
SpecReason: Fast and Accurate Inference-Time
Compute via Speculative Reasoning

Rui Pan§ Yinwei Dai§ Zhihao Zhang† Gabriele Oliaro†
Zhihao Jia† Ravi Netravali§

§Princeton University †Carnegie Mellon University
{ruipan,yinweid}@princeton.edu, {zhihaoz3,goliaro}@cs.cmu.edu,

zhihao@cmu.edu, rnetravali@cs.princeton.edu

Abstract

Recent advances in inference-time compute have significantly improved perfor-
mance on complex tasks by generating long chains of thought (CoTs) using Large
Reasoning Models (LRMs). However, this improved accuracy comes at the cost
of high inference latency due to the length of generated reasoning sequences and
the autoregressive nature of decoding. Our key insight in tackling these overheads
is that LRM inference, and the reasoning that it embeds, is highly tolerant of ap-
proximations: complex tasks are typically broken down into simpler steps, each of
which brings utility based on the semantic insight it provides for downstream steps
rather than the exact tokens it generates. Accordingly, we introduce SpecReason, a
system that automatically accelerates LRM inference by using a lightweight model
to (speculatively) carry out simpler intermediate reasoning steps and reserving the
costly base model only to assess (and potentially correct) the speculated outputs.
Importantly, SpecReason’s focus on exploiting the semantic flexibility of thinking
tokens in preserving final-answer accuracy is complementary to prior specula-
tion techniques, most notably speculative decoding, which demands token-level
equivalence at each step. Across a variety of reasoning benchmarks, SpecReason
achieves 1.4− 3.0× speedup over vanilla LRM inference while improving accu-
racy by 0.4− 9.0%. Compared to speculative decoding without SpecReason, their
combination yields an additional 8.8− 58.0% latency reduction. We open-source
SpecReason at https://github.com/ruipeterpan/specreason.

1 Introduction

Inference-time compute has unlocked a new axis for scaling AI capabilities. Recent advancements in
Large Reasoning Models (LRMs) such as OpenAI o1/o3 [Jaech et al., 2024, ope, 2025] and DeepSeek
R1 [Guo et al., 2025] have demonstrated state-of-the-art performance across a wide range of complex
tasks. Although these LRMs share the architectural backbones as traditional large language models
(LLMs), their inference behavior differs significantly: LRMs first “think” by generating internal
thinking tokens—tokens that decompose a task into a sequence of composable reasoning steps via a
long chain-of-thought (CoT) [Wei et al., 2022] before producing the final tokens that summarize the
reasoning process.

Despite their promise, LRMs incur substantial inference latency due to the length of the reasoning
sequences they generate. This challenge is primarily driven by the autoregressive nature of LLMs,
where decoding time scales linearly with sequence length. As a result, final output generation can
routinely take minutes, if not hours, to answer a single query; such delays far exceed those of
typical LLMs and are prohibitively slow for many interactive applications, ultimately degrading user
experience [Fu et al., 2024b].

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: NeurIPS 2025 Workshop
on Efficient Reasoning.

https://github.com/ruipeterpan/specreason

Question: Every morning Aya goes for a 9-kilometer-long walk and stops at a coffee shop afterwards. When she walks at a constant
speed of s kilometers per hour, the walk takes her 4 hours, including t minutes spent in the coffee shop. When she walks $s+2$

kilometers per hour, the walk takes her 2 hours and 24 minutes, including t minutes spent in the coffee shop. Suppose Aya walks at $s+
\frac{1}{2}$ kilometers per hour. Find the number of minutes the walk takes her, including the t minutes spent in the coffee shop.

First, let me try to parse the problem
step by step. ... In the first scenario,
240 - t = 9 / s. ... Taking the positive
root: s ≈ 0.0897 km/h. ... Thus, t =

240 - (48 - 12*sqrt(19)) = 192 +
12*sqrt(19) ≈ 139.6932. ... The result

is \boxed{1055} minutes.

First, I need to determine Aya's
walking speed, s, and the time she
spends in the coffee shop, t. ... So,
equation 1: 9/s + t/60 = 4. Equation
2: 9/(s+2) + t/60 = 2.4. ... Thus, s =

2.5, and t = 24. ... The result is
\boxed{204} minutes.

Small Model

!❌

Base Model

#✅

SpecReason

!✅

First, I need to
determine Aya's
walking speed, s,
and the time she

spends in the coffee
shop, t.

[Score: 6]

Soln: s = 2.5 km/hr, t = 24 mins. The result is 9 / (2.5 + 0.5) * 60 + 24 = 204 minutes.

First, let me try to
parse the problem

step by step.

In the first scenario,
240 - t = 9 / s. In the

second scenario:
144 - t = 9 / (s + 2).

So, equation 1: 9/s +
t/60 = 4. Equation 2:
9/(s+2) + t/60 = 2.4.

[Score: 2]

We need to solve
these equations to

find s and t, then use
s + 1/2 to find the
new walking time.

[Score: 8]

Let me denote
t/60 as a

variable to
simplify. Let me
call it t’ = t/60.

[Score: 8]

Solution:
\boxed{204}.

…

Figure 1: SpecReason leverages a smaller reasoning model to speculate individual reasoning steps,
deferring to the base model only for assessment (and optionally as a fallback), enabling faster yet
accurate reasoning. For illustration, we show a math question as an example; our evaluation includes
more general reasoning workloads.

Our approach to tackling reasoning delays—without compromising accuracy—is rooted in two
fundamental properties of LRMs: (1) LRMs tackle difficult tasks by generating long CoTs that
decompose them into many simpler, sequential steps. For example, in mathematical problem solving,
a few key reasoning steps require complex long-term planning and have a major influence on
downstream reasoning, while most subsequent steps simply execute the plan through straightforward
calculations or case analyses (Fig. 1); (2) The utility of an individual reasoning step hinges less on
the exact wording of the thinking tokens but more on the semantic insight it provides. That is, as
long as a step contributes meaningfully to advancing the CoT, it remains effective—even if phrased
imprecisely or differently (Fig. 2). Moreover, LRMs possess self-reflection capabilities that enable
them to revise or correct occasional missteps from earlier steps.

Taken together, these properties make the decoding of thinking tokens—the dominant source of
inference latency in LRMs—inherently more approximation tolerant than typical LLM decoding.
A large fraction of intermediate reasoning steps can be effectively handled by lightweight reasoning
models, which both align with the nature of these steps and can tolerate minor inaccuracies. As
shown in Fig. 3, this opens the door to significantly faster inference without sacrificing output quality.

Building on these insights, we propose SpecReason, a system for accelerating LRM inference
by selectively offloading easier intermediate steps to be speculated by a smaller model without
compromising final output accuracy. SpecReason employs a lightweight reasoning model to generate
individual reasoning steps, while reserving the slower but more capable base model to efficiently
verify these speculated steps (§4.1) and guide the reasoning process along the correct trajectory
(Fig. 1). Consistent with prior findings [Song et al., 2025], we observe that base models can be
prompted to act as critic models—assessing the utility of intermediate steps and accepting or rejecting
them as needed (Fig. 7).

Speculative reasoning vs. speculative decoding. While SpecReason is conceptually related
to speculative decoding [Leviathan et al., 2023], which accelerates LLM inference by using a
smaller draft model to predict future tokens, there are key distinctions between the two. Most
notably, speculative decoding is an exact optimization: it relies on token-level equivalence between
the small and base models, i.e., focusing on typical LLM serving where all generated tokens are
part of the final model output being assessed. In contrast, SpecReason explicitly leverages the
approximation tolerance inherent in reasoning: it targets thinking tokens—intermediate steps in
the reasoning process—where semantic alignment, rather than token-level equivalence, is sufficient.
This relaxation enables substantial latency savings during LRM inference, as semantically similar
intermediate steps (Fig. 2) are often adequate to preserve end-task accuracy (Fig. 3). In many cases,
SpecReason even improves final accuracy over the base model by generating fewer unnecessary
tokens (Fig. 4). To further address the high inference cost of LRMs, SpecReason also exposes a
user-configurable knob that allows trading off accuracy for latency by adjusting the tolerance level

2

“9/s + t/60 = 4” “\frac{9}{s} + \frac{t}{60} = 4” “9/s + t’ = 4”
(t’ = t/60) “9/s + t = 4”

Token-Level
Equivalence

Semantic-Level
Equivalence

Semantic-Level
Similarity

Factual/Logical
Incorrectness

Figure 2: The spectrum of approximations of one example reasoning step (equation 1 in Fig. 1).
SpecReason can control the exactness of reasoning approximations by adjusting its acceptance
threshold to navigate through the accuracy-latency tradeoff space (§5.3).

for speculative approximations. Finally and most importantly, because speculative reasoning and
speculative decoding operate at different levels, we show that they are complementary techniques
(§4.2), and when combined in a hierarchical speculation framework, achieve even greater reductions
in inference latency.

We evaluate SpecReason across a wide range of reasoning workloads spanning tasks of varying
complexity [aim, 2025, Hendrycks et al., 2021, Rein et al., 2024]. Overall, SpecReason reduces
end-to-end inference latency by 1.4 − 3.0× compared to vanilla LRM inference while improving
accuracy by 0.4 − 9.0%. Moreover, SpecReason can be combined with speculative decoding to
provide an additional 8.8− 58.0% improvement over speculative decoding alone.

2 Background

Inference-time scaling. LRMs introduce a structured problem-solving approach that breaks down
complex problems into multiple simpler reasoning steps, commonly referred to as a long chain of
thought (CoT) [Wei et al., 2022]. This enables the model to generate intermediate reasoning steps
before progressing further, reflect, and backtrack to correct errors if needed. LRMs that output
long CoTs have been a popular approach to scale inference-time compute [Guo et al., 2025, Jaech
et al., 2024, ope, 2025], and there also exist other schemes like Tree of Thoughts [Yao et al., 2023],
process-reward-model-guided tree search [Lightman et al., 2023, Qi et al., 2024, Guan et al., 2025],
and repeated sampling for scaling inference-time compute [Brown et al., 2024].

Speculative decoding. Speculation has long been a classic concept in the literature of computer
architecture [Burton, 1985]. Due to the memory-bound nature of LLM decoding, recent work has also
leveraged the technique of speculation to accelerate the decoding phase [Stern et al., 2018, Leviathan
et al., 2023, Yan et al., 2024] of LLM inference. The speculative decoding process alternates between
speculation and verification steps to ensure correctness while achieving speed-ups. The speculation
phase usually consists of either a standalone draft model [Leviathan et al., 2023, Miao et al., 2024],
a trainable module on top of the base model [Cai et al., 2024, Li et al., 2025], a tree-based token
cache [Oliaro et al., 2024, Luo et al., 2024, Zhao et al., 2024], an n-gram lookup table [Fu et al.,
2024a], or a retrieval-based data store [He et al., 2023] to make efficient but less accurate speculations.
The verification process, on the other hand, is a base model chunked-prefill over the speculation
results, which usually consists of either a single sequence of tokens as in Leviathan et al. [2023] or
tree-like structures to further boost the accuracy of speculation [Miao et al., 2024, Cai et al., 2024, Li
et al., 2025, Chen et al., 2024]. The verification process then accepts the longest matched sequences
on the token level from the speculation results and repeats the process. As a result, the speculation
length is usually conservative to maintain an optimal trade-off between the speculation overhead and
accuracy.

Existing approaches for reducing latency. Sky-T1-Flash Team [2025] reduces unnecessary thinking
tokens by fine-tuning models to curb overthinking, thereby reducing the length of reasoning chains
and, consequently, latency. Dynasor-CoT Fu et al. [2024b, 2025] takes a different approach by
probing intermediate model confidence and terminating the reasoning process early when the model
exhibits sufficient confidence in its current output.

3 Motivation

In this work, we show that reasoning workloads executed by LRMs exhibit unique opportunities
for latency reduction due to their inherent tolerance to approximation— setting them apart from

3

traditional generation tasks in LLMs. We illustrate these properties using a representative example
from the AIME dataset, selected for its clarity and ease of exposition.

Intermediate steps are easier than end-to-end reasoning. A key observation in LRM behavior is
that reasoning difficulty is not uniform across the steps in a long chain-of-thought (CoT). As shown
in Fig. 1, while the overall task might be too challenging for a small model to solve end-to-end, only
a few critical steps—such as problem analysis, decomposition through formulations or case analyses,
and high-level planning—are critical to the overall reasoning progress. In contrast, many other steps
are significantly easier.

This behavior is intentional by design: LRMs are often trained with reinforcement learning to
generate CoTs that decompose complex problems into sequences of simpler, more tractable reasoning
steps. These intermediate steps often include routine reasoning such as arithmetic calculations, case
enumeration, or basic logical deductions—operators that are much easier to decode than synthesizing
a full solution directly. This heterogeneity in step difficulty and importance creates an opportunity
for lightweight models to handle a substantial portion of the reasoning process both efficiently and
accurately.

Reasoning progress depends on insights, not exact tokens. Another key takeaway from our
work is that the utility of a reasoning step lies in the semantic contribution it makes to the overall
reasoning process, rather than the precise tokens it uses. Unlike tasks like translation in traditional
LLM inference, where fidelity to exact combinations of tokens matters more, reasoning CoTs
within LRM’s thinking tokens care more about the information that advances the reasoning chain.
As illustrated in Fig. 2, a spectrum of valid phrasings often exists for a given step: semantically
equivalent or similar expressions can convey the same insight and lead to the same downstream
reasoning trajectory. This semantic flexibility is a key enabler for approximation-tolerant inference.

Occasional mistakes can be corrected via self-reflection. LRMs exhibit strong self-reflection
capabilities, enabling them to recover from earlier reasoning errors. Even when an earlier step
contains a factual or logical mistake, the model often revises its trajectory in subsequent steps,
marked by tokens like “Wait” or “Hmm”. Moreover, unlike LLM inference where all output tokens
contribute to the final answer, in LRM inference, only the tokens generated after the thinking tokens
determine the final outcome. Therefore, LRM inference can tolerate occasional mistakes during the
reasoning phase, as the model can often identify and correct these mistakes during self-reflection. This
inherent fault tolerance further underscores the viability and effectiveness of approximation-based
acceleration.

In summary, compared to traditional LLM inference, LRM inference is inherently more tolerant of
approximations that do not require token-level equivalence as long as the overall reasoning trajectory
is preserved. This property is not limited to a single, linear CoT; rather, it extends naturally to more
general inference-time compute scaling paradigms such as tree-based search strategies and other
structured reasoning approaches.

4 Method

4.1 Speculative Reasoning

Due to its reliance on autoregressive decoding, LRM inference incurs significantly higher latency
than typical LLMs—often to the point of being prohibitively slow for interactive applications and
degrading user experience [Fu et al., 2025]. Existing approaches for latency reduction include using
a distilled version of the base model [Guo et al., 2025], limiting the number of thinking tokens via
a predefined token budget, or disabling the reasoning process altogether by omitting the thinking
tokens (<think> and </think>) during generation [qwe, 2025]. However, these approaches impose
a harshly trade-off between accuracy for latency: they either limit the model’s capacity to reason or
apply a lower-quality model uniformly across all reasoning steps. In contrast, SpecReason takes a
more fine-grained and adaptive approach. Instead of explicitly restricting output length, it selectively
offloads only the easier reasoning steps to a lightweight model, preserving overall reasoning quality
while substantially reducing inference latency.

The approximation-tolerant nature of LRM reasoning enables a new form of speculative execution:
tentatively carrying out reasoning steps using a lightweight model, assessing their utility with a
stronger base model, and selectively accepting them. SpecReason leverages this flexibility to reduce

4

decoding latency while preserving output quality. To achieve this goal, SpecReason offloads easier or
less critical reasoning steps—defined as semantically self-contained units such as complete sentences
or logical steps—to a smaller, faster speculator model. Each step is decoded in two stages: (1) the
lightweight speculator proposes the next reasoning step based on the current context, and (2) the base
model evaluates the proposed step for semantic utility. If the step is accepted, SpecReason proceeds
to the next step; otherwise, SpecReason falls back to the base model to regenerate the step. While our
implementation uses a simple static-threshold mechanism for verification, the framework supports
richer, customizable decision strategies. We outline key design principles below.

Navigating the Pareto frontier of the latency-accuracy tradeoff. SpecReason expands the Pareto
frontier of the latency-accuracy tradeoff by exposing fine-grained control knobs to navigate through
this space. The key knob SpecReason employs is the acceptance threshold: after each speculated
reasoning step, the base model is prompted to generate a single-token utility score (e.g., an integer
from 0 to 9) indicating the quality of the step. If the utility score is above a static acceptance threshold
(e.g., score ≥ 7), the speculated reasoning step is accepted; otherwise, it is discarded and regenerated
by the base model.

Adjusting this threshold allows users to control the strictness of speculation (Fig. 5): a higher threshold
requires speculated steps to be closer to token-level equivalence on the equivalence spectrum (Fig. 2),
improving accuracy but reducing the acceptance rate and thereby increasing latency. Conversely, a
lower threshold increases speculation efficiency at the cost of potential accuracy degradation.

An additional knob involves forcing the first n reasoning steps to be decoded by the base model. Since
LRMs often use the initial steps to analyze the problem and formulate a high-level plan, assigning
these initial steps to the base model can steer the overall reasoning trajectory toward higher quality.
We show in Fig. 6 that this knob also allows SpecReason to manage the latency-accuracy tradeoff,
though with less impact than the acceptance threshold knob.

While our current implementation uses a simple, discrete threshold-based scoring scheme—offering
only a coarse-grained configuration space—it establishes a lower bound on verification quality.
Future work can explore more sophisticated strategies, such as logprob-based confidence estimates or
dynamic thresholds, to enable finer-grained tradeoffs without incurring additional runtime cost, and
may further improve overall performance.

Efficient verification. Because each step requires verification by the base model, it’s crucial to keep
verification overhead low to avoid compounding latency. Instead of autoregressively decoding or
reranking multiple candidate steps, SpecReason evaluates each speculated step in a single prefill-only
pass of the base model. The verification prompt is templated to reuse most of the CoT prefix, so
each verification requires prefilling only ∼70 new tokens. Since short-prefill forward passes are
memory-bound, the overhead is comparable to decoding just 1–2 tokens, making verification highly
efficient in practice.

Implementation details. Since the small model is lightweight, we colocate both the small and
base models on the same GPU. The memory reserved for Key-Value caches [Kwon et al., 2023] is
statically partitioned between the two models. They do not share any internal model states–only the
token IDs of the generated reasoning steps are managed and shared by SpecReason. If a speculative
step is rejected, the corresponding KV cache entries are discarded.

Inference is performed sequentially: the small and base models take turns, avoiding kernel-level
interference. In future work, we plan to explore pipelining to overlap the small model’s decoding
with the base model’s inference. While this may introduce mild resource contention, it could further
reduce end-to-end latency.

4.2 Hierarchical Speculation across Semantic Similarity and Token Equivalence

At a high level, SpecReason’s speculative reasoning resembles the philosophy behind traditional
speculative decoding, but differs in two important ways. First, speculative decoding guarantees
token-level equivalence between draft and verified outputs, making it a form of exact acceleration. In
contrast, SpecReason targets semantic-level similarity, accepting steps that carry the same insight
even if phrased differently, and exposes knobs to control the exactness of reasoning approximations.
Second, speculative decoding is typically applied to output generation tasks (e.g., text continuation or
translation), where the fidelity of each token matters. SpecReason, on the other hand, is designed

5

specifically for internal thinking tokens in reasoning tasks, where intermediate steps are approximate
and interchangeable as long as they preserve the logical progression of thought.

Further, because SpecReason and speculative decoding operate at different levels (semantic-level
similarity vs. token-level equivalence), these two approaches are complementary and can be combined
into a unified, hierarchical system – SpecReason+Decode first applies step-level speculative reasoning
to draft and verify reasoning steps. If a step is rejected and regenerated by the base model, standard
token-level speculative decoding can be applied during the base model regeneration to further
accelerate decoding.

5 Evaluation

The overview of our evaluation results includes:

• Reducing end-to-end latency. Because many intermediate steps are easier than end-to-end
reasoning, many (up to 80%) of the speculated steps are accepted. SpecReason achieves a
1.4− 3.0× speedup over vanilla LRM inference. Additionally, when combined with speculative
decoding, SpecReason further reduces latency by 8.8− 58.0% over speculative decoding alone,
highlighting the complementary nature of these optimizations.

• Improving token-budget-aware accuracy. Beyond latency reduction, SpecReason also improves
accuracy over the base model by 0.4− 9.0% under the same token budget. We empirically find
that small, lightweight models typically have shorter output sequence lengths – meaning, they
need fewer thinking tokens before deriving an answer. Thus, by accepting many small model’s
speculated reasoning steps, SpecReason reduces the token consumption compared to the base
model’s vanilla inference. When the token budget is low – a common setup to curb inference cost
and latency – SpecReason helps improve accuracy as the base model would need more tokens to
get to an answer (Fig. 4).

5.1 Setup

Models. In our main results, we use two base models: QwQ-32B [qwq, 2025] and Skywork-OR1-
Preview-32B [sky, 2025]. We also use two different small models for speculation: DeepSeek-
R1-1.5B [Guo et al., 2025] and Zyphra’s ZR1-1.5B [zyp, 2025] – both of which are based on
Qwen-2.5 [Yang et al., 2024] and embed the capability of reasoning with long CoTs – and evaluate
all four different model combinations. We evaluate an additional base model with a different size
and architecture, R1-70B [Guo et al., 2025], a distilled version of DeepSeek-R1 onto Llama3.3-
70B [Grattafiori et al., 2024], in §A.1.

Datasets. We evaluate SpecReason on three diverse reasoning benchmarks: AIME [aim, 2025]
for high-school competition-level mathematical problems, MATH500 [Hendrycks et al., 2021]
for high-school competition-level mathematical problems sampled from AMC 10, AMC 12, and
AIME, and GPQA Diamond [Rein et al., 2024] for graduate-level questions in general domains like
biology, physics, and chemistry. The accuracy metric we evaluate on is pass@1. Similar to prior
work [Guo et al., 2025], we set k=16 when calculating pass@1 – i.e., we generate 16 responses with
temperature=0.6 for every query and calculate the average accuracy – and set the token budget to be
8192 tokens to ensure an apples-to-apples comparison between baselines.

Baselines. We run vanilla inference using the small and base models as the latency and accuracy
baseline, respectively. Aside from SpecReason, we also run speculative decoding (“SpecDecode”)
with the smaller model as the draft model, speculating five tokens at a time. To demonstrate
SpecReason’s compatibility with speculative decoding, we also run a “SpecReason+Decode” baseline
that employs the hierarchical speculation described in §4.2.

Hardware. We run our evaluations on two NVIDIA A6000-48GB GPUs. We use vLLM Kwon et al.
[2023] 0.8.2 as the underlying inference engine and enable prefix caching. Both models are served
with a tensor parallelism degree of two.

6

0 50 100 150
Latency (s)

50

60
pa

ss
@

1
(%

)
Better

MATH

0 200 400
Latency (s)

10

20

30

Better

AIME

0 100 200 300
Latency (s)

20

40
Better

GPQA
Base model Small model SpecReason SpecDecode SpecReason+Decode

(a) QwQ-32B + R1-1.5B

0 50 100 150
Latency (s)

60

65

70

pa
ss

@
1

(%
)

Better

MATH

0 200 400
Latency (s)

20

30

40

Better

AIME

0 100 200 300
Latency (s)

30

40

50
Better

GPQA

(b) QwQ-32B + Zyphra-1.5B

0 50 100
Latency (s)

50

60

pa
ss

@
1

(%
)

Better

MATH

0 200 400
Latency (s)

10

20

30

Better

AIME

0 100 200 300 400
Latency (s)

20

40

Better

GPQA

(c) Skywork-Preview-32B + R1-1.5B

0 50 100
Latency (s)

60

65

pa
ss

@
1

(%
)

Better

MATH

0 200 400
Latency (s)

20

30
Better

AIME

0 100 200 300 400
Latency (s)

30

40

50

Better

GPQA

(d) Skywork-Preview-32B + Zyphra-1.5B
Figure 3: Comparison of the accuracy and latency of different schemes on different model combi-
nations. SpecReason significantly reduces latency while improving accuracy over vanilla inference.
When combined with speculative decoding, SpecReason outperforms speculative decoding in both
latency and accuracy on all datasets and model combinations.

5.2 Main Results

We compare SpecReason against baseline methods in Fig. 3. Across the four model combina-
tions, SpecReason achieves a 1.5×–2.5×, 1.6×–3.0×, 1.4×–2.5×, 1.7×–2.4× reduction in latency,
respectively, compared to vanilla inference with the base model.

Accuracy improvement. Alongside these efficiency gains, SpecReason also yields modest accuracy
improvements of 1.3%–3.6%, 4.0%–9.0%, 0.4%–1.7%, and 1.4%–5.0% compared to the base model.
The key reason behind this accuracy improvement is the reduction in token consumption required
for reasoning. In Fig. 4, we focus on the model combination with the highest overall accuracy
improvement, QwQ-32B + Zyphra-1.5B, and compare the average number of thinking tokens needed
to derive an answer between the base model, the small model, and SpecReason. As seen in Fig. 4a,
the small model is generally less verbose than the base model, and because SpecReason adopts many
speculated steps from the small model, its token consumption is also reduced by 1.2×–2.0×. We also
focus on the AIME dataset and vary the token budget to study its effect on the difference in accuracy
between SpecReason and the base model in Fig. 4b. The effect of token reduction on accuracy is
the most significant for tighter output token budgets (16.2% at 4096 tokens) but shrinks as the base
model is allowed to generate more thinking tokens (4.7% at 8192 tokens). We also attribute these
accuracy gains to SpecReason’s explicit judgment and scoring mechanism at each reasoning step,
which augments the model’s internal self-reflection with more structured assessment.

7

MATH AIME GPQA0

2000

4000

6000
Av

g
Th

in
ki

ng
 To

ke
n

Co
un

t Base Model Small Model SpecReason

(a) Output length comparison. SpecReason reduces the
token consumption needed to answer queries by adopt-
ing speculated steps from small models that are less
verbose.

2000 4000 6000 8000
Output Token Budget

0

10

20

30

Pa
ss

@
1

(%
)

Base Model Small Model SpecReason

(b) [AIME] Accuracy gap under different token bud-
gets.

Figure 4: [QwQ-32B + Zyphra-1.5B] Intuition behind SpecReason’s accuracy improvement. See
Fig. 9 in §A for the full set of results.

0 50 100 150
Latency (s)

50

60

pa
ss

@
1

(%
)

Better

MATH

0 200 400
Latency (s)

20

40

Better

AIME

0 100 200 300
Latency (s)

20

40
Better

GPQA
Base model Small model SpecReason SpecDecode SpecReason+Decode

Figure 5: [QwQ-32B + R1-1.5B] SpecReason allows trading off latency for accuracy via adjusting
the acceptance threshold (from left to right, the thresholds are: 3, 5, 7, and 9 out of 9).

When compared with speculative decoding, SpecReason lies on the Pareto frontier of the accuracy-
latency tradeoff. More importantly, combining SpecReason with speculative decoding (SpecRea-
son+Decode) results in further latency reductions of 19.4%–44.2%, 30.8%–58.0%, 8.8%–52.2%,
and 25.1%–51.8% over speculative decoding alone. The most significant performance gains for
SpecReason when the base model is QwQ-32B occur on the MATH dataset, where both models
achieve relatively high accuracies and the capability gap between the small and base models is the
narrowest. This makes intermediate steps easier for the small model to speculate correctly, increasing
the acceptance rate of speculated steps and thereby lowering end-to-end latency. In comparison,
Skywork-Preview-32B is slightly inferior at instruction following, so SpecReason has to adopt a
higher threshold to avoid an accuracy loss, reducing SpecReason’s latency wins.

Finally, when comparing SpecReason+Decode with SpecReason, SpecReason+Decode reduces
latency by 1.7×–1.9×, 1.7×–1.8×, 1.6×–2.2×, and 1.6×–2.1×, demonstrating the difference in
ease of speculation across varying tasks. On these three datasets, the ratio of steps carried out by
small models in SpecReason is 38.1%–80.0%, 36.5%–71.3%, 39.3%–70.2%, and 41.4%–66.6%,
respectively.

5.3 Controlling the Accuracy-Latency Tradeoff

In Fig. 5, we illustrate how SpecReason enables flexible control over the accuracy-latency tradeoff,
using a representative, randomly selected subdataset from the full datasets in §5.2 on QwQ-32B +
R1-1.5B for ease of evaluation. During the base model’s evaluation of each reasoning step, we vary
the acceptance threshold for the utility score between 3, 5, 7, and 9, and report the resulting accuracy
and latency.

On the MATH subdataset, increasing the acceptance threshold from 3 to 7 results in fewer specu-
lative steps from the small model being accepted. This leads to a latency increase from 35.7s to
69.2s, while accuracy improves from 59.4% to 63.7%, due to tighter control over the approximation
level of intermediate reasoning steps. Notably, the gap between SpecReason+Decode and SpecRea-

8

0 100 200 300 400 500
Latency (s)

20

40
pa

ss
@

1
(%

)

Better

AIME

Base model
Small model
SpecReason

SpecDecode
SpecReason+Decode

Figure 6: Effect of the alternative knob:
forcing the first n steps for base model
decoding.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Binned PRM Score

4.0

4.5

5.0

5.5

6.0

Av
g

Ut
ilit

y
Sc

or
e

in
 S

pe
cR

ea
so

n

Figure 7: The utility scores in SpecReason closely re-
flect the quality score judgements from a process reward
model. x on the x-axis denotes PRM scores in the range
[x, x+ 0.1).

son widens from 8.1s to 28.8s, since more reasoning steps are delegated to the base model, and
SpecReason+Decode reduces only the base model’s decoding time compared to SpecReason.

A similar trend is observed on the AIME and GPQA subdatasets: as the acceptance threshold
increases from 3 to 7, latency grows from 109.4s to 261.9s and from 72.7s to 223.0s, and accuracy
improves from 22.3% to 39.3% and from 33.1% to 50.7%. However, the accuracy degrades less
gracefully as the threshold is relaxed compared to the MATH subdataset. This is because the small
model exhibits a larger performance gap relative to the base model on AIME and GPQA, making
aggressive acceptance of its speculative steps more costly in terms of accuracy.

In Fig. 6, we also study the effect of the alternative knob, forcing the first n reasoning steps to be
decoded by the base model, on the accuracy-latency tradeoff. As we change n from 0 to 10, 20, 30,
and 40, SpecReason’s accuracy increases from 33.2% to 37.3% while the latency increases from
270.4s to 292.6s, showcasing an alternative approach to improve accuracy with a slight increase in
latency.

5.4 Base Model’s Judgement Capability

The base model’s ability to assess the quality of intermediate reasoning steps is a crucial cornerstone
of SpecReason’s performance. In this experiment, we compare the scores generated by a process
reward model (PRM) – which assigns a reward score to each step within the solution to a math
problem – with those given by the QwQ-32B base model on the AIME dataset. Specifically, we use
Math-Shepherd [Wang et al., 2023], a PRM trained via reinforcement learning from the Mistral-7B
base model on math problems, to score each speculated step produced by the R1-1.5B small model.

In Fig. 7, we bin the reward scores (a float from 0 to 1) into ten bins. Within each bin, we calculate
the mean utility score given by the base model in SpecReason. This analysis demonstrates a strong
correlation between the base model’s and the PRM’s assessments, particularly for lower-quality
reasoning steps, where both models assign low scores. The results suggest that the base model can
effectively approximate the PRM’s judgments, making it a viable option for evaluating reasoning
step quality in SpecReason.

6 Conclusion

In this work, we introduce SpecReason, a novel approach that accelerates LRM inference by leverag-
ing speculative reasoning. By offloading simpler intermediate reasoning steps to a smaller, lightweight
model and reserving the base model for assessment, SpecReason significantly reduces inference
latency while maintaining or even improving accuracy. Our results demonstrate that SpecReason
achieves a 1.4− 3.0× speedup over vanilla LRM inference, with accuracy improvements ranging
from 0.4 − 9.0%. Additionally, when combined with speculative decoding, SpecReason further
reduces latency by 8.8− 58.0%, highlighting the complementary nature of these optimizations. We
believe this work opens up new angles for efficient LRM inference acceleration, making it especially
valuable for scenarios that demand both high accuracy and low latency.

9

Acknowledgments and Disclosure of Funding

We thank Princeton’s Systems for Artificial Intelligence Lab (SAIL) and Princeton Language and
Intelligence (PLI) for providing the hardware resources for running experiments. Rui would like to
thank Chongyi Zheng for sharing his experience on submitting to NeurIPS. This work was supported
by NSF CNS grants 2147909, 2151630, 2140552, 2153449, and 2152313.

References
Aime 2024 dataset card. https://huggingface.co/datasets/HuggingFaceH4/aime_2024, 2025.

Openai o3-mini system card. https://cdn.openai.com/o3-mini-system-card-feb10.pdf, 2025.

Qwen3: Think deeper, act faster. https://qwenlm.github.io/blog/qwen3/, 2025.

Qwq-32b: Embracing the power of reinforcement learning. https://qwenlm.github.io/blog/qwq-32b/,
2025.

Skywork-or1 (open reasoner 1). https://github.com/SkyworkAI/Skywork-OR1, 2025.

Introducing zr1-1.5b, a small but powerful reasoning model for math and code). https://www.zyphra.com/
post/introducing-zr1-1-5b-a-small-but-powerful-math-code-reasoning-model, 2025.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and Azalia
Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling. arXiv preprint
arXiv:2407.21787, 2024.

F Warren Burton. Speculative computation, parallelism, and functional programming. IEEE Transactions on
Computers, 100(12):1190–1193, 1985.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D Lee, Deming Chen, and Tri Dao. Medusa:
Simple llm inference acceleration framework with multiple decoding heads. arXiv preprint arXiv:2401.10774,
2024.

Zhuoming Chen, Avner May, Ruslan Svirschevski, Yu-Hsun Huang, Max Ryabinin, Zhihao Jia, and Beidi Chen.
Sequoia: Scalable and robust speculative decoding. Advances in Neural Information Processing Systems, 37:
129531–129563, 2024.

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. Break the sequential dependency of llm inference using
lookahead decoding. arXiv preprint arXiv:2402.02057, 2024a.

Yichao Fu, Junda Chen, Siqi Zhu, Zheyu Fu, Zhongdongming Dai, Aurick Qiao, and Hao Zhang. Efficiently
serving llm reasoning programs with certaindex. arXiv preprint arXiv:2412.20993, 2024b.

Yichao Fu, Junda Chen, Yonghao Zhuang, Zheyu Fu, Ion Stoica, and Hao Zhang. Reasoning without self-doubt:
More efficient chain-of-thought through certainty probing. In ICLR 2025 Workshop on Foundation Models in
the Wild, 2025.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783, 2024.

Xinyu Guan, Li Lyna Zhang, Yifei Liu, Ning Shang, Youran Sun, Yi Zhu, Fan Yang, and Mao Yang. rstar-math:
Small llms can master math reasoning with self-evolved deep thinking. arXiv preprint arXiv:2501.04519,
2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning.
arXiv preprint arXiv:2501.12948, 2025.

Zhenyu He, Zexuan Zhong, Tianle Cai, Jason D Lee, and Di He. Rest: Retrieval-based speculative decoding.
arXiv preprint arXiv:2311.08252, 2023.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and Jacob
Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv preprint arXiv:2103.03874,
2021.

10

https://huggingface.co/datasets/HuggingFaceH4/aime_2024
https://cdn.openai.com/o3-mini-system-card-feb10.pdf
https://qwenlm.github.io/blog/qwen3/
https://qwenlm.github.io/blog/qwq-32b/
https://github.com/SkyworkAI/Skywork-OR1
https://www.zyphra.com/post/introducing-zr1-1-5b-a-small-but-powerful-math-code-reasoning-model
https://www.zyphra.com/post/introducing-zr1-1-5b-a-small-but-powerful-math-code-reasoning-model

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec Helyar,
Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv preprint arXiv:2412.16720,
2024.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonzalez, Hao
Zhang, and Ion Stoica. Efficient memory management for large language model serving with pagedattention.
In Proceedings of the 29th Symposium on Operating Systems Principles, pages 611–626, 2023.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative decoding.
In International Conference on Machine Learning, pages 19274–19286. PMLR, 2023.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle-3: Scaling up inference acceleration of large
language models via training-time test. arXiv preprint arXiv:2503.01840, 2025.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan Leike, John
Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth International Conference
on Learning Representations, 2023.

Xianzhen Luo, Yixuan Wang, Qingfu Zhu, Zhiming Zhang, Xuanyu Zhang, Qing Yang, Dongliang Xu, and
Wanxiang Che. Turning trash into treasure: Accelerating inference of large language models with token
recycling, 2024. URL https://arxiv.org/abs/2408.08696.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang, Rae Ying Yee
Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, et al. Specinfer: Accelerating large language model serving with
tree-based speculative inference and verification. In Proceedings of the 29th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems, Volume 3, pages 932–949,
2024.

Gabriele Oliaro, Zhihao Jia, Daniel Campos, and Aurick Qiao. Suffixdecoding: A model-free approach to
speeding up large language model inference, 2024. URL https://arxiv.org/abs/2411.04975.

Zhenting Qi, Mingyuan Ma, Jiahang Xu, Li Lyna Zhang, Fan Yang, and Mao Yang. Mutual reasoning makes
smaller llms stronger problem-solvers. arXiv preprint arXiv:2408.06195, 2024.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani, Julian
Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark. In First Conference
on Language Modeling, 2024.

Mingyang Song, Zhaochen Su, Xiaoye Qu, Jiawei Zhou, and Yu Cheng. Prmbench: A fine-grained and
challenging benchmark for process-level reward models. arXiv preprint arXiv:2501.03124, 2025.

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. Blockwise parallel decoding for deep autoregressive
models. Advances in Neural Information Processing Systems, 31, 2018.

NovaSky Team. Think less, achieve more: Cut reasoning costs by 50% without sacrificing accuracy.
https://novasky-ai.github.io/posts/reduce-overthinking, 2025. Accessed: 2025-01-23.

Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang Sui. Math-
shepherd: Verify and reinforce llms step-by-step without human annotations. arXiv preprint arXiv:2312.08935,
2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.
Chain-of-thought prompting elicits reasoning in large language models. Advances in neural information
processing systems, 35:24824–24837, 2022.

Minghao Yan, Saurabh Agarwal, and Shivaram Venkataraman. Decoding speculative decoding. arXiv preprint
arXiv:2402.01528, 2024.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint arXiv:2412.15115, 2024.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan. Tree of
thoughts: Deliberate problem solving with large language models. Advances in neural information processing
systems, 36:11809–11822, 2023.

Yao Zhao, Zhitian Xie, Chen Liang, Chenyi Zhuang, and Jinjie Gu. Lookahead: An inference acceleration
framework for large language model with lossless generation accuracy. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, KDD ’24, page 6344–6355. Association for
Computing Machinery, 2024. ISBN 9798400704901. doi: 10.1145/3637528.3671614.

11

https://arxiv.org/abs/2408.08696
https://arxiv.org/abs/2411.04975

A Appendix

A.1 Base Models of Varying Sizes and Architectures

0 50 100 150 200 250 300
Latency (s)

20

30

40

pa
ss

@
1

(%
)

Better

AIME
Base model Small model SpecReason

Figure 8: SpecReason’s results on the model combination (R1-70B, R1-1.5B).

To demonstrate the generality of SpecReason, we replace the QwQ-32B base model with DeepSeek’s
R1-70B and evaluate on the same representative subdatasets as in §5.3. Given the size of the R1-70B
model, we deploy it across four A100-80GB GPUs using a tensor parallelism degree of 4.

On the AIME subdataset, SpecReason achieves a 1.5× latency reduction compared to vanilla R1-
70B inference. This speedup is smaller than the gains observed with the QwQ-32B model in our
main results (1.9×) due to two key factors. First, the R1-70B model benefits from both stronger
hardware and greater parallelism (4-way TP on A100s), resulting in a 1.5× lower time-per-token
(TPT) compared to QwQ-32B (2-way TP on A6000s). In contrast, the smaller model R1-1.5B sees
only a modest 1.1× TPT improvement on stronger hardware, which narrows the performance gap
between base and small models and thus diminishes latency savings. Second, QwQ-32B is empirically
a stronger model – outperforming R1-70B across many reasoning benchmarks qwq [2025] – and this
performance gap impacts their respective abilities to assess intermediate steps. To maintain accuracy,
we adopt a stricter acceptance threshold when using R1-70B as the base model, which reduces the
fraction of steps offloaded to the small model (23.2% compared to 40.8% in the main results).

A.2 Intuition behind Accuracy Improvement

MATH AIME GPQA
(a) QwQ-32B + R1-1.5B

0

2000

4000

6000

Av
g

Th
in

ki
ng

 To
ke

n
Co

un
t

MATH AIME GPQA
(b) QwQ-32B + Zyphra-1.5B

MATH AIME GPQA
(c) Skywork-32B + R1-1.5B

MATH AIME GPQA
(d) Skywork-32B + Zyphra-1.5B

Base Model Small Model SpecReason

Figure 9: Intuition behind SpecReason’s accuracy improvement on all datasets and model combina-
tions.

In Fig. 9, we evaluate the average thinking token count of SpecReason and two vanilla inference
baselines on a wide range of datasets and model combinations. We observe that the small model is
generally less verbose than the base model, and because SpecReason adopts many speculated steps
from the small model, its token consumption is reduced by 1.0− 1.3×, 1.2− 2.0×, 1.0− 1.8×, and
1.1− 2.3× on the four model combinations, respectively.

12

	Introduction
	Background
	Motivation
	Method
	Speculative Reasoning
	Hierarchical Speculation across Semantic Similarity and Token Equivalence

	Evaluation
	Setup
	Main Results
	Controlling the Accuracy-Latency Tradeoff
	Base Model's Judgement Capability

	Conclusion
	Appendix
	Base Models of Varying Sizes and Architectures
	Intuition behind Accuracy Improvement

