
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SUPERVISED REINFORCEMENT LEARNING: FROM EX-
PERT TRAJECTORIES TO STEP-WISE REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) often struggle with challenging, multi-step rea-
soning problems due to a fundamental learning gap – Reinforcement Learning with
Verifiable Rewards (RLVR) suffers from sparse rewards when correct solutions are
rarely sampled, while Supervised Fine-Tuning (SFT) tends to overfit to long demon-
strations through rigid token mimicry. To bridge this gap, we introduce Supervised
Reinforcement Learning (SRL), a framework that reformulates problem-solving
as a sequence of logical actions. SRL trains the model to learn from each action,
where the model first generates an internal reasoning monologue and then commits
to an action. The model receives dense rewards based on the similarity between its
actions and the expert’s at each step, providing a richer signal than RLVR. More
importantly, by only rewarding the action, SRL allows the model flexibility in its
self-generated thought process, promoting stronger reasoning abilities than SFT.
On challenging mathematical reasoning benchmarks, SRL significantly outper-
forms both methods. Furthermore, a curriculum that cold-start with SRL before
refining with RLVR achieves the strongest results. SRL also generalizes effectively
to agentic software engineering tasks, establishing it as a robust framework for
various reasoning tasks.

AMC23
(Avg@32)

AMC23
(Greedy)

AIME24
(Avg@32)

AIME24
(Greedy)

AIME25
(Avg@32)

AIME25
(Greedy)

Minerva Average0

10

20

30

40

50

60
AMC23 AIME24 AIME25 Minerva Average

Model
Qwen2.5-7B-Instruct
S1K-7B
SFT (R1 reasoning)
SFT (R1 outline)
RL(VR)
SFT (outline) -> RL(VR)
SRL
SRL -> RLVR

Figure 1: Performance of our method (SRL) against baselines on math reasoning benchmarks, with
all models trained on the challenging s1k dataset (Muennighoff et al., 2025). Our key observations
are: (1) Directly applying SFT on this dataset leads to performance degradation compared to the
base model. (2) While RLVR can improve generalization over SFT, the gains are marginal. (3) Our
proposed SRL method substantially outperforms these baselines, and the SRL → RLVR pipeline
achieves the highest performance, overcoming the challenges of training on difficult data.

1 INTRODUCTION

Large Language Models (LLMs) have shown impressive capabilities across a range of reasoning
tasks, including solving math problems (Wang et al., 2025), generating code (Jiang et al., 2024), and
agent planning (Xie et al., 2024; Li et al., 2025c). A significant recent advancement comes from
leveraging reinforcement learning (RL) to enhance LLMs’ complex reasoning abilities (Shao et al.,
2024; Ahmadian et al., 2024; Lambert et al., 2024). By optimizing models with reward signals based
on verifiable outcomes, such as the correctness of a final answer, RL offers a promising path to elicit
beneficial problem-solving strategies such as self-reflection (Guo et al., 2025; Xie et al., 2025).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(b) SFT(a) RL(VR) (c) SRL

Query:

Model .
.
.

Rollouts Teacher Response

Model Model .
.
.

Rollouts

Teacher Response

r1

rk

[Step1, Step2] [Step3]
Token by token

Step by step

<think> … </think>

<think> … </think>

Figure 2: Illustration of SRL as compared to RL(VR) and SFT. (a) RL(VR) takes a query as input
and performs k rollouts. The final answer correctness is used as the reward. (b) SFT uses both a
query x and a complete teacher response y as input, training with a per-token loss to maximize the
probability p(y|x). (c) SRL also uses a query and a teacher response. It breaks the response into
step actions and, at each step, uses the previous steps as context. The model generates a next step
action along with its step-wise inner thoughts, and the reward rk is based on the similarity between
the model’s and the teacher’s action.

The efficacy of these outcome-supervised RL methods relies on the policy model to discover a correct
solution within the rollout budget (Brown et al., 2024). This learning approach falters on problems so
difficult that the model’s success rate is effectively zero (i.e., a pass@k rate of zero if rollout k times),
a common scenario in tasks requiring complex, multi-step reasoning (Yue et al., 2025; Wang et al.,
2024). On such problems, any incorrect intermediate step can derail the entire solution, leading to a
sparse reward where positive feedback is too rare for learning to occur. Moreover, simply penalizing
incorrect final outputs can be detrimental to model performance, making these difficult problems
intractable for standard RL methods (Xiong et al., 2025).

An alternative approach is imitation learning, typically realized through Supervised Fine-Tuning
(SFT) on expert demonstrations (Ross et al., 2011). While SFT can instill valuable reasoning
behaviors, its next-token prediction objective promotes rigid, token-level mimicry, which hinders
generalization. This issue is especially acute for less capable models learning from long, complex
demonstrations (Chu et al., 2025a; Li et al., 2025b), an effect we show in Figure 1. This leaves a
critical gap: both SFT and outcome-based RL fall short on difficult reasoning tasks, especially for
base models susceptible to sparse rewards and brittle imitation.

To address this fundamental gap, we propose Supervised Reinforcement Learning (SRL), a novel
framework that reformulates problem-solving as a sequential decision-making process. Instead of
learning from a final outcome or mimicking a monolithic solution, SRL trains the model in a step-wise
manner. We decompose expert demonstrations into a sequence of intermediate “actions”. The learner
is then instructed to generate its own “internal monologue” that articulates reasoning, followed by
a logical action taken. At each of this step, the model is rewarded based on the similarity of its
predicted action to the expert’s action, which can be rapidly calculated to guarantee scalability.

SRL provides dense, granular feedback that mitigates the sparse reward problem of RLVR on complex
reasoning problem. By only rewarding the action and not the monologue, SRL grants the model the
flexibility to develop its own internal reasoning process, overcoming the rigid mimicry of SFT. SRL
thus uniquely combines the benefits of both paradigms.

Our work makes the following contributions:

• We propose SRL, a novel framework designed to enable effective learning on complex reasoning
tasks. By providing dense, step-wise rewards based on expert actions, SRL mitigates the sparse
reward problem of RLVR while avoiding the rigid mimicry of SFT.

• We demonstrate the effectiveness and robustness of SRL through extensive experiments on
challenging mathematical reasoning and agentic software engineering benchmarks. Our results
show that SRL significantly outperforms strong baselines across both domains (5.1 & 5.3).

• Through detailed analysis, we confirm granular, step-wise guidance is vital to SRL’s success
and its impact on model behavior. We observe that SRL induces more flexible and sophisticated
reasoning patterns, such as interleaved planning and self-verification, which improve solution
quality without simply increasing output length (5.2).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

2.1 SFT (DISTILLATION) FOR LLM REASONING.

Distilling reasoning into smaller models via SFT on teacher-generated long Chain-of-Thought (CoT)
rationales has proven highly effective for transferring complex problem-solving skills (Li et al., 2023;
Huang et al., 2024; Min et al., 2024; Yeo et al., 2025), as exemplified by the small models distilled
from DeepSeek R1 (Guo et al., 2025). Research indicates this process is surprisingly data-efficient,
with small, high-quality datasets often being sufficient (Ye et al., 2025; Muennighoff et al., 2025).
Given the success, research has focused on the underlying factor for effective SFT distillation (Chen
et al., 2025a). Some emphasized the logical structure of the reasoning trace rather than its semantic
correctness (Luo et al., 2025; Stechly et al., 2025), as models can learn from demonstrations with
factual errors (Li et al., 2025a). Moreover, significant challenges remain in the student-teacher gap
where the student fails to learn from overly complex data (Li et al., 2025b), and the risk of teacher
hacking, where the student overfits to a teacher’s specific flaws (Tiapkin et al., 2025). Ultimately,
distillation from a teacher model imposes a performance ceiling on the student (Huang et al., 2024).

2.2 RL FOR LLM REASONING.

The development of DeepSeek-R1 (Guo et al., 2025) showed the effectiveness of rule-based RL
for enhancing the reasoning capabilities of LLMs. This approach utilizes a scalable reward system
based on final answer correctness, exemplified by the Group Relative Policy Optimization (GRPO)
algorithm (Shao et al., 2024) and parallel algorithms (Ahmadian et al., 2024; Lambert et al., 2024;
Xie et al., 2025). Building on this foundation, subsequent research has introduced numerous algo-
rithmic refinements. For example, Dr. GRPO (Liu et al., 2025) mitigates bias by removing variance
normalization, while DAPO (Yu et al., 2025) introduces a token-level loss and relaxes the policy
update constraint by increasing the clipping threshold. Other notable advancements include modifica-
tions to clipping methods, normalization techniques, the KL divergence loss, and dynamic sampling
strategies (Chu et al., 2025b; Zhang & Zuo, 2025; Zhang et al., 2025; Chen et al., 2025b). Despite
these algorithmic variations, these approaches primarily rely on the final outcome’s reward signal. A
critical challenge arises when the rollouts fail to identify a correct solution trajectory, particularly for
difficult queries. DAPO (Yu et al., 2025), for instance, addresses this by filtering out instructions that
do not yield any successful rollouts.

3 PRELIMINARIES

A Large Language Model (LLM) is formally defined by a probability distribution pθ over sequences
of tokens, parameterized by a set of model weights θ. Given an input prompt, represented as a
token sequence x = [x1, . . . , xn], the model generates a response sequence y = [y1, . . . , ym].
The response is produced autoregressively, where the generation of the token yj at any step j is
conditioned on the initial prompt x and all preceding tokens in the generated sequence, (y1, . . . , yj−1).
The joint probability of the entire response sequence y given the prompt x is thus factorized as:
pθ(y|x) =

∏m
j=1 pθ(yj |x, y1, . . . , yj−1).

Supervised Fine-Tuning (SFT). SFT is typically employed to specialize LLM for downstream
applications or domains. It is also commonly used to establish a cold start for subsequent RL training
phases that requires certain reply format/pattern, such as RL for reasoning (Deng et al., 2025) or tool
use (Feng et al., 2025). Specifically, the process utilizes a dataset D = {(x(i),y(i))}Ni=1, where each
x(i) is an input prompt and y(i) is the corresponding desired model output. The primary objective is to
update the parameters θ to maximize the conditional probability of generating the target response y(i)

given the input prompt x(i). This goal is formally achieved by minimizing the negative log-likelihood
loss function: LSFT(θ) = −

∑N
i=1 log pθ(y

(i)|x(i)) over the entire dataset. By minimizing this loss,
the model learns to produce responses that are closely aligned with the exact words demonstrated in
the labeled training examples.

Reinforcement Learning (RL). Recent literature on improving model reasoning capability has
focused on RL with verifiable reward (RLVR), where the policy model receives reward signals purely
based on the final answer correctness. Building on this principle, Group Relative Policy Optimization

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

(GRPO) (Shao et al., 2024) involves sampling a group of G response trajectories, {oi}Gi=1, from the
previous policy model, θold, for each input query x. The objective function for GRPO is:

E
[
1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

min
(pθ(oi,t |x,oi,<t)

pθold(oi,t |x,oi,<t)
Âi,t, clip

(pθ(oi,t |x,oi,<t)

pθold(oi,t |x,oi,<t)
, 1− ϵ, 1 + ϵ

)
Âi,t

)]
− β DKL

[
pθ ∥ pref

]
. (1)

The hyperparameter ϵ > 0 defines the clipping range for the policy update ratio, and the coefficient
β > 0 modulates the influence of the KL-divergence penalty against the policy update. The term θold
refers to the policy from the previous iteration. The advantage function, Âi,t = (r̃i−mean(r̃))/std(r̃),
is defined as the group-level normalized reward.

A key challenge for these RL algorithms emerges when input queries are either too easy or too hard,
resulting in uniform correctness within policy rollouts {oi}Gi=1. In such cases, the advantage estimate
Âi,t vanishes, yielding an uninformative policy gradient and preventing model updates. A common
strategy to mitigate this is to dynamically sample the batches, filtering out samples and re-sampling
until the data sample satisfies 0 < |{oi|is_correct(oi)}| < G (Yu et al., 2025).

4 METHODOLOGY

4.1 THE CHALLENGE OF HARD REASONING PROBLEM

RL with verifiable reward is a prominent technique for enhancing the reasoning capabilities of LLMs.
The strategy is to close the gap between a model’s potential performance across multiple attempts
(pass@k) (Brown et al., 2024; Yue et al., 2025). However, this paradigm falters on problems where
the model’s pass@k rate is already near zero. For this set of difficult problems, which we term Dhard,
positive reward signals are too sparse for RLVR to be effective (Xiong et al., 2025). Moreover, simply
penalizing incorrect outputs can be detrimental to model performance (Yu et al., 2025; Xiong et al.,
2025), creating a significant challenge for improving model reasoning.

Formally, we define Dhard = {x(i), a(i)}Ni=1 as the set of problems (x, a) where policy model’s
success rate is low with k samples: 1

k

∑k
j=1 I

(
ExtractAnswer(y(j)) == a

)
≤ ϵ, where each

solution attempt y(j) is sampled from the policy pθ(·|x) and ϵ > 0 is a small constant.

Due to the scarcity of successful trajectories, standard RL with verifiable reward struggles on Dhard.
Such data is further difficult to be learned by SFT, due to its limited amount and complexity in teacher
reasoning trajectories (Li et al., 2025b).

4.2 SUPERVISED REINFORCEMENT LEARNING (SRL)

To address the challenge of learning from Dhard, we introduce Supervised Reinforcement Learning
(SRL), a framework that decomposes complex problem-solving as a sequential decision-making
process, and thus can be easily learned on how to properly operate step-wise. Instead of generating a
monolithic solution, the model learns to take actions similar to the expert while producing their own
inner reasoning process in a step-by-step manner. The whole framework is illustrated in Figure 3. 1

Action-based problem formulation. Given an expert solution trajectory y that leads to a correct
final answer, we decompose y into a sequence of tuples: y = {ystepn}

N
n=1. Each steps represents a

logical action: the concrete action to be operated. This formulation is domain-agnostic; for instance,
an action in mathematical reasoning could be an algebraic manipulation, while for a software agent,
it could be a command executed in a code repository.

Step-wise training data construction. To create training data for SRL, we leverage a powerful
teacher model, θexpert to generate solution trajectories. From a single complete solution with N
steps, we construct N − 1 partial trajectories. For each step k ∈ {1, . . . , N − 1}, we create a new
input prompt xstepk = [x,ystep1 , . . . ,ystepk−1

], where the model’s task is to predict the subsequent

1Empirically, we found that providing the subsquent step title (e.g., “2. **Coprime Pairs**” in Figure 3) as
the additional context for the learner to predict the rest of the step content can further boost the performance.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Given a rational number between 0 and 1, we need
to write it as a fraction in lowest terms
\(\frac{a}{b}\) and calculate the product of the
resulting numerator and denominator. We need to
determine how many such rational numbers exist
where the product \(a \times b = 20!\).

1. **Prime Factorization of 20!**:
- The prime factors of 20! are 2, 3, 5, 7, 11,
13, 17, and 19. These are 8 distinct primes.

2. **Coprime Pairs**:
- For \(a \times b = 20!\) and \(\gcd(a, b) =
1\), each prime factor of 20! must be assigned
entirely to either \(a\) or \(b\). This results
in \(2^8 = 256\) coprime pairs \((a, b)\).

3. **Counting Pairs \(a < b\)**:
……

Question: …

Solution:
Given a rational number between
0 and 1, ….. These are 8
distinct primes.

<think>
……
</think>
<solution>
2. Get Coprime Pairs:
For a \times b = 20! with \gcd(a,b)=1, each of the 8
distinct prime factors of 20! must be partitioned
between them. This gives two choices for each prime,
resulting in 2 ^ 8 = 256 coprime pairs.
</solution>

Complete a single step
of partial solution. You
should first draft your
thinking process as an
inner monologue…

Expert Trajectory:

[Step1]

[Step2]

Step2 Context:

Instruction:

r2

Figure 3: Given a solution trajectory, we take each summarized step as an action to be learned and
take the partial solution before the step as the context of our newly created data. The model is then
prompted to generate its thinking process followed by the action for the current step. A reward (r2
in the figure) is then calculated based on the similarity between the model’s and the expert’s action.

step, ystepk . This process transforms one expert solution into a rich set of training instances that teach
the model to proceed correctly from various intermediate states.

Learning with a sequence similarity reward with own inner monologue. Given a partial context
xstepk containing the problem and a partial solution, the policy model pθ is prompted to generate the
subsequent action step with their own inner monologue y′

think, which is encapsulated by “<think>”
tags. We then provide a dense reward based on the quality of the generated logical action y′

stepk
. The

prediction can be formally specified as: y′ ∼ pθ(·|xstepk) = [y′
think,y

′
stepk

].

To guide training, we consider the reward function that measures the similarity between the generated
action: R(y′

stepk
,ystepk) =

2M
T , where

• T (Total elements): This is the total number of elements in both sequences combined. It is
calculated as the sum of the lengths of the two sequences: T = |S1|+ |S2|.

• M (Matched elements): The total count of elements found in all non-overlapping matching blocks
between the two sequences. The algorithm first finds the longest contiguous matching subsequence
and then recursively searches for more matches in the segments to the left and right of that block.
If we represent the set of all such matching blocks as a list of tuples (i, j, n), where n is the length
of the matching block, then M is the sum of all lengths n: M =

∑
(i,j,n)∈MatchingBlocks n.

Combining these definitions, we can calculate the similarity ratio R ∈ [0, 1] as:

R =
2
∑

(i,j,n)∈MatchingBlocks n

|S1|+ |S2|
In practice, we use Python’s difflib.SequenceMatcher for this comparison, and assign a negative
reward if the generated output y′ fails to follow the required format. Hence, the final reward used is:

r(y′
stepk

,ystepk) =

{
R(y′

stepk
,ystepk) if y′ follows format,

−1 otherwise.

The policy pθ is then optimized using this reward signal with the GRPO objective function defined in
Equation 1. Notably, our reward is computed only on the logical action, not the internal monologue.
This grants the model flexibility to develop its own internal reasoning style while ensuring its external
actions align with the expert’s strategy. This design provides dense, step-level feedback and allows
for rapid reward calculation, making the SRL framework both effective and scalable.

Dynamic sampling for SRL. As our reward signal r ∈ [0, 1] ∪ {−1} is dense, we generalize the
dynamic sampling strategy previously designed for outcome accuracy and implement it to filter

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

samples with less meaningful updates. Specifically, a sample should be filtered out if its rollouts yield
rewards with near-zero variance, providing a weak advantage and thus weak learning signal. With the
sequence similarity reward in SRL, we retain a sample if the standard deviation of the reward scores
of its rollouts exceeds a threshold ϵ > 0:√∑G

i=1(r(oi,y)− r̄)2

G
> ϵ

where G is the number of generated rollouts, r(oi,y) is the sequence similarity reward for the i-th
rollout oi given the expert trajectory y, and r̄ is the mean reward for the sample. To maintain a
consistent batch size of B, we continuously sample and filter until the batch is filled.

5 EXPERIMENTS

5.1 MAIN RESULTS: MATH REASONING

Setup. We finetue Qwen2.5-7B-Instruct (Yang et al., 2024) on the s1K-1.1 dataset (Muennighoff
et al., 2025). This dataset contains 1,000 diverse and challenging questions, each accompanied
by a detailed reasoning trace and a final solution generated by DeepSeek R1. The solutions from
DeepSeek R1 are formatted with structured, numbered steps (e.g., “1. Title of Step 1”). We leverage
this structure to generate intermediate training targets by parsing these solutions and treating each
complete step as a ground-truth continuation. Any data points that do not adhere to this format are
excluded. We hold out 60 questions from the dataset to form our validation set.

Baselines. We benchmark our proposed methods against several baselines, all initialized from the
Qwen2.5-7B-Instruct model. These baselines include: (i) SFT on either the complete reasoning traces
(R1 reasoning) or the final solutions from the s1K-1.1 dataset (R1 outline); (ii) s1K-7B, the official
distilled model released by the dataset’s authors; and (iii) RLVR, which we implement using the
GRPO algorithm. To ensure fair comparison, we implement additional dynamic sampling as in Yu
et al. (2025), which removes samples with all correct or incorrect rollouts. We evaluate RLVR in
two distinct settings: applied directly to the base model and applied after an initial SFT phase. Our
proposed method, SRL, is likewise evaluated both as a standalone technique and in a sequential
configuration where it precedes RLVR (SRL then RLVR). All models are trained for up to 30 epochs,
and for each method, we select the checkpoint with the best performance on the validation set.

Evaluation. We evaluate all models on the following four competition-level mathematical reasoning
benchmarks: AMC232, AIME243, AIME254 and Minerva Math (Lewkowycz et al., 2022). Our
evaluation protocol for all benchmarks strictly follows the setup established by Qwen2.5-Math5 and
report the accuracy of greedy sampling. In addition, for AMC23, AIME24 and AIME25, we report
the average@32 score with a temperature of 1.0 for all baselines to ensure a more robust evaluation.

Performance. The performance results of our models are summarized in Table 1. Consistent with
the officially released S1K-7B model, our model trained with SFT on the same dataset exhibited a
notable performance degradation. In contrast, methods based on RL maintained generalization on
the evaluation benchmarks. Specifically, while RLVR maintained the performance, SRL provided
a substantial boost of 3.0% on average. Furthermore, applying RLVR after SRL training yielded a
3.7% increase on average, leveraging only 1k training data.

5.2 ANALYSIS: MATH REASONING

Effect of dynamic sampling in SRL. In Table 2, we analyze the impact of the dynamic sampling
component in SRL, based on thresholding the standard deviation of sequence similarity rewards
within rollouts. For both models, we train until the training reward converges and select checkpoint
based on validation scores. Our results are consistent the findings of DAPO (Yu et al., 2025), which
stated that removing samples that provide a zero learning signal is critical in the effectiveness of the
RL training loop, showing non-trivial d performance improvement.

2https://huggingface.co/datasets/AI-MO/aimo-validation-amc
3https://huggingface.co/datasets/AI-MO/aimo-validation-aime
4https://huggingface.co/datasets/math-ai/aime25
5https://github.com/QwenLM/Qwen2.5-Math

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Evaluation results across competition-level math benchmarks. We take Qwen2.5-7B-Instruct
as the base model and report the performance of different training schemes (SFT, RLVR via GRPO,
and SRL) using the same set of training data. The bold numbers indicate the best results among the
open-source models and the underscored numbers represent the second-best results.

Model AMC23 AIME24 AIME25 Minerva Math Average
Avg@32 Greedy Avg@32 Greedy Avg@32 Greedy

Base Model

Qwen2.5-7B-Instruct 49.3 50.0 10.5 13.3 7.5 6.7 34.9 24.6

Training with SFT

S1K-7B 24.1 25.0 2.2 3.3 3.7 3.3 20.2 11.7
SFT (R1 reasoning) 26.8 40.0 3.9 10.0 5.4 10.0 20.2 16.6
SFT (R1 outline) 36.2 27.5 5.1 3.3 3.8 6.7 31.6 16.3

Training with RL(VR)

RL(VR) 52.0 47.5 11.1 10.0 7.4 10.0 33.8 24.5
SFT (outline) → RL(VR) 37.6 35.0 4.9 3.3 4.5 6.7 30.1 17.4

Training with SRL

SRL 51.5 50.0 13.2 16.7 7.1 13.3 36.4 27.6
SRL → RLVR 52.1 57.5 13.3 20.0 8.6 10.0 36.4 28.3

Table 2: The effect of dynamic filtering on SRL. Filtering out samples with less meaningful updates
provided nontrivial performance improvement. DS stands for dynamic sampling.

Model AMC23 AIME24 AIME25 Minerva Math Average
Avg@32 Greedy Avg@32 Greedy Avg@32 Greedy

SRL w/out DS 48.5 52.5 11.1 13.3 6.8 6.7 33.8 24.7
SRL w/ DS 51.5 50.0 13.2 16.7 7.1 13.3 36.4 27.6

Disentangling the impact of guidance granularity in SRL. To isolate the effects of guidance
granularity from the benefits of sequence similarity rewards, we evaluated our multi-step method
against two simplified, one-step baselines:

• Final-answer reward: This baseline utilizes RLVR trained with GRPO, rewarding the model solely
based on the correctness of the final answer.

• Holistic sequence similarity reward: The model generates a complete solution in a single step.
This entire solution is then evaluated for similarity against the complete ground-truth trajectory.

As shown in Table 3, the results underscore the value of fine-grained guidance for sequence similarity
reward. While the holistic sequence-similarity reward improved performance on average, providing
granular, step-by-step guidance led to markedly superior performance across benchmarks.

Table 3: Model Performance of different reward functions and density. For seqence similarity reward,
we implement it with the entire expert output as an one-step supervision. The model benefits from
our multi-step decomposition on the small set of challenging training data.

Model AMC23 AIME24 AIME25 Minerva Math Average
Avg@32 Greedy Avg@32 Greedy Avg@32 Greedy

Final Answer Reward

One-step (RLVR) 52.0 47.5 11.1 10.0 7.4 10.0 33.8 24.5

Sequence Similarity Reward

One-step 51.8 52.5 11.7 13.3 6.9 10.0 34.9 25.9
Multi-step (SRL) 51.5 50.0 13.2 16.7 7.1 13.3 36.4 27.6

Interleaved reasoning behaviors. Beyond achieving superior performance, models trained with
SRL demonstrate distinctive and flexible reasoning patterns. Conventional models typically generate
a single, monolithic block of reasoning at the beginning of a solution. In contrast, our models,
particularly those fine-tuned with RLVR, dynamically interleave reasoning steps with the solution-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

generation process. This behavior manifests in three primary ways: (1) upfront planning by outlining
all subsequent steps in a comprehensive initial plan; (2) on-the-fly adjustments by inserting multiple,
distinct reasoning blocks throughout its solution to make iterative plans and adjustments; and (3)
reflective verification: the model pauses to reflect on and verify its answer before delivering the final
output. The examples (Example 1 below and 2 in the Appendix), drawn from a model trained with
our SRL→RL approach, illustrate these emergent reasoning patterns.

Example 1: Interleaved thinking and self-verification

Question: What is the least positive integer value of x for which the inequality 3x > 2x+ 1 is true?
<think>
To solve the inequality 3x > 2x+ 1, we can start by isolating x. Let’s subtract 2x from both sides of
the inequality.
</think>
Subtract 2x from both sides:

3x− 2x > 2x+ 1− 2x

This simplifies to:
x > 1

<think>
We can verify this by substituting x = 2 into the original inequality to ensure it holds true.
</think>
The inequality x > 1 tells us that x must be greater than 1. The smallest positive integer greater than 1
is 2. Therefore, the least positive integer value of x that satisfies the inequality is 2.
Substitute x = 2 into the original inequality:

3(2) > 2(2) + 1

This simplifies to:
6 > 5

This is true, so x = 2 is indeed a solution.
Therefore, the least positive integer value of x for which the inequality 3x > 2x+ 1 is true is 2 .

Figure 4: Reasoning length distribution for base model and
model trained with SRL.

Reasoning length. We further inves-
tigate whether the performance gains
from SRL can be simply attributed to
an increase in reasoning length. In
Figure 4, we plot the distribution of
reasoning lengths (i.e., the number of
words in the solution) for both the base
model and our SRL-finetuned model.
We observe no significant difference be-
tween the two distributions. This finding
suggests that the performance improve-
ment stems from enhanced planning and
higher-quality reasoning, rather than
merely an increased token budget at in-
ference time.

5.3 EXTENSION: SOFTWARE
ENGINEERING AGENTIC REASONING

Task. We extend our SRL framework to the domain of software engineering, training agents to
resolve real-world programming issues. These tasks are commonly evaluated on benchmarks like
SWE-Bench (Jimenez et al., 2023), which requires agents to perform complex, multi-turn interactions
with large codebases and reason deeply about code functionality.

However, unlike in math domain, the direct application of online RL to software engineering is
impeded by significant practical challenges. These include handling long context windows, high-
latency environment feedback, and slow patch verification (Wei et al., 2025; Golubev et al., 2025).
Consequently, these obstacles have hindered the development of stable and scalable end-to-end RL

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Performance of SRL on SWE-Bench-Verified. Results in the table are using greedy decoding.

Oracle File Edit End-to-End
Qwen2.5-Coder-Instruct (Base) 5.8 3.2
SWE-Gym-7B 8.4 4.2
SRL (ours) 14.8 8.6

methods, leading to a prevailing approach of collecting expert agent trajectories and distilling them
into a policy via SFT (Pan et al., 2024; Yang et al., 2025).

Setup. We apply SRL to further fine-tune Qwen2.5-Coder-7B-Instruct (Hui et al., 2024), a model
already specialized for coding tasks. We use a dataset from Yang et al. (2025), which consists of 5,000
expert agent trajectories. These trajectories were generated by claude-3-7-sonnet-20250219 (An-
thropic, 2025) and subsequently verified to ensure they produce correct code patches.

Each trajectory is composed of multiple steps defined by the agent’s interactions with the coding
environment. As the example below illustrates, a single step contains natural language reasoning
followed by an executable action:

I'll help you implement the necessary changes to fix the issue with the `OriginValidator ` not
properly handling wildcard (*) in allowed_origins. Let 's follow the steps you outlined.

Step 1: Find and read relevant code

First , let 's explore the repository structure to locate the `OriginValidator ` class mentioned
in the PR description. This is an extra long line added to demonstrate how the automatic line
wrapping feature from the listings package works.

<function=bash >
<parameter=command >find /testbed -type f -name "*.py" | grep -v "__pycache__" | sort </ paramete
r>
</function >

In line with our SRL formulation (Section 4.2), we define the “action” as the environment-consumable
command (e.g., the bash call). Following this decomposition, we process the full trajectories to create
134k step-wise training instances. For validation, we hold out 30 full trajectories, from which we
curate a validation set of 650 step-wise instances.

Evaluation. We evaluate our model’s patch generation performance by measuring its resolve rate (%)
under two distinct configurations, following Wei et al. (2025): (1) Oracle file editing evaluation: The
model is provided with the oracle code files to repair. This configuration isolates and measures the
model’s core patch generation capability; (2) End-to-end evaluation: This setting uses the Agentless-
mini agent scaffold (Wei et al., 2025) to first identify the file(s) to modify and subsequently generate
the patch. It tests the model’s fault localization and code repair abilities in conjunction.

We compare our SRL-trained model against two crucial baselines: the original base model (Qwen2.5-
Coder-Instruct) and SWE-Gym-7B (Pan et al., 2024). Since SWE-Gym-7B is an SFT-based model
finetuned from the same base model, this provides a direct, fair comparison between SFT and our
SRL training methodology. As shown in Table 4, SRL substantially outperforms both baselines.
In the oracle setting, SRL achieves a 14.8% resolve rate, representing a 74% relative improvement
over the strong SWE-Gym-7B baseline. The performance gain is consistent when evaluating in the
challenging end-to-end setting, where SRL can obtain twice the performance.

6 CONCLUSION

In conclusion, we introduce Supervised Reinforcement Learning (SRL), a method for teaching
complex reasoning to LLMs using expert demonstrations, especially where conventional RL or SFT
struggles. By breaking down problems and using a step-wise sequence similarity reward, SRL bridges
imitation and reinforcement learning. Empirically, SRL significantly surpasses baselines on math and
software engineering tasks and enables a powerful curriculum learning strategy when paired with
RLVR. SRL is a robust technique for training agents to solve challenging multi-step problems, paving
the way for training more capable and versatile AI agents.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting reinforce style optimization for learning
from human feedback in llms. arXiv preprint arXiv:2402.14740, 2024.

Anthropic. Introducing claude 3.7 sonnet, 2025., 2025. URL https://www.anthropic.com/news/
claude-3-7-sonnet.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and
Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling.
arXiv preprint arXiv:2407.21787, 2024.

Xinghao Chen, Zhijing Sun, Wenjin Guo, Miaoran Zhang, Yanjun Chen, Yirong Sun, Hui Su, Yijie
Pan, Dietrich Klakow, Wenjie Li, et al. Unveiling the key factors for distilling chain-of-thought
reasoning. arXiv preprint arXiv:2502.18001, 2025a.

Yi Chen, Yuying Ge, Rui Wang, Yixiao Ge, Junhao Cheng, Ying Shan, and Xihui Liu. Grpo-
care: Consistency-aware reinforcement learning for multimodal reasoning. arXiv preprint
arXiv:2506.16141, 2025b.

Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V
Le, Sergey Levine, and Yi Ma. Sft memorizes, rl generalizes: A comparative study of foundation
model post-training. arXiv preprint arXiv:2501.17161, 2025a.

Xiangxiang Chu, Hailang Huang, Xiao Zhang, Fei Wei, and Yong Wang. Gpg: A simple and strong
reinforcement learning baseline for model reasoning. arXiv preprint arXiv:2504.02546, 2025b.

Yihe Deng, Hritik Bansal, Fan Yin, Nanyun Peng, Wei Wang, and Kai-Wei Chang. Openvlthinker:
An early exploration to complex vision-language reasoning via iterative self-improvement. arXiv
preprint arXiv:2503.17352, 2025.

Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang, Yujia Qin, Baoquan Zhong, Chengquan Jiang,
Jinxin Chi, and Wanjun Zhong. Retool: Reinforcement learning for strategic tool use in llms.
arXiv preprint arXiv:2504.11536, 2025.

Alexander Golubev, Maria Trofimova, Sergei Polezhaev, Ibragim Badertdinov, Maksim Nekrashevich,
Anton Shevtsov, Simon Karasik, Sergey Abramov, Andrei Andriushchenko, Filipp Fisin, Sergei
Skvortsov, and Boris Yangel. Training long-context, multi-turn software engineering agents with
reinforcement learning. arXiv preprint arXiv:2508.03501, 2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Zhen Huang, Haoyang Zou, Xuefeng Li, Yixiu Liu, Yuxiang Zheng, Ethan Chern, Shijie Xia, Yiwei
Qin, Weizhe Yuan, and Pengfei Liu. O1 replication journey–part 2: Surpassing o1-preview through
simple distillation, big progress or bitter lesson? arXiv preprint arXiv:2411.16489, 2024.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large language
models for code generation. arXiv preprint arXiv:2406.00515, 2024.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman,
Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. Tulu 3: Pushing frontiers in
open language model post-training. arXiv preprint arXiv:2411.15124, 2024.

10

https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. Advances in neural information processing systems,
35:3843–3857, 2022.

Dacheng Li, Shiyi Cao, Tyler Griggs, Shu Liu, Xiangxi Mo, Eric Tang, Sumanth Hegde, Kourosh
Hakhamaneshi, Shishir G Patil, Matei Zaharia, et al. Llms can easily learn to reason from
demonstrations structure, not content, is what matters! arXiv preprint arXiv:2502.07374, 2025a.

Liunian Harold Li, Jack Hessel, Youngjae Yu, Xiang Ren, Kai-Wei Chang, and Yejin Choi. Sym-
bolic chain-of-thought distillation: Small models can also" think" step-by-step. arXiv preprint
arXiv:2306.14050, 2023.

Yuetai Li, Xiang Yue, Zhangchen Xu, Fengqing Jiang, Luyao Niu, Bill Yuchen Lin, Bhaskar
Ramasubramanian, and Radha Poovendran. Small models struggle to learn from strong reasoners.
arXiv preprint arXiv:2502.12143, 2025b.

Zhiwei Li, Yong Hu, and Wenqing Wang. Encouraging good processes without the need for good
answers: Reinforcement learning for llm agent planning. arXiv preprint arXiv:2508.19598, 2025c.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
Lin. Understanding r1-zero-like training: A critical perspective. arXiv preprint arXiv:2503.20783,
2025.

Yijia Luo, Yulin Song, Xingyao Zhang, Jiaheng Liu, Weixun Wang, GengRu Chen, Wenbo Su, and
Bo Zheng. Deconstructing long chain-of-thought: A structured reasoning optimization framework
for long cot distillation. arXiv preprint arXiv:2503.16385, 2025.

Yingqian Min, Zhipeng Chen, Jinhao Jiang, Jie Chen, Jia Deng, Yiwen Hu, Yiru Tang, Jiapeng Wang,
Xiaoxue Cheng, Huatong Song, et al. Imitate, explore, and self-improve: A reproduction report on
slow-thinking reasoning systems. arXiv preprint arXiv:2412.09413, 2024.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling, 2025. URL https://arxiv.org/abs/2501.19393.

Jiayi Pan, Xingyao Wang, Graham Neubig, Navdeep Jaitly, Heng Ji, Alane Suhr, and Yizhe Zhang.
Training software engineering agents and verifiers with swe-gym. arXiv preprint arXiv:2412.21139,
2024.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and structured
prediction to no-regret online learning. In Proceedings of the fourteenth international conference
on artificial intelligence and statistics, pp. 627–635. JMLR Workshop and Conference Proceedings,
2011.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemat-
ical reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Kaya Stechly, Karthik Valmeekam, Atharva Gundawar, Vardhan Palod, and Subbarao Kambhampati.
Beyond semantics: The unreasonable effectiveness of reasonless intermediate tokens. arXiv
preprint arXiv:2505.13775, 2025.

Daniil Tiapkin, Daniele Calandriello, Johan Ferret, Sarah Perrin, Nino Vieillard, Alexandre Ramé,
and Mathieu Blondel. On teacher hacking in language model distillation. arXiv preprint
arXiv:2502.02671, 2025.

Chaojie Wang, Yanchen Deng, Zhiyi Lyu, Liang Zeng, Jujie He, Shuicheng Yan, and Bo An. Q*: Im-
proving multi-step reasoning for llms with deliberative planning. arXiv preprint arXiv:2406.14283,
2024.

Peng-Yuan Wang, Tian-Shuo Liu, Chenyang Wang, Yi-Di Wang, Shu Yan, Cheng-Xing Jia, Xu-Hui
Liu, Xin-Wei Chen, Jia-Cheng Xu, Ziniu Li, and Yang Yu. A survey on large language models for
mathematical reasoning. arXiv preprint arXiv:2506.08446, 2025.

11

https://arxiv.org/abs/2501.19393

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yuxiang Wei, Olivier Duchenne, Jade Copet, Quentin Carbonneaux, Lingming Zhang, Daniel Fried,
Gabriel Synnaeve, Rishabh Singh, and Sida I. Wang. Swe-rl: Advancing llm reasoning via
reinforcement learning on open software evolution. arXiv preprint arXiv:2502.18449, 2025.

Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze Lou, Yuandong Tian, Yanghua Xiao, and
Yu Su. Travelplanner: A benchmark for real-world planning with language agents. In Forty-first
International Conference on Machine Learning, 2024.

Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo, Yuqian Hong, Bryan Dai, Joey Zhou, Kai Qiu,
Zhirong Wu, and Chong Luo. Logic-rl: Unleashing llm reasoning with rule-based reinforcement
learning. arXiv preprint arXiv:2502.14768, 2025.

Wei Xiong, Jiarui Yao, Yuhui Xu, Bo Pang, Lei Wang, Doyen Sahoo, Junnan Li, Nan Jiang, Tong
Zhang, Caiming Xiong, and Hanze Dong. A minimalist approach to llm reasoning: from rejection
sampling to reinforce. arXiv preprint arXiv:2504.11343, 2025.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai,
Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng
Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai
Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan
Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang
Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zhihao Fan. Qwen2
technical report. arXiv preprint arXiv:2407.10671, 2024.

John Yang, Kilian Leret, Carlos E Jimenez, Alexander Wettig, Kabir Khandpur, Yanzhe Zhang,
Binyuan Hui, Ofir Press, Ludwig Schmidt, and Diyi Yang. Swe-smith: Scaling data for software
engineering agents. arXiv preprint arXiv:2504.21798, 2025.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is more for
reasoning. arXiv preprint arXiv:2502.03387, 2025.

Edward Yeo, Yuxuan Tong, Morry Niu, Graham Neubig, and Xiang Yue. Demystifying long
chain-of-thought reasoning in llms. arXiv preprint arXiv:2502.03373, 2025.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system at
scale. arXiv preprint arXiv:2503.14476, 2025.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does
reinforcement learning really incentivize reasoning capacity in llms beyond the base model? arXiv
preprint arXiv:2504.13837, 2025.

Jixiao Zhang and Chunsheng Zuo. Grpo-lead: A difficulty-aware reinforcement learning approach
for concise mathematical reasoning in language models. arXiv preprint arXiv:2504.09696, 2025.

Xiaojiang Zhang, Jinghui Wang, Zifei Cheng, Wenhao Zhuang, Zheng Lin, Minglei Zhang, Shaojie
Wang, Yinghan Cui, Chao Wang, Junyi Peng, et al. Srpo: A cross-domain implementation of
large-scale reinforcement learning on llm. arXiv preprint arXiv:2504.14286, 2025.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A ILLUSTRATION OF SRL ON SWE TASKS.

In Figure 5, we illustrate how we approach the SWE tasks with SRL. We take two consecutive
action-observation pairs from the expert trajectories in the given SFT data as context. We prompt the
LLM to first think in monologues and then conclude with its action. Sequence similarity score is thus
computed between model action and expert action in the trajectory.

GitHub
Issue

Past Expert Action
<function=str_replace_editor>

<parameter=command>create<
/parameter>

<parameter=path>/testbed/rep
roduce.py</parameter>

…
</function>

Past Observation
File created

successfully at:
/testbed/reprodu

ce.py

Past Expert Action
<function=bash>

<parameter=command>cd
/testbed && python

reproduce.py</parameter>
</function>

Past Observation
Error importing

generated parsers,
run `python

setup.py antlr` to
regenerate.

Context
Expert Action

<function=bash>
cd /testbed && pip

install -e .
</function>

Model Thoughts
<think>

The error message
indicates that the

generated parsers are
missing or outdated…

</think>

LLM

Model Action
<function=bash>

cd /testbed && python
setup.py antlr
</function>

Reward r = similarity(model
action, expert action)

Figure 5: Illustration of applying SRL to SWE tasks. We take two rounds of the past expert actions
and corresponding observations in context and prompt the LLM to think before reaches the next
action. The model action is compared with the expert action to compute the sequence similarity
reward.

B EXPERIMENT DETAILS

We use VeRL as the training framework for GRPO and implement SRL based on it. In Table 5, 6 and
7, we detail the hyperparameters that we used for SFT, GRPO and SRL. The batch size for GRPO
is set to be smaller (128) than SRL (512) as the filter rate is high based on final answer correctness,
for most of the questions are very difficult. We maintain a smaller batch size to avoid repeated
sampling and achieve better performance. We further lay out the system prompts we used for SRL.
Experiments were conducted on GPU clusters to the similar level of NVIDIA H100 80GB GPU.

Table 5: Supervised fine-tuning hyperparameters.

Data type bf16
Learning rate 5e-6

Global batch size 64
Scheduler Cosine

Warmup ratio 0.3
Num train epochs 3

System Prompt for SRL
You are a helpful assistant for solving mathematical problems. A user will provide a math problem, which may include a partial
solution. Your task is to continue the solution by providing the very next logical step.
A user will ask you to solve a task. You should first draft your thinking process (inner monologue). Then, generate the solution.
Your response format must follow the template below: <think> Your thoughts or/and draft, like working through an exercise on
scratch paper. Be as casual and as long as you want until you are confident to generate a correct solution. </think> Provide only the
single, next step to continue the solution. Do not solve the entire problem.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 6: GRPO hyperparameters.

Batch size 128
Max grad norm 1.0

Data type bf16
Learning rate 5e-7
Warmup ratio 0.0

Rollout temperature 1.0
Rollout number 8
KL loss coeff 0

Table 7: SRL hyperparameters.

Batch size 512
Max grad norm 1.0

Data type bf16
Learning rate 5e-7
Warmup ratio 0.0

Rollout temperature 1.0
Rollout number 8
KL loss coeff 0

C ADDITIONAL OUTPUT EXAMPLES

Example 2: Planning

Question: Josh decides to try flipping a house. He buys a house for $80,000 and then puts in $50,000 in
repairs. This increased the value of the house by 150%. How much profit did he make?
<think>
To determine Josh’s profit, we need to follow these steps:
1. Calculate the new value of the house after the repairs.
2. Subtract the initial cost of the house and the repair costs from the new value to find the profit.
</think>
First, let’s calculate the new value of the house after the repairs. The value of the house increased by
150% after the repairs.
The initial cost of the house is $80,000, and the repairs cost $50,000. The total cost before the value
increase is:

80, 000 + 50, 000 = 130, 000

The value of the house increased by 150% of its initial value of $80,000. So, the increase in value is:

150%× 80, 000 = 1.5× 80, 000 = 120, 000

Therefore, the new value of the house is:

80, 000 + 120, 000 = 200, 000

Now, we subtract the total cost (initial cost of the house plus the repair costs) from the new value of the
house to find the profit:

200, 000− 130, 000 = 70, 000

So, Josh’s profit is:
70000

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Example 3: Self-verification

Question: Which one of these constellations is not located along the Milky Way in the sky?
Answer Choices: (A) Perseus (B) Cygnus (C) Scorpius (D) Leo

First, let’s recall which constellations are along the Milky Way. Perseus, Cygnus, and Scorpius are all
well-known constellations that lie along the Milky Way. However, Leo is not one of them; it is located
in the northern sky and does not align with the Milky Way. Therefore, the correct answer is (D) Leo.

<think>
To double-check, I can recall the general locations of these constellations:
- Perseus is in the northern sky and is part of the Perseus Arm of the Milky Way.
- Cygnus is also in the northern sky and is part of the Orion Arm of the Milky Way.
- Scorpius is in the southern sky and is part of the Sagittarius Arm of the Milky Way.
- Leo is in the northern sky and is not aligned with the Milky Way.
</think>

The answer is (D) Leo.

D LLM USAGE

Throughout the preparation of this manuscript, we utilized a LLM as an assistant with refinement
of writing. Its role was strictly limited to improving grammar, rephrasing sentences for clarity, and
correcting spelling. All intellectual contributions, ideas, and conclusions presented in this paper are
entirely the work of the authors.

15

	Introduction
	Related Work
	SFT (Distillation) for LLM Reasoning.
	RL for LLM Reasoning.

	Preliminaries
	Methodology
	The challenge of hard reasoning problem
	Supervised Reinforcement Learning (SRL)

	Experiments
	Main Results: Math Reasoning
	Analysis: Math Reasoning
	Extension: Software Engineering Agentic Reasoning

	Conclusion
	Illustration of SRL on SWE Tasks.
	Experiment Details
	Additional Output Examples
	LLM Usage

