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Abstract

The rejection of outliers in observed data is the foundation for accurate model esti-
mation. Random sample consensus (RANSAC) is a classical algorithm aiming to
find the inliers for robust model estimation. After sampling a series of minimal sets
that can support the hypothesis estimation and generating the respective hypotheses,
the best hypothesis that earns the maximum consensus is chosen for the final model
estimation. However, this strategy may face exponentially computational growth
as the outlier ratio increases. Besides, fitting a model from a minimal set may
hinder the accurate model estimation especially when the inliers are extremely rare.
In contrast, a model estimated from more observations may be better than from
a minimum set. To approach such problem, we propose reinforcement sample
consensus (R-SAC) to train a neural network to classify the inliers and outliers
among all the correspondences with reinforcement learning. During training, we
regard the number of inliers as a reward and encourage the agent to find the optimal
subset supporting the final model estimation in a unsupervised manner. During
inference, the R-SAC network is able to directly generate the inlier set, which
could significantly reduce the computational resources in sampling and is able to
select a more robust model hypothesis fitted from more correspondences. Empirical
results show that our method achieves comparable performance compared with the
previous supervised counterparts and remarkable efficiency especially when the
outlier ratio is large.

1 Introduction

In computer vision, model estimation is of fundamental importance and is widely used in camera
calibration, localization, registration etc. To obtain the optimal model supported by the given
observation set, we generally devise appropriate error metrics serving as the objective function during
model optimization. However, due to the non-ideal sensors or the algorithm imperfectness, noise
inevitably exists in the observation set, which may brings some inherent errors and dramatically
decrease the estimation accuracy. Thus recognizing and rejecting outliers is a pivotal procedure
for model estimation. Random sample consensus (RANSAC) is a classic algorithm for outlier
removal. From the view of statistics, the inliers tend to consistently support the same model while
the outliers may diversely support some random models. Hence, the model computed from an
outlier-free observation set should be supported by most of the inliers. With the assumption that
the best model are supported by the majority of observations, RANSAC iteratively samples a sub-
set from the whole observation set, so called the minimal set, to create model hypotheses with
a minimum solver and choose the hypothesis that are supported by the most observations as the
best model h∗. The observations with errors for h∗ greater than a certain threshold are deemed
as outliers and the remaining observations are inliers. A minimum solver can compute the model
parameters from minimal observations. For example, computing parameters of a line only requires
two points. Supposing a model solver requires k reliable observations and the actual inlier ratio is r,
the probability p of obtaining at least one outlier-free subset after sampling n sub-sets can be derived
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Figure 1: Line fitting example. (a) six possible solutions from the minimal solver of line fitting. (b)
the best line that computed from all of the four points.

as:
p = 1− (1− rk)n (1)

Apparently, a smaller sub-set cardinality k can achieve higher success probability p with the same
inlier ratio r and the sample number n. Therefore, RANSAC algorithm always use a minimal solver
(requiring the minimal k) to fit the model during sampling. With the development of machine learning,
some recent works () adopt neural networks to predict the sampling prior probability for guiding
the sub-set sampling process in classic RANSAC algorithm to improve the efficiency. Thanks to
the informative guidance, the convergence speed is largely improved. However, they still adopt the
minimal solver which still limits the proposal space of model hypotheses, i.e., the hypothesis can
only be computed from a minimal set, which might be biased and erroneously reject the inliers. Take
the line fitting problem as an example as shown in Fig. 1. Suppose there are four points ( (Fig. 1))
and the inlier threshold is ε. Apparently there are six possible solutions for the minimal solver as
shown in Fig. 1-(a) since a line can be defined by two points, but all of these line hypotheses will
reject the other two points with the current rejection threshold ε and thus achieves inferior results.
However, the best line is actually estimated from all of the four points as shown in Fig. 1-(b), which
unfortunately beyond the capacity of the minimal solver.

Recently, Moo et al. (11) train a neural network to directly select observations, which is able to
generate a model from more observations. Nevertheless they requires costly ground truth labels for
the inliers and outliers in the training stage. To get rid of labor-intensive annotation while still be able
to estimate a model from as many reliable observations as possible. we propose reinforcement sample
consensus (R-SAC) that learns an inlier selection policy πθ(at|st) in a self-supervise manner. Unlike
Moo et al. (11) directly supervise the inlier/outlier classification with the groundtruth labels, R-SAC
adopts proximal policy optimization (PPO) to gradually learn the best strategy through iterative
exploration and exploitation in an self-supervised manner. Given a set of observations (state st) and
a inlier selecting action at, the environment provides two kinds of feedback: reward and the signal
signifying whether the sampling procedure is done. We deem that a model hypothesis is better if it
is supported by more observations and thus set the inlier amount of current model (estimated after
action at) as the reward value for the state-action pair (st, at). The environment will return done
signal if the derived model can cover all observations because the current observation selection is an
optimal solution. To this end, R-SAC trains an agent to predict the selection probability πθ(aobst |st)
for each observation and a stop iteration probability πθ(a

stop
t |st), which constitutes the overall policy

πθ(at|st). During training, R-SAC collects the selected observations as the state st+1 for the next
iteration until the done signal is received.

In this way, the policy of observation selection is evaluated by the expectation of inlier number upon
the predicted stop probability. The best policy is that the agent can select observations that maximizes
the inlier number in the first step and stop the iteration.

2



2 Related Work

RANSAC has been widely applied in the field of 3D vision, such as object pose estimation (13) and
visual localization (16). After Fischler and Bolles first introduced the basic RANSAC pipeline (5),
many augmented variants are proposed to improve the efficiency especially when the outliers prevail.
Universal RANSAC (USAC)(14) is one of the most successful RANSAC algorithms solely relying
on handcrafted strategies. The algorithm includes sampling hypothesis by progressive guidance
(PROSAC)(4), fitting the model with local optimization (LOSAC), and efficiently verifying hypothesis
(ORSAC). Recently, machine learning has shown its great potential in capturing statistical information.
Based on this, Brachmann et al. propose the Differentiable RANSAC (DSAC)(2; 1) to learn consistent
correspondences for visual localization. More recently, NG-RANSAC (3) further devise a neural
network to predict the sampling probabilities which guide the sampling process in RANSAC. With
large amount of training data the sampling prior can be learned and modeled by the deep neural
networks in a data driven manner, and the NG-RANSAC therefore consistently outperforms previous
methods. However, they limit the model hypothesis space since they only takes the minimal samples
to construct the hypotheses. Our proposed R-SAC further amends the sampling strategy during
iteration so that we can pick out a better hypothesis with less steps.

3 Proposed Approach

3.1 Framework

The goal of RANSAC is to accurately distinguish inlier data for model estimation from a set of noisy
observations Y = {yi|i = 1, 2, 3, ...}. Suppose the target model can be estimated from at least N
observations which constitutes a basic set called minimum set, then for each sampled minimum set,
we can obtain a model hypothesis h with the predefined model estimator f : h = f(y1, y2, ..., yN ).
In the RANSAC pipeline, we usually randomly sample with which we fit the corresponding model
hypotheses M minimal sets H = {h1, h2, ..., hM}, and then select the model with the highest score
as the best hypothesis h∗. In practice, the inlier count for each model is generally served as the
scoring function s(h, Y ) in the classic RANSAC algorithm and the above best hypothesis generation
procedure can be formulated as

h∗ = arg max
h∗∈H

R(h∗, Y ) (2)

During sampling, the sampling probability p(yi) of different observations yi ∈ Y directly affect
the model hypothesis generation results H . In the classic RANSAC algorithm, due to the absence
of prior information, p(yi) is set to be equal for all the observations, i.e., a uniform sampling is
adopted. Apparently, a sampling process with prior guidance could improve the model hypotheses
quality compared with such blind sampling. NG-RANSAC (3) testifies that the neural network with
parameter w has the capability to provide a reasonable distribution p(y;w) to guide the sampling
process in RANSAC algorithm.

In contrast with NG-RANSAC generating a model hypothesis from a minimum observation set,
we predict the confidence for each observation and the model h∗ is derived from all the confident
observations. To achieve this goal, we utilize PPO to explore and find the best policy to collect inlier
observations for model estimation. As shown in Fig. 2, the actor network continuously output the
policy prediction for the current step to pursue a larger reward (score) during training. Hence, the
return of a trajectory can be expressed as:

G(s0) =

T∑
t=0

γtR(st, a
obs
t ) (3)

Suppose the best solution at step t is aobs∗t , then we have R(s0, a
obs∗
t ) ≥ R(st, a

obs∗
t ) >

γtR(st, a
obs∗
t ) because the observation st is a subset of s0 as shown in Fig. 2 and we take the

inlier count as the reward function. To push the agent make the wise decision within less steps and
avoid the overlong trajectories, we further design a network to predict the stop probability astopi for
the current step. We take the predicted stop probability as the weight for the reward at each step.
Concretely, for the reward R(st, aobst ) at step t, its weight is the probability that the agent should
stop at this step:

∏t−1
i=0(1 − a

stop
i )astopt . It is easy to find that the summation of all these weights
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Figure 2: Reinforcement sample consensus.

along a trajectory equals to 1:
∑T
t=0

∏t−1
i=0(1−a

stop
i )astopt = 1. Thus, the weighted version of return

function can be rewritten as:

G(s0) =

T∑
t=0

t−1∏
i=0

(1− astopi )astopt γtR(st, a
obs
t ) (4)

In this manner, the agent could adjust the stop probability to tune the weights in unsupervised manner.
Given that G(st) = astopt R(st, a

obs
t )+γ(1−astopt )G(st+1) and the best solution will be propagated

to earlier steps, we have R(st, aobs∗t ) > γtG(st+1), which means the agent tends to stop earlier for
larger rewards. In this settings, the agent is encouraged to find the solution that takes larger rewards
in earlier steps and shorten the iterations. In query stage, we run the R-SAC with 100 iteration and
choose the model that covers the most inliers.

3.2 Environment Setup

States. In our environment, the state st is the set of input observations. After the selecting action, the
set of selected observations is the next state st+1.

Reward. The reward of the agent is defined as the score function R(ht, Yt) in Eq. (2), which is
practically set to be the inlier count with the model hypothesis derived from the selected observations
ht.

Action. At each step t, the agent need to output a selection mask aobst ∈ RK containing the selection
indicator elements aobst (i) ∈ {0, 1} where 0 indicates not to select and 1 represents to select. Besides,
the agent also predicts a stop probability astopt to determine whether stop the iteration.

Policy. The policy function outputs the probabilities of different actions in the action space. In our
situation, we utilize a neural network module to predict the selection confidence p(yi;w) of each
observation and define the policy function as π(aobs|s) =

∏
i p(yi;w) assuming an independent

sampling of different observations. The stop probability astop predicted by the agent denotes the
confidence that whether we have gotten the best model.

Temporal difference. Based on the stop action, the Bellman optimality equation for the value
function is:

vπ(st) = astopt R(st, a
obs
t ) + γ(1− astopt )

∑
st+1∈S

P (st+1|st, aobst )vπ(st+1),
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and the corresponding temporal difference error is:

δt = astopt R(st, a
obs
t ) + γ(1− astopt )vπ(st+1)− vπ(st)

3.3 Deep Neural Networks

We use the neural network architecture proposed by Moo etal (11). The network is contructed by
multiple residual blocks made of multi-layer preceptron (MLP), ReLU activation function (12),
instance normalization (17), and batch normalization (9). The instance normalization transfers the
feature information among all observations where all the calculation is permutation-invariant, which
makes the overall neural network invariant to the permutation of observations. At the end of the
network, a sigmoid function is applied, which outputs a confidence ranging from 0 to 1 for each
observation.

To approximate the value function and predict a stop probability, we extend two branches at the end
of the network. The two branches is also constructed by a residual block, a global average pooling,
and a many-to-one fully connected layer, which outputs a scalar encoding the global information.
The stop probability branch is additionally followed by a sigmoid function.

4 Experiments

We take the fundamental matrix estimation, a basic task in 3D vision, to evaluate our proposed R-SAC
on.

Fundamental Matrix Estimation. In epipolar geometry, fundamental matrix is a 3 × 3 matrix
denoting the relationship between two images in the same scene. Based on the fundamental matrix
defined regarding two images, we can relate the correspondence points among two images with
the epipolar geometry. Reversely, we can also estimate the fundamental matrix given enough point
pair correspondences. Popular fundamental matrix estimation algorithms include the Eight-point
algorithm (8), the Direct Linear Transformation (7), and the general least square fitting. The Eight-
point algorithm is able to solve for the fundamental matrix with at least 8 pairs of correspondence,
and NG-RANSAC therefore utilizes it as a minimal solver and sample eight correpondences in each
iteration. For fair comparison, our experiment is also based on the Eight-point algorithm but we do
not strictly limit the number of correspondence used in fundamental matrix solving as mentioned in
Sec 3.

Dataset. We compare with previous methods by taking subsequent image pairs within sequences
in the KITTI dataset (6) . Following Deep F (15), we train R-SAC on 00-05 sequences and test on
06-10 sequences. We extract SIFT (10) correspondences and filter out correspondences according to
the Lowe’s ratio with a threshold of 0.8.

Evaluation. We adopt four evaluation metrics for comparison: inlier ratio, F-score, mean error,
and median error. For each fundamental matrix hypothesis, we regard the correspondences whose
reprojection error is less than 0.1 pixel as inliers. Inlier ratio is defined as the percentage of inlier
correspondences among all input correspondences. F-score is the correspondences that are both
inliers of the estimated model and the ground truth model, which denotes how well the estimated the
model is aligned to the ground truth model. We also measure the epipolar error by first projecting
the points in one image onto the corresponding epipolar line in another image with the fundamental
matrix estimation and then computing the corresponding point-to-line distance as the epipolar error.
We analyze the epipolar error for all the inlier correspondences by comparing the mean and median
values.

Table 1: Fundamental Matrix Estimation.

inlier ratio(%) F-score Mean Err. Median Err.
RANSAC (5) 21.85 13.84 0.35 0.32
USAC (14) 21.43 13.90 0.35 0.32
Deep F (15) 24.61 14.65 0.32 0.29

NG-RANSAC (3) 25.12 14.74 0.32 0.29
R-SAC (Ours) 26.74 14.87 0.33 0.31
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Comparison. We show the performance compairson in Tab. 1. RANSAC (5) and USAC (14) are
classical algorithms, which do not utilize neural network to capture prior geometric knowledge. Deep
F (15), NG-RANSAC (3), and R-SAC (Ours) select observations for the model estimation with a
learned neural network, which consistently ourperforms RANSAC and USAC. R-SAC achieves
higher inlier ratio and F-score, which means the fundamental matrix estimated by R-SAC covers
more inliers and is better aligned to the ground truth fundamental matrix. Our mean and median
epipolar error are larger than Deep F and NG-RANSAC because the fundamental matrix estimated by
R-SAC covers more inliers, which are most boundary observations. The extra boundary observations
are not ourliers indeed so they can improve the model estimation robustness and accuracy.

5 Conclusion

We propose a reinforcement learning framework R-SAC for outlier rejection in model estimation.
Based on the feasible environment design and the stop probability modeling, the agent can learn to
generate a model covering as more inliers as possible to improve the model estimation accuracy with
less iterations in a unsupervised manner. The experiment shows that our R-SAC achieves comparable
performance to the state-of-the-art methods in fundamental matrix estimation.
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