑘]𝑊𝓁[𝑘]𝑇 ⊙ 𝑓 ′(𝑍𝓁[𝑘]
)

, 0 < 𝓁 < 𝑑, (23)

where 𝐸[𝑘] = 𝑌 ∗[𝑘] − 𝑌 [𝑘] according to the loss function [𝑘] =
1
2
∑

𝑖,𝑗 𝐸[𝑘]2𝑖,𝑗 [1].
In BP-TAW [17], the error is backpropagated through constant

andom matrices different from forward weights which are denoted by
𝓁 ∈ R𝑛𝓁+1×𝑛𝓁 , and we calculated the update directions at each iteration
s follows (𝑊 𝑇

𝓁 in Eq. (23) is replaced with 𝐵𝓁)

𝛿𝑑,𝐹𝐴[𝑘] = 𝛿𝑑,𝐵𝑃 [𝑘] = 𝐸[𝑘]⊙ 𝑓 ′(𝑍𝑑 [𝑘]
)

(24)

𝛿𝓁,𝐹𝐴[𝑘] = 𝛿𝓁+1,𝐹𝐴[𝑘]𝐵𝓁 ⊙ 𝑓 ′(𝑍𝓁[𝑘]
)

, 0 < 𝓁 < 𝑑 (25)

𝛥𝑊𝓁,𝐹𝐴[𝑘] = 𝜂𝐿𝓁[𝑘]𝑇 𝛿𝓁+1,𝐹𝐴[𝑘], 0 ≤ 𝓁 < 𝑑 (26)

𝛥𝐛𝓁,𝐹𝐴[𝑘] = 𝜂𝐽1×𝑛𝑏𝛿𝓁,𝐹𝐴[𝑘], 0 < 𝓁 ≤ 𝑑. (27)

In training ANNs with BP-TAW, 𝛥𝑊𝓁,𝐵𝑃 [𝑘] is a direction that we
only calculated at each iteration for comparison with 𝛥𝑊𝓁,𝐹𝐴[𝑘] (we
only used 𝛥𝑊𝓁,𝐹𝐴[𝑘] to update forward weight matrices).

4.2. Angle and cosine similarity between two matrices

We calculated the angle between two arbitrary matrices 𝑊 and 𝐵,
which have the same dimensions, as follows

𝑊 ∡𝐵 = 𝑐𝑜𝑠−1(
⟨𝑊 ,𝐵⟩𝐹

‖𝑊 ‖𝐹 ‖𝐵‖𝐹
), (28)

here ⟨𝑊 ,𝐵⟩𝐹 is the Frobenius inner product of 𝑊 and 𝐵 and ‖.‖𝐹 is
the Frobenius norm. This is identical to the angle between vectorized
𝑊 and 𝐵 in the Euclidean space. The angle between two matrices is
indeed a measure of the similarity between the normalized versions of
the two matrices.

In addition to the angle, cosine similarity between two matrices can
also be used as a measure of the similarity between them as follows

cosine similarity(𝑊 ,𝐵) =
⟨𝑊 ,𝐵⟩𝐹

‖𝑊 ‖𝐹 ‖𝐵‖𝐹
. (29)

Assuming 𝑊 and 𝐵 to be nonzero, since the denominator of the
osine similarity is always nonnegative, for alignment (𝑊 ∡𝐵 < 90◦, or
quivalently 0 < cosine similarity(𝑊 ,𝐵)) it is sufficient and necessary

that

0 < ⟨𝑊 ,𝐵⟩𝐹 .

4.3. Network parameters, dimensions, and initialization

In our experiments, for nonlinearity, we chose 𝑓
(

⋅
)

= 𝑡𝑎𝑛ℎ(𝑅𝑒𝐿𝑈 (⋅)),
which roughly resembles the frequency-current curve of biological
neurons. Moreover, since this is a classification task with the desired
output of the network coded to be between zero and one, for the
reasons of stability and convergence, it is convenient for the activation
function of the output layer to be confined between zero and one.
We chose the number of neurons and activation functions to be the
same in the hidden layers and the output layer in order to ensure
the comparability of the amount of alignment across different layers.
We chose the number of neurons in each hidden and output layer
to be 50 and since there were 10 classes, to match the length of

the coding of the desired output of the network with the number of

11 
neurons in the last layer, we coded the labels of classes with mutually
exclusive 5-hot coding (see the following section of Methods). To
reduce the computational cost, we resized all handwritten digits (data
points of MNIST) to images with 15 × 15 pixels which were then
transformed into a vector. Hence, the number of input neurons was
225. We also normalized input data points (output signals of input
neurons) to lie between 0 and 1 (dividing the original MNIST data
points by 255). We chose the batch size to be 1000, which means
there were 60 mini-batches given the total number of 60 000 training
data points (each epoch of training consisted of 60 iterations). At the
beginning of each run, we randomly initialized elements of forward and
backward weights and bias vectors independently from  (0, 0.1). The
oss function that we used was [𝑘] = 1

2
∑

𝑖,𝑗 𝐸[𝑘]2𝑖,𝑗 , where 𝐸[𝑘]𝑖,𝑗 is the
lement in the 𝑖th row and the 𝑗th column of 𝐸[𝑘] = 𝑌 ∗[𝑘] − 𝑌 [𝑘]. In
igs. 3, 4, 5, and 6 learning rate was 𝜂 = 0.0005.

In Fig. 2 we chose network dimensions to be 𝑛0 = 𝑛2 = 20, 𝑛1 = 100,
nd 𝑛𝑏 = 100, and we set 𝜂 = 0.0004 and initialized elements of 𝐵1, 𝑊0
nd 𝑊1 with i.i.d. random variables from  (0, 1).

.4. Generating mutually exclusive n-hot coding

In training the ANN on MNIST, we used mutually exclusive 5-hot
oding. Suppose the number of categories is 𝐶 and the number of
utput neurons is 𝑚 (𝑛 ⋅ 𝐶 ≤ 𝑚). For generating mutually exclusive
-hot code vectors of size 𝑚 for each category, we started from the
irst category to the last one, and successively for each category 𝑐 ∈
0, 1,… , 𝐶 − 1} we initialized its code vector with zero elements and
hen randomly selected 𝑛 out of 𝑚 − 𝑐 ⋅ 𝑛 elements that were not equal

to 1 in any of the 𝑐 previously coded category vectors and set them
equal to 1.

CRediT authorship contribution statement

Alireza Rahmansetayesh: Writing – review & editing, Writing –
original draft, Visualization, Validation, Software, Methodology, For-
mal analysis, Data curation, Conceptualization. Ali Ghazizadeh: Writ-
ng – review & editing, Writing – original draft, Visualization, Vali-
ation, Supervision, Methodology, Formal analysis, Conceptualization.
arokh Marvasti: Writing – review & editing, Supervision, Conceptu-
lization.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata and code availability statement

The MNIST dataset can be found at: http://yann.lecun.com/exdb/
nist/. The code for reproducing all results in this work is available
nder the Apache 2.0 license at https://github.com/ARahmansetaye
h/The-underlying-mechanisms-of-alignment-in-error-backpropagation
through-arbitrary-weights. We used PyTorch library only for accel-
rating computations on GPU (we did not use PyTorch’s automatic
ifferentiation capability).

ppendix A. Supplementary data

Supplementary material related to this article can be found online
t https://doi.org/10.1016/j.neucom.2024.128587.

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://github.com/ARahmansetayesh/The-underlying-mechanisms-of-alignment-in-error-backpropagation-through-arbitrary-weights
https://doi.org/10.1016/j.neucom.2024.128587


A. Rahmansetayesh et al. Neurocomputing 611 (2025) 128587 
References

[1] D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning internal representations by
error propagation, Technical report, California Univ San Diego La Jolla Inst for
Cognitive Science, 1985.

[2] D.G. Stork, Is backpropagation biologically plausible, in: International Joint
Conference on Neural Networks, Vol. 2, IEEE Washington, DC, 1989, pp.
241–246.

[3] F. Crick, The recent excitement about neural networks, Nature 337 (6203) (1989)
129–132.

[4] Y. Song, T. Lukasiewicz, Z. Xu, R. Bogacz, Can the brain do backpropagation?—
exact implementation of backpropagation in predictive coding networks, NeuRIPS
Proceedings 2020 33 (2020) (2020).

[5] S. Grossberg, Competitive learning: From interactive activation to adaptive
resonance, Cognit. Sci. 11 (1) (1987) 23–63.

[6] D. Zipser, R.A. Andersen, A back-propagation programmed network that simu-
lates response properties of a subset of posterior parietal neurons, Nature 331
(6158) (1988) 679–684.

[7] S.-M. Khaligh-Razavi, N. Kriegeskorte, Deep supervised, but not unsupervised,
models may explain IT cortical representation, PLoS Comput. Biol. 10 (11) (2014)
e1003915.

[8] C.F. Cadieu, H. Hong, D.L. Yamins, N. Pinto, D. Ardila, E.A. Solomon, N.J. Majaj,
J.J. DiCarlo, Deep neural networks rival the representation of primate IT cortex
for core visual object recognition, PLoS Comput. Biol. 10 (12) (2014) e1003963.

[9] R.M. Cichy, A. Khosla, D. Pantazis, A. Torralba, A. Oliva, Comparison of deep
neural networks to spatio-temporal cortical dynamics of human visual object
recognition reveals hierarchical correspondence, Sci. Rep. 6 (1) (2016) 1–13.

[10] A. Nayebi, D. Bear, J. Kubilius, K. Kar, S. Ganguli, D. Sussillo, J.J. DiCarlo,
D.L. Yamins, Task-driven convolutional recurrent models of the visual system,
in: Advances in Neural Information Processing Systems, 2018, pp. 5290–5301.

[11] J.C. Whittington, R. Bogacz, Theories of error back-propagation in the brain,
Trends Cognit. Sci. 23 (3) (2019) 235–250.

[12] J.C. Whittington, R. Bogacz, An approximation of the error backpropagation
algorithm in a predictive coding network with local hebbian synaptic plasticity,
Neural Comput. 29 (5) (2017) 1229–1262.

[13] T.P. Lillicrap, A. Santoro, L. Marris, C.J. Akerman, G. Hinton, Backpropagation
and the brain, Nat. Rev. Neurosci. (2020) 1–12.

[14] X. Xie, H.S. Seung, Equivalence of backpropagation and contrastive hebbian
learning in a layered network, Neural Comput. 15 (2) (2003) 441–454.

[15] J.F. Kolen, J.B. Pollack, Backpropagation without weight transport, in: Proceed-
ings of 1994 IEEE International Conference on Neural Networks, ICNN’94, Vol.
3, IEEE, 1994, pp. 1375–1380.

[16] Q. Liao, J. Leibo, T. Poggio, How important is weight symmetry in backprop-
agation? in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol.
30, (1) 2016.

[17] T.P. Lillicrap, D. Cownden, D.B. Tweed, C.J. Akerman, Random synaptic feedback
weights support error backpropagation for deep learning, Nat. Commun. 7 (1)
(2016) 1–10.

[18] A. Nøkland, Direct feedback alignment provides learning in deep neural
networks, 2016, arXiv preprint arXiv:1609.01596.

[19] M. Refinetti, S. d’Ascoli, R. Ohana, S. Goldt, The dynamics of learning with
feedback alignment, 2020, arXiv preprint arXiv:2011.12428.

[20] C. Frenkel, M. Lefebvre, D. Bol, Learning without feedback: Direct random
target projection as a feedback-alignment algorithm with layerwise feedforward
training, stat 1050 (2019) 3.

[21] J. Launay, I. Poli, F. Krzakala, Principled training of neural networks with direct
feedback alignment, 2019, arXiv preprint arXiv:1906.04554.

[22] P. Baldi, P. Sadowski, Z. Lu, Learning in the machine: Random backpropagation
and the deep learning channel, Artif. Intell. 260 (2018) 1–35.

[23] S. Bartunov, A. Santoro, B.A. Richards, L. Marris, G.E. Hinton, T. Lillicrap,
Assessing the scalability of biologically-motivated deep learning algorithms and
architectures, 2018, arXiv preprint arXiv:1807.04587.

[24] T.H. Moskovitz, A. Litwin-Kumar, L. Abbott, Feedback alignment in deep
convolutional networks, 2018, arXiv preprint arXiv:1812.06488.

[25] P. Züge, C. Klos, R.-M. Memmesheimer, Weight versus node perturbation learning
in temporally extended tasks: Weight perturbation often performs similarly or
better, Phys. Rev. X 13 (2) (2023) 021006.

[26] G. Cauwenberghs, A fast stochastic error-descent algorithm for supervised
learning and optimization, Adv. Neural Inf. Process. Syst. 5 (1992).

[27] R.J. Williams, Simple statistical gradient-following algorithms for connectionist
reinforcement learning, Mach. Learn. 8 (1992) 229–256.

[28] S. Dalm, M. van Gerven, N. Ahmad, Effective learning with node perturbation
in deep neural networks, 2023, arXiv preprint arXiv:2310.00965.

[29] N. Hiratani, Y. Mehta, T. Lillicrap, P.E. Latham, On the stability and scala-
bility of node perturbation learning, Adv. Neural Inf. Process. Syst. 35 (2022)
31929–31941.

[30] V. Francioni, V.D. Tang, N.J. Brown, E.H. Toloza, M. Harnett, Vectorized
instructive signals in cortical dendrites during a brain-computer interface task,
2023, bioRxiv.
12 
[31] P.C. Humphreys, K. Daie, K. Svoboda, M. Botvinick, T.P. Lillicrap, BCI learning
phenomena can be explained by gradient-based optimization, 2022, bioRxiv
2022-2012.

[32] J. Tigges, W. Spatz, M. Tigges, Reciprocal point-to-point connections between
parastriate and striate cortex in the squirrel monkey (Saimiri), J. Comp. Neurol.
148 (4) (1973) 481–489.

[33] M. Wong-Riley, Reciprocal connections between striate and prestriate cortex in
squirrel monkey as demonstrated by combined peroxidase histochemistry and
autoradiography, Brain Res. 147 (1) (1978) 159–164.

[34] R.D. D’Souza, Q. Wang, W. Ji, A.M. Meier, H. Kennedy, K. Knoblauch, A.
Burkhalter, Hierarchical and nonhierarchical features of the mouse visual cortical
network, Nat. Commun. 13 (1) (2022) 503.

[35] M. Akrout, C. Wilson, P.C. Humphreys, T. Lillicrap, D. Tweed, Deep learning
without weight transport, 2019, arXiv preprint arXiv:1904.05391.

[36] D. Kunin, A. Nayebi, J. Sagastuy-Brena, S. Ganguli, J. Bloom, D. Yamins, Two
routes to scalable credit assignment without weight symmetry, in: International
Conference on Machine Learning, PMLR, 2020, pp. 5511–5521.

[37] W. Xiao, H. Chen, Q. Liao, T. Poggio, Biologically-plausible learning algorithms
can scale to large datasets, 2018, arXiv preprint arXiv:1811.03567.

[38] B. Crafton, A. Parihar, E. Gebhardt, A. Raychowdhury, Direct feedback alignment
with sparse connections for local learning, Front. Neurosci. 13 (2019) 525.

[39] T. Salimans, D.P. Kingma, Weight normalization: A simple reparameterization
to accelerate training of deep neural networks, 2016, arXiv preprint arXiv:
1602.07868.

[40] B.A. Olshausen, D.J. Field, Emergence of simple-cell receptive field properties by
learning a sparse code for natural images, Nature 381 (6583) (1996) 607–609.

[41] H.B. Barlow, et al., Possible principles underlying the transformation of sensory
messages, Sensory Commun. 1 (01) (1961).

[42] S.R. Kheradpisheh, M. Ganjtabesh, S.J. Thorpe, T. Masquelier, STDP-based
spiking deep convolutional neural networks for object recognition, Neural Netw.
99 (2018) 56–67.

[43] A.H. Marblestone, G. Wayne, K.P. Kording, Toward an integration of deep
learning and neuroscience, Front. Comput. Neurosci. 10 (2016) 94.

[44] S. Yang, B. Linares-Barranco, B. Chen, Heterogeneous ensemble-based
spike-driven few-shot online learning, Front. Neurosci. 16 (2022) 850932.

[45] S. Yang, J. Tan, B. Chen, Robust spike-based continual meta-learning improved
by restricted minimum error entropy criterion, Entropy 24 (4) (2022) 455.

[46] S. Yang, B. Chen, SNIB: improving spike-based machine learning using nonlinear
information bottleneck, IEEE Trans. Syst. Man Cybern.: Syst. (2023).

[47] S. Yang, B. Chen, Effective surrogate gradient learning with high-order informa-
tion bottleneck for spike-based machine intelligence, IEEE Trans. Neural Netw.
Learn. Syst. (2023).

[48] S. Yang, H. Wang, B. Chen, Sibols: robust and energy-efficient learning for spike-
based machine intelligence in information bottleneck framework, IEEE Trans.
Cogn. Dev. Syst. (2023).

[49] A. Renner, F. Sheldon, A. Zlotnik, L. Tao, A. Sornborger, The backpropagation
algorithm implemented on spiking neuromorphic hardware, 2021, arXiv preprint
arXiv:2106.07030.

[50] C. Wolters, B. Taylor, E. Hanson, X. Yang, U. Schlichtmann, Y. Chen, Biologically
plausible learning on neuromorphic hardware architectures, in: 2023 IEEE 66th
International Midwest Symposium on Circuits and Systems, MWSCAS, IEEE,
2023, pp. 733–737.

[51] S.-T. Lee, J.-H. Lee, Neuromorphic computing using random synaptic feedback
weights for error backpropagation in NAND flash memory-based synaptic devices,
IEEE Trans. Electron Devices 70 (3) (2023) 1019–1024.

[52] M. Chistiakova, N.M. Bannon, J.-Y. Chen, M. Bazhenov, M. Volgushev, Homeo-
static role of heterosynaptic plasticity: models and experiments, Front. Comput.
Neurosci. 9 (2015) 89.

[53] G.G. Turrigiano, The dialectic of Hebb and homeostasis, Phil. Trans. R. Soc. B
372 (1715) (2017) 20160258.

[54] G.-q. Bi, M.-m. Poo, Synaptic modifications in cultured hippocampal neurons:
dependence on spike timing, synaptic strength, and postsynaptic cell type, J.
Neurosci. 18 (24) (1998) 10464–10472.

Alireza Rahmansetayesh has received his Master’s de-
gree from Sharif University of Technology in Electrical
Engineering and his Bachelor’s degree from Shiraz Univer-
sity in Electrical Engineering. His research field is at the
intersection of neuroscience and artificial neural networks.

http://refhub.elsevier.com/S0925-2312(24)01358-4/sb1
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb1
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb1
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb1
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb1
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb2
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb2
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb2
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb2
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb2
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb3
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb3
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb3
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb4
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb4
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb4
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb4
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb4
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb5
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb5
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb5
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb6
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb6
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb6
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb6
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb6
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb7
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb7
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb7
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb7
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb7
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb8
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb8
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb8
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb8
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb8
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb9
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb9
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb9
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb9
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb9
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb10
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb10
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb10
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb10
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb10
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb11
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb11
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb11
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb12
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb12
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb12
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb12
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb12
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb13
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb13
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb13
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb14
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb14
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb14
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb15
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb15
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb15
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb15
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb15
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb16
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb16
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb16
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb16
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb16
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb17
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb17
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb17
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb17
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb17
http://arxiv.org/abs/1609.01596
http://arxiv.org/abs/2011.12428
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb20
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb20
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb20
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb20
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb20
http://arxiv.org/abs/1906.04554
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb22
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb22
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb22
http://arxiv.org/abs/1807.04587
http://arxiv.org/abs/1812.06488
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb25
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb25
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb25
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb25
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb25
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb26
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb26
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb26
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb27
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb27
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb27
http://arxiv.org/abs/2310.00965
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb29
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb29
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb29
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb29
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb29
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb30
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb30
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb30
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb30
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb30
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb31
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb31
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb31
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb31
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb31
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb32
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb32
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb32
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb32
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb32
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb33
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb33
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb33
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb33
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb33
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb34
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb34
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb34
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb34
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb34
http://arxiv.org/abs/1904.05391
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb36
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb36
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb36
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb36
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb36
http://arxiv.org/abs/1811.03567
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb38
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb38
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb38
http://arxiv.org/abs/1602.07868
http://arxiv.org/abs/1602.07868
http://arxiv.org/abs/1602.07868
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb40
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb40
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb40
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb41
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb41
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb41
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb42
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb42
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb42
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb42
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb42
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb43
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb43
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb43
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb44
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb44
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb44
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb45
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb45
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb45
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb46
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb46
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb46
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb47
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb47
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb47
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb47
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb47
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb48
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb48
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb48
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb48
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb48
http://arxiv.org/abs/2106.07030
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb50
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb50
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb50
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb50
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb50
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb50
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb50
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb51
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb51
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb51
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb51
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb51
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb52
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb52
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb52
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb52
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb52
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb53
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb53
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb53
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb54
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb54
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb54
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb54
http://refhub.elsevier.com/S0925-2312(24)01358-4/sb54


A. Rahmansetayesh et al. Neurocomputing 611 (2025) 128587 
Ali Ghazizadeh is an associate professor in the Electrical
Engineering Department at Sharif University of Technology.
His laboratory uses a combination of theoretical, com-
putational, and experimental techniques including neural
network modeling to address neural mechanisms of learning
and memory in non-human and human primates.

Prof. Farokh Marvasti received his undergraduate and
graduate degrees all from RPI (Troy, NY) in 1973. From
1972-1975, he worked at Graphic Sciences and Singer-
Kearfott in USA, where he worked on new digital facsimile
and channel codings, respectively. He then joined Sharif
University of Technology, where he helped founding Iran
Telecommunication and Electric Power Research Centers. In
1984, he spent his sabbatical at the University of California,
Davis where he taught several graduate courses in addition
to research. He then joined AT&T Bell Labs for several years
before joining IIT in Chicago. After extensive consulting
13 
on developing new digital video coding, he joined King’s
College, University of London in 1991. After retiring from
King’s College, he joined Sharif University as a full professor
again, where he founded ACRI (Advanced Communications
Research Center). He spent his sabbatical leave at the
Communications and Information Systems Group of Univer-
sity College London (UCL) in 2013, where he published
a seminal paper on Spectral Efficient Frequency Division
Multiplexing (SEFDM).

Prof. Marvasti has published several books on nonuni-
form sampling and many book chapters on sparse signal
processing, about 250 Journal papers and several hundred
conference papers all in signal processing, communications
and information theory. He also holds several US patents
on Analog to digital conversions and image denoising.

He was one of the editors of the IEEE Trans on
Communications from 1990–1995 and an Associate editor
of IEEE Trans on Signal Processing from 1994&-1997. Prof
Marvasti has received a distinguished award from the Ira-
nian Academy of Sciences in 2014 and an award rom the
Iranian National Science Foundation for a 5 year term chair
position in 2015. He was also appointed as a distinguished
researcher by IEEE Iran Chapter in 2018.


	The underlying mechanisms of alignment in error backpropagation through arbitrary weights
	Introduction
	Results
	Explaining the occurrence of alignment
	Notation
	Deriving alignment terms
	Analyzing the linear alignment terms
	Analyzing the nonlinear alignment terms
	Contribution of the autocorrelation and cross-correlation of neural activity to alignment
	Direct feedback alignment

	Investigating BP-TAW and weight alignment in practical ANNs
	Factors affecting the dynamics of alignment terms and alignment
	Alignment and the local minimum reached by BP-TAW can be improved by weight normalization


	Discussion
	Mathematical basis of alignment
	Limitations and future research directions
	Conclusion

	Methods
	BP and BP-TAW learning methods
	Angle and cosine similarity between two matrices
	Network parameters, dimensions, and initialization
	Generating mutually exclusive n-hot coding

	CRediT authorship contribution statement
	Declaration of competing interest
	Data and Code Availability Statement
	Appendix A. Supplementary data
	References


