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Abstract

Learning token embeddings based on token001
co-occurrence statistics has proven effective002
for both pre-training and fine-tuning in natural003
language processing. However, recent stud-004
ies have pointed out the distribution of learned005
embeddings degenerates into anisotropy, and006
even pre-trained language models (PLMs) suf-007
fer from a loss of semantics-related informa-008
tion in embeddings for low-frequency tokens.009
This study first analyzes fine-tuning dynamics010
of a PLM, BART-large, and demonstrates its011
robustness against degeneration. On the ba-012
sis of this finding, we propose DefinitionEMB,013
a method that utilizes definitions to construct014
isotropically distributed and semantics-related015
token embeddings for PLMs while maintain-016
ing original robustness during fine-tuning. Our017
experiments demonstrate the effectiveness of018
leveraging definitions from Wiktionary to con-019
struct such embeddings for RoBERTa-base and020
BART-large. Furthermore, the constructed em-021
beddings for low-frequency tokens improve the022
performance of these models across various023
GLUE and four text summarization datasets.1024

1 Introduction025

Learning word embeddings, also known as word026

representations, is a fundamental challenge in natu-027

ral language processing (NLP), given that embed-028

ding comprehensive word information serves as the029

initial step in many NLP tasks (Turian et al., 2010).030

Since the introduction of the Skip-gram model by031

Mikolov et al. (2013), the predominant approach032

for learning precise syntactic and semantic word033

embeddings in neural models is to train the models034

to predict words within given contexts based on035

word co-occurrence statistics.036

Recent studies highlight representation degen-037

eration issues that arise from learning word em-038

beddings: the distribution of learned embeddings039

1Our code will be available at GitHub.

suffers from frequency bias (Yu et al., 2022) and ex- 040

hibits a narrow cone-shaped anisotropy (Gao et al., 041

2019). Specifically, Tissier et al. (2017) claimed 042

that, when using the co-occurrence principle, words 043

that frequently appear together within contexts tend 044

to have close representations. It aligns well with the 045

anisotropy phenomenon observed in word embed- 046

dings of Word2Vec and GloVe (Mu and Viswanath, 047

2018). That is, embeddings tend to share a common 048

direction and occupy a low-dimensional subspace, 049

instead of being angularly uniformly distributed 050

(i.e., isotropic). Biś et al. (2021) claimed that this 051

phenomenon causes the shape of the word embed- 052

ding matrix to degenerate into a narrow cone in a 053

low-dimensional embedding space, when weight 054

tying is applied during training; thereby, reducing 055

the network’s ability for effective generalization, 056

especially for low-frequency (rare) words. Fur- 057

thermore, Gong et al. (2018) observed that high- 058

frequency (popular) and rare words occupy dif- 059

ferent areas in the embedding space and that em- 060

beddings for rare words contain more frequency- 061

related information than semantics-related informa- 062

tion, which raises concerns when replacing popular 063

words with their rare counterparts (or vice versa). 064

To address the representation degeneration is- 065

sues, previous studies have proposed solutions to 066

post-process embeddings or enhance model opti- 067

mization, for example, by eliminating specific di- 068

rections from the embeddings (Mu and Viswanath, 069

2018), merging popular and rare words during train- 070

ing (Gong et al., 2018), and gating the gradients of 071

embeddings (Yu et al., 2022). While these meth- 072

ods have improved the distribution of embeddings 073

in task-specific models and the distribution of pre- 074

trained word embeddings (e.g., Word2Vec), they 075

cannot ensure learning of semantics-related embed- 076

dings for rare or out-of-vocabulary (OOV) words, 077

due to underfitting caused by limited corresponding 078

training data. Discounting the gradients or elimi- 079

nating directions from embeddings may even lead 080
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to a loss of semantics-related information and ag-081

gravate the underfitting problem. Considering that082

a vast majority of words are rare, as indicated by083

the Zipfian distribution (Zipf, 1949), it is worth ex-084

ploring effective strategies to construct semantics-085

related embeddings for rare or OOV words while086

ensuring the isotropic distribution across the entire087

embedding matrix. Additionally, pre-trained lan-088

guage models (PLMs) with vocabularies consisting089

of subwords as tokens have become dominant in090

many NLP tasks due to their plug-and-play con-091

venience and outstanding efficacy. However, ex-092

periments by Schick and Schütze (2020) and Biś093

et al. (2021) revealed that even BERT (Devlin et al.,094

2019) failed to understand many rare words and095

suffered from frequency bias in token embeddings.096

Given the current situation, a natural question097

arises: how can embeddings be constructed for098

PLMs to better understand rare tokens? In edu-099

cational psychology, achieving a deep understand-100

ing of a new word involves linking it to relevant101

concepts that students already possess, a process102

known as meaningful learning (Ausubel, 1968).103

Specifically, in classroom settings, these concepts104

can be conveyed through easily understood con-105

tent to describe an aspect of the semantics of the106

new word, such as using dictionary definitions to107

elucidate the meaning of foreign language words.108

Throughout this paper, we refer to such explanatory109

content as “definitions.” Inspired by the meaning-110

ful learning, we propose an architecture-agnostic111

method, DefinitionEMB, to construct token embed-112

dings through denoising corresponding definitions.113

Our main contributions are summarized as follows:114

• To the best of our knowledge, DefinitionEMB is115

the first method for constructing isotropically dis-116

tributed and semantics-related token embeddings117

to improve PLMs’ fine-tuned performance.118

• Our experiments demonstrated that constructed119

embeddings for rare tokens, as a plug-and-play120

component, improve the fine-tuned performance121

for RoBERTa-base (Liu et al., 2019b) and BART-122

large (Lewis et al., 2020) across various GLUE and123

four text summarization datasets.124

• We observed that using Mu and Viswanath125

(2018) for BART results in degeneration during126

fine-tuning, while BART with and without Def-127

initionEMB are robust against the degeneration.128

Additionally, BART with DefinitionEMB mixes129

embeddings with different frequencies and related130

semantics more thoroughly than the original BART.131

2 Related Work 132

Previous studies have attempted to improve the dis- 133

tribution of word/token embeddings. Both Gong 134

et al. (2018) and Yu et al. (2022) observed that 135

popular and rare word/token embeddings tend to 136

occupy different subregions within the embedding 137

space, even when they are semantically similar. 138

Gong et al. (2018) further found that embeddings 139

of popular words in Word2Vec usually have seman- 140

tically related neighbors, while rare words do not, 141

with many of the nearest neighbors also being rare 142

words. To merge popular and rare word embed- 143

dings geometrically, Gong et al. (2018) utilized a 144

discriminator of generative adversarial networks to 145

classify embeddings as belonging to either popu- 146

lar or rare words. These word embeddings were 147

concurrently trained with a task-dependent loss 148

to fool the discriminator. To achieve an isotrop- 149

ically distributed embedding matrix, Gao et al. 150

(2019) proposed minimizing the cosine similarity 151

between any two word embeddings during train- 152

ing and Zhang et al. (2020) followed to minimize 153

the squared Euclidean distance between word em- 154

beddings with large context similarity. Mu and 155

Viswanath (2018) eliminated the common mean 156

vector and several dominating directions from em- 157

beddings, and Rajaee and Pilehvar (2021) followed 158

Mu and Viswanath (2018) to eliminate principal 159

components within clustered embeddings. Biś et al. 160

(2021) simply removed the mean vector to improve 161

the performance of GPT-2, BERT, and RoBERTa 162

on the word similarity task. Subsequent empirical 163

findings by Yu et al. (2022) indicated that the gra- 164

dients of rare token embeddings push these token 165

embeddings away from popular token embeddings, 166

causing the word embedding matrix to degenerate 167

into a narrow cone when weight tying is applied. 168

To address this issue, Yu et al. (2022) proposed 169

gating the gradients for rare token embeddings. 170

In contrast to the previous studies, our research 171

considers both semantic and distributional informa- 172

tion for embeddings. It is also the first to apply 173

such considerations to improve the fine-tuned per- 174

formance of PLMs, whose vocabulary consists of 175

tokens created using byte-pair-encoding (Sennrich 176

et al., 2016), WordPiece (Wu et al., 2016), or simi- 177

lar subword tokenization algorithms. 178

The OOV word issue has long been discussed 179

in NLP. Previous studies have explored various 180

solutions, such as leveraging surface-form infor- 181

mation (Luong et al., 2013; Pinter et al., 2017; 182
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Sasaki et al., 2019; Schick and Schütze, 2020) or183

the contexts in which these words occur (Khodak184

et al., 2018; Liu et al., 2019a; Schick and Schütze,185

2019). Lexical definitions have also been con-186

sidered. For instance, Tissier et al. (2017) aug-187

mented co-occurrence information with terms ex-188

tracted from definitions to bring semantically re-189

lated words closer. Bahdanau et al. (2018) trained190

a network to predict word embeddings based on191

definitions. Ruzzetti et al. (2022) extracted crucial192

words from each definition and fed them into a193

neural network to produce embeddings for the cor-194

responding target words. Existing studies that uti-195

lize definitions to mimic embeddings for full words196

with a one-to-one mapping inspire us to explore197

a one-to-many mapping for the use of definitions198

for mimicking token embeddings. Thus, our con-199

structed new embeddings can be easily applied to200

transformer-based (Vaswani et al., 2017) PLMs.201

3 Preliminaries202

Let V = {vn}Nn=1 denote the predefined restricted203

vocabulary of a PLM, where N tokens are ranked204

in descending order according to their frequencies205

in the dataset for pre-training. E ∈ RN×He denotes206

the pre-trained token embedding matrix of the PLM207

for V , where He is the embedding size. Given208

a word w, we assume that w is tokenized into I209

tokens (vw1 , . . . , vwI ), and e(v) ∈ RHe denotes210

the embedding of token v in the PLM.211

The geometry of E is assumed to capture lin-212

guistic regularities: the similarity between token213

embeddings reflects the semantic similarity of the214

corresponding tokens. Therefore, researchers ex-215

pect E to exhibit a uniform distribution, denoted as216

isotropic, to maximize the containment of linguistic217

information for distinguishing tokens. Improving218

isotropy has been proven effective in enhancing219

performance for text classification and word sim-220

ilarity tasks (Mu and Viswanath, 2018; Biś et al.,221

2021). To estimate isotropy, Mu and Viswanath222

(2018) proposed the metric I(E) ∈ [0, 1], where223

a value closer to 1 indicates higher isotropy. Ap-224

pendix A describes the detail. Mu and Viswanath225

also proposed a post-processing technique to im-226

prove isotropy for E by eliminating the common227

mean vector and top-β dominating directions from228

E. We denote this method as DelDirection and229

consider it as a baseline, with β set to 10.2230

2According to Mu and Viswanath (2018), β ≈ He/100.

4 Token Embedding Dynamics: An 231

Experimental Investigation 232

Inspired by Yu et al. (2022)’s observation that the 233

presence of a degenerated narrow cone is influ- 234

enced by token frequency, we investigate whether 235

the token frequency influences the embedding dy- 236

namics of PLMs during fine-tuning. To explore this 237

phenomenon, we first examined the vocabulary dis- 238

tribution in downstream training datasets used for 239

fine-tuning. We classified tokens in V into appear- 240

ing and non appearing groups based on their ap- 241

pearance in the corresponding fine-tuning dataset. 242

We observed that the CNNDM dataset has the most 243

uniform distribution and the greatest variety of ap- 244

pearing tokens among CNNDM, Y-BIGPATENT,3 245

XSum, and Billsum text summarization datasets. 246

The token frequency in the Y-BIGPATENT dataset 247

is significantly higher than in the other datasets, 248

despite having the smallest variety of appearing to- 249

kens. Appendix B shows the detailed distributions. 250

We continue to uncover the embedding dynamics 251

of PLMs, focusing on BART as an empirical study. 252

We concluded that BART does not degenerate 253

into a narrow cone; instead, it exhibits drift pat- 254

terns influenced by token frequency. Addition- 255

ally, merely improving isotropy for BART does 256

not guarantee semantically distributed embed- 257

dings and improve performance for downstream 258

tasks. We describe the details below. We visual- 259

ized the distribution of E and measured the isotropy 260

of E in the BART-large model before and after 261

fine-tuning on the CNNDM and Y-BIGPATENT 262

datasets. For detailed results, 30%, 50%, and 20% 263

of the appearing tokens in V are assigned to the 264

frequent, medium, and rare groups, respectively, 265

based on their frequency in the fine-tuning dataset. 266

We made several observations by visualizing E us- 267

ing singular value decomposition (SVD) projection 268

in Figure 1: (1) Using DelDirection before fine- 269

tuning yields higher I(E) and more thoroughly 270

mixed embeddings with different token frequen- 271

cies for BART, as shown in Figures 1 (a), (f), (c), 272

and (h). (2) However, these benefits do not per- 273

sist during fine-tuning. Instead, using DelDirection 274

yields a fragile distribution, where more updating 275

steps result in greater degeneration (Figures 1 (f) to 276

(g) and (h) to (j)) and no further improved ROUGE 277

scores on the downstream datasets (Figures 1 (g) 278

and (j)). Specifically, the popular tokens drift away 279

from the original overlapping position, as seen in 280

3The “y” category of BIGPATENT.
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(a) BART, % & = 0.751,
before CNNDM

(b) BART, % & = 0.755,
after CNNDM 20,000 steps

(f) +DelDirection, % & = 0.788,
before CNNDM

(g) +DelDirection, % & = 0.806,
after CNNDM 20,000 steps

(c) BART, % & = 0.751,
before Y-BIGPATENT

(e) BART, % & = 0.676,
after Y-BIGPATENT 92,000 steps

(h) +DelDirection, % & = 0.788,
before Y-BIGPATENT

(j) +DelDirection, % & = 0.688,
after Y-BIGPATENT 92,000 steps

(i) +DelDirection, 
     after Y-BIGPATENT 7,000 steps

(d) BART, 
after Y-BIGPATENT 7,000 steps

ROUGE-L
40.31

ROUGE-L
40.32

ROUGE-L
37.80

ROUGE-L
37.79Frequent

Medium
Rare

Non appearing

Figure 1: Projected token embeddings of BART with and without DelDirection on the CNNDM and Y-BIGPATENT
datasets. Appendix C provides additional examples for BART and RoBERTa.

(a) BART (b) + DelDirection

Frequent
Medium
Rare

Figure 2: Case study of the token embeddings before
fine-tuning on the CNNDM dataset. “Ġ” denotes whites-
pace. The dashed lines from “Ġeverlasting” point to its
semantics-related tokens, recognized by both ChatGPT
3.5 (Achiam et al., 2023) and Claude 3 Haiku (An-
thropic, 2024). Appendix D lists their recognitions.

Figures 1 (g) and (i). After more updates, tokens281

degenerate into a narrow cone with frequency bias,282

as seen in Figure 1 (j). (3) As for BART, it ap-283

pears to be highly robust to the degeneration with284

the increasing number of updates, as seen in Fig-285

ures 1 (b), (d), and (e). From Figure 2, we also286

observed that (4) the majority of neighbors of the287

rare token “Ġeverlasting” in both BART with and288

without DelDirection are not semantically related289

to “Ġeverlasting”.290

5 Methodology291

This research assumes that there exists a function292

f , referred to as DefinitionEMB, which consists293

of a definition reader g and a linear mapping o for294

constructing token embeddings for a PLM from295

the corresponding word definition. Building on296

previous empirical studies, we expect new token297

!!(#")!!(#" #$% &#)…
Definition Embeddings

Linear

!(##)
Pre-trained Embeddings

… !(#" #$% )

Pre-trained 
Language Model

Definitions

Pre-trained Language Model

!(#")!(##)
Pre-trained Embeddings
… !(#" #$% ) …

Definition Reader

Figure 3: Overview of constructing definition embed-
dings to replace α% of pre-trained embeddings.

embeddings for the PLM could preserve the robust- 298

ness of pre-trained embeddings against degenera- 299

tion while achieving a semantic and isotropic dis- 300

tribution. Hereafter, we denote the constructed em- 301

beddings as definition embeddings ed(v) ∈ RHe . 302

Figure 3 provides an overview. 303

5.1 Embedding Construction 304

To establish a mapping from the definition of the 305

word w to the target tokens (vw1 , . . . , vwI ), we 306

base our approach on prompt learning (Petroni 307

et al., 2019) and denoising autoencoders (Vincent 308

et al., 2010) to design prompts for f to trigger the 309

corresponding target tokens. This involves cor- 310

rupting the tokens in the prompt and training f 311

to construct the embeddings of these corrupted to- 312

kens. The prompt incorporates the definition, part- 313

of-speech, capitalization, and case sensitivity of 314

the word w, along with the tokenizer’s specific set- 315

tings. Figure 4 shows examples of a prompt and 316

its corrupted version. Let p(w) = (vp1 , . . . , vpJ ) 317

be the tokenized corrupted prompt for the word 318

w. In this scenario, given p(w) with the j-th to- 319

ken vpj ∈ w being corrupted, the definition reader 320
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g utilizes a BERT-style denoising objective (De-321

vlin et al., 2019) to generate the last hidden state322

sj ∈ RHs at the j-th time step, where Hs is the323

hidden size. Then, we linearly map sj to ed(v
pj )324

as ed(v
pj ) = o(sj) = Asj , where A ∈ RHe×Hs325

is a weight matrix. sj is computed as follows.326

To ensure that the definition reader g performs ef-327

fectively for PLMs, we initialize g using the given328

PLM. Because definitions contain popular, easily329

understandable words to explain their correspond-330

ing target words, and g is initialized from the PLM,331

we assume that the pre-trained embeddings of most332

tokens in p(w) are isotropically distributed and333

semantics-related. Consequently, g can capture the334

directional aspects of these embeddings to create335

token embeddings for unknown tokens or tokens336

with anisotropically distributed or semantically un-337

related pre-trained embeddings. Considering the338

most widely known PLM architectures, we propose339

two possible models for g: an encoder-only model340

and an encoder-decoder model. For the encoder-341

only reader, the training process involves randomly342

corrupting tokens within the corruption spans as343

follows: 50% of the tokens are replaced with a344

special mask token <MASK>, 25% are replaced345

with a random token, and the remaining 25% are346

left unchanged.4 During inference, only one to-347

ken within the corruption spans is replaced with348

<MASK> at a time, and this procedure is repeated349

until all tokens in the corruption spans have been350

replaced. With the corrupted prompt as an input, sj351

is computed using the masked language modeling352

objective (Devlin et al., 2019). As for the encoder-353

decoder reader, we follow the approach by Raffel354

et al. (2020) to replace each corruption span with a355

mask token to construct the source sequence. Sub-356

sequently, we construct the target sequence using357

the replaced tokens delimited by the mask tokens358

used for replacement. sj is computed using the359

causal language modeling objective (Hyndman and360

Athanasopoulos, 2018) by giving the source and361

previous tokens of vpj in the target.362

5.2 Objective Function363

Let D = {(wm, p(wm))}Mm=1 denote a corpus with364

M word-definition pairs. Given that f is optimized365

to find the overall optimal embedding space for V ,366

4Our pre-experiments demonstrated that a large mask ratio
would result in slow convergence, while a small ratio would
cause limited change between e(v) and ed(v). To ensure com-
putational efficiency and to prevent the model from relying
too heavily on unmasked tokens, we manually set these ratios.

(a) Merged prompt

(b) Corrupted prompt

The definition of [word] is [definition] . Its part-of-speech ,
bpe-form without space , capitalization , and uppercase are [pos] , 
[wospace-word] , [cap-word] , and [upper-word] , respectively .

The definition of {corruption} is [definition] . Its part-of-speech , 
bpe-form without space , capitalization , and uppercase are [pos] , 
{corruption} , {corruption} , and {corruption} , respectively .

Figure 4: Constructed prompts. Brackets [] are a place-
holder for the given word and its corresponding infor-
mation. Texts with the same color indicate positions of
a prompt and corresponding word information. {cor-
ruption} indicates the span for corrupted tokens. The
bpe-form without space refers to the word’s surface-
form without the symbol “Ġ” when using the BART’s
tokenizer. Appendix E lists detailed examples.

and pre-trained embeddings e(v) for rare tokens in 367

V may also contain corresponding representations, 368

we incorporate definitions involving all tokens in 369

V for training. Thus, the model parameters for 370

f are optimized by minimizing the mean squared 371

error (MSE) between pre-trained embeddings and 372

definition embeddings as follows: 373

L =
∑

(w,p(w))∈D

∑I
i=1(e(v

wi)− ed(v
wi))2

MI
. (1) 374

5.3 Replacing Strategy in Inference 375

Because we use Eq. (1) for model training, we 376

hypothesize that e(v), which contains definition in- 377

formation, would yield a low MSE, indicating that 378

e(v) is nearly equivalent to ed(v). Conversely, a 379

high error in e(v) suggests missing definition infor- 380

mation or excessive noise, and should be replaced 381

by ed(v). Therefore, in inference, we straightfor- 382

wardly replace pre-trained embeddings with defi- 383

nition embeddings as e(v) = ed(v). Next, we dis- 384

cuss which tokens should be replaced. Given a spe- 385

cific downstream task, we remove tokens from V 386

that do not appear in the corresponding fine-tuning 387

dataset. The remaining set of tokens is denoted as 388

V[task].5 Our preliminary experiments, presented 389

in Appendix F, demonstrated that, when replac- 390

ing the last tokens in V[task], BART achieves the 391

highest accuracy compared to replacing random 392

or top tokens in V[task]. Therefore, as an initial 393

study on constructing token embeddings for PLMs, 394

this study focuses on definition embeddings for 395

only low-frequency tokens, in line with previous 396

5Tokens in V[task] are also ranked in descending order
according to their frequency in the dataset for pre-training.
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Model I(E) ↑
Frequent Medium Rare All Tokens

RoBERTa 0.694 0.501 0.315 0.504
+ DelDirection 0.639 0.641 0.599 0.624
+ DefinitionEMB 0.649 0.470 0.382 0.519

BART 0.851 0.668 0.515 0.751
+ DelDirection 0.790 0.775 0.731 0.788
+ DefinitionEMB 0.834 0.800 0.603 0.876

Table 1: Isotropy of E. The frequent (30%), medium
(50%), and rare (20%) groups are determined based on
the token index in V . Appendix I shows projected E.

studies.6 Considering diverse data distributions and397

task requirements for downstream tasks, we replace398

min(α% ∗N, |V[task]|) of the last tokens in V[task],399

where α serves as a hyperparameter.400

6 Experiments401

In addition to evaluating the isotropy of E, we eval-402

uate the performance of PLMs before and after403

replacing embeddings by DefinitionEMB on vari-404

ous benchmark tasks, following Mu and Viswanath405

(2018) and Lewis et al. (2020), including a word406

similarity task, two natural language understanding407

tasks on General Language Understanding Evalua-408

tion (GLUE), and a text summarization task.409

6.1 Experimental Settings410

We adopted the RoBERTa-base and BART-large411

models as our baseline PLMs with encoder-only412

and encoder-decoder architectures, respectively.413

Both models used the same vocabulary V with the414

size N = 50, 265. BART utilizes the weight ty-415

ing (Press and Wolf, 2017) technique when pre-416

dicting texts, which involves using E as the weight417

matrix for computing logits.418

We utilized the English-language Wiktionary419

(1.5GB) as definitions for training DefinitionEMB.420

The 1,464,327 extracted definitions were randomly421

divided into 1,454,327 for training and 10,000 for422

validation. Additionally, we manually added defi-423

nitions for 1,252 numbers in V by translating num-424

bers into their corresponding words, such as “2” to425

“two”. Furthermore, we added definitions for 136426

named entity tokens in V , such as “ĠNVIDIA”,427

based on their Wikipedia pages or Google search428

results. Overall, 1,455,715 examples were used for429

training DefinitionEMB.7 During inference, these430

6Following Bahdanau et al. (2018), handling unknown
tokens v /∈ V is deferred for future investigation.

7When using DefinitionEMB, 2305 tokens from V were
always excluded from replacement because they do not have a

Model Spearman Score ↑
RG65 RW SimLex SimVerb Ave

RoBERTa 16.05 18.89 26.67 11.81 18.36
+ DefinitionEMB 18.88 18.96 27.15 11.91 19.23

BART 15.32 19.66 28.56 13.09 19.16
+ DefinitionEMB 15.67 19.76 28.63 12.72 19.20

Table 2: Experimental results on the word similarity task
with dot product. DefinitionEMB completely replaces
E. Appendix J shows the results with cosine similarity.

examples were reused for loading definition em- 431

beddings.8 Appendix G lists the hyperparameter 432

settings for training DefinitionEMB and fine-tuning 433

all models for downstream tasks. Experimental re- 434

sults were averaged over three trials. We tuned 435

α (the ratio for replacing pre-trained token em- 436

beddings) based on the model performance on the 437

validation set. The experimental results for tuning 438

α are described in Appendix H. 439

6.2 Quantitative Evaluation 440

) Initial Isotropy. We measured the initial 441

isotropy of token embeddings E in PLMs and the 442

isotropy after completely replacing E. Table 1 443

shows that both RoBERTa and BART exhibit high 444

isotropy in the frequent group but low isotropy 445

in the rare group. DelDirection helps achieve a 446

uniformly distributed isotropy across frequency 447

groups and results in the highest isotropy for the 448

rare group, although it decreases isotropy in the 449

frequent group. DefinitionEMB also showcases a 450

more uniform isotropy distribution than the original 451

PLMs, displaying lower isotropy for the frequent 452

group but higher isotropy for the rare group. Ad- 453

ditionally, DefinitionEMB for BART achieves the 454

highest isotropy for the medium group as well as 455

for the entire E. 456

) Word Similarity. Compared to BART and 457

RoBERTa, which utilize over 160 GB of contexts 458

to learn semantic embeddings, DefinitionEMB uti- 459

lizes definition information at only 1% of their con- 460

texts’ size. To investigate whether DefinitionEMB 461

can maintain original semantic relationships given 462

such limited information, we adopted the word 463

similarity task, following a previous study (Mu and 464

Viswanath, 2018), to assess whether the similar- 465

ity between the embeddings of two given words 466

aligns with the ground truth, in terms of Spear- 467

man’s rank correlation. We used dot product 468

corresponding definition, such as “ )=(”.
8Once a token embedding has been replaced, it will not be

replaced during the rest of the procedure.
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Model SST MRPC STS QQP MNLI QNLI RTE Averagem mm

RoBERTa 95.7 87.5 89.6 / 89.0 89.6 87.3 86.7 93.1 73.9 88.0
+ DelDefinition 95.9 86.9 89.0 / 88.3 89.3 87.3 86.8 93.0 72.3 87.6
+ DefinitionEMB 95.9 87.7 89.6 / 89.0 89.4 87.6 87.0 93.0 75.3 88.3

BART 96.5 87.8 91.2 / 90.6 90.1 90.0 89.2 94.7 82.4 90.3
+ DelDefinition 96.4 87.3 90.9 / 90.4 89.9 89.9 89.2 94.7 78.7 89.7
+ DefinitionEMB 96.4 88.3 91.3 / 90.7 90.1 90.0 89.2 94.9 83.3 90.5

Table 3: Experimental results on GLUE. For the STS dataset, we report the Pearson/Spearman’s rank correlation,
while for other datasets, we report accuracy scores. For the MNLI dataset, we report results for Matched (m) and
Mismatched (mm) sets. Appendix K describes corresponding I(E).

Model CNNDM Y-BIGPATENT XSum Billsum Average

BART 43.57 / 20.93 / 40.31 43.96 / 18.92 / 37.80 43.76 / 20.40 / 34.65 51.02 / 32.44 / 39.11 45.58 / 23.17 / 37.97
+DelDirection 43.59 / 20.93 / 40.32 43.91 / 18.85 / 37.79 43.90 / 20.58 / 34.86 50.89 / 32.22 / 38.97 45.57 / 23.15 / 37.99
+DefinitionEMB 43.78† / 20.94 / 40.52† 44.16‡ / 19.06‡ / 38.01‡ 43.96† / 20.61† / 34.87† 50.96 / 32.64‡ / 39.28 45.72 / 23.31 / 38.17

Table 4: Experimental results (ROUGE1-F1 / ROUGE2-F1 / ROUGEL-F1) on the text summarization task. † and ‡
indicate that the score is significantly superior to BART with a p-value < 0.01 and < 0.05, respectively.

to measure the similarity between word embed-469

dings across four datasets: RG65 (Rubenstein470

and Goodenough, 1965), rare-words (RW) (Luong471

et al., 2013), SimLex-999 (Hill et al., 2015), and472

SimVerb-3500 (Gerz et al., 2016). We estimated473

the word embeddings by summing the embeddings474

of the corresponding tokens. As Table 2 shows, us-475

ing DefinitionEMB yields higher Spearman scores476

than the original PLMs on the RG65, SimLex-999,477

and RW datasets. Notably, the results on the RW478

dataset, which consists of only rare words, under-479

score the effectiveness of DefinitionEMB in captur-480

ing semantic information for these words.481

)GLUE. To evaluate the performance of PLMs482

with replaced embeddings in natural language un-483

derstanding, we followed a previous study (Lewis484

et al., 2020) and conducted experiments on the485

GLUE benchmark (Wang et al., 2018) across seven486

datasets: SST, MRPC, STS, QQP, MNLI, QNLI,487

and RTE. We also report the test set results obtained488

from the public leaderboard.9 Table 3 demonstrates489

that using DefinitionEMB improved the perfor-490

mance of both RoBERTa and BART on average,491

particularly for the MRPC and RTE datasets. This492

may be because the frequency of tokens in the two493

classification datasets is low, causing rare tokens494

to be insufficiently fine-tuned, thus enhancing the495

necessity for their embeddings to be replaced.496

) Text Summarization. For the downstream497

summarization task, we used public abstractive498

9https://gluebenchmark.com/

summarization datasets, including CNN/DailyMail 499

(CNNDM) (Hermann et al., 2015), Extreme Sum- 500

marization (XSum) (Narayan et al., 2018), Bill- 501

Sum (Kornilova and Eidelman, 2019), and Y- 502

BIGPATENT (Sharma et al., 2019). We evalu- 503

ate the model performance on these datasets us- 504

ing the ROUGE scores (Lin, 2004) and compare 505

BART + DefinitionEMB with the original BART 506

using paired bootstrap resampling (Koehn, 2004) 507

for the significance test. Table 4 shows that using 508

DelDirection improved the ROUGEL-F1 score by 509

0.21 points for BART on the XSum dataset. How- 510

ever, the difference between BART and DelDirec- 511

tion is very limited on other datasets; DelDirection 512

achieves even a lower ROUGEL-F1 score, with a 513

decrease of 0.14 points, than BART on the Bill- 514

sum dataset. In contrast, by improving semantics- 515

related information and frequency-aware I(E) for 516

rare tokens, DefinitionEMB achieves the highest 517

ROUGEL-F1 scores, with improvements of 0.21, 518

0.21, 0.22, and 0.17 points on the CNNDM, Y- 519

BIGPATENT, XSum, and Billsum datasets, respec- 520

tively, for BART. 521

7 Analysis of DefinitionEMB 522

7.1 Ablation Study for Replacing Tokens 523

We conducted an ablation study to analyze the ef- 524

fectiveness of replacing only appearing tokens in- 525

stead of all tokens. The index range of replaced 526

tokens is denoted as [X,N ], and the number of 527

tokens appearing in [X,N ] satisfies min(α% ∗ 528

7
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(a) +DefinitionEMB, % & = 0.808,
before CNNDM

(b) + DefinitionEMB, % & = 0.792,
after CNNDM 20,000 steps

(c) + DefinitionEMB, % & = 0.764,
before Y-BIGPATENT

(e) + DefinitionEMB, % & = 0.676,
after Y-BIGPATENT 92,000 steps

(d) + DefinitionEMB, 
after Y-BIGPATENT 7,000 steps

ROUGE-L
40.52

ROUGE-L
38.01

Figure 5: Projected token embeddings in BART+DefinitionEMB before and after fine-tuning. The embeddings in
(a) and (c) exhibit different shapes due to the different α.

Replaced Y-BIGPATENT Billsum
tokens (X = 23, 000) (X = 41, 000)

Appearing 44.16 / 19.06 / 38.01 50.96 / 32.64 / 39.28
Both 43.93 / 18.79 / 37.76 51.23 / 32.44 / 39.20

Table 5: Replacing appearing tokens only vs. replacing
both appearing and non appearing tokens for BART on
the Y-BIGPATENT and Billsum test sets. Appendix L
describes the results for RoBERTa and BART on the
MRPC test set.

Reference: Marvel Studios … Age of Ultron … Daredevil 
constume. X-Men Apocalypse Angel played by Ben Hardy.

BART: … Age of Ultron sequal. The actor has been playing 
the android for many years in the comics. …

+DelDirection: … Age of Ultron is finally revealed. …

+DefinitionEMB: … Age of Ultron sequal. Marvel Studios 
also announed a  new character for X-Men: Apocalypse 
Ben Hardy will play the winged mutant Angel in X-Men: 
Apocalypse, Director Bryan Singer said.

(a) Token Embeddings before fine-tuning. (b) Generated summarization.

Figure 6: Case study on the CNNDM dataset.
(a) visualizes the projected token embeddings in
BART+DefinitionEMB. Underline in (b) indicates the
rare tokens with index larger than 40,000 in V . See
Appendix M for a full version.

N, |V[task]|), as required in Section 5.3.529

Results for BART+DefinitionEMB are reported530

in Table 5. When replacing only appearing tokens,531

the model achieved higher ROUGE scores than532

when replacing all tokens. Specifically, ROUGEL-533

F1 improved by 0.25 and 0.08 for Y-BIGPATENT534

and Billsum, respectively. This difference may535

be caused by the varying token frequencies in the536

training sets.537

7.2 Embedding Dynamics538

Figure 5 depicts the projected token embed-539

dings of BART+DefinitionEMB on the CNNDM540

and Y-BIGPATENT datasets. On the CNNDM541

dataset, the BART+DefinitionEMB tokens ex-542

hibit minimal drift from before to after fine-543

tuning. Conversely, on the Y-BIGPATENT dataset,544

BART+DefinitionEMB tokens within the same 545

group move together after fine-tuning. These find- 546

ings align with those of BART in Figure 1, indi- 547

cating that using DefinitionEMB helps maintain 548

BART’s robustness to degeneration into a narrow 549

cone. Additionally, using DefinitionEMB before 550

fine-tuning increases I(E) for BART across the 551

CNNDM and Y-BIGPATENT datasets, supporting 552

our observation that, compared with BART, em- 553

beddings in BART+DefinitionEMB with different 554

frequencies are more thoroughly mixing with each 555

other. Figure 6 (a) provides a closer view of Fig- 556

ure 5 (a), revealing that the token “Ġeverlasting” is 557

surrounded by more semantically related tokens, in- 558

cluding “Ġsun”, “Ġstar”, and “Ġvast”, than BART 559

with and without DelDirection. 560

8 Conclusion 561

In this study, we found that during fine-tuning on 562

text summarization tasks, the embeddings of the 563

BART-large model do not degenerate into a nar- 564

row cone in a low-dimensional space. However, 565

eliminating specific directions from BART’s em- 566

beddings using Mu and Viswanath (2018) leads 567

to degeneration, where embeddings with differ- 568

ent token frequencies are pushed away from each 569

other. Experimental results demonstrated that 570

using DefinitionEMB for RoBERTa and BART 571

improves the distribution of embeddings and en- 572

ables low-frequency token embeddings to retain 573

semantics-related information. DefinitionEMB 574

also maintained BART’s robustness to degenera- 575

tion. While PLMs suffer from stale information, 576

DefinitionEMB provided access to external data 577

to construct embeddings for OOV tokens. Further- 578

more, our observed embedding dynamics paved the 579

way for future work to explore why PLMs, such as 580

BART, are robust to degeneration. 581
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9 Limitations582

The scope of this paper is limited to the investiga-583

tion of two early transformer-based pre-trained lan-584

guage models, RoBERTa and BART, with encoder-585

only and encoder-decoder architectures, respec-586

tively. The effectiveness of using definitions for587

decoder-only transformer-based or transformer-588

unrelated pre-trained language models was not dis-589

cussed. Additionally, our experiments focused ex-590

clusively on embeddings for tokens within the pre-591

defined vocabulary, and the effectiveness of utiliz-592

ing DefinitionEMB for unknown tokens remains593

unexplored. Furthermore, while we directly em-594

ployed a 2:1:1 strategy for corrupting tokens in595

the encoder-only reader, the optimal value for this596

strategy is worth exploring. Lastly, tuning α will597

be inefficient if the fine-tuning process for a given598

dataset is slow, and the improvements would be lim-599

ited for tasks mainly comprising popular tokens.600
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A Isotropy Metric821

E denotes the pre-trained token embedding matrix822

of the PLM. Following previous studies (Mu and823

Viswanath, 2018; Biś et al., 2021; Yu et al., 2022),824

we compute the isotropy of E using Equation (1)825

from Mu and Viswanath (2018), which is given by:826

I(E) =
minb∈B Z(b)

maxb∈B Z(b)
, (1)827

where Z(b) is approximately constant, B is the set828

of eigenvectors of ETE with T represents transpo-829

sition operation.830

B Datasets831

Table 6 provides an overview of the data statis-832

tics for each task. For the GLUE task, we uti-833

lize Stanford Sentiment Treebank (SST), Microsoft834

Research Paraphrase Corpus (MRPC), Semantic835

Textual Similarity Benchmark (STS), Quora Ques-836

tion Pairs (QQP), MultiNLI (MNLI), Question837

NLI (QNLI), and Recognizing Textual Entailment838

(RTE) datasets. For the text summarization task,839

CNNDM comprises articles from the CNN and840

the Daily Mail newspapers, while Xsum con-841

sists of BBC articles paired with single-sentence842

summaries. BillSum contains summaries of US843

Congressional and California state bills, and Y-844

BIGPATENT contains U.S. patent documents cov-845

ering new or cross-sectional technology.846

Figures 7 and 8 show the distribution of tokens847

appearing in the GLUE and text summarization848

datasets. As these two figures show, the token849

frequency in text summarization datasets is much850

higher than that in the GLUE datasets. This find-851

ings suggest a potential difference when fine-tuning852

embeddings with respect to the task requirements.853

C Additional Embedding Dynamics854

Figures 9 (e) and (g) show that before fine-tuning,855

the embeddings of DelDirection form a narrow856

ellipse. After fine-tuning, the minor axis of the857

ellipse lengthens, and the frequent, medium, and858

rare groups gradually disperse, eventually form-859

ing a square, as shown in Figures 9 (f) and (h).860

From Figures 9 (f) and (h), we also observe that the861

more updating steps, the longer the original minor862

axis of the ellipse, and the higher I(E) achieved863

by DelDirection. However, if DelDirection is864

fine-tuned further, the shape may resemble that865

in Figure 1 (h), resulting in a much smaller I(E).866

Comparing Figures 9 (a) to (d) with Figures 9 (i) 867

to (ℓ), we observe that BART + DefinitionEMB 868

performs similarly to BART. Specifically, on the 869

XSum dataset, there is minimal drift in embeddings 870

from before to after fine-tuning. Conversely, for the 871

Billsum dataset, after fine-tuning, the embeddings 872

of two ellipses move closer together. 873

We do not observe drift for BART-related mod- 874

els on the QQP and RTE datasets, as shown in 875

Figure 10, which is different from text summariza- 876

tion datasets. This may be because the BART for 877

classification tasks does not use the weight tying 878

technique, and the token frequency in QQP and 879

RTE are much lower than in text summarization 880

datasets. Using DelDefinition for RoBERTa shows 881

the spread of popular tokens from the original cen- 882

ter as shown in Figures 11 (e) and (f). 883

Figures 12, 13, and 14 show case studies of spe- 884

cific tokens before and after replacing their token 885

embeddings. In BART, the central tokens are sur- 886

rounded by tokens of the same frequency, rather 887

than those with related semantics. In the case of 888

BART+DelDirection, we observe tokens with dif- 889

ferent token frequencies surrounding the central 890

word. However, using DelDirection also does not 891

guarantee the semantically related neighbors. After 892

replacing embeddings with DefinitionEMB, seman- 893

tically related tokens appear in the surrounding of 894

the central tokens. 895

Figure 15 depicts the projection of contextual 896

embeddings10. Although BART + DelDirection 897

(Figure 1 (g)) exhibits a totally different token em- 898

bedding distribution from BART (Figure 1 (b)), it 899

yield a similar contextual embeddings as BART. 900

Specifically, Figures 15 (a) and (b) show that 901

high-frequency tokens are closely grouped together 902

based on their frequency, while low-frequency to- 903

kens are spread out in specific directions. How- 904

ever, when using DefinitionEMB, we observe a 905

more concentrated distribution than BART. The 906

projection resembles concentric ellipses, where 907

tokens with similar frequencies are placed in the 908

same ellipse. This finding may be related to Def- 909

initionEMB yielding higher ROUGE scores than 910

BART and BART + DelDirection. 911

10The specific decoder layer hidden states of the token in a
given context (Cai et al., 2021).
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Figure 7: Distribution of the BART vocabulary in the training sets of text summarization datasets, considering both
source and target tokens. The first 50,000 tokens in V are grouped into bins of 5,000 according to their index in V
(e.g., [0:4,999]).
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Figure 8: Distribution of the BART vocabulary in the training sets of GLUE datasets.

Task Dataset # of train # of validation # of test

Word similarity

RG65 - - 65
SimLex-999 - - 999
RW - - 2,034
SimVerb-3500 - - 3,500

GLUE

RTE 2, 490 277 3, 000
MRPC 3, 668 408 1, 725
STS 5, 749 1, 500 1, 379
SST 67, 349 872 1, 821
QNLI 104, 743 5, 463 5, 463
QQP 363, 846 40, 430 390, 965
MNLI 392, 702 9, 815 (m) + 9, 832 (mm) 9, 796 (m) + 9, 847 (mm)

Text summarization

BillSum 17, 054 1, 895 3, 269
Y-BIGPATENT 124, 397 6, 911 6, 911
XSum 204, 045 11, 332 11, 334
CNNDM 287, 227 13, 368 11,490

Table 6: Detailed statistic of train, validation and test Datasets. For the MNLI dataset, we report Matched (m) and
Mismatched (mm) sets.
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(a) BART, % & = 0.751,
before XSum

(b) BART, % & = 0.759,
after XSum 15,000 steps

(c) BART, % & = 0.751,
before Billsum

(d) BART, % & = 0.757,
after Billsum 21,200 steps

(e) +DelDirection, % & = 0.788,
before XSum

(f) +DelDirection, % & = 0.778,
after XSum 15,000 steps

(g) +DelDirection, % & = 0.788,
before Billsum

(h) +DelDirection, % & = 0.794,
after Billsum 21,200 steps

(i) +DelDirection, % & = 0.762,
before XSum

(j) +DelDirection, % & = 0.760,
after XSum 15,000 steps

(k) +DelDirection, % & = 0.765,
before Billsum

(ℓ) +DelDirection, % & = 0.778,
after Billsum 21,200 steps

ROUGE-L
34.65

ROUGE-L
39.11

ROUGE-L
34.86

ROUGE-L
38.97

ROUGE-L
34.87

ROUGE-L
39.28

Figure 9: Projected token embeddings of BART-related models before and after fine-tuning on the XSum and
Billsum datasets. 30%, 50%, and 20% of the appearing tokens in V are assigned to the frequent, medium, and rare
groups, respectively, based on their frequency in the fine-tuning set.

(a) BART, % & = 0.751,
before QQP

(b) BART, % & = 0.752,
after QQP 113,272 steps

(e) +DelDirection, % & = 0.788,
before QQP

(f) +DelDirection, % & = 0.800,
after QQP 113,272 steps

(i) +DelDirection, % & = 0.769,
before QQP

(j) +DelDirection, % & = 0.777,
after QQP 113,272 steps

(c) BART, % & = 0.751,
before RTE

(d) BART, % & = 0.751,
after RTE 2,036 steps

(g) +DelDirection, % & = 0.788,
before RTE

(h) +DelDirection, % & = 0.788,
after RTE 2,036 steps

(k) +DelDirection, % & = 0.753,
before RTE

(ℓ) +DelDirection, % & = 0.753,
after RTE 2,036 steps

Accuracy
90.1

Accuracy
82.4

Accuracy
89.9

Accuracy
78.7

Accuracy
90.1

Accuracy
83.3

Figure 10: Projected token embeddings of BART-related models before and after fine-tuning on the QQP and RTE
datasets.
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(a) RoBERTa, % & = 0.504,
before QQP

(b) RoBERTa, % & = 0.542,
after QQP 113,272 steps

(e) +DelDirection, % & = 0.624,
before QQP

(f) +DelDirection, % & = 0.642,
after QQP 113,272 steps

(i) +DelDirection, % & = 0.530,
before QQP

(j) +DelDirection, % & = 0.550,
after QQP 113,272 steps

(c) RoBERTa, % & = 0.504,
before RTE

(d) RoBERTa, % & = 0.505,
after RTE 2,036 steps

(g) +DelDirection, % & = 0.624,
before RTE

(h) +DelDirection, % & = 0.625,
after RTE 2,036 steps

(k) +DelDirection, % & = 0.529,
before RTE

(ℓ) +DelDirection, % & = 0.533,
after RTE 2,036 steps

Accuracy
89.6

Accuracy
73.9

Accuracy
89.3

Accuracy
72.3

Accuracy
89.4

Accuracy
75.3

Figure 11: Projected token embeddings of RoBERTa-related models before and after fine-tuning on the QQP and
RTE datasets.

(a) BART (c) + DefinitionEMB(b) + DelDirection

Figure 12: Case study of the token embeddings of the token “ĠWikimedia” and its surrounding tokens. Non
appearing, rare, medium, and frequent groups in the CNNDM dataset are represented by black, red, green, and blue
points respectively.
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(a) BART (c) + DefinitionEMB(b) + DelDirection

Figure 13: Case study of the token embeddings of the token “Ġclipping” and its surrounding tokens.

(a) BART (c) + DefinitionEMB(b) + DelDirection

Figure 14: Case study of the token embeddings of the token “Ġ409” and its surrounding tokens.

(a) BART (c) + DefinitionEMB(b) + DelDirection

ROUGE-L
40.31

ROUGE-L
40.32

ROUGE-L
40.52

Figure 15: Projected contextual embedding in the 12th (final) decoder layer of BART-related models after fine-tuning
on the CNNDM dataset. Colors indicate the token frequencies in corresponding test set.
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D Semantically Related Tokens912

Recognized by Large Language Models913

Table 7 shows the query we used to ask ChatGPT914

3.5 and Claude 3 Haiku about the semantic re-915

lationship between “Ġeverlasting” and other to-916

kens, along with their corresponding responses for917

semantics-related tokens only.918

E Corrupted Prompts919

Figure 16 shows examples of constructing merged920

and corrupted prompts for the word “discomfort”.921
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Query Please help me to check the semantic relationship between the token “everlasting” and other tokens,
including reassure, legalize, validate, underworld, typo, misdemeanor, jurisd, scripting, APIs, io, bye,
complaining, LAB, arcade, incentive, hematically, mind, stagn, sun, vast, star, tw, general, click, rusty.
Please return scores in the range [0,1] to indicate their semantic relationship, and tell me the reason.

ChatGPT 3.5

validate: 0.3 - "Validate" can mean to confirm or verify the accuracy or truth of something, which
could have a moderate semantic relationship with "everlasting" if used in a context related to eternal
validity or truth.
mind: 0.2 - "Mind" refers to the faculty of consciousness and thought, which could have a moderate
semantic relationship with "everlasting" if used in a context related to eternal consciousness or
existence.
sun: 0.3 - "Sun" refers to the star around which the Earth orbits and has a moderate semantic relationship
with "everlasting" due to its association with eternal cycles and longevity.
vast: 0.3 - "Vast" refers to something extremely large or extensive, which could have a moderate
semantic relationship with "everlasting" if used in a context related to eternal expansiveness.
star: 0.3 - "Star" refers to a celestial body that emits light and has a moderate semantic relationship
with "everlasting" due to its association with eternal cycles and longevity.

Claude 3 Haiku

"everlasting" and "validate": Score: 0.4 Reason: "Everlasting" and "validate" share a sense of
permanence and confirmation, as "validate" means to confirm or corroborate something as true or
correct, which is somewhat related to the idea of something being eternal or lasting forever.
"everlasting" and "mind": Score: 0.4 Reason: "Everlasting" suggests something that lasts forever,
while the "mind" is a key part of human consciousness and experience, which are somewhat related in
the sense that the human mind may be seen as an eternal or enduring aspect of the self.
"everlasting" and "sun": Score: 0.4 Reason: "Everlasting" suggests something that lasts forever, and
the "sun" is a celestial body that has existed for billions of years and is expected to continue shining
for a very long time, so there is a connection between the idea of something being "everlasting" and
the sun’s enduring presence.
"everlasting" and "vast": Score: 0.5 Reason: "Everlasting" suggests something that is immense or
boundless in its duration, while "vast" describes something that is immense in size or scope, so there is
a semantic overlap between the two terms in terms of conveying a sense of immensity or grandeur.
"everlasting" and "star": Score: 0.4 Reason: Similar to the connection with the "sun", the "star" is
another celestial body that exists for long durations, so the idea of something being "everlasting" is
somewhat related to the enduring nature of stars.

Table 7: The query to ChatGPT 3.5 and Claude 3 Haiku, along with part of their responses.

(a) Merged prompt
The _ definition _ of _ discomfort _ is _ To _ cause _ annoyance _ or _ distress _ to _ . _ Its _ part-of-speech _ , _ bpe-form
_ without _ space _ , _ capitalization _ , _ and _ uppercase _ are _ verb _ , discomfort _ , _ Discomfort _ , _ and _
DISCOMFORT _ , _ respectively _ .

(b) Source for the encoder-decoder reader
The _ definition _ of <MASK1> _ is _ To _ cause _ annoyance _ or _ distress _ to _ . _ Its _ part-of-speech _ , _ bpe-form
_ without _ space _ , _ capitalization _ , _ and _ uppercase _ are _ verb _ , <MASK2> _ , <MASK3> _ , _ and <MASK4>
_ , _ respectively _ .

(c) Target for the encoder-decoder reader
<MASK1> _ discomfort <MASK2> discomfort <MASK3> _ Discomfort <MASK4> _ DISCOMFORT

(d) Source for the encoder-only reader during training
The _ definition _ of <MASK> _ is _ To _ cause _ annoyance _ or _ distress _ to _ . _ Its _ part-of-speech _ , _
bpe-form _ without _ space _ , _ capitalization _ , _ and _ uppercase _ are _ verb _ , <MASK>comfort _ , ĠDis <MASK>
_ , _ and <MASK> COM BS ĠNations_ , _ respectively _ .

(e) Source for the encoder-only reader during inference
The _ definition _ of <MASK> _ is _ To _ cause _ annoyance _ or _ distress _ to _ . _ Its _ part-of-speech _ , _ bpe-form _ without _
space _ , _ capitalization _ , _ and _ uppercase _ are _ verb _ , discomfort _ , _ Discomfort _ , _ and _ DISCOMFORT _ ,
_ respectively _ .

Figure 16: Example of constructing prompts for the word “discomfort”. “_” is whitespace. <MASKi> denotes the
ith mask token. Italic indicates randomly replaced tokens.
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Strategy RoBERTa BART

None 87.5 87.8

Random 87.4 87.3
Top 86.0 87.6
Last 87.7 88.3

Table 8: Experimental results of replacing tokens in
VMRPC with DefinitionEMB (α = 5) for RoBERTa-
base and BART-large on the MRPC test set using three
different strategies.

F Pre-experiment for Replacing Strategy922

Considering the appearance bias as indicated in Fig-923

ures 1 (e) and (j), we conducted pre-experiments to924

investigate which type of tokens in V[task] should925

be replaced. DefinitionEMB replaced the embed-926

dings of min(α%∗N, |V[task]|) of tokens in V[task]927

using one of the following strategies:928

Random: Randomly replace tokens.929

Top: Replace tokens with smallest indexes, where930

index ≥ 5000.931

Last: Replace tokens with largest indexes.932

As shown in Table 8, when replacing the last933

tokens in V[task] results in the highest accuracy for934

both RoBERTa and BART on the MRPC test set,935

among all strategies considered.936

G Hyperparameters937

Table 9 lists the artifacts utilized in the study. We938

used the Fairseq (Ott et al., 2019) and Hugging-939

Face (Wolf et al., 2020) to reproduce all models940

and run the downstream tasks.941

We adhered to the original fine-tuning settings942

of RoBERTa and BART on the GLUE task and943

CNNDM dataset. Details of the hyperparameter944

settings for training DefinitionEMB and fine-tuning945

models are outlined in Tables 10, 11 and 12. Dur-946

ing the training of DefinitionEMB, we utilized the947

Adam optimizer with a batch size of 4096 tokens948

and a 0.0001 learning rate with an “inverse square949

root” schedule. For fine-tuning models on GLUE950

and text summarization tasks, we employed the951

Adam optimizer and utilized a “polynomial decay”952

learning rate schedule. To reduce computation, we953

freeze the embedding layer of DefinitionEMB dur-954

ing training for BART.955

H Tuning α 956

For each downstream task, we tuned α with 957

a single trial on the corresponding validation 958

set. Tables 13 to 23 display the performance of 959

Basline+DefinitonEMB with various α. Tables 24 960

and 25 provide the tuned α for each downstream 961

dataset. Overall, datasets in the GLUE task exhibit 962

smaller α than those in the text summarization task. 963

This may be because the text summarization task 964

involves a larger number of input tokens than the 965

GLUE task. Additionally, the text summarization 966

task involves predicting tokens, whereas BART 967

employs a weight tying technique to connect token 968

embeddings for prediction, enabling token embed- 969

dings to be updated more during fine-tuning than 970

in the GLUE task. Among all datasets, the SST 971

dataset has the smallest tuned α, set at 1. This 972

could be attributed to the dataset having the fewest 973

unique tokens. The STS, RTE, and MPRC datasets 974

have a similar number of unique tokens, slightly 975

higher than that of the SST dataset, resulting in 976

α values of 3 and 5. In the GLUE task, the QQP, 977

QNLI, and MNLI datasets have the highest number 978

of unique tokens, leading to α values for BART of 979

3, 5, and 10, respectively. However, tuned α values 980

of the three datasets for RoBERTa are all set to 3: 981

this may be because MSE is larger in RoBERTa 982

than in BART as discussed in Appendix N. Among 983

the text summarization datasets, Billsum has the 984

lowest token frequencies, resulting in the smallest 985

α value of 7. Despite having the highest token fre- 986

quencies, the Y-BIGPATENT dataset has the lowest 987

number of unique tokens, resulting in an α value of 988

only 30. The CNNDM dataset yields the highest α 989

value, set at 100, possibly due to its most uniformly 990

distributed and largest number of unique tokens, 991

and larger training corpus. Although the XSum 992

dataset also contains a large number of unique to- 993

kens, it has a smaller training corpus than CNNDN, 994

resulting in a smaller α value of 10. These findings 995

suggest a potential relationship between the distri- 996

bution of training data and the value of α. Specif- 997

ically, datasets with a larger number of unique to- 998

kens, along with more training examples, tend to 999

result in higher α values. 1000
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Used artifacts Note

RoBERTa https://huggingface.co/roberta-base
BART https://huggingface.co/facebook/bart-large
BART for GLUE https://github.com/facebookresearch/fairseq/blob/main/examples/bart/README.glue.md
BART for CNNDM https://github.com/facebookresearch/fairseq/blob/main/examples/bart/README.summarization.md
Wiktionary https://en.wiktionary.org/wiki/Wiktionary:Main_Page
Wiktionary(extracted) https://github.com/tatuylonen/wiktextract/tree/master
Isotropy metric https://github.com/danielbis/tooMuchInCommon/blob/main/src/isotropy.py
View contextual embedding https://github.com/TideDancer/iclr21_isotropy_contxt
Files2rouge https://github.com/pltrdy/files2rouge
Paired bootstrap resampling https://github.com/neubig/util-scripts/blob/master/paired-bootstrap.py
Fairseq https://github.com/facebookresearch/fairseq/
HuggingFace https://github.com/huggingface/transformers/
ChatGPT 3.5 https://chat.openai.com/
Claude 3 Haiku https://claude.ai/chat/

Table 9: Used artifacts.

Hyperparameters SST MRPC STS QQP MNLI QNLI RTE

# of updates 20,935 2,296 3,598 113,272 123,873 33,112 2,036
# of warm-up updates 1,256 137 214 28,318 7,432 1,986 122
Batch size (sentences) 32 16 16 32 32 32 16
Learning rate 1e-5 1e-5 2e-5 1e-5 1e-05 1e-05 2e-05

Table 10: Hyperparameters used for fine-tuning RoBERTa-related models across different datasets.

Hyperparameters SST MRPC STS QQP MNLI QNLI RTE CNNDM Y-BIGPATENT XSUM Billsum

# of updates 7,150 700 1,800 113,920 43,210 33,290 1020 20,000 92,880 15,000 21,320
# of warm-up updates 429 42 108 6,835 2,593 1,997 61 500 7,430 500 1,705
Batch size (sentences) 128 64 32 32 256 32 32 - - - -
Batch size (tokens) - - - - - - - 65,536 8,192 32,768 8,192
Learning rate 5e-6 2e-5 2e-5 1e-5 5e-6 1e-5 1e-5 3e-05 3e-5 3e-05 3e-5

Table 11: Hyperparameters used for fine-tuning BART-related models across different datasets.

Hyperparameters RoBERTa BART

# of updates 400,000 250,000
# of warm-up updates 24,000 20,000

Table 12: Hyperparameters used for training DefinitionEMB.
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Baseline
α 1 5 10 20

RoBERTa 89.2 90.2 89.5 89.7

BART 88.2 90.2 88.7 89.2

Table 13: Accuracy for Baseline+DefinitionEMB with
various α on the MRPC validation set.

Baseline
α 1 5 10 20

RoBERTa 95.1 94.8 94.8 94.4

BART 96.2 96.1 95.6 95.3

Table 14: Accuracy for Baseline+DefinitionEMB with
various α on the SST validation set.

Baseline
α 3 5 10 20

RoBERTa 77.3 79.1 76.2 76.5

BART 85.9 85.9 84.8 84.1

Table 15: Accuracy for Baseline+DefinitionEMB with
various α on the RTE validation set.

Baseline
α 3 5 7 10

RoBERTa 90.7 90.5 90.3 90.3

BART 91.8 91.7 91.5 91.3

Table 16: Spearman’s rank correlation for Base-
line+DefinitionEMB with various α on the STS vali-
dation set.

Baseline
α 3 7 10 30

RoBERTa 92.9 92.9 92.8 92.5

BART 94.8 94.7 94.5 94.4

Table 17: Accuracy for Baseline+DefinitionEMB with
various α on the QNLI validation set.

Baseline
α 3 5 10 30

RoBERTa 91.8 91.7 91.8 91.8

BART 92.4 92.6 92.5 92.2

Table 18: Accuracy for Baseline+DefinitionEMB with
various α on the QQP validation set.

Baseline
α

3 5 10 30

RoBERTa 87.6 87.5 87.4 87.3

BART 89.7 89.6 89.8 89.6

Table 19: Accuracy for Baseline+DefinitionEMB with
various α on the MNLI validation set.

α
ROUGE (F1)

1 2 L

10 44.45 21.62 41.17
30 44.30 21.44 41.04
50 44.23 21.37 40.99
100 44.62 21.54 41.40

Table 20: ROUGE scores for BART+DefinitionEMB
with various α on the CNNDM validation set.

α
ROUGE (F1)

1 2 L

5 44.02 20.66 34.95
10 44.22 20.95 35.24
20 43.81 20.55 34.78
100 42.46 19.18 33.62

Table 21: ROUGE scores for BART+DefinitionEMB
with various α on the XSUM validation set.

α
ROUGE (F1)

1 2 L

5 50.63 32.19 38.81
7 50.85 32.44 39.10
10 51.08 32.17 38.97
100 50.04 31.43 38.27

Table 22: ROUGE scores for BART+DefinitionEMB
with various α on the Billsum validation set.

α
ROUGE (F1)

1 2 L

10 43.62 18.53 37.43
20 43.93 18.84 37.74
30 44.22 19.12 38.03
100 42.96 17.76 36.73

Table 23: ROUGE scores for BART+DefinitionEMB
with various α on the Y-BIGPATENT validation set.

Model MRPC SST RTE STS QNLI QQP MNLI

RoBERTa 5 1 5 3 3 3 3
BART 5 1 3 3 3 5 10

Table 24: Tuned α for GLUE datasets.

Model CNNDM Y-BIGPATENT XSUM Billsum

BART 100 30 10 7

Table 25: Tuned α for text summarization datasets.
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Model Spearman Score ↑
RG65 RW SimLex SimVerb Ave

RoBERTa 25.55 22.33 18.04 10.78 19.18
+ DefinitionEMB 29.56 22.82 17.48 10.58 20.11

BART 24.35 23.20 22.00 12.73 20.57
+ DefinitionEMB 22.93 23.40 21.04 12.09 19.87

Table 26: Experimental results on the word similarity
task with cosine similarity. DefinitionEMB replaces E
completely.

I Projected Initial Token Embeddings1001

Figure 17 shows the projected token embeddings1002

of models before and after replacing E completely.1003

J Word Similarity Task Using Cosine1004

Similarity1005

Table 26 shows the results for word similarity tasks,1006

where the similarity between word embeddings is1007

calculated using cosine similarity. Comparing Ta-1008

ble 26 with Table 2, we observe that when using dot1009

product, DefinitionEMB achieves a higher Spear-1010

man score than BART. However, when using cosine1011

similarity, the opposite result is observed, which1012

indicates the constructed embeddings for BART1013

prioritize distance over angle aspects from the pre-1014

trained embeddings.1015

K Isotropy on GLUE Task1016

Table 27 presents I(E) for models before and af-1017

ter fine-tuning on the GLUE task. Because I(E)1018

of PLMs and the DelDirection model before fine-1019

tuning does not depend on V[task], it is reported1020

only once in the table. For the MRPC, STS, and1021

RTE datasets, I(E) shows a minimal difference1022

between before and after fine-tuning models, likely1023

due to the limited number of fine-tuning steps on1024

these datasets. The token embedding distribution in1025

BART appears to be more stable than RoBERTa on1026

the SST, QQP, and MNLI datasets. Using DelDirec-1027

tion for RoBERTa and BART achieves the highest1028

I(E) across all datasets; however, it also results in1029

the lowest accuracy and Pearson/Spearman’s rank1030

correlation in most cases, as shown in Table 3. This1031

supports our assumption that DelDirection model1032

focuses on the distribution of embeddings at the1033

expense of semantic information.1034

L Ablation Study on MRPC1035

Table 28 shows the ablation study with re-1036

spect to the replacing strategies for Base-1037

line+DefinitionEMB on the MRPC test set. When 1038

replacing only appeared tokens, both RoBERTa 1039

and BART yield higher accuracy scores. 1040

M Sample of Summarization 1041

Tables 29 and 30 show sample summarizations of 1042

CNNDM test set. 1043
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(a) RoBERTa,
% & = 0.504

(b) RoBERTa+DelDirection,
% & = 0.624

(d) BART, 
% & = 0.751

(e) BART+DelDirection,
% & = 0.788

(c) RoBERTa+DefinitionEMB, 
% & = 0.519

(f) BART+DefinitionEMB, 
% & = 0.876

Frequent
Medium
Rare

Figure 17: Projected token embeddings of models before and after replacing E completely. The frequent (30%),
medium (50%), and rare (20%) groups are determined based on the token index in V .

Model SST MRPC STS QQP MNLI QNLI RTE
Before After Before After Before After Before After Before After Before After Before After

RoBERTa 0.504 0.533 - 0.505 - 0.506 - 0.542 - 0.544 - 0.509 - 0.505
+DelDirection 0.624 0.627 - 0.624 - 0.625 - 0.642 - 0.639 - 0.629 - 0.625
+DefinitionEMB 0.528 0.536 0.529 0.529 0.529 0.530 0.530 0.550 0.530 0.554 0.539 0.541 0.529 0.533

BART 0.751 0.751 - 0.751 - 0.751 - 0.752 - 0.751 - 0.751 - 0.751
+DelDirection 0.788 0.788 - 0.788 - 0.788 - 0.800 - 0.805 - 0.794 - 0.788
+DefinitionEMB 0.766 0.766 0.767 0.767 0.769 0.769 0.769 0.777 0.770 0.771 0.753 0.753 0.753 0.753

Table 27: I(E) for models before and after fine-tuning on the GLUE task.

Model Replaced tokens MRPC

RoBERTa Appearing 87.7
Both 87.3

BART Appearing 88.3
Both 88.1

Table 28: Replacing appearing tokens only vs. replacing
both appearing and non appearing tokens for RoBERTa
and BART on the MRPC test set with X = 24, 900.
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Source (CNN)For superhero fans, the cup runneth over. Most of us know the members of the Avengers by
now: Iron Man, Captain America, Hulk and the rest, and the fact that a few more like Quicksilver are
joining the cast in the "Avengers: Age of Ultron" sequel. But there was one character who remained
a mystery: the Vision, to be played by Paul Bettany. Thus far, we’ve only seen his eyes in a trailer.
With less than a month to go before the movie hits theaters, Marvel Studios put all the speculation
to rest with a poster featuring Bettany as the heroic android, who was a member of the superhero
group for many years in the comics. Meanwhile, as many Marvel fans know, Thursday was the
eve of the new Netflix series "Daredevil," and after a photoshopped first look at Charlie Cox’s
iconic red Daredevil suit went out, Marvel put out a video of the real one. Not to be outdone,
director Bryan Singer announced a new character for next year’s sequel "X-Men: Apocalypse,"
by telling Empire magazine that Ben Hardy would be playing the role of the winged mutant
Angel. He even had a photo to share. And Thursday’s new super images weren’t quite done, because
the questions over how Jamie Bell’s rocky character The Thing in the rebooted "Fantastic Four"
movie (out August 7) might look were also finally answered. And he looks ... pretty much like The
Thing we already knew (but reportedly, CGI this time). Within 24 hours, we got yet another indication
that the superhero trend isn’t going anywhere anytime soon (and we didn’t even talk about the new
photo of Ryan Reynolds’ "Deadpool").

Reference Marvel Studios releases first looks at Paul Bettany as the Vision in "Avengers: Age of Ultron" and
Charlie Cox in full "Daredevil" costume . Jamie Bell’s character of The Thing was also unveiled for
20th Century Fox’s Marvel-based reboot of "Fantastic Four" Bryan Singer unveiled the first look at
"X-Men: Apocalypse" Angel played by Ben Hardy .

BART Paul Bettany will play the Vision in the "Avengers: Age of Ultron" sequel . The actor has been playing
the android for many years in the comics . The "Fantastic For" reboot’s" The Thing" looks pretty much
like The Thing we already knew .

+DelDirection Paul Bettany’s character in "Avengers: Age of Ultron" is finally revealed . The actor has been playing
the Vision in the comics for many years . The "Fantastic Fou" reboot’s" The Thing" looks pretty much
like The Thing we already knew (but CGI)

+DefinitionEMB Paul Bettany will play the Vision in the "Avengers: Age of Ultron" sequel . Marvel Studios also
announced a new character for "X-Men: Apocalypse" Ben Hardy will play the winged mutant Angel
in "X-Men: Apocalypse," director Bryan Singer said .

Table 29: Sample summarization of CNNDM test set. Bold in source indicates the reference-related text. Underline
in reference and model outputs indicates the rare token with index larger than 40,000 in V .
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Source (CNN)It would have made Thomas Jefferson proud. Established on the birthday of the American
founding father, Liberland – the world’s newest micronation – is founded on a firm belief in liberty and
noninterference from the powers-that-be. A tiny, 7 square-kilometer parcel of land, marked on maps as
Gornja Siga, its territory abuts the Danube on the border between Serbia and Croatia. The victim of
a border dispute between Serbia and Croatia, it is claimed by neither side – effectively a no-man’s land.
No one lives on this patch of land, which is heavily forested and contains only badly-maintained access
roads and a run-down house, abandoned for decades. This is where Euroskeptic Czech politician
Vit Jedlicka stepped in. On April 13 he planted his newly-designed yellow and black flag in the
territory, declaring the area the Free Republic of Liberland – a tiny sliver of a country, bigger only
than the Vatican and Monaco. He tells CNN that the country will be formally founded on May 1
and is inviting, through the media, the world’s heads of state to attend a formal ceremony marking
the presumptive nation’s birth. He says that he will also invite 7,500 of the 300,000 applicants that
applied to become citizens of Liberland to the ceremony, where he will grant them citizenship. "I will
grant citizenship if they can make it to the party," he told CNN by phone. "It’s short notice but a good
challenge, and also for the presidents (and other heads of state) if they can make it to the founding
of our country." Jedlicka, an active member of the Czech Republic’s Party of Free Citizens, opposes
excessive government interference. He says his attempts to enact change in his home country led him
to the political experiment that is Liberland. "I would describe it as a global revolution. It’s just the
beginning," he tells CNN via Skype. Founded on staunchly libertarian principles – its motto is "To
live and let live" – its website describes its system of governance as being a "constitutional republic
with elements of direct democracy." It will use a form of cryptocurrency – similar to Bitcoin – as
its national currency, bypassing the need for a central bank and will, according to its constitution,
keep government’s noses out of everything possible, from the banks to prostitution. "Liberland prides
itself on personal and economic freedom of its people, which is guaranteed by the Constitution, which
significantly limits the power of politicians so they could not interfere too much in the freedoms of
the Liberland nation," the world’s newest constitutional document states. Financial regulation will
be minimal, if at all present. Jedlicka says almost 300,000 applications for citizenship have been
received, about 20 of which have been accepted. "Thousands of Americans, Swiss people. Also a lot
of Arabic peoples who feel oppressed by the regimes there." He envisions, ultimately, a community of
around 35,000 Liberlanders, not all of whom will be full-time residents. He says he expects trouble
from his neighbors, whose land he has effectively annexed. "From Serbia, Croatia, we expect some
trouble but we expect international laws will applied and any movement against us would be an attack
on a sovereign nation, and we will offer nothing but passive resistance. For now, (though) we will
make roads, docks." For its part, the Serbian Ministry of Foreign Affairs released a statement to CNN
that stated that Liberland would not theoretically impinge upon its border, which is delineated by
the Danube, but "the Ministry also considers this a frivolous act which needs no further comment."
Croatia’s counterpart was similarly dismissive. "Virtual quips, however interesting they occasionally
sound, remain what they are – virtual quips, and for them we have no official comment."

Reference Vit Jedlicka, the first president of Liberland, tells CNN that the country will be formally founded on
May 1 . On April 13, Jedlicka declared an area between Croatia and Serbia "the Free Republic of
Liberland" Jedlicka says that almost 300,000 applications for citizenship have so far been received .

BART Liberland is a tiny, 7 square-kilometer parcel of land, marked on maps as Gornja Siga, which abuts the
Danube on the border between Serbia and Croatia . The land is claimed by neither Serbia or Croatia,
and is effectively a no-man’s land . Czech politician Vit Jedlicka planted his newly-designed yellow
and black flag in the territory, declaring the area the Free Republic of Liberland . He says he expects
trouble from his neighbors, whose land he has effectively annexed .

+DelDirection Czech politician Vit Jedlicka has declared the Free Republic of Liberland, a tiny sliver of land on
the border of Serbia and Croatia . He says he expects trouble from his neighbors, whose land he has
effectively annexed . "I would describe it as a global revolution. It’s just the beginning," he tells CNN .

+DefinitionEMB Czech politician Vit Jedlicka has declared the Free Republic of Liberland, a tiny sliver of land on the
Serbian-Croatian border . He says he will grant citizenship to 7,500 of the 300,000 applicants who
applied to become citizens of Liberland . "I would describe it as a global revolution. It’s just the
beginning," says Jedlicka via Skype .

Table 30: Sample summarization of CNNDM test set. Bold in source indicates the reference-related text. Underline
in reference and model outputs indicates the numeric in V .
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Token Index in V MSE

sys 43103 23.3829
ĠNASL 47179 23.2779
resso 27989 23.2549
ĠFAQ 39313 22.8146
ĠpH 39228 22.1278

ĠB 163 0.0061
ER 2076 0.0059
s 29 0.0055
ING 1862 0.0051
- 12 0.0040

Table 31: Top and bottom 5 tokens based on the de-
gree of MSE estimated by DefinitionEMB based on
RoBERTa model, listed in descending order of MSE.

Token Index in V MSE

ourke 18338 18.7777
esson 24711 17.6324
aeus 39174 17.3797
wagen 42099 16.8839
auga 24491 16.8624

ER 2076 0.0020
ES 1723 0.0020
ING 1862 0.0020
- 12 0.0018
S 104 0.0018

Table 32: Top and bottom 5 tokens based on the degree
of MSE estimated by DefinitionEMB based on BART
model, listed in descending order of MSE.

N MSE between Pre-trained and1044

Definition Embeddings1045

For tokens in V , we analyze the MSE between1046

their pre-trained and definition embeddings. Fig-1047

ure 18 presents the results for DefinitionEMB on1048

the RoBERTa model. The left subfigure illustrates1049

that around 20% of tokens have an MSE of less1050

than 1, while less than 20% tokens have an MSE1051

larger than 8. The right subfigure shows that the1052

distribution of token index is almost uniform across1053

the MSE, indicating that the pre-trained embedding1054

of high-frequency tokens may contain semantically1055

unrelated information, while the pre-trained em-1056

bedding of low-frequency tokens may contain se-1057

mantically related information even with limited1058

pre-training steps. In addition, more tokens falling 1059

in the MSE range of [5, 8) than in the range of [0, 1060

1), which indicates a significant difference between 1061

pre-trained embeddings and definition embeddings. 1062

Figure 19 presents the results for DefinitionEMB 1063

on the BART model. The left subfigure illustrates 1064

that around 40% of tokens have an MSE of less 1065

than 1, while less than 10% tokens have an MSE 1066

larger than 8. The right subfigure also shows that 1067

the distribution of token index is almost uniform 1068

across the MSE. However, most of the tokens fall 1069

in the MSE range [0, 1), indicating less difference 1070

between pre-trained embeddings and definition em- 1071

beddings than in the case of RoBERTa. 1072

Tables 31 and 32 lists examples of tokens with 1073

corresponding MSE. The top 5 tokens with the 1074

highest MSE can be used as named entities. 1075
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Figure 18: Number of tokens in V versus MSE estimated by DefinitionEMB based on RoBERTA model.
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Figure 19: Number of tokens in V versus MSE estimated by DefinitionEMB based on BART model.
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