
Under review as a conference paper at ICLR 2023

DECN: EVOLUTION INSPIRED DEEP CONVOLUTION
NETWORK FOR BLACK-BOX OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We design a deep evolution convolution network (DECN) to overcome the poor
generalization of an evolutionary algorithm in handling continuous black-box op-
timization. DECN is composed of two modules: convolution-based reasoning
module (CRM) and selection module (SM), to move from hand-designed opti-
mization strategies to learned optimization strategies. CRM produces a population
closer to the optimal solution based on the convolution operators, and SM removes
poor solutions. We also design a proper loss function to train DECN so as to force
the random population to move near the optimal solution. The experimental results
on one synthetic case and two real-world cases show the advantages of learned
optimization strategies over human-designed black-box optimization baselines.
DECN obtains good performance with deep structure but encounters difficulties in
training. In addition, DECN is friendly to the acceleration with Graphics Process-
ing Units (GPUs) and runs 102 times faster than unaccelerated EA when evolving
32 populations, each containing 6400 individuals.

1 INTRODUCTION

Optimization has been an old and essential research topic in history; Many tasks in computer vision,
machine learning, and natural language processing can be abstracted as optimization problems.
Moreover, many of these problems are black-box, such as neural architecture search (Elsken et al.,
2019) and hyperparameter optimization (Hutter et al., 2019). Various approaches, such as Bayesian
optimization (Snoek et al., 2012) and evolutionary algorithms (EAs), including genetic algorithms
(Jin et al., 2019; Khadka & Tumer, 2018; Zhang & Li, 2007; Such et al., 2017; Stanley et al., 2019)
and evolution strategies (ES) (Wierstra et al., 2014; Vicol et al., 2021; Hansen & Ostermeier, 2001;
Auger & Hansen, 2005; Salimans et al., 2017), have been proposed to deal with these problems in the
past.

The generalization ability of EAs is poor. Faced with a new black-box optimization task, we need
experts to redesign the EA’s crossover, mutation, and selection operations to maximize its performance
on the target task, resulting in a hand-designed EA with big application limitation. Most importantly,
due to the limitation of expert knowledge, only little target function information is used to assist the
design of EA, which makes it challenging to adapt to the target task. How to automatically design
optimization strategies according to new tasks is crucial. EA is a generative optimization model
that realizes the generation from a random population to an optimal solution by generating potential
solutions and retaining good solutions. The task of automatically designing an optimization strategy
is learning how to automatically generate and retain potential solutions.

This paper first attempts to develop a deep evolution convolution network (DECN) to learn to exploit
structure in the problem of interest so that DECN can automatically move a random population near
the optimal solution for different black-box optimization tasks. DECN uses the process of EAs to
guide the design of this new learning-to-optimize architecture. Like EAs, we propose two critical
components of DECN to generate and select potential solutions: a convolution-based reasoning mod-
ule (CRM) and a selection module (SM). For CRM, we need to ensure the exchange of information
between individuals in the population to achieve the function of generating potential solutions. We
design a lattice-like environment organizing the population into the modified convolution operators
and then employ mirror padding (Goodfellow et al., 2016) to generate the potential offspring. SM
need to update the population to survive the fittest solutions. We design SM based on a pairwise

1

Under review as a conference paper at ICLR 2023

comparison between the offspring and the input population regarding their fitness, implemented by
employing the mask operator. Then, we design the evolution module (EM) based on CRM and SM to
simulate one generation of EAs. Finally, we build the DECN by stacking several EMs to cope with
the first issue.

The untrained DECN does not handle the black-box optimization problem well because it needs
information about the target black-box function. In order to better optimize the objective task, we
need to design a training set containing objective function information and a practical loss function to
guide the parameter training of DECN. The characteristics of black-box functions make it difficult
for us to obtain their gradient information to assist in the training of DECN. To overcome the second
issue, the following questions must be solved: how to design a proper loss function and training
dataset. We construct a differentiable surrogate function set of the target black-box function to
obtain the information of the target black-box function. However, the optimal population is usually
unknown. The designed loss function is to maximize the difference between the initial and output
populations to train DECN towards the optimal solution, where the loss function can be optimized by
back-propagation.

We test the performance of DECN on six standard black-box functions, protein docking problem,
and planner mechanic arm problem. Three population-based optimization baselines, Bayesian
optimization (Kandasamy et al., 2020), and a learning-to-optimize method for black-box optimization
(Cao et al., 2019) are employed as references. The results indicate that DECN can automatically learn
efficient mapping for unconstrained continuous optimization on high-fidelity and low-fidelity training
datasets. Finally, to verify that DECN is friendly to Graphics Processing Units (GPUs)’ acceleration,
we compare the runtime of DECNs on one 1080Ti GPU with the standard EA.

2 RELATED WORK

There are many efforts that can handle black-box optimization, such as Bayesian optimization (Snoek
et al., 2012) and EAs (Mitchell, 1998). Since the object of DECN is population, it has a strong
relationship with EA. Meanwhile, DECN is a new learning-to-optimize (L2O) framework. Appendix
A.10 shows our detailed motivations.

EAs. EAs are inspired by the evolution of species and have provided acceptable performance for
black-box optimization. There are two essential parts to EAs: 1) crossover and mutation: how
to generate individuals with the potential to approach the optimal solution; 2) selection: how to
discard individuals with inferior performance while maintaining the ones with superior performance.
In the past decades, many algorithmic components have been designed for different tasks in EAs.
The performance of algorithms varies towards various tasks, as different optimization strategies
may be required given diverse landscapes. This paper focuses on two critical issues of EAs: 1)
Poor generalization ability. Existing methods manually adjust genetic operators’ hyperparameters
and design the combination between them (Kerschke et al., 2019; Tian et al., 2020); However, its
crossover, mutation, and selection modules can only be designed manually based on expert knowledge
and cannot effectively interact with the environment (function); that is, they cannot change their
elements in real-time to adapt to new problems through the feedback of the objective function. 2) The
acceleration of EAs using GPUs is a challenging task. The support for multiple subpopulations to
evolve simultaneously has paramount significance in practical applications. Besides, many available
genetic operators are unfriendly to the GPU acceleration, as GPUs are weak in processing logical
operations. DECN overcomes the above issues. It is adapted to different optimization scenarios,
based on which DECN automatically forms optimization strategies.

L2O. The most related work is about L2O (Chen et al., 2022). These methods employ the long
short-term memory architecture (LSTM) (Chen et al., 2020; Andrychowicz et al., 2016; Chen et al.,
2017; Li & Malik, 2016; Wichrowska et al., 2017; Bello et al., 2017) or multilayer perceptron (MLP)
(Metz et al., 2019) as the optimizer to achieve point-based optimization (Sun et al., 2018; Vicol et al.,
2021; Flennerhag et al., 2021; Li & Malik, 2016). However, none of the above methods can handle
black-box optimization. Swarm-inspired meta-optimizer (Cao et al., 2019) learns in the algorithmic
space of both point-based and population-based optimization algorithms. This method does not
consider the advantage of EAs and is a model-free method. Existing L2O techniques rarely focus on
black-box optimization. Although several efforts like (Cao et al., 2019; Chen et al., 2017) have coped
with these problems, they all deal with small-scale problems in the experimental setting. DECN is a

2

Under review as a conference paper at ICLR 2023

new L2O framework that makes up for the performance disadvantage of the current L2O architecture
in black-box optimization. This paper makes an essential contribution to the L2O community.

3 DEEP EVOLUTION CONVOLUTION NETWORK

3.1 PROBLEM DEFINITION

An unconstrained black-box optimization problem can be transformed or represented by a minimiza-
tion problem, and constraints may exist for corresponding solutions:

min f(s|ξ), s.t. xi ∈ [di, ui],∀xi ∈ s, (1)

where s = (x1, x2, · · · , xD) represents the solution of optimization problem f while d =
(d1, d2, · · · , dD) and u = (u1, u2, · · · , uD) denote the corresponding lower and upper bounds
of the solution’s domain, respectively. ξ is the known parameters of f . We can only use the
query-response terminology because the objective function f is a black box without a closed-
form formulation in this setting. Suppose n individuals of one population (S = {s1, · · · , sn}) be
s1 = (x1

1, x
1
2, · · · , x1

D), s2 = (x2
1, x

2
2, · · · , x2

D), · · · , sn = (xn
1 , x

n
2 , · · · , xn

D). This paper aims to
make the initial population move near the optimal solution. To be noted, θ is the parameters (strate-
gies) of G, G is an abstract function remarking the optimization process, S0 is the initial population,
and St is the output population. The procedure of DECN can be formulated as St = Gθ(S0, f(s|ξ)).
Based on the optimized θ, DECN optimizes f(s|ξ) by Gθ.

3.2 CONVOLUTION-BASED REASONING MODULE

We design CRM to ensure that individuals in the population can exchange information to generate
the potential solutions near the optimal solution (similar to the function of recombination operator in
EAs). The corresponding correction to the convolution operator can achieve this goal, which is the
motivation for our design with convolution. This part mainly describes how to construct CRM to
generate new solutions.

Organize Population into Convolution. We arrange all individuals in a lattice-like environment with
a size of L× L. In this case, we can represent the population by using a tensor (i, j, d), where (i, j)
locates the position of one individual S(i, j) in the L× L lattice and d is the dimension information
of this individual. Appendix A.2 gives an illustration of the tensor data. The individuals in the lattice
are sorted in descending order to construct a population tensor with a consistent pattern (see Figure
5 of Appendix). The number of channels in input tensors is D+1, where D is the dimension of the
optimization task, and the fitness of individuals occupies one channel. The fitness channel does not
participate in the convolution process but is essential for the information selection in the selection
module.

How to Design CRM. After organizing the population into a tensor (L,L,D + 1), we modified
the depthwise separable convolution (DSC) operator (Chollet, 2017) to generate new individuals
by merging information in different dimensions among individuals. The DSC operator includes a
depthwise convolution followed by a pointwise convolution. Pointwise convolution maps the output
channel of depthwise convolution to a new channel space. When applied to our task, we remove
the pointwise convolution in DSC to avoid the information interaction between channels. Eq. (2)
provides the details about how to reproduce offspring, and one example is shown in Fig. 8 of the
Appendix.

S
′
(i, j) =

∑
k,l

wk,lS(i+ k, j + l), (2)

where S
′
(i, j) denotes the individuals in the output population, S(i, j) denotes the individuals in the

input population, and wk,l represents the related parameters of convolution kernels. Moreover, to
adapt to optimization tasks with different dimensions, different channels share the same parameters.
The parameters within convolution kernels record the strategies learned by this module to reason over
available populations given different tasks. There are still two critical issues to address here.

1) Since there does not exist a consistent pattern in the population, the gradient upon parameters is
unstable as well as divergent. A fitness-sensitive convolution is designed, where the CRM’s attention
to available information should be relative to the quality and diversity of the population. wk,l reflects

3

Under review as a conference paper at ICLR 2023

the module’s attention during reasoning and is usually relative to the fitness of individuals. After that,
this problem is resolved by simply sorting the population in the lattice based on individuals’ fitness.

2) Another vital issue is the scale of the offspring. We conduct padding before the convolution
operator to maintain the same scale as the input population. However, filling the tensor of the
population with constant values ‘0’ is not proper, as is usually done in computer vision. Instead,
mirror padding copies the individuals to maintain the same scale between the offspring and the input
population. As the recombination process conducts the information interaction among individuals,
copying the individual is better than extending tensors with a constant value. An implementation of
mirror padding to the population is given in Appendix.A.3.

The size of convolution kernels within CRM determines the number of individuals employed to
implement reasoning of S

′
(i, j). After that, this paper employs convolution kernels with commonly

used sizes. Different convolution kernels produce corresponding output tensors, while the final
offspring are obtained by averaging multiple convolutions’ output. Then, the fitness of this final
offspring will be evaluated.

3.3 SELECTION MODULE

𝐼𝐼𝑥𝑥>0 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡 𝐶𝐶1

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡 𝐶𝐶1′
𝐶𝐶1′ − 𝐶𝐶1

1 − 𝐼𝐼𝑥𝑥>0 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

×

+

×
𝑆𝑆𝑖𝑖−1′

𝑆𝑆𝑖𝑖−1

𝐹𝐹𝑡𝑡𝑡𝑡𝐶𝐶𝑡𝑡𝐹𝐹𝐹𝐹

𝐹𝐹𝑡𝑡𝑡𝑡𝐶𝐶𝑡𝑡𝐹𝐹𝐹𝐹

𝑆𝑆𝑖𝑖

Figure 1: SM. An indication matrix is produced by
subtracting the fitness channel (c1), based on which
individuals within the input and output populations
can be extracted to form offspring.

The selection module updates the population
so as to survive the fittest individuals. SM
updates individuals based on a pairwise com-
parison between the offspring and input pop-
ulation regarding their fitness for efficiency
and simplicity. Si−1 and S

′

i−1 are the in-
put and output populations of CRM, respec-
tively. Si−1 and S

′

i−1 contain D+1 channels.
The first channel stores the fitness value of
an individual. Thereafter, a matrix subtrac-
tion of fitness channel corresponding to Si−1

and S
′

i−1 compares the quality of individuals
from Si−1 and S

′

i−1 pairwise. A binary mask
matrix indicating the selected individual can
be obtained based on the indicator function
lx>0(x), where lx>0(x) = 1 if x > 0 and
lx>0(x) = 0 if x < 0. To extract selected
individuals from Si−1 and S

′

i−1, we construct a binary mask tensor by copying and extending the
mask matrix to the same shape as Si−1 and S

′

i−1. The selected information forms a new tensor Si by
employing Eq. (3) illustrated in Fig. 1.

Si = tile(lx>0(MF ′ −MF)) • Si−1 + tile(1− lx>0(MF ′ −MF)) • S
′

i−1, (3)

where the tile copy function extends the indication matrix to a tensor with size (L,L,D), MF (MF ′)

denotes the fitness matrix of Si−1(S
′

i−1), and • indicates the pairwise multiplication between inputs.

3.4 THE STRUCTURE OF DECN

𝑆𝑆𝑖𝑖−1 𝑆𝑆𝑖𝑖−1′ 𝑆𝑆𝑖𝑖

𝐸𝐸𝐸𝐸𝑖𝑖

𝐸𝐸𝐸𝐸𝑖𝑖𝑆𝑆𝑖𝑖−1 𝑆𝑆𝑖𝑖

𝐶𝐶𝐶𝐶𝐸𝐸𝑖𝑖 𝑆𝑆𝐸𝐸𝑖𝑖

𝐸𝐸𝐸𝐸1𝑆𝑆0 𝑆𝑆1 ⋯ ⋯ 𝐸𝐸𝐸𝐸𝑡𝑡𝑆𝑆𝑡𝑡−1 𝑆𝑆𝑡𝑡

𝐷𝐷𝐸𝐸𝐶𝐶𝐷𝐷

Figure 2: A general view of DECN and EM.

In vanilla EAs, each generation consists of
recombination and selection operations. Like
EAs, in Fig. 2, a learnable module based
on CRM and SM is designed to learn opti-
mization strategies, termed evolution module
(EM). Then, DECN is established by stacking
several EMs to simulate generations within
EAs. Si−1 is the input population of EMi.
S

′

i−1 is the output of CRM in order to fur-
ther improve the quality of individuals in the
global and local search scopes. Then, SM

4

Under review as a conference paper at ICLR 2023

selects the valuable individuals from Si−1 and S
′

i−1 according to their function fitness. Fig. 3
provides an intuitive description of data flow in EM.

0.5

𝑺𝟒 𝑺𝟒 𝑺𝟏 𝑺𝟏

𝑺𝟒 𝑺𝟒 𝑺𝟏 𝑺𝟏

𝑺𝟑 𝑺𝟑 𝑺𝟐 𝑺𝟐

𝑺𝟑 𝑺𝟑 𝑺𝟐 𝑺𝟐

Sort and

padding

Initial

population

𝑺𝟒 𝑺𝟐

𝑺𝟑 𝑺𝟏

-1 -1 0 0

-1 -1 0 0

0 0 0.5 0.5

0 0 0.5 0.5

0 0 1 1

0 0 1 1

-0.5 -0.5 0 0

-0.5 -0.5 0 0

0.11 0.38

-0.11 0.11

0.16 0.16

0.02 0.02

𝑺𝟒
′ 𝑺𝟏

′

𝑺𝟑
′ 𝑺𝟐

′

0 0

0 0

1 1

1 1

𝑺𝟒 𝑺𝟐

𝑺𝟑 𝑺𝟏

0 0

0 0

𝑺𝟒
′ 𝑺𝟏

′

𝑺𝟑
′ 𝑺𝟐

′

1 1

1 1

𝑺𝟒
′ 𝑺𝟏

′

𝑺𝟑
′ 𝑺𝟐

′

1 1

0.25 0.25

𝑺𝟏

Depth-wise convolution

mask (1-mask)

Fitness

𝒙𝟏

𝒙𝟐

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

∙ ∙+ =

-0.38 -0.11

-0.11 0.11

Parameters shared across channels

within convolution kernel

Output

population

𝑺𝟐

𝒙𝟏

𝑺𝟒

𝑺𝟑

𝒙𝟐
𝒇 𝒔 = 𝒙𝟏

𝟐 + 𝒙𝟐
𝟐

𝒍𝒙>𝟎(𝑴𝑭′ −𝑴𝑭)

Figure 3: An example to show the data flow in EM. Suppose f(s = {x1, x2}, xi = {0, 0}) =
(x1 − 0)2(x2 − 0)2, xi ∈ [−1, 1]. L is set to 2. We first transfer the initial population with four
individuals to the tensor and then sort and pad it into the new tensor with 16 channels. The modified
DSC operator is employed to generate x1, x2, and the fitness tensor. x1 and x2 are handled by
parameters shared across channels within a 3× 3 convolution kernel. The fitness tensor is handled by
Eq. (3). The new tensors of x1, x2, and the fitness tensor are averaged to generate the output.

3.5 TRAINING OF DECN

DECN with t EMs generates the offspring St from the input population S0 and can be trained based
on end-to-end mode. Then, given a proper loss function and training dataset, DECN can be trained to
learn optimization strategies towards the objective function f(s|ξ) by the back-propagation. We will
generally establish a function set F train to train DECN.

Training Dataset. This paper establishes the training set by constructing a set of differentiable
functions related to the optimization objective. This training dataset only contains (S0, fi(s|ξ)), the
initial population and objective function, respectively. fi represents the ith function in this set. We
show the designed training and testing datasets as follows:

F train = {f1(s|ξtrain1,i), · · · , fm(s|ξtrainm,i)}, F test = {F1(s|ξtest1)} (4)

where F1 is not employed in the training stage, and m is the number of functions in F train. ξtrainm,i
represents the ith different values of ξ in mth function fm, which is true for any index pair. The initial
population S0 is always randomly generated before optimization. F train is comprised of different
functions and has diverse landscapes from F test.

How to Train DECN. DECN attempts to search for individuals with high quality based on the
available information. The loss function tells how to adaptively adjust the DECN parameters to
generate individuals closer to the optimal solution. According to the Adam (Kingma & Ba, 2014)
method, a minibatch Ω is sampled each epoch for the training of DECN upon F train, which is
comprised by employing K initialized S0 for each fi. We give the corresponding mean loss of
minibatch Ω for fi in F train,

min
θ

Li = min
θ

− 1

K

∑
S0∈Ω

1
|S0|

∑
s∈S0

fi(s|ξ)− 1
|Gθ(S0)|

∑
s∈Gθ(S0)

fi(s|ξ)∣∣∣∣∣(1
|S0|

∑
s∈S0

fi(s|ξ)

∣∣∣∣∣
(5)

Eq. (5) is to maximize the difference between the initial population and the output population of
DECN to ensure that the initial population is close to the optimal solution. Moreover, Eq. (5)

5

Under review as a conference paper at ICLR 2023

Algorithm 1 Training of DECN
Input: Batch size for Adam, Ω; Function set for training, F train

Output: Parameters of DECN θ;
Randomly initialize θ of DECN;
Randomly initialize ξtrainj,i to adjust fj in F train;
repeat

Randomly initialize a minibatch Ω comprised of K populations S0;
for fj in F train do

Update θ by Li given training data (S0, fj);
end for
Update θ by minimizing −1/m

∑
j Lj ;

Re-initialize parameters ξj of fj in F train every T epochs;
until training is finished

are generally differentiable based on the constructed training dataset. Eq. (5) enables DECN to
perform the exploitation operation well but does not strongly encourage DECN to explore the fitness
landscape. However, we have many options to balance exploration and exploitation. For example, the
constructed Bayesian posterior distribution over the global optimum (Cao & Shen, 2020) is added
to Eq. (5). Suppose the objective functions are hard to be formulated, and the derivatives of these
functions are not available at training time, then two strategies can be employed: 1) Approximate
these derivatives via REINFORCE (Williams, 1992); 2) Use the neuro-evolution (Such et al., 2017;
Stanley et al., 2019) method to train DECN. Algorithm 1 provides the training process of DECN.
After DECN has been trained, DECN can be used to solve the black-box optimization problems since
the gradient is unnecessary during the test process.

Table 1: The compared results on six functions. The value of the objective function is shown in the
table, and the optimal solution is bolded. *(*) represents the mean and standard deviation of repeated
experiments.

D F DECNws3 DE ES CMA-ES L2O-swarm Dragonfly

10

F4 1e-6(1e-07) 0.15(0.06) 0.14(0.07) 4e-3(4e-3) 0.30(0.01) 1310(1310)
F5 1e-3(6e-06) 4.62(1.07) 0.47(0.13) 0.11(0.05) 0.25(8.70e-4) 48.4(9.58)
F6 8.89(1e2) 244(95.1) 118(235) 1660(2540) 154(243) 4e8(1e08)
F7 0(0) 18.5(3.51) 48.1(8.68) 48.3(7.47) 12.8(5.49) 81.1(24.0)
F8 0(0) 0.26(0.12) 0.30(0.17) 0.02(0.01) 0.06(3.39e-4) 35.4(22.0)
F9 1e-3(3e-4) 1.86(0.36) 20.5(0.13) 20.7(0.10) 2.19(0.02) 16.2(3.64)

100

F4 7e-9(4e-11) 8.5e3(396) 9.3e4(8.12e3) 7330(1e3) 0.66(0.04) None
F5 4e-4(0) 28.2(0.47) 82.5(2.16) 71.8(9.74) 0.96(0.04) None
F6 96(0.02) 2.3e8(2.8e7) 2.5e10(3.1e9) 3.4e8(9.5e7) 286(28.5) None
F7 0(0) 9.3e3(504) 9.3e4(9.1e3) 8.7e3(1.5e3) 50.6(21.0) None
F8 0(0) 3.06(0.22) 24.2(2.91) 2.90(0.31) 0.15(1e-3) None
F9 4e-3(8e-05) 18.9(0.15) 21.4(0.01) 21.4(0.03) 3.06(0.02) None

4 EXPERIMENTS

4.1 RESULTS ON SYNTHETIC FUNCTIONS

Results on High-fidelity Training Dataset For each function in Appendix Table 7, we produce the
training dataset as follows: 1) Randomly initialize the input population S0; 2) Randomly produce a
shifted objective function fi(s|ξ) by adjusting the corresponding location of optima-namely, adjusting
the parameter ξ; 3) Evaluate S0 by fi(s|ξ); 4) Repeat Steps 1)-3) to generate the corresponding
dataset. For example, we show the designed training and testing datasets for the F4 function as
follows:

F train = {F4(s|ξtrain1), · · · , F4(s|ξtrainm)}, F test = {F4(s|ξtest)} (6)
F train and F test are comprised of the same essential function but vary in the location of optima
obtained by setting different combinations of ξ (called bi in Table 7). F train can be considered

6

Under review as a conference paper at ICLR 2023

as the high-fidelity surrogate functions of F test. We train DECN on F train, and then we test the
performance of DECN upon F test, where the values of ξtest not appearing in the training process.

Here, D = {10, 100} and L = 10. DECN is compared with standard EA baselines (DE
(DE/rand/1/bin) (Das & Suganthan, 2010), ES ((µ,λ)-ES), and CMA-ES), L2O-swarm (Cao et al.,
2019) (a representative L2O method for black-box optimization), and Dragonfly (Kandasamy et al.,
2020) (the state-of-the-art Bayesian optimization). DECNws3 contains 3 EMs, and the parameters of
these three convolution kernels are consistent across different EMs (weight sharing). The detailed
parameters of these models can be found in Appendix A.11. The results are provided in Table 1.
DECN outperforms compared methods by a large margin. This is because we use a high-fidelity
surrogate function of the target black-box function to train DECN. The trained DECN contains an
optimization strategy that is more tailored to the task. Current DE, ES, CMA-ES, and Dragonfly do
not use this information to design their element. Even if we constantly adjust the hyperparameters of
the comparison algorithm, the results are unlikely to be better than DECN.

Table 2: The performance of different DECN.

D F DECNws3 DECNws30 DECNn15

10

F4 53.8(14.3) 1.17(0.58) 0.09(0.02)
F5 4.26(0.61) 0.59(0.16) 0.19(0.03)
F6 4.5(2.3e4) 131(67.1) 17.0(2.88)
F7 24.4(4.01) 0.35(0.22) 5.93(1.40)
F8 1.48(0.14) 0.29(0.08) 0.17(0.04)
F9 4.33(0.41) 0.91(0.32) 0.22(0.04)

100

F4 1.15e4(744) 2.19e3(148) 67.4(9.09)
F5 25.0(0.92) 10.4(0.39) 2.22(0.15)
F6 3e8(4e7) 1e7(2e6) 2e4(5e3)
F7 776(19.2) 549(18.3) 81.5(11.9)
F8 105(6.12) 20.9(1.17) 1.58(0.08)
F9 11.6(0.21) 6.79(0.14) 3.77(0.16)

Results on Low-fidelity Training Dataset
The training of DECN requires a differen-
tiable surrogate function for the black-box
optimization problem. However, accurate
high-fidelity surrogate functions are difficult
to obtain. Therefore, this section tests the per-
formance of DECNs trained on low-fidelity
surrogate functions. Three functions in Table
6 are employed as the low-fidelity surrogate
functions for each function in Table 7. Here,
the whole functions in Table 6 are employed
as F train in order to train one DECN, and
then the results on each function of Table 7
are shown in Table 2. For example, we show
the designed training and testing datasets for
the F4 function as follows:

F train = {F1(s|ξ1,i), F2(s|ξ2,i), F3(s|ξ3,i)}, F test = {F4(s|ξtest)} (7)

Meanwhile, we also test the impact of different architectures on DECN, including the different
number of layers and whether weights are shared between layers. We design three models, including
DECNws3, DECNn15, and DECNws30. DECNn15 does not share parameters across 15 EMs.
DECNws30 shares parameters across 30EMs. Their parameters are shown in Table 9 (Appendix).

DECNws30 outperforms DECNws3 in all cases, demonstrating that deep architectures have stronger
representation capabilities and can build more accurate mapping relationships between random
populations and optimal solutions. DECNn15 outperforms DECNws3 and DECNws30 when D =
100. This case is more complex than the case with D = 10. Although the number of layers
of DECNn15 is lower than that of DECNws30, its representation ability is stronger than that of
DECNws30 because it does not share weights. However, when the number of layers becomes larger,
this architecture is more difficult to train. The transferability of DECN is proportional to the fitness
landscape similarity between the training set and the problem. When new problem attributes are not
available in the training set, DECN can still perform better. However, if extreme attributes are not
available, then DECN can be the less satisfactory performance for functions with this attribute. These
results show that the optimization strategy learned by DECN has good generality and is transferable
to many unseen objective functions.

4.2 RESULTS ON PROTEIN DOCKING

Protein docking predicts the 3D structures of protein-protein complexes given individual proteins’
3D structures or 1D sequences (Smith & Sternberg, 2002). We consider the ab initio protein docking
problem, which is formulated as optimizing the Gibbs binding free energy for conformation s:
f(s) = ∇G(s). We calculate the energy function in a CHARMM 19 force field as in (Moal & Bates,
2010). We parameterize the search space as s ∈ R12 as in (Cao & Shen, 2020). We only consider
100 interface atoms. The training set includes 125 instances (see Appendix A.9), which contains 25
protein-protein complexes from the protein docking benchmark set 4.0 (Hwang et al., 2010), each

7

Under review as a conference paper at ICLR 2023

of which has five starting points (top-5 models from ZDOCK (Pierce et al., 2014)). The testing set
includes three complexes (with one starting model each) of different levels of docking difficulty.
1ATN is the protein class that appeared during training. 1ATN 7 is the No. 7 instance of the 1ATN
class, and it did not appear in the training process. 2JEL 1 and 7CEI 1 are the No. 1 instances of
the two classes of proteins that did not participate in the training process. For example, we show the
designed training and testing datasets for 1ATN 7 as follows:

F train = {f(s|ξ1), · · · , f(s|ξ125)}, F test = {f(s|ξtest)} (8)

where ξ represents different instances of protein-protein complexes.

Table 3: The compared results on ab initio protein docking
problem. D = 12.

Methods 1ATN 7 2JEL 1 7CEI 1

L2O-Swarm 2091(25.08) 2766(24.80) 1690(23.64)
CMA-ES -6240(100) -6260(51.8) -6170(18.4)

ES -6200(48.1) -6210(5.05) -6180(2.47)
DE -6260(58.1) -6220(29.2) -6140(20.5)

Dragonfly -6160(4.3) -6120(2.9) -6103(2.0)
DECNws3 -6261(96.71) -6250(84.38) -6193(84.66)

In L2O-swarm, the part of Bayesian
posterior distribution over the global
optimum (Cao & Shen, 2020) is re-
moved to keep fair with DECN. The
experimental results reported in Ta-
ble 3 demonstrate that DECN outper-
forms L2O-swarm, Dragonfly, DE,
CMA-ES, and ES in all three cases.
Since L2O-swarm has no elite reten-
tion mechanism, its result is worse
than the optimal value of the initial
population.

4.3 RESULTS ON PLANAR MECHANICAL ARM

The planner mechanic arm has been frequently employed as an optimization problem to assess how
well the black-box optimization algorithms perform (Cully et al., 2015; Vassiliades et al., 2018;
Vassiliades & Mouret, 2018; Mouret & Maguire, 2020). The planner mechanic arm problem has two
key parameters: the set of L = (L1, L2, · · · , Ln) and the set of angles α = (α1, α2, · · · , αn), where
n represents the number of segments of the mechanic arm, and Li ∈ (0, 10) and αi ∈ (−Π,Π) rep-
resent the length and angle of the ith mechanic arm, respectively. This problem is to find the suitable
sets of L and α such that the distance f(L,α, p) from the top of the mechanic arm to the target posi-

tion p is the smallest, where f(L,α, p) =

√
(
∑n

i=1 cos(αi)Li − px)
2
+ (

∑n
i=1 sin(αi)Li − py)

2,
and (px, py) represents the target point’s x- and y-coordinates. Here, n = 100. We design two groups
of experiments.

Table 4: The results of planar mechanical arm. gen is the number of generations for EAs.
Case gen r DE ES CMA-ES L2O-Swarm DECNws3

SC

10
100 2.96(1.63) 11.2(4.70) 236(46.8) 40.4(3.89) 0.42(0.22)
300 11.3(14.7) 45.3(43.3) 243(125) 69.5(3.77) 1.04(1.25)

50
100 1.28(0.60) 10.7(5.91) 2.42(0.65) 40.4(3.89) 0.42(0.22)
300 1.54(0.89) 42.0(41.0) 4.06(6.54) 69.5(3.77) 1.04(1.25)

100
100 1.20(0.64) 10.6(5.58) 1.36(0.35) 40.4(3.89) 0.42(0.22)
300 1.38(0.71) 44.9(43.3) 1.38(0.41) 69.5(3.77) 1.04(1.25)

CC 100
100 0.81(0.47) 8.95(6.42) 0.76(0.20) 31.9(1.78) 0.38(0.25)
300 6.15(12.2) 47.8(56.0) 0.87(0.37) 89.1(1.96) 8.27(21.3)

1) Simple Case (SC). We fixed the length of each mechanic arm as ten and only searched for the
optimal α. We randomly selected 600 target points within the range of r ≤ 1000, where r represents
the distance from the target point to the origin of the mechanic arm, as shown in Fig. 10 (Appendix). In
the testing process, we extracted 128 target points in the range of r ≤ 100 and r ≤ 300, respectively,
for testing. We show the designed training and testing datasets as follows:

F train = {f(α|ξ1), · · · , f(α|ξ600)}, F test = {f(α|ξtest1), · · · , f(α|ξtest128)}, ξ = (px, py) (9)

8

Under review as a conference paper at ICLR 2023

2) Complex Case (CC). We need to search for L and α at the same time. We show the designed
training and testing datasets as follows:
F train = {f((L,α)|ξ1), · · · , f((L,α)|ξ600)}, F test = {f((L,α)|ξtest1), · · · , f((L,α)|ξtest128)}

(10)
We evaluate the performance of the algorithm by

∑
f∈F test f/128. The experimental results are

shown in Table 4. Note that Dragonfly performs poorly due to the high dimensional of this problem
(D = {100, 200}. In simple cases, DECNws3 outperforms all baselines. Nevertheless, for complex
cases, DECNws3 outperforms all baselines when r ≤ 100. However, when r ≤ 300, DECNws3
outperforms ES and L2O-Swarm and is weaker than DE and CMA-ES. as shown in Table 2, the
performance of DECNws3 is worse than DECNws30 and DECNn15. When we use DECNn15 to
optimize the complex case, its result is 0.54(0.26), which is better than all baselines.

4.4 ACCELERATING DECN WITH GPU

Table 5: DECN’s calculation efficiency
upon one 1080Ti GPU.

D Algorithm
L

10 80

10
DECN 0.0054 0.0500

EA 0.6942 72.3664

50
DECN 0.008026 0.237182

EA 0.6820 71.4425

500
DECN 0.0412 2.7274

EA 0.7208 74.9417

We show the surprising performance of DECN with
GPU-accelerated CRM and SM. To display the adapt-
ability of DECN to GPUs, we offer the average runtime
(second) of DECN and unaccelerated EA for three gen-
erations in Table 5. See Appendix A.6 for more results.
DECN and EA optimize K = 32 populations, each
containing L × L individuals (number of individuals:
K × L × L). Similarly, we employ the runtime of
EA with SBX crossover and Breeder mutation operator
without acceleration as a reference in this experiment.
In the unified test environment, the function estima-
tion time consumed by DECN and EA is basically the
same. As can be seen, with the increase of L, the ad-
vantage of acceleration based on GPUs is clear. DECN is around 102 times faster than EA when
D ∈ {10, 50, 500}. This case indicates that DECN is adapted to the acceleration of GPUs and can be
accelerated sufficiently. However, GPU cannot accelerate EA’s crossover, mutation, and selection
modules. In the case of a large population of individuals, these operators take up a high running time.

4.5 VISUALIZATION

Figure 4: Visualization of the optimization pro-
cess.

We take a two-dimensional F4 function as an ex-
ample to verify that DECN can indeed advance
the optimization. In Fig. 4, as the iteration pro-
ceeds, DECN gradually converges. When passing
through the first EM module, the CRM is first
passed, and the offspring S

′

i−1 are widely dis-
tributed in the search space, and the offspring are
closer to the optimal solution. Therefore, the CRM
generates more potential offspring and is rich in
diversity. After the SM update, the generated Si is
around the optimal solution, showing that the SM
update can keep good solutions and remove poor
ones. From the population distribution results of
the 2nd, 3rd, and 15th EMs, DECN continuously
moves the population to the vicinity of the optimal
solution.

5 CONCLUSIONS

We successfully designed DECN to learn optimization strategies for black-box optimization automat-
ically. The better performance than other human-designed methods demonstrates the effectiveness
of DECN. DECN can be well adapted to new black-box optimization tasks. Moreover, DECN has
outstanding adaptability to GPU acceleration due to the tensor operator. The limitations are discussed
in Appendix A.8.

9

Under review as a conference paper at ICLR 2023

6 REPRODUCIBILITY STATEMENT

The source code of Pytorch version of DECN can be downloaded in supplementary materials. The
parameters of DECN are shown in Table 9 in Appendix. Nine synthetic functions are shown in
Appendix A.5 (Tables 6 and 7). The 25 protein-protein complexes used for training DECN are shown
in Appendix A.9.

REFERENCES

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul,
Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient descent by gradient
descent. In Advances in Neural Information Processing Systems, pp. 3981–3989, 2016.

A. Auger and N. Hansen. A restart cma evolution strategy with increasing population size. In 2005
IEEE Congress on Evolutionary Computation, volume 2, pp. 1769–1776, 2005.

Irwan Bello, Barret Zoph, Vijay Vasudevan, and Quoc V Le. Neural optimizer search with rein-
forcement learning. In International Conference on Machine Learning, pp. 459–468. PMLR,
2017.

J. Blank and K. Deb. pymoo: Multi-objective optimization in python. IEEE Access, 8:89497–89509,
2020.

Yue Cao and Yang Shen. Bayesian active learning for optimization and uncertainty quantification in
protein docking. Journal of chemical theory and computation, 16(8):5334–5347, 2020.

Yue Cao, Tianlong Chen, Zhangyang Wang, and Yang Shen. Learning to optimize in swarms.
Advances in Neural Information Processing Systems, 32:15044–15054, 2019.

Tianlong Chen, Weiyi Zhang, Zhou Jingyang, Shiyu Chang, Sijia Liu, Lisa Amini, and Zhangyang
Wang. Training stronger baselines for learning to optimize. In H. Larochelle, M. Ranzato,
R. Hadsell, M. F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems,
volume 33, pp. 7332–7343. Curran Associates, Inc., 2020.

Tianlong Chen, Xiaohan Chen, Wuyang Chen, Howard Heaton, Jialin Liu, Zhangyang Wang, and
Wotao Yin. Learning to optimize: A primer and a benchmark. Journal of Machine Learning
Research, 23:1–59, 2022.

Yutian Chen, Matthew W Hoffman, Sergio Gómez Colmenarejo, Misha Denil, Timothy P Lillicrap,
Matt Botvinick, and Nando Freitas. Learning to learn without gradient descent by gradient descent.
In International Conference on Machine Learning, pp. 748–756. PMLR, 2017.

John Runwei Cheng and Mitsuo Gen. Accelerating genetic algorithms with gpu computing: A
selective overview. Computers & Industrial Engineering, 128:514–525, 2019.

François Chollet. Xception: Deep learning with depthwise separable convolutions. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pp. 1251–1258, 2017.

Antoine Cully, Jeff Clune, Danesh Tarapore, and Jean-Baptiste Mouret. Robots that can adapt like
animals. Nature, 521:503–507, 2015.

Swagatam Das and Ponnuthurai Nagaratnam Suganthan. Differential evolution: A survey of the
state-of-the-art. IEEE transactions on Evolutionary Computation, 15(1):4–31, 2010.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey. The
Journal of Machine Learning Research, 20(1):1997–2017, 2019.

Jazzbin et.al. geatpy: The genetic and evolutionary algorithm toolbox with high performance in
python, 2020.

Sebastian Flennerhag, Yannick Schroecker, Tom Zahavy, Hado van Hasselt, David Silver, and
Satinder Singh. Bootstrapped meta-learning. arXiv preprint arXiv:2109.04504, 2021.

10

Under review as a conference paper at ICLR 2023

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT press, 2016.

Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-adaptation in evolution
strategies. Evolutionary Computation, 9(2):159–195, 2001.

Yuxiao Huang, Liang Feng, A. K. Qin, Meng Chen, and Kay Chen Tan. Towards large-scale evolu-
tionary multi-tasking: A gpu-based paradigm. IEEE Transactions on Evolutionary Computation,
pp. 1–1, 2021. doi: 10.1109/TEVC.2021.3110506.

Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren. Automated machine learning: methods, systems,
challenges. Springer Nature, 2019.

Howook Hwang, Thom Vreven, Joël Janin, and Zhiping Weng. Protein–protein docking benchmark
version 4.0. Proteins: Structure, Function, and Bioinformatics, 78(15):3111–3114, 2010.

Chen Jin and A Kai Qin. A gpu-based implementation of brain storm optimization. In 2017 IEEE
Congress on Evolutionary Computation (CEC), pp. 2698–2705. IEEE, 2017.

Yaochu Jin, Handing Wang, Tinkle Chugh, Dan Guo, and Kaisa Miettinen. Data-driven evolutionary
optimization: An overview and case studies. IEEE Transactions on Evolutionary Computation, 23
(3):442–458, 2019. doi: 10.1109/TEVC.2018.2869001.

Kirthevasan Kandasamy, Karun Raju Vysyaraju, Willie Neiswanger, Biswajit Paria, Christopher R.
Collins, Jeff Schneider, Barnabas Poczos, and Eric P. Xing. Tuning hyperparameters without grad
students: Scalable and robust bayesian optimisation with dragonfly. Journal of Machine Learning
Research, 21(81):1–27, 2020.

Pascal Kerschke, Holger H. Hoos, Frank Neumann, and Heike Trautmann. Automated algorithm
selection: Survey and perspectives. Evolutionary Computation, 27(1):3–45, 2019. doi: 10.1162/
evco a 00242.

Shauharda Khadka and Kagan Tumer. Evolution-guided policy gradient in reinforcement learning.
In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc., 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Ke Li and Jitendra Malik. Learning to optimize. arXiv preprint arXiv:1606.01885, 2016.

Luke Metz, Niru Maheswaranathan, Jeremy Nixon, Daniel Freeman, and Jascha Sohl-Dickstein.
Understanding and correcting pathologies in the training of learned optimizers. In International
Conference on Machine Learning, pp. 4556–4565. PMLR, 2019.

Melanie Mitchell. An introduction to genetic algorithms. MIT press, 1998.

Iain H Moal and Paul A Bates. Swarmdock and the use of normal modes in protein-protein docking.
International Journal of Molecular Sciences, 11(10):3623–3648, 2010.

Jean-Baptiste Mouret and Glenn Maguire. Quality diversity for multi-task optimization. Proceedings
of the 2020 Genetic and Evolutionary Computation Conference, 2020.

Brian G Pierce, Kevin Wiehe, Howook Hwang, Bong-Hyun Kim, Thom Vreven, and Zhiping
Weng. Zdock server: interactive docking prediction of protein–protein complexes and symmetric
multimers. Bioinformatics, 30(12):1771–1773, 2014.

Kai Qin, Federico Raimondo, Florence Forbes, and Yew Soon Ong. An improved cuda-based
implementation of differential evolution on gpu. In Proceedings of the 14th Annual Conference on
Genetic and Evolutionary Computation, pp. 991–998, 2012.

Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies as a
scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864, 2017.

Graham R Smith and Michael JE Sternberg. Prediction of protein–protein interactions by docking
methods. Current opinion in structural biology, 12(1):28–35, 2002.

11

Under review as a conference paper at ICLR 2023

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. In F. Pereira, C.J. Burges, L. Bottou, and K.Q. Weinberger (eds.), Advances
in Neural Information Processing Systems, volume 25. Curran Associates, Inc., 2012.

Kenneth O Stanley, Jeff Clune, Joel Lehman, and Risto Miikkulainen. Designing neural networks
through neuroevolution. Nature Machine Intelligence, 1(1):24–35, 2019.

Felipe Petroski Such, Vashisht Madhavan, Edoardo Conti, Joel Lehman, Kenneth O Stanley, and Jeff
Clune. Deep neuroevolution: Genetic algorithms are a competitive alternative for training deep
neural networks for reinforcement learning. arXiv preprint arXiv:1712.06567, 2017.

Haoran Sun, Xiangyi Chen, Qingjiang Shi, Mingyi Hong, Xiao Fu, and Nicholas D. Sidiropou-
los. Learning to optimize: Training deep neural networks for interference management. IEEE
Transactions on Signal Processing, 66(20):5438–5453, 2018. doi: 10.1109/TSP.2018.2866382.

Ye Tian, Shichen Peng, Xingyi Zhang, Tobias Rodemann, Kay Chen Tan, and Yaochu Jin. A
recommender system for metaheuristic algorithms for continuous optimization based on deep
recurrent neural networks. IEEE Transactions on Artificial Intelligence, 1(1):5–18, 2020. doi:
10.1109/TAI.2020.3022339.

Vassilis Vassiliades and Jean-Baptiste Mouret. Discovering the elite hypervolume by leveraging
interspecies correlation. Proceedings of the Genetic and Evolutionary Computation Conference,
2018.

Vassilis Vassiliades, Konstantinos Chatzilygeroudis, and Jean-Baptiste Mouret. Using centroidal
voronoi tessellations to scale up the multidimensional archive of phenotypic elites algorithm. IEEE
Transactions on Evolutionary Computation, 22:623–630, 2018.

Paul Vicol, Luke Metz, and Jascha Sohl-Dickstein. Unbiased gradient estimation in unrolled
computation graphs with persistent evolution strategies. In International Conference on Machine
Learning, pp. 10553–10563. PMLR, 2021.

Olga Wichrowska, Niru Maheswaranathan, Matthew W Hoffman, Sergio Gomez Colmenarejo, Misha
Denil, Nando Freitas, and Jascha Sohl-Dickstein. Learned optimizers that scale and generalize. In
International Conference on Machine Learning, pp. 3751–3760. PMLR, 2017.

Daan Wierstra, Tom Schaul, Tobias Glasmachers, Yi Sun, Jan Peters, and Jürgen Schmidhuber.
Natural evolution strategies. Journal of Machine Learning Research, 15(1):949–980, 2014.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3):229–256, 1992.

Qingfu Zhang and Hui Li. Moea/d: A multiobjective evolutionary algorithm based on decomposition.
IEEE Transactions on Evolutionary Computation, 11(6):712–731, 2007.

12

Under review as a conference paper at ICLR 2023

A APPENDIX

A.1 BACKGROUND

Recombination. The subtraction is applicable during the production of a new individual, such as DE
(Das & Suganthan, 2010) and recombination operator in EAs, usually conducted on n individuals.
DE can reproduce a unique individual s∗ based on 11 with s1, s2, · · · , sn.

s∗ = sk +

n−1∑
i=2

Fi(si − si+1) (11)

where Fi is a scaling factor and sk is the best solution or is selected from s1, s2, · · · , sn. After an
expression expansion, this process can be summarized by a weighted recombination process as given
in Eq. (12). These operators are manually designed with different parameters (ai).

s∗ = a1 × s1 + a2 × s2 + · · ·+ an × sn =

n∑
i=1

ai × si. (12)

Selection. Many selection operators exist, such as the binary tournament mating selection operator
in Eq. (13). The selection operator is to retain individuals of higher quality for the next generation,
which can be regarded as an information selection process.

pi =

{
1 f(si) < f(sk)
0 f(si) > f(sk)

, (si, sk) ∈ S, (13)

where pi reflects the probability that si is selected for the next generation, and (si, sk) in Eq. (13) are
randomly selected from the population S. The selection process will be repeated until the number of
individuals is chosen.

A.2 HOW TO ORGANIZE A POPULATION INTO A TENSOR

As shown in Fig. 5, individuals in the lattice are sorted in descending order to construct a population
tensor with a consistent pattern. Suppose a population S = s1, s2, · · · , sL×L and f(s1) < f(s2) <
· · · < f(sL×L), where f(s) is a minimization task. s1, s2, · · · , sL×L are arranged in descending
order within the L× L lattice.

Figure 5: Organizing a population into a tensor.

Figure 6 gives an illustration of the tensor data. As can be seen, the number of channels of input
tensors is D+1, where D is the dimension of the optimization task, and the fitness of individuals
occupies one channel. The fitness channel does not participate in the convolution process but is
essential for the selection module in DECN for the information selection.

13

Under review as a conference paper at ICLR 2023

Figure 6: The realization of similar functions as recombination operators based on convolution
operator. Convolution kernels slip over the whole L × L lattice and conduct the information
interaction within the neighborhood of (i, j). For the picture on the left, the small red square with
many channals represents Si.

A.3 POPULATION ARRANGEMENT

Figure 7 gives an example of population arrangement and padding for the problem min f(s) = x1×x1,
where s = x1, x1 ∈ [0, 10]. The blue part marks the population arranged in a 10× 10 lattice, while
the gray region marks the mirror padding part.

Figure 7: Population arrangement and padding.

A.4 SEVERAL ESSENTIAL ISSUES ABOUT CRM

There are several essential issues necessary to be considered.

1) How many individuals should participate in the CRM reasoning progress. It remains a
challenge to implement information reasoning over multi-individuals in EAs. In most recombination
operators, the participant number is usually set to 2. However, based on the gradient information
provided by the back-propagation, it is easy to control an individual’s element by adjusting wk,l.

2) How to integrate the offspring produced by different convolution kernels. Since the convolu-
tion operation can be transformed as a multiplication between matrices, simply averaging over the

14

Under review as a conference paper at ICLR 2023

Padding

Offspring

Population Tensor

DSC

Average

Figure 8: Reproduction of the offspring based on CRM.

results output by different convolution kernels does not influence the training process. For example,
a1Co1xi

1 + a2Co2xi
2 + a3Co3xi

3 ↔ Co
′1xi

1 + Co
′2xi

2 + Co
′3xi

3, where xi
1, xi

2, and xi
3 are input

elements of si, a1, a2, and a3 are the constant, and Co denotes the convolution matrix.

3) How many convolution kernels should be used within CRM. We suppose that these are three
convolution kernels for x. We can find that the outcome a1Co13×3x + a2Co23×3x + a3Co33×3x

is equivalent to a
′
Co

′

3×3x. The output of multiple convolution kernels can be replaced by one
convolution kernel. Thus, the number of convolution kernels of the same size has no apparent
influence on DECN.

4) The impact of neighborhood recombination operation. The neighborhood recombination
operation has been commonly accepted in EAs to alleviate the selection pressure and prevent the
premature convergence of populations. Moreover, the receptive field of convolution kernels expands
as the number of layers increases. Thus, DECN can learn efficient optimization strategies across
generations.

A.5 NINE SYNTHETIC FUNCTIONS AND PARAMETERS

Table 6: Training functions.

ID Functions Range

F1
∑

i |wisin(xi − bi)| x ∈ [−10, 10], b ∈ [−10, 10]
F2

∑
i |xi − bi| x ∈ [−10, 10], b ∈ [−10, 10]

F3
∑

i |(xi − bi)− (xi+1 − bi+1)|+
∑

i |xi − bi| x ∈ [−10, 10], b ∈ [−10, 10]

A.6 ACCELERATE DECN WITH GPU

The acceleration of EAs using GPUs is challenging, and lots of research has contributed to this prob-
lem. The support for multiple subpopulations to evolve simultaneously has paramount significance
in practical applications. The efforts (Jin & Qin, 2017; Qin et al., 2012) accelerated the K-Means
process within the brain storm optimization algorithm through GPUs and proposed an improved
CUDA-based implementation of differential evolution on GPUs. Many other EAs have benefited
from the computing performance of GPUs (Huang et al., 2021; Cheng & Gen, 2019). However, all of
them just parallelized the current EAs. Besides, many available genetic operators are unfriendly to
the GPU acceleration, as GPUs are weak in processing logical operations. As both CRM and SM are
comprised of operations upon tensors, they can be sufficiently accelerated by GPUs.

15

Under review as a conference paper at ICLR 2023

Table 7: Testing Functions.

ID Functions Range

F4(Sphere)
∑

i z
2
i , zi = xi − bi x ∈ [−100, 100], b ∈ [−50, 50]

F5 max{|zi|, 1 ≤ i ≤ D}, zi = xi − bi x ∈ [−100, 100], b ∈ [−50, 50]

F6(Rosenbrock)
D−1∑
i=1

(100(z2i − zi+1)
2 + (zi − 1)2), zi = xi − bi x ∈ [−100, 100], b ∈ [−50, 50]

F7(Rastrigin)
D∑
i=1

(z2i − 10 cos(2πzi) + 10), zi = xi − bi x ∈ [−5, 5], b ∈ [−2.5, 2.5]

F8(Griewank)
D∑
i=1

z2i
4000

−
∏D

i=1 cos(
zi√
i
) + 1, zi = xi − bi x ∈ [−600, 600], b ∈ [−300, 300]

F9(Ackley) −20 exp(−0.2
√

1
D

∑D
i=1 z

2
i) −

exp(1
D

∑D
i=1 cos(2πzi)) + 20 + exp(1), zi =

xi − bi

x ∈ [−32, 32], b ∈ [−16, 16]

Table 8: Investigation of DECN’s calculation efficiency when accelerated upon one 1080Ti GPU.
The results in this table are the average time (second) of algorithms to conduct the evolution of 32
input populations for three generations.

D Algorithm
L

10 20 40 80

2
DECN(s) 0.004627 0.005978 0.007449 0.015492

EA(s) 0.700342 2.863495 12.67563 71.74005
Rate(DECN/EA) 0.006607 0.002088 0.000588 0.000216

10
DECN 0.005487 0.007838 0.01664 0.049973

EA 0.694213 2.879791 12.87636 72.3664
Rate(EM/EA) 0.007904 0.002722 0.001292 0.000691

30
DECN 0.007052 0.013323 0.039877 0.138544

EA 0.693307 2.87876 13.00381 71.67544
Rate(EM/ EA) 0.010171 0.004628 0.003067 0.001933

50
DECN 0.008026 0.01875 0.062079 0.237182

EA 0.681967 2.868 12.80662 71.44253
Rate(EM/ EA) 0.011769 0.006538 0.004847 0.00332

100
DECN 0.011725 0.033109 0.117593 0.478518

EA 0.699074 2.865546 13.12218 71.83043
Rate(EM/ EA) 0.016772 0.011554 0.008961 0.006662

500
DECN 0.041167 0.147843 0.610056 2.727426

EA 0.720847 2.966926 13.59977 74.9417
Rate(EM/ EA) 0.057109 0.04983 0.044858 0.036394

16

Under review as a conference paper at ICLR 2023

DECN mainly containing operations upon tensors and is easily accelerated by GPUs. Current
distributed EA methods usually separate a population into multiple subpopulations that evolve
simultaneously. Such separation is also a commonly accepted operation in many EAs However, none
of them can accelerate the genetic operators. Here, we show the surprising performance of DECN
with GPU accelerated CRM and SM. Moreover, Tensorflow has provided mature solutions for the
acceleration upon GPUs, and DECN implemented by Tensorflow is supportable to load multiple
populations as the input.

To show the adaptability of DECN to GPUs, we offer the runtime of DECN and unaccelerated EA in
Table 8, within which both DECN and EA optimize K = 32 populations with each containing L×L
individuals (number of individuals: K×L×L). Similarly, we employ the runtime of EASBX without
acceleration as a reference in this experiment. As can be seen, with the increase of L, the advantage of
acceleration based on GPUs is clear. When the dimension D ∈ {2, 10}, DECN runs 103∼104 times
faster than EA. DECN is still around 102 times faster than EA when D ∈ {30, 50, 100, 500}. This
case indicates that DECN is adapted to the acceleration of GPUs and can be accelerated sufficiently.
However, with increasing D, DECN increases the proportion of evaluations in the runtime and
ultimately weakens the advantage of acceleration. These cases indicate the acceleration advantage of
DECN when optimizing a larger population.

A.7 THE CONVERGENCE OF LOSS FUNCTION IN TRAINING PROCESS

This part is the change curve of the loss function of the training process of DECNnws15 on F4-F9.
The results are shown in Fig. 9. Here, D=10.

A.8 LIMITATIONS

However, DECN has many drawbacks. We hope to address these deficiencies in future work. 1)
The designed loss function enables DECN to perform the exploitation operation well but does not
strongly encourage DECN to explore the fitness landscape. However, we have many options to
balance exploration and exploitation. For example, the constructed Bayesian posterior distribution
(Cao & Shen, 2020) over the global optimum is added to Eq. 7. In addition to adding items that focus
on the exploration ability of the loss function, new modules can also be designed to be added to the
EM to help DECN jump out of the local optimum.

2) For the constructed training dataset, DECN does not have an advantage if it is utterly irrelevant to
the optimization objective. Thus, establishing a suitable training dataset is essential.

3) DECN only focuses on continuous optimization problems without constraints. For problems such
as expensive optimization, combinatorial optimization, constrained optimization, and multi-objective
optimization, DECN needs to be adjusted according to the characteristics of the problem. We can
think of DECN as standard optimizers like vanilla DE, ES, GA, and PSO. In order to deal with
different types of problems, we need to make different corrections to DECN. For example, to deal
with expensive problems, we need to build surrogate models to assist DECN. We need to redesign
the CRM module to generate new feasible solutions for combinatorial optimization problems. For
example, for TSP tasks, GNN may be a feasible option to generate new solutions instead of CRM. We
can redesign the CRM module for constrained optimization problems to generate feasible solutions.
Of course, the easiest way is to use constraint violations and fitness functions as criteria for selecting
the next generation in the SM module.

A.9 TRAINING DATASET FOR PROTEIN DOCKING

The training dataset contains 25 protein-protein complexes from the protein docking benchmark set
4.0 (Hwang et al., 2010). The detailed information is shown as follows: 1ATN, 1AVX, 1AY7, 1BJ1,
1BVN, 1CGI, 1DFJ, 1EAW, 1EWY, 1EZU, 1GRN, 1IBR, 1IJK, 1IQD, 1JPS, 1KXQ, 1M10, 1MAH,
1N8O, 1PPE, 1R0R, 1XQS, 2B42, 2C0L, and 2HRK.

A.10 MOTIVATIONS

The generalization ability of current evolutionary algorithms (EAs) is poor. Faced with a new black-
box optimization task, we need experts to redesign/select the EA’s crossover, mutation, and selection

17

Under review as a conference paper at ICLR 2023

(a) (b)

(c) (d)

(e) (f)

Figure 9: The convergence of loss function in training process. (a) F4, (b) F5, (c) F6, (d) F7, (e) F8,
and (f) F9.

18

Under review as a conference paper at ICLR 2023

1

2

3

r

d

target

1l 2l

3l

Figure 10: Planar Mechanical Arm.

operations (including their hyperparameters) to maximize its performance on the target task, resulting
in a hand-designed EA with big application limitation. Most importantly, due to the limitation of
expert knowledge, only little target function information is used to assist the design of EA, which
makes it challenging to adapt to the target task. How to automatically design optimization strategies
according to new tasks is crucial. To the best of our knowledge, there is currently no work to address
this issue. We think EA is a generative optimization model that realizes the generation from a random
population to an optimal solution by manually designing crossover, mutation, and selection operations.
The purpose of these operations is to generate potential solutions and retain good solutions. The task
of automatically designing an optimization strategy is learning how to automatically generate and
retain potential solutions. This paper is to show how DECN finish this task.

By constructing a set of differentiable surrogate functions of the objective black-box function, DECN
can allow the designed CRM and SM to learn the strategy of optimizing the objective function. At
this point, DECN effectively utilizes the information of the target black-box function to assist the
construction of the optimization strategy. The degree of fit of DECN with the target task is much
higher than that of the human-designed EA. The following statement may be one-sided: Bayesian
optimization also suffers from poor generalization. For example, how to choose/design appropriate
acquisition functions for different problems.

We use the process of an evolutionary algorithm to guide the design of DECN and realize the mapping
from a random population to the optimal solution.

First, we need to design a module to ensure the exchange of information between individuals in the
population to achieve the function of generating potential solutions (similar to the recombination
operators in EA). We can achieve this function by modifying the convolution operation accordingly,
which is our motivation for using convolution to design. The designed CRM module achieves this
purpose (see Section 3.1).

Second, to survive good individuals for the next layer of DECN, we design the selection module
(SM) based on a pairwise comparison between the offspring and input population regarding their
fitness (see Section 3.3, Equation 3). We can clearly observe that Equation 3 can indeed keep good
individuals.

Third, the untrained DECN does not handle the black-box optimization problem well because it
needs information about the target black-box function. In order to better optimize the objective

19

Under review as a conference paper at ICLR 2023

task, we need to design a training set containing objective function information and a practical loss
function to guide the parameter training of DECN (see Section 3.5). The characteristics of black-box
functions make it difficult for us to obtain their gradient information to assist in the training of DECN.
We construct a differentiable surrogate function set of the target black-box function to obtain the
information of the target black-box function. The designed loss function is to maximize the difference
between the initial population and the output population of DECN to ensure that the initial population
is close to the optimal solution.

There are few learning-to-optimize architectures (Chen et al., 2022) currently dealing with black-
box optimization problems, and their performance is weak. From the experimental results, DECN
makes up for the performance disadvantage of the learning-to-optimize architecture in the black-box
optimization problem. We also strongly believe that this paper makes an essential contribution to the
learning-to-optimize community.

A.11 PARAMETERS

DECN is compared with standard EA baselines (DE (DE/rand/1/bin) (Das & Suganthan, 2010), ES
((µ,λ)-ES), and CMA-ES), L2O-swarm (Cao et al., 2019) (a representative L2O method for black-box
optimization), and Dragonfly (Kandasamy et al., 2020) (the state-of-the-art Bayesian optimization).
DE and ES are implemented based on Geatpy (et.al., 2020), and CMA-ES is implemented by Pymoo
(Blank & Deb, 2020). The parameters of DE, ES, CMA-ES, and Dragonfly are adjusted to be optimal
for each problem. L2O-swarm and DECN use the same training set and loss function. All algorithms
are run ten times for each function. DECNws3 contains 3 EMs, and the parameters of these three
convolution kernels are consistent across different EMs (weight sharing). The population sizes of DE,
ES, CMA-ES, and DECN are 100. DE, ES, and CMA-ES run for 100 generations. For DECNws3,
its architecture determines that DECN has only been iterated for three generations. DE, ES, and
CMA-ES have 100/3 times as many function evaluations as DECN, which is highly unfair to DECN.
Both Dragonfly and L2O-Swarm run to convergence.

Table 9: Experimental setup for DECNws30, DECNws3 and DECNnws15. In DECNws3, parameters
of these three convolution kernels are consistent across different EMs (weight sharing). Moreover,
during the training process, the 2-norm of gradients is clipped to be not larger than 10, and the
learning rate (lr = 0.01) shrinks every 100 epochs. The shrinking rate is set to 0.9. The generation
of these reference algorithms is set to 100, while DECNws3 only evolves the population with 3 EMs.
5000 epochs are conducted during the training process. All experimental studies are performed on a
Linux PC with Intel Core i7-10700K CPU at 3.80GHz and 32GB RAM.

Model L D K EMs Convolution kernels lr Epochs T Weight
share

Gradient
norm

DECNws30 10 10 32 30
3× 3: u = 0, σ = 0.5

0.01 10000 10 True 105× 5: u = 0, σ = 0.5
7× 7: u = 0, σ = 0.5

DECNws3 10 2 32 3
3× 3: u = 0, σ = 0.5

0.0005 5000 10 True 105× 5: u = 0, σ = 0.5
7× 7: u = 0, σ = 0.5

DECNn15 10 30 16 15
3× 3: u = 0, σ = 0.5

0.0005 2000 10 False 105× 5: u = 0, σ = 0.5
7× 7: u = 0, σ = 0.5

20

	Introduction
	Related Work
	Deep Evolution Convolution Network
	Problem Definition
	Convolution-based Reasoning Module
	Selection Module
	The Structure of DECN
	Training of DECN

	Experiments
	Results on Synthetic Functions
	Results on Protein Docking
	Results on Planar Mechanical Arm
	Accelerating DECN with GPU
	Visualization

	Conclusions
	Reproducibility Statement
	Appendix
	Background
	How to Organize a population into a tensor
	Population Arrangement
	Several Essential Issues about CRM
	Nine Synthetic Functions and Parameters
	Accelerate DECN with GPU
	The Convergence of Loss Function in Training Process
	Limitations
	Training Dataset for Protein Docking
	Motivations
	Parameters

