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ABSTRACT

Quantifying model generalization to out-of-distribution data has been a longstand-
ing challenge in machine learning. Addressing this issue is crucial for leveraging
machine learning in scientific discovery, where models must generalize to new
molecules or materials. Current methods typically split data into train and test
sets using various criteria — temporal, sequence identity, scaffold, or random
cross-validation — before evaluating model performance. However, with so many
splitting criteria available, existing approaches offer limited guidance on selecting
the most appropriate one, and they do not provide mechanisms for incorporating
prior knowledge about the target deployment distribution(s).
To tackle this problem, we have developed a novel metric, AU-GOOD, which
quantifies expected model performance under conditions of increasing dissimilar-
ity between train and test sets, while also accounting for prior knowledge about the
target deployment distribution(s), when available. This metric is broadly applica-
ble to biochemical entities, including proteins, small molecules, nucleic acids, or
cells; as long as a relevant similarity function is defined for them. Recognizing
the wide range of similarity functions used in biochemistry, we propose criteria to
guide the selection of the most appropriate metric for partitioning. We also intro-
duce a new partitioning algorithm that generates more challenging test sets, and
we propose statistical methods for comparing models based on AU-GOOD.
Finally, we demonstrate the insights that can be gained from this framework by
applying it to two different use cases: developing predictors for pharmaceutical
properties of small molecules, and using protein language models as embeddings
to build biophysical property predictors.

1 INTRODUCTION

The last decade has been characterised by the impact that the introduction of machine learning mod-
els has had in the acceleration of scientific discovery. These models are frequently used to predict
the properties of entities (drug candidates, materials, cells, etc.) that are inherently different from
those present in their training distribution. This deployment scenario, known as out-of-distribution
(OOD), is particularly frequent within the biochemical domain which encompasses both biologi-
cal and chemical modelling. Proper OOD evaluation of models is necessary, within this domain
specifically, due to the enormous economic and societal impact that wrong predictions might have,
for example, when a drug candidate that was predicted as non-toxic (?) goes through to the latter
phases of the drug development pipeline, including pre-clinical or clinical trials. Further tasks where
OOD evaluation is critical are: modelling of the interaction between a known molecular target and
new compounds (?), the prediction of the structure of molecular targets mediating disease (?), or cell
type annotation (?). Overall, robust OOD evaluation is necessary for the development of trustworthy
predictive models, driving advancements in biochemistry.

Prior literature in the biochemistry domain, has already highlighted the importance of evaluating
model generalisation to OOD data, though there is no prior work attempting to build a framework
for both measuring the generalisation capabilities of any given model and to provide a statistical
method to compare the performance of different models. Instead, prior works have focused on de-
veloping algorithms for i) measuring pairwise similarity values between biochemical entities (???),
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ii) splitting a dataset into independent train-test subsets (?????), iii) combining different partitioning
algorithms to simulate the composition of a single target deployment distribution (?), and iv) explor-
ing the effect of overlap between training and testing on model performance (?). Due to the absence
of a comprehensive framework for evaluating model generalisation to out-of-distribution (OOD)
data, validating claims about machine learning generalisation remains challenging. In response to
this gap, we first present a framework to study and quantify model generalisation to OOD data for
biochemistry. We propose a novel partitioning algorithm that, unlike existing methods (?????), is
broadly applicable across various biochemistry contexts, including proteins and small molecules.
Our approach is agnostic to the underlying data types; instead, it relies on any similarity functions
that can be defined between two data instances. In contrast to previous methods that choose a certain
similarity function assuming that it can capture generalisation within the context of a certain mod-
elling task (???????), we propose a framework that allows to quantify how appropriate a similarity
metric is for guiding the partitioning of a certain dataset, with minimal relience on domain knowl-
edge. We also propose two new similarity functions based on physico-chemical descriptors, rather
than structure-based fingerprints and a statistical metric to compare the generalisation capabilities
of different models.

2 HESTIA-GOOD FRAMEWORK

This section presents the Hestia-GOOD framework for quantifying out-of-distribution generalisation
in biochemistry. It is divided into three subsections.

1. We present the AU-GOOD metric for quantifying model generalisation to target deploy-
ment distribution(s). This metric corresponds with the expected empirical risk of a model
trained on a given dataset with varying train/test similarity conditioned on any arbitrary
target deployment distribution(s).

2. We propose an algorithm for dataset partitioning that i) does not remove any data points, ii)
creates strict boundaries between training and testing, and iii) supports multiple similarity
thresholds.

3. We propose a statistical test to compare the generalisation capabilities of two different
models.

2.1 AU-GOOD METRIC FOR QUANTIFYING MODEL GENERALISATION TO THE TARGET
DEPLOYMENT DISTRIBUTION(S)

We consider the problem of estimating model performance against any arbitrary target deployment
distribution(s) that are out-of-distribution of the data available during model training. Our approach
consists on three steps:

1. Partition the available data (training data) into training/testing subsets with the condition
that there are no elements in the testing set that are similar (up to a threshold value) to
those in training. Multiple partitions are created by applying different thresholds to this
similarity.

2. The model is trained in each training subset and its performance evaluated against the cor-
responding testing subset.Then we describe model performance as a function of the similar-
ity threshold. We refer to this function as the Generalisation Out-Of-Distribution (GOOD)
curve.

3. Given any number of arbitrary target deployment distribution(s), we calculate the similar-
ity between each of its elements and the training data. For each element in the deployment
distribution, we keep the maximum similarity and calculate a histogram of their distri-
bution such that each bin corresponds to one of the thresholds in the GOOD curve. The
AU-GOOD, or Area Under the GOOD curve, can be calculated as the weighted average of
all points in the GOOD curve where the weight of each point corresponds to the value of
the histogram for the corresponding threshold.
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Formally, we demonstrate that the AU-GOOD metric corresponds to the expected empirical risk of
the model conditioned on the target deployment distribution (see Appendix - A).

Figure 1: Illustration of the calculation of the AU-GOOD metric. A-C correspond to synthetic data.

To illustrate how the AU-GOOD metric is calculated and what insights can be drawn from its analy-
sis, let us consider a simple simulation, which will serve to illustrate the relationship between GOOD
curve, target distribution(s) and AU-GOOD. Let us consider two models, “Model A” and “Model
B”, with GOOD curves as shown in Figure 1.A. In Figure 1A, Model A performs better when pre-
dicting molecules similar to the training data, whereas for Model B there is comparatively better
performance at low similarity values.

Let us now consider two different target deployment distributions, “Target 1” and “Target 2”. The
histograms reflecting their similarity to the training data are shown in Figures 1.B-C. Target 1 (Figure
1.B) comprises entities with low similarity to the training data, while Target 2 (Figure 1.C) represents
the opposite case, where most entities are similar to those the model has been trained on.

The AU-GOOD metric allows for the evaluation of model generalisation relative to a target deploy-
ment distribution. Therefore, it allows us to determine that, though apparently Model B has a more
consistent performance through different similarity thresholds, Model A is a better choice for Target
2 which is skewed towards molecules similar to the training data. Conversely, Model B is a better
choice for Target 1.

This simple example also highlights one of the main strengths of the AU-GOOD metric, which is that
it allows to obtain estimators of model generalisation for an arbitrary number of target deployment
distributions without the need for additional experiments. This is a significant advantage when
compared with other approaches for out-of-distribution performance estimation, like MOOD (?)
which focuses on generating test sets that closely resemble the target deployment distribution and
requires repeating the training/evaluation cycle for each new target deployment distribution; whereas
with ours, only the similarity histogram needs to be updated. Our approach is also similar to ? with
three main differences: 1) their method defines arbitrarily a certain similarity threshold and considers
model performance against the proportion of similar entities between training and testing; whereas,
our approach defines a certain proportion of similar entities (0%) and explores the effect on model
performance of the different similarity thresholds; 2) their method assumes that whatever similarity
function they have chosen is good at capturing the relevant properties that mediate any given task;
however, our method makes no such assumption and we provide a series of analyses to determine
that a GOOD curve reasonably describes out-of-distribution generalisation; and 3) their approach
does not provide any estimation of model performance conditioned on the target deployment distri-
bution(s), which limits its practical application in real-world scenarios.

Regarding the empirical comparison between methods, neither ? nor ? have provided any empirical
evaluation of the properties of their method, due to the lack of available ground truth data. It is an
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open research question how to properly measure the accuracy of the methods for OOD evaluation.
Further, each of the three methods evaluates slightly different properties of the models and it is
unclear how a direct comparison could be performed.

2.2 DATASET PARTITIONING TO SIMULATE OUT-OF-DISTRIBUTION DATA GIVEN A
SIMILARITY VALUE

The AU-GOOD values can also be affected by the sampling performed during the partitioning step,
as it may bias the composition of the test set. There are three conditions that the partitioning al-
gorithms have to fullfil are: 1) to not remove any data point, otherwise the comparison between
thresholds could also correspond to the loss of information and would make them not directly com-
parable; 2) to enforce strict boundaries between training and testing subsets for any given similarity
threshold (?), otherwise we would not be measuring strictly the dependence on the similarity thresh-
old, but also (implicitly) the effect of overlap within any given threshold; and 3) to allow for multiple
thresholds, otherwise we cannot describe model performance as a function of the threshold.

All prior partitioning algorithms described for biochemical data violate at least one of the three con-
ditions: perimeter and maximum dissimilarity do not fulfill condition 2 and scaffold split does not
fulfill condition 3 (?), cluster splits relying on hierarchical clustering (?) do not fulfill conditions
2 and 3; GraphPart (?) or Lo-Hi splitting (?) do not fulfill condition 1. The Butina split (?) gener-
ates clusters where every member of a given cluster is guaranteed to be closer to the centroid than
the threshold, however the frontiers between clusters are not strict, and therefore does not fulfill
condition 2.

Here, we propose the CCPart (Connected Components Partitioning) a new strategy for partitioning
the datasets that fulfills all three previous conditions and that is extensible to any biochemical data.
The algorithm first constructs a graph, where the nodes are all elements in the datasets and the edges
are drawn between nodes with similarity greater than the threshold. It then identifies all unconnected
subgraphs. The testing set is iteratively built by assigning the smallest subgraphs until the desired
size is reached. Smaller subgraphs are considered more unique. CCPart thus focuses the evaluation
on the most dissimilar regions of the dataset distribution. Additionally, stratified sampling can be ap-
plied to maintain label balance in classification tasks. Figure 2 illustrates this process (see Algorithm
S1).

Figure 2: Schema showing how CCPart builds the training and testing subsets based on the similarity
graph at different similarity thresholds.

In any case, our framework is agnostic to the specific partitioning strategy used and future devel-
opment of alternative algorithms that fulfill the three conditions could improve the accuracy of the
AU-GOOD calculation. It is also an open research question what the impact is of violating any of
the three assumptions on the reliability of the AU-GOOD metric.

2.3 STATISTICAL TEST FOR COMPARING AU-GOOD VALUES

Generally, comparison between the statistical significance of the difference in performance between
two given models is made by comparing their confidence intervals. This standard practice, implicitly
assumes that performance is normally distributed. However, the performance values at different
thresholds cannot be assumed to be normally distributed. Therefore, the analysis of the statistical
significance between individual AU-GOOD values requires a different kind of statistical test. We
propose to use the non-parametric equivalent to the one-tailed T-test, the one-tailed paired Wilcoxon
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ranked-sum test ??. Finally, if we want to compare the performance of n models, n × n pairwise
tests can be performed. In cases where we are performing multiple tests (n > 5), the Bonferroni
correction for multiple testing (?) can be applied so that the significance threshold depends on the
number of models: 0.05/n (?).

2.4 HESTIA: COMPUTATIONAL EMBODIMENT

The partitioning algorithms rely on pairwise similarity calculations and scale in complexity and
memory footprint by O(N2). In response to this, our implementation improves computational and
memory efficiency by relying on sparse matrices and parallelism. We have run toy examples with
datasets of up to 400,000 protein sequences within a day in 32 CPU cores and 200GB of RAM,
thus we believe that scaling does not limit the usefulness of the method within the domain. In other
domains, algorithmic improvements might be required for scaling to very large datasets.

We have released the code open source 1, including: 1) wrappers for most common similarity func-
tions between a) small molecules, b) biosequences including protein and nucleic acids, c) protein
structures, and d) embeddings from pre-trained representation learning models; 2) implementation
of different partitionings algorithms such as: a) GraphPart and b) CCPart; and 3) calculation of
AU-GOOD values. More details in Appendix - B.

3 EXPERIMENTS

We have chosen two different real-world use cases to demonstrate the insights that can be drawn
from using our framework for the comparison of ML models within the biochemical domain. The
first one is the selection of predictive models for pharmaceutical properties given a target deployment
distribution and the second is the selection of what protein language model embedding to use for
different target deployment distributions.

3.1 USE CASE 1: PREDICTION OF PHARMACEUTICAL PROPERTIES OF SMALL MOLECULES

ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) properties encompass dif-
ferent biophysical attributes of small molecules that may affect both their pharmacokinetic and phar-
macodynamic behaviour within the organism (?). The estimation of which model will generalise
better to which target deployment distribution, will allow researchers to decide on what model to
use for each particular project. For the purposes of this study, we have selected the Drug Repur-
posing Hub (?) as the library of choice as it represents a realistic scenario with known approved
drugs.

We examine our framework with six datasets containing different ADMET properties from the Ther-
apeutics Data Commons collection (?): Ames’ mutagenicity (?), cell effective permeability in Caco-
2 cell line (?), drug-induced liver injury (DILI) (?), acute toxicity LD50 (?), drug half-life (?), and
parallel artificial membrane permeability assay (PAMPA) (?). We report model performance with
Matthew’s correlation coefficient for classification tasks (Ames, DILI, and PAMPA) and Spearman’s
ρ correlation coefficient for regression tasks (Caco2, Half-life, and LD50).

Each experiment described uses as featurization method Extended-Connectivity FingerPrints
(ECFP) with radius 2 and 2,048 number of bits, as they are a well-known baseline for all the datasets
under consideration (?). Each experiment consists of 5 independent runs with different seeds. Each
run for a dataset and similarity metric has the exact same partitions, because the partitioning algo-
rithm is heuristic and not stochastic, therefore any variance between runs depends on the learning
algorithm and the Bayesian hyperparameter-optimisation which is conducted for each run indepen-
dently with Optuna (?) (see Table - S3).

3.1.1 WHAT IS THE BEST SIMILARITY FUNCTION?

Experimental setup
1Anonymized Repository: https://anonymous.4open.science/r/Hestia-OOD-32F8/
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The first step for using the Hestia framework is to determine what is the optimal similarity function
to use. We evaluated three types of fingerprints: ECFP with radius 2 and 2,048 bits, MACCS, and
chiral Min-hashed atom pair (MAPc) with radius 2 and 2,048 bits. We considered 4 binary set
similarity functions for the binary fingerprints (ECFP and MACCS): Tanimoto (?), Dice (?), Sokal
(?), and Rogot-Goldberg (?). We also considered cosine similarity as an alternative geometry-based
similarity function. For MAPc, which is not a binary fingerprint, we only considered the Jaccard
similarity.We have also considered alternative similarity metrics that are not fingerprint-based, in-
cluding: the euclidean distance between embeddings from two pre-trained chemical language mod-
els: Molformer (?) and ChemBERTa-2 (77M MLM) (?); the canberra distance between two types of
vectors of physicochemical descriptors 1) BUTCD (?) and Lipinski (?). More details in Appendix
C.

Criteria for selecting similarity function

We observed that different similarity functions led to GOOD curves with notably different shapes
(see Appendix - D). The two properties of the curves that experienced the biggest variance across
similarity functions were 1) their dynamic range, i.e., the difference between the minimum and
maximum similarity thresholds that could be used to generate viable partitions with test sets with
at least 18.5% of the total data2; and 2) their monotonicity, measured as the Spearman’s ρ corre-
lation coefficient between similarity threshold and model performance. A necessary assumption of
the GOOD and AU-GOOD calculations is that model performance can be described as a function
of the similarity threshold. Therefore, Spearman’s correlation coefficient serves as a robust, non-
parametric diagnostic test to ensure that any GOOD curve meets this assumption, without assuming
linearity.

We propose to use both metrics as selection criteria:

1. Rank all similarity functions by their largest dynamic range and choose the top functions.

2. Compare the monotonicity of the GOOD curves generated with those similarity functions
and select the similarity function with the highest monotonicity.

The first criterion aims to produce GOOD curves that span a greater similarity range to minimise the
impact of noise. The second focuses on improving discrimination between low and high similarity
thresholds for better evaluation of model generalization. It also serves as a diagnostic test to ensure
that the GOOD curves meet the assumption of model performance dependence on the similarity
thresholds. If none of the similarity functions achieves a reasonable monotonicity, it is likely that a
custom similarity function is required; or that there are underlying issues with the data generation
process that need to be corrected in a dataset specific way.

Choice of similarity function is dataset-specific

We applied these criteria to the datasets and similarity metrics considered in the study. Table 1 sum-
marises the decisions and the properties of the GOOD curves obtained in each case and Appendix
D contains a more in-depth analysis.

Overall, MAPc - Jaccard seems to be the most versatile similarity metric, being the optimal choice
for three out of six datasets. It has the highest dynamic range and good monotonicity in the majority
of datasets. This is consistent with the literature that describes it as a fine-grained and sensitive tool
for performing similarity searches in chemical databases (?).

It is also interesting that Molformer and ChemBERTa-2, both similarity metrics based on the
homonymn molecular language models, show the best relative performance in the same two datasets
PAMPA and Caco2. This suggests that the models are able to capture chemical properties relevant
for the respective tasks that are then exploited when partitioning.

Finally, one of the new similarity metrics proposed in this study, Lipinski, is the best for the half-life
dataset which proved quite challenging for the other alternatives.

2We keep the conventional 20% value and allowed for a 1.5% margin of error.
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Table 1: Similarity function chosen per dataset.

Dataset Similarity metric Dynamic range Monotonicity
Ames MAPc - Jaccard 0.75 0.82± 0.02
DILI MAPc - Jaccard 0.85 0.81± 0.02
PAMPA-NCATS Molformer 0.80 0.13± 0.02
Caco2 Molformer 0.85 0.76± 0.03
Half-life Lipinski 0.60 0.46± 0.06
LD50 MAPc - Jaccard 0.70 0.94± 0.02

The main conclusion that can be drawn from these results is that there is no one-size-fits-all similar-
ity function. Different datasets require different similarity metrics. This indicates that before starting
any analysis regarding model generalisation, a careful selection of the similarity metric used to mea-
sure generalisation is crucial. This initial step of analysis is missing from previous works (??????).

It is worth noting that the PAMPA dataset has low monotonicity with all similarity metrics consid-
ered in this study, which makes the interpretation of the GOOD curve unreliable. We believe that this
behaviour is due to the idiosyncrasies of this dataset which is relatively small (≈ 2, 000 molecules)
and highly unbalanced (1,739 positives to 295 negatives). The imbalance is further exacerbated by
the partitioning algorithm with the test set containing, in most partitions, around two thirds of all
negatives ≈ 200. This dataset provides a concrete showcase of the limitations of our framework,
which are: 1) it depends on the similarity metrics and for certain tasks it may be needed to define
custom similarity functions and 2) it may not be reliable for highly unbalanced datasets as the par-
titioning can increase the imbalance. For this reason, the PAMPA dataset will be excluded from the
next step, as the GOOD curve and AU-GOOD values are not reliable.

In any case, we highly recommend performing an initial analysis with any similarity function to
determine whether the GOOD has an appropriate dynamic range and meets the assumption of cor-
relation between similarity threshold and model performance.

Qualitative analysis of CCPart as an OOD partitioning algorithm

We visualised the overlap between training and testing partitions (generated with the correspond-
ing chosen similarity metric). The visualisation of the chemical space is achieved by using uniform
manifold approximation and projection (UMAP) (???) to project the ECFP fingerprints of each
dataset into two dimensions. Figure 3 shows how the testing partition of the Cell-effective perme-
ability dataset gets clustered together at low thresholds and gets more evenly distributed over the
training data distribution as the threshold increases. It is particularly interesting how the partitions
at threshold 0.9 are still less evenly distributed than those obtained with random partitioning. Figure
S2 contains similar representations for the rest of the datasets considered in the study.

Figure 3: UMAP representation of the chemical space covered by the training (blue) and testing
(red) partitions of the Cell-effective permeability dataset at different similarity thresholds.

Overall, these visualizations provide a qualitative and empirical demonstration that the CCPart al-
gorithm is able to generate out-of-distribution partitions.

3.1.2 WHAT MODELS GENERALISE BETTER TO THE DRUG REPURPOSING HUB?

Experimental setup

7
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We evaluated the performance of four traditional ML algorithms to build models for the ADMET
datasets: K-nearest neighbours (KNN), support vector machines (SVM), random forest (RF), and
light gradient boosting (LightGBM) and evaluated their AU-GOOD values using as target deploy-
ment distribution the Drug Reporpusing Hub ?.

Demonstration of an in-depth Hestia analysis

To demonstrate the depth of the analysis that can be performed with our framework, let us consider
one of the datasets in detail. Figure S3 contains equivalent analyses for the rest of the datasets.
Figure 4.A shows the GOOD curves for all models considered. The behaviour of KNN is particularly
interesting as it tends to perform worse at lower similarity thresholds and better at higher similarity.
This observation is not surprising in itself (KNN explictly depends on the distance to neighbouring
data points within the data), but it exemplifies the type of situation our framework is built to address.

Figure 4.B shows the distribution of maximal similarities between training and target deployment
distribution. In this particular case, it seems that the distribution is skewed towards higher similari-
ties. Figure 4.C shows the distribution of AU-GOOD values of the Matthew’s correlation coefficient
calculated for each model against the target deployment distribution. It shows that RF has the best
average AU-GOOD value, even though it shows greater variance across runs. Interestingly, KNN
is the second best model, despite it performing worse at the lower similarity thresholds. This is
because the maximal similarity distribution is skewed towards higher similarities and, therefore, the
performance at those thresholds has a greater contribution towards the final AU-GOOD score.

Figure 4.D shows the p-values of comparing the 4 models against each other with the Wilcoxon
signed-rank test. In this case, the alternative hypothesis is that Model A (y-axis) has better AU-
GOOD values than Model B (x-axis). This clearly shows that RF is significantly better (p < 0.001)
than the other three models.

Figure 4: HESTIA analysis for Ames’ mutageneicity dataset. A. GOOD curve with MAPc (radius
2 and 2,048 bits) and jaccard index; B. Maximal similarity between entities in Ames’ mutageneicity
dataset and target distribution (Drug Repurposing Hub); AU-GOOD values across 5 different runs;
Wilcoxon test p-values with alternative hypothesis Model A > Model B.

Demonstration of a summary of the Hestia analysis

The results for the rest of the datasets are summarised in Table 2. The significant rank reflects the
Wilcoxon signed-rank test results. For each model, it is calculated as the difference between the
total number of models and the number of models to which it is significantly superior. For example,
the significant rank for RF in Figure 4 would be 4 (number of models) - 3 (number of models that
are significantly inferior to RF) = 1; KNN would be 4− 2 = 2, SVM and LightGBM would be
4− 0 = 4.

4 USE CASE 2: EVALUATION OF PROTEIN LANGUAGE MODELS

Protein Language Models (PLMs) are pre-trained representation learning models that rely on the
transformer architecture and are trained with a masked-language modelling objective on protein
sequences. Here, we explore which PLM generates an embedding space that is better suited for
generalising to different target deployment distributions. We considered a biophysical property pre-
diction task, Optimal temperature for catalysis (?), from (?). To this end, we downloaded all protein
sequences for four organisms in the SwissProt database (?): human (Homo sapiens), Baker’s yeast
(Saccharomyces cerevisiae strain YJM789), and bacteria (Escherichia coli strain CFT073 / ATCC
700928 / UPEC) and the human hepatitis B virus (HPV-B) Orthohepadnavirus hepatitis B virus.
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Table 2: Comparison between the different downstream models for each dataset. AU-GOOD refers
to average AU-GOOD value across 5 runs, the error corresponds to the standard error of the mean.
The AU-GOOD value is calculated for the classification tasks for the Matthew’s correlation coeffi-
cient (MCC) for Ames, DILI, and PAMPA. For the regression tasks ( Caco2, Half life, and LD50)
Spearman’s ρ is used. S. Rank: Significant rank.

KNN SVM RF LightGBM
Dataset AU-GOOD S. Rank AU-GOOD S. Rank AU-GOOD S. Rank AU-GOOD S. Rank
Ames 0.89 ± 0.01 2 0.88 ± 0.00 4 0.90 ± 0.01 1 0.88 ± 0.01 4
DILI 0.95 ± 0.00 3 0.96 ± 0.00 1 0.95 ± 0.00 3 0.77 ± 0.04 4
Caco2 0.87 ± 0.00 4 0.92 ± 0.00 1 0.92 ± 0.00 2 0.88 ± 0.00 3
Half life 0.93 ± 0.00 2 0.97 ± 0.00 1 0.69 ± 0.04 3 0.23 ± 0.01 4
LD50 0.86 ± 0.00 2 0.83 ± 0.00 4 0.89 ± 0.00 1 0.83 ± 0.00 4

Average 0.90 ± 0.01 2.6 0.91 ± 0.01 2.2 0.87 ± 0.02 2.0 0.72 ± 0.05 4.8

4.1 EXPERIMENTAL SETUP

We considered the following models: ESM2-8M (?), ESM2-150M (?), ESM2-650M (?), ProtBERT
(?), Prot-T5-XL (?), Prost-T5 (?), Ankh-base (?), and Ankh-large (?). We extracted the embeddings
for all sequences in our downstream datasets and for each sequence s we computed its embeddings
using average pooling (?). We used SVM as the downstream model to reduce the amount of noise
in our analyses due to model selection.

4.2 WHAT IS THE BEST SIMILARITY FUNCTION?

The task we are considering concerns protein sequence property prediction. We decided to com-
pare two computationally efficient similarity functions MMSeqs2 and MMSeqs2 with prior k-mer
prefiltering (?). However, for other protein tasks where data points are evolutionary related we rec-
ommend using alternative metrics like Hamming distance like in the Fluorescence task in the TAPE
benchmarks ? or distance in phylogenetic trees.

The results clearly indicate that MMSeqs2 with prefilter is the best option in all respects i) dynamic
range, (Figure S4.A) and ii) monotonicity (Figure S4.B).

4.3 WHAT PLM GENERATES THE MOST USEFUL EMBEDDINGS?

Figure 5 shows the analyses of the different PLM embeddings (More details in Figure S5). Clearly,
the bigger models (Prot-T5-XL, ESM2-650M, and Prost-T5) tend to generalise better than their
smaller counterparts. This is particularly clear with the ESM2 models which are ordered in as-
cending performance according to their size ESM2-8M, ESM2-150M, and ESM2-650M. The worst
performing models are the Ankh models, which is surprising as the original paper (?) reported bet-
ter performance in several tasks. This result is not conclusive as we are only evaluating a single
task. However, it is an interesting finding that opens the question as to whether scaling down model
parameter size might be detrimental for the ability of the model embeddings to generalise to new
data.

It is also worth noting that, although the ranking of the models is the same regardless of the target
distribution, in some cases, like human or the hepatitis virus, the use of a much smaller model like
ESM2-150M instead of Prost-T5 could be statistically justified.

9
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Figure 5: Hestia analyses for Optimal Temperature of Catalysis, comparing different PLM repre-
sentations. AU-GOOD values correspond to Spearman’s ρ. The variance corresponds to 5 different
runs.

5 CONCLUSION

The AU-GOOD is a new metric that estimates the expected model performance against any target
deployment distribution(s), and thus provides a quantifiable value to guide the selection of the most
appropriate model to use in different deployment scenarios, without the requirement for additional
experiments. It is applicable to any biochemical entities for which a relevant similarity function can
be defined. The calculation of this metric requires partitioning the training data into training/testing
subsets that are increasingly dissimilar. We propose CCPart a new partitioning algorithm to generate
challenging splits without the need for removing any data points.

We provide a robust framework for analysing whether a similarity function is appropriate for par-
titioning a given dataset, with a series of quantitative metrics to provide a formal analysis of the
reliability of the resulting GOOD curves. Finally, we discuss how to obtain statistical support for
comparing different AU-GOOD values. Our experiments show that different datasets may require
different similarity functions that better capture the chemical relationships in the context of the spe-
cific modelling problem and that the selection of the appropriate similarity metric for each dataset
has a significant impact on the GOOD curves.

We demonstrate the use of this framework for two different use cases: the development of models for
predicting properties of small molecules, and the selection of a protein language model to generate
embeddings upon which to build biophysical property predictors.
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Xin Xu, and Pranav Shah. Validating adme qsar models using marketed drugs. SLAS DISCOV-
ERY: Advancing the Science of Drug Discovery, 26(10):1326–1336, 2021.

Temple F Smith, Michael S Waterman, et al. Identification of common molecular subsequences.
Journal of molecular biology, 147(1):195–197, 1981.

Robert R Sokal and Charles D Michener. A statistical method for evaluating systematic relation-
ships. University of Kansas Scientific Bulletin, 38(6):1409–38, 1958.

David T Stanton. Evaluation and use of bcut descriptors in qsar and qspr studies. Journal of chemical
information and computer sciences, 39(1):11–20, 1999.
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Felix Teufel, Magnús Halldór Gı́slason, José Juan Almagro Armenteros, Alexander Rosenberg Jo-
hansen, Ole Winther, and Henrik Nielsen. Graphpart: homology partitioning for biological se-
quence analysis. NAR genomics and bioinformatics, 5(4):lqad088, 2023.

Gary Tom, Riley J Hickman, Aniket Zinzuwadia, Afshan Mohajeri, Benjamin Sanchez-Lengeling,
and Alán Aspuru-Guzik. Calibration and generalizability of probabilistic models on low-data
chemical datasets with dionysus. Digital Discovery, 2(3):759–774, 2023.

Prudencio Tossou, Cas Wognum, Michael Craig, Hadrien Mary, and Emmanuel Noutahi. Real-world
molecular out-of-distribution: Specification and investigation. Journal of Chemical Information
and Modeling, 2024.

Serbulent Unsal, Heval Atas, Muammer Albayrak, Kemal Turhan, Aybar C Acar, and Tunca Doğan.
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A MATHEMATICAL FORMALISATION OF AU-GOOD METRIC

A.1 EMPIRICAL RISK IN TERMS OF THE DATASET PARTITIONING STRATEGY

This subsection demonstrates that the empirical risk can be expressed in terms of the partitioning
operation used to divide the data into training and testing subsets.

Let us consider a model fθ defined by a set of parameters θ and trained on a data distribution P (x, y)
where each datum is defined by a set of features x ∈ X and a set of labels y ∈ Y . The model will
attempt to approximate an unknown function g that provides a mapping from the feature space to
the label space fθ ≈ g : X → Y . The quality of the approximation can be described in terms of a
loss function L that measures the error in each individual mapping. In the end, the parameters of the
model will be optimised to minimise the expectation of the loss across the whole population which
is also known as the population risk:

R(fθ) := E(x,y)∼P (x,y)[L(fθ(x), y)] (1)

In practice, we do not have access to the data distribution, only to a subset, D ∼ P (x, y). Without
access to the data distribution, the population risk has to be approximated by the empirical risk.
The empirical risk of a model given a dataset D is calculated by partitioning D into two mutually
exclusive subsets T , E ∈ D such that T ∩ E = ∅, where T is the train subset and E is the test
subset defined by the partitioning operation denoted as Φ: D → T , E . The model trained on the
train subset is denoted as fθ,T (x) Therefore, the empirical risk can be estimated in terms of the
partitioning strategy:

R̂D(fθ) :=
1

n

∑
i∈E
L(fθ,T (xi), yi) (2)

where n is the number of elements in E .

A.2 DEFINITION OF A METRIC ESTIMATING MODEL GENERALISATION TO A TARGET
DISTRIBUTION

This subsection builds upon the previous definition of empirical risk in terms of the partitioning
operator and derives a metric for model generalisation to any target data distribution based on the
similarity between the elements of the training and target distributions.

Let us consider a hypothetical function that measures the similarity between the features of any two
elements in the population, s : X×X → R. Let us also consider a partitioning operator that enforces
a maximal value of similarity λ between the elements in training and testing. Such an operator would
necessarily be a function of both the similarity function s and the threshold similarity λs. Then, the
empirical risk would depend on the similarity function and the similarity threshold:

R̂λs
(fθ) :=

1

n

∑
i∈E
L(fθ,T (xi), yi) (3)

Model generalisation to a target deployment distribution E∗ that has been drawn from a population
distribution E∗ ∼ P ∗(x, y) different from P (x, y) could then be described as the expectation of the
empirical risk across the distribution of the similarity λs, denoted as P (λs|P ∗) induced from the
unknown target distribution P ∗(x, y), within the bounds of a minimal similarity λ0 and a maximal
similarity λn:

GΦ(fθ|P ∗) := E[λs|P∗]R̂λs
(fθ) =

∫ λn

λ0

R̂λs
P (λs|P ∗)dλs (4)

where P (λs|P ∗) is the probability density distribution of the similarity between D and E∗, i.e., the
expected distribution of similarities between D and E∗: P (λs|P ∗) = P (max{s(xi, xj) ∀ xi, xj ∈
D, E∗} = λs). This integral can be approximated numerically by:
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GΦ(fθ|P ∗) ≈
λn∑

i=λ0

R̂λi
s
P (λi

s|P ∗)∆λs (5)

A.3 SAMPLING CONSIDERATIONS

In many biological domains, data points are noisy, and it’s quite possible that the type of discon-
nected subgraphs found in the proposed algorithm would bias the testing set towards unrepresenta-
tive regions of the (bio)chemical space. This behaviour would lead to unstable GOOD curves where
there is low monotonic correlation between similarity threshold and model performance and would
therefore be identified when following the guidelines outlined in Subsection 3.1.1.

However, if the GOOD curve is monotonic, there could be some specific partitions at given thresh-
olds that show unstable behaviour. Given that the AU-GOOD is an expected value, with a sufficient
number of thresholds (n > 10) and a wide enough dynamic range, the estimated and the true popu-
lation AU-GOOD values will tend to converge.

A.4 MODEL PERFORMANCE METRIC CONSIDERATIONS

We recommend the use of model performance metrics that are not sensitive to label imbalance like
Matthew’s correlation coefficient or weighted F1 for classification tasks and Spearman’s or Pear-
son’s correlation coefficient for regression tasks. Otherwise, the GOOD curve will be much more
sensitive to certain partitions having test sets with different label distributions which could make the
AU-GOOD calculation more unstable.

B HESTIA COMPUTATIONAL SUITE

B.1 SIMILARITY CALCULATION

Hestia implements a diverse array of pairwise similarity functions s(x, y) which need to fulfill two
conditions:

1. The similarity between an entity and itself is maximal.

2. They are symmetric, s(x, y) = s(y, x).

Biological sequences. The similarity function calculated for protein sequences and nucleic acids is
the sequence identity in pairwise alignments. Local alignments are calculated using the MMSeqs2
implementation (?) of the Waterman-Smith algorithm (?) with or without prior k-mer prefiltering.
Global alignments are calculated using the EMBOSS implementation (?) of the Needleman-Wunch
algorithm (?). More information regarding the empirical differences between local and global align-
ments can be found in (??). The denominator used to calculate the identity can be the length of
the longest or the shortest sequence, as well as the length of the full alignment. Choice of the most
appropriate denominator depends on the dataset (?).

Protein structures. The similarity function calculated for a pair of protein structures is the prob-
ability that they belong to the same SCOPe family (?). This probability is approximated using
the Foldseek alignment algorithm (?) with both sequence and structural interaction representation
(3Di+AA) in either global (Foldseek-TM) or local (Foldseek) modes.

For both biological sequences and protein structures, pairwise alignments are not necessarily sym-
metric so we enforce condition 3 by taking the maximal similarity for each pair of entities:
s∗ := max[s(x, y), s(y, x)].

Small molecules. Similarity between small molecules can be calculated using a variety of similarity
functions including: Tanimoto (?), Dice (?), Rogot-Goldberg ?, Sokal (?), euclidean, manhattan,
canberra, or cosine similarity between various types of fingerprints including extended connectivity
fingerprints (ECFP) (?), MACCS (?), or MAPc (?); an physicochemical descriptors.
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Representation learning pre-trained model embeddings. Similarity between embeddings in-
cludes traditional geometrical distance functions like cosine, euclidean, manhattan, canberra, as
well as offering the option to use any custom similarity function. The distance functions d are
transformed into similarities with the following expression: s(x, y) = 1

1+d(x,y)

B.2 SIMILARITY CORRECTION ALGORITHMS

Basic notation. Let D be an arbitrary dataset comprised of n entities. D can be expressed as a
graph G(N,E) where the nodes (N ) are the set of all entities in D and the edges (E), the subset of
all pairwise similarity measurements between those entities s(Ni, Nj) with values above a threshold
λ, thus, E = {(n1, n2) ∀n1, n2 ∈ N such that s(n1, n2) > λ}. Let T and V be two partitions of D
such that T ∩ V = ∅. Then, Ef , the forbidden edges, can be defined as the subset of all similarities
between any two entities in T and V that is above the threshold, Ef = {(t, v) ∀ t ∈ T, v ∈ V such
that f(t, v) > λ}.
In this paper, similarity correction techniques refer to algorithms targeting the reduction of Ef . We
discuss them extensively as outlined below.

Similarity reduction. Similarity reduction aims at reducing redundant entities from D. This is
achieved by a two-step process comprising a clustering step and a redundancy reduction step in
which the representative entities of each cluster are selected and the rest of cluster members are
removed. Hestia relies on custom implementations of greedy incremental clustering and greedy
linear cover-set algorithms for the clustering step. These algorithms are commonly used in the
context of sequence clustering, by specialised software like CD-HIT (greedy incremental clustering)
(?) and MMSeqs (both) (?). Our custom implementations generalise their utility to any arbitrary
data type for which a pairwise distance matrix can be calculated.

Random partitioning. Random partitioning algorithms aim to divide the dataset into subsets
through unbiased sampling. The idea is to generate partitions with similar distributions. Strictly
speaking, it could only be considered a similarity correction algorithm under the assumption of in-
dependent and identically distributed data, e.g., after performing similarity reduction on the dataset.
Hestia leverages the corresponding scikit-learn implementation (?) of the algorithm.

GraphPart generalisation. Similarity partitioning algorithms aim at dividing the dataset into n
subsets or partitions such that Ef = ∅ between any two partitions. This is achieved through the
removal of entities whenever necessary. Hestia relies on a custom implementation of the Graph-Part
algorithm (?) that generalises it to any similarity function and biochemical data type.

The algorithm starts with a clustering step using limited agglomerative clustering with single linkage
with the restriction that the clustering stops when either a) a cluster reaches the expected partition
size N/n where N is the number of entities in the dataset and n the number of desired partitions
or b) there are no more edges above the threshold λ. Then, clusters are iteratively merged into the
n partitions so that the generated partitions have a balanced distribution of labels (if the dataset has
categorical labels) and similar number of entities. The number of interpartition neighbours (entities
with E > λ) is checked and entities are moved to the partition with which they have the most
neighbours. If the number of entities with at least one interpartition neighbour is greater than 0,
then the c × log (i/100) + 1 entities with most interpartition neighbours are removed, where c is
the number of interpartition neighbours and i, the current iteration. This iterative process continues
until c = 0. Our custom implementation leverages Scipy (?) and Networkx (?).

Connected components partitioning.

The algorithm first identifies the set of all unconnected subgraphs of G, {U1, U2, . . . , Uk}. These un-
connected subgraphs, by definition, will not have any intercluster neighbours, otherwise they would
not be unconnected. We have observed that generally this strategy leads to one cluster being popu-
lated with most entities and a variable number of much smaller subgraphs (10 - 103). The smaller
a cluster is, the more unique it is with respect to the dataset distribution. Based on this assump-
tion, the algorithm builds the evaluation set by assigning subgraphs in ascending order of number
of members, i.e., smaller subgraphs first. As above, there is also the optional additional objective of
maximising evaluation label balance. This sampling strategy biases the evaluation subset towards
the regions of the dataset distribution that are the most unconnected and thus the most dissimilar to
other members of the dataset. See Algorithm - 1.
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Algorithm 1 CCPart (Connected Components Partitioning) algorithm
1: Define G(D, λs)
2: U← Find all unconnected subgraphs of G
3: Sort U in order of ascending number of elements
4: T , E ← ∅, ∅
5: while |E| ≤ 0.185× |D| do
6: Add to E first element of U
7: Remove first element from U
8: end while
9: T ← U

10: return T , E

C MOLECULAR FINGERPRINTS AND PHYSICOCHEMICAL DESCRIPTORS

ECFP (Extended-connectivity fingerprints) (?) are binary fingerprints where an “on” bit repre-
sents the presence of a substructure and an “off” bit, its absence. The radius determines the number
of hops consider in the molecular graph to define each substructure, whereas the number of bits
determines the level of information compression applied with smaller numbers leading to higher
compression and increasing the likelihood of “collisions”, i.e., two substructures being assigned
the same bit. We have chosen the values of radius 2 and 2,048 bits as it is their most common
configuration (??) and an early exploratory analysis showed that they were the most cost effective
configuration.

MACCS (Molecular ACCess System) (?) are binary fingerprints, as well, with 166 bits. They dif-
fer from ECFPs in that there is a direct mapping between the bits and specific, pre-defined, chemical
substructures.

MAPc (MinHashed Atom-Pair chiral fingeprint) (?) fingerprints are hash-based fingerprints, as
ECFP, but they are not binary, each position can be occupied by different hash-values. They have
been shown to outperform any other fingerprint in similarity searches with unique properties such
as being able to discriminate between different stereoisomers of the same molecule. Number of bits
and radius was selected based on the best configuration reported by its authors.

The Lipinski physicochemical descriptors are a vector that we introduce in this study for the pur-
poses of measuring molecular similarity that has been inspired by Lipinski’s rule of 5 (?). It describes
the following properties of a molecule: 1) number of H acceptors, 2) number of H donors, 3) number
of heteroatoms, 4) number of rotable bonds, 5) number of saturated carbocycles, 6) number of rings.
The calculation of each the properties was performed through the implementation in RDKit (?).

The BUTC is a vector with 8 terms describing the lower and upper bounds of the confidence interval
of the following molecular characteristics related to the maximum value of the Burden Cluster-based
Van der Waals atomic surface area (?): 1 and 2) upper and lower bound of the mass eigenvalue; 3
and 4) upper and lower bound of the eigenvalue of the Gasteiger chargea; 5 and 6) upper and lower
bound of the eigenvalue for Crippen logP; and 7 and 8) upper and lower bound of the eigenvalue for
molar refractivity. It is calculated through the implementation in RDKit(?).

D CHOICE OF SIMILARITY FUNCTION FOR THE ADMET DATASETS

Figure S1 displays detailed results per dataset and Tables S1-2 contain the raw data from each of
the experiments. It is clear that similarity functions with small GOOD curve dynamic ranges, like
all involving MACCS fingerprints or the BUTC descriptors, also demonstrate the biggest variance
in their GOOD curve monotonicity. This is completely reasonable, as the smaller the dynamic
range, the smaller the number of points comprising the GOOD curve and the more sensitive that the
monotonicity calculation will be to random noise.

For the Ames’ mutagenicity test dataset the similarity function with the largest dynamic range is
Molformer (0.85), however this similarity function is ranked 9th in monotonicity (0.24± 0.02). The

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

next largest dynamic range belongs to MAPc - Jaccard (0.75), which is also the highest monotonic-
ity (0.82± 0.01). The GOOD curve corresponding to MAPc - Jaccard shows three phases. First, an
approximately stationary phase at thresholds 0.2− 0.45, then a phase or steep growth 0.45− 0.60
and, finally, a phase with a more controlled growth 0.60− 0.95. It is also worth noting that for this
dataset all the similarity functions with a dynamic range below 0.4 (with the exception of RG -
ECFP2), have either a high variance on their monotonicity or very low monotonicity. This obser-
vation suggests that even for such a large dataset (≈ 7, 000 molecules), the increased number of
thresholds is necessary to avoid random noise.

For the Drug-Induced Liver Injury, DILI, dataset the two largest dynamic ranges are Molformer
and MAPc - Jaccard (0.85), with MAPc - Jaccard ranked 3rd in monotonicity (0.81± 0.02) and
Molformer 16th (0.33± 0.02). The GOOD curve of MAPc-Jaccard shows only one phase of steady
growth. Interestingly, for this small dataset (476 molecules), the GOOD curve is less smooth than in
the rest of the datasets, with small jumps between one threshold and the next. However, this jumps
are well within the error ranges and the overall trend of the curve is clearly monotonic. Another
interesting aspect of this dataset is that all similarity functions show decent monotonicity (lowest is
0.33± 0.02), which may respond to the molecular diversity within the dataset.

The PAMPA NCATS dataset is the most challenging of all the datasets considered in this study.
Only the Molformer similarity function achieves a positive monotonicity, albeit a small one
(0.13± 0.02). We hypothesize that this is a consequence of the highly unbalanced nature of the
dataset (1,739 positives to 295 negatives), which is further exacerbated by CCPart. Another con-
tributing factor to this behaviour is the nature of the chemical predictive task, cell permeability,
which is not mediated by the scaffold of the molecule or its overall structure, but for smaller local
properties like the charges at the ends of the molecule or its lipophilicity (?). This is also shown in
the Caco2 dataset (see below), which also shows uncharacteristic low monotonicity for fingerprint-
based similarity metrics. Overall, this dataset shows the importance of working with good quality
datasets and the need for further research into similarity functions within the biochemical domain.

Similarly, the Caco2 cell effective permeability dataset shows that MAPc-Jaccard and Molformer
are tied as the similarity functions with largest dynamic range (0.85), but Molformer has the 2nd
best monotonicity (0.76± 0.03) and MAPc - Jaccard the 5th (0.45± 0.02). Interestingly the 1st
similarity function in monotonicity is ChemBERTa-2 (0.80± 0.05), which is also based on a Lan-
guage Model. These results are consistent with those seen for the PAMPA dataset, and indicate some
dependence on the chemical task (in both cases cell penetration). If we look at the GOOD curve for
Molformer, even though monotonic, most of the variance due to the threshold is concentrated at very
low thresholds (0.1 - 0.25) and then the growth of the curve is very modest. It is clear from this ob-
servation and the previous one with PAMPA that there isi a need for further research into similarity
functions that do not focus as much in global molecular structure (like common fingerprints), but
also on the physicochemical characteristics of the molecules.

The Half-life dataset is quite idiosyncratic, as well. The three similarity functioons with the largest
dynamic range (Molformer, 0.85; MAPc - Jaccard, 0.80; and Sokal - ECFP2, 0.70) all show monono-
tonicity below or around 0.0. The fourth largest dynamic range corresponds to the Lipinski similar-
ity function, which is a new physicochemical similarity function that we first introduced in this
study to address the shortcomings of other alternatives. It has a decent, albeit small, monotonicity
(0.46± 0.06). Interestingly, the best monotonicity is achieved by the other physicochemical simi-
larity function we have introduced in this study (BUTC) with 0.80± 0.06, however, it has two short
a dunamimc range (0.25). The Lipinski GOOD curve shows a some noise at the beginnig, proba-
bly caused by a pathological sampling by CCPart at the lowest threshold; and then a steep growth
(0.40 - 0.50). From 0.50 until the end model performance remains static. The dataset is quite small
(≈ 667 molecules) and this behaviour could be explained by a lack of internal chemical diversity.
Alternatively, the Lipinski similarity function might not be fine-grained enough to properly exploit
the existing diversity in the dataset. Overall, the results from this dataset paired with the previous
two datasets highlight the importance of considering more diverse similarity functions that do not
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rely on the traditional hash-based fingerprints; and the need within the field for more research into
other types of similarity functions.

Finally, the LD50 dataset shows a similar behaviour to that of Ames, which may be explained by
both of them being the biggest. Interestingly, Molformer shows a larger dynamic range (0.85) than
MAPc - Jaccard (0.70); however Molformer ranks 12th in monotonicity (0.48± 0.02) and MAPc -
Jaccard, 6th (0.94± 0.00), but has an almost perfect monotonicity.
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Figure 1: A: Analysis of dynamic range. B: Analysis of monotonicity, violin plot show the disper-
sion across 5 runs. C: GOOD curves, error bars correspond to the standard error of the mean across
5 runs with independent hyperparameter optimisation. The similarity metric chosen for each dataset
is highlighted.
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Table 1: Complete analysis of all similarity functions (Part I). Measurement error corresponds to the
standard error of the mean for 5 independent runs.

Dataset Similarity metric Monotonicity Dynamic range
ames Tanimoto - ECFP2 0.74 ± 0.00 0.55
ames Tanimoto - MACCS −0.62 ± 0.01 0.20
ames Dice - ECFP2 0.74 ± 0.01 0.35
ames Dice - MACCS −0.60 ± 0.01 0.10
ames Cosine - ECFP2 0.67 ± 0.00 0.35
ames Cosine - MACCS −0.60 ± 0.01 0.10
ames Sokal - ECFP2 0.77 ± 0.00 0.70
ames Sokal - MACCS 0.03 ± 0.02 0.35
ames RG - ECFP2 0.60 ± 0.02 0.15
ames RG - MACCS 0.20 ± 0.10 0.05
ames MAPc - Jaccard 0.82 ± 0.01 0.75
ames MolFormer 0.24 ± 0.01 0.85
ames BUTC −0.90 ± 0.04 0.20
ames Lipinski 0.51 ± 0.02 0.70
ames ChemBERTa-2 0.66 ± 0.07 0.55

caco2 Tanimoto - ECFP2 0.33 ± 0.00 0.65
caco2 Tanimoto - MACCS −0.02 ± 0.00 0.25
caco2 Dice - ECFP2 0.16 ± 0.01 0.50
caco2 Dice - MACCS 0.40 ± 0.02 0.10
caco2 Cosine - ECFP2 −0.28 ± 0.01 0.50
caco2 Cosine - MACCS −0.60 ± 0.01 0.10
caco2 Sokal - ECFP2 0.55 ± 0.01 0.75
caco2 Sokal - MACCS 0.52 ± 0.01 0.40
caco2 RG - ECFP2 −0.14 ± 0.04 0.20
caco2 RG - MACCS −1.00 ± 0.00 0.05
caco2 MAPc - Jaccard 0.45 ± 0.01 0.85
caco2 MolFormer 0.76 ± 0.02 0.85
caco2 BUTC −0.50 ± 0.00 0.10
caco2 Lipinski 0.41 ± 0.02 0.60
caco2 ChemBERTa-2 0.80 ± 0.05 0.55

dili Tanimoto - ECFP2 0.75 ± 0.00 0.70
dili Tanimoto - MACCS 0.69 ± 0.00 0.35
dili Dice - ECFP2 0.75 ± 0.00 0.55
dili Dice - MACCS 0.62 ± 0.01 0.20
dili Cosine - ECFP2 0.82 ± 0.00 0.55
dili Cosine - MACCS 0.76 ± 0.01 0.20
dili Sokal - ECFP2 0.54 ± 0.01 0.80
dili Sokal - MACCS 0.54 ± 0.02 0.50
dili RG - ECFP2 0.91 ± 0.00 0.25
dili RG - MACCS 0.40 ± 0.05 0.10
dili MAPc - Jaccard 0.81 ± 0.01 0.85
dili MolFormer 0.33 ± 0.01 0.85
dili BUTC 0.36 ± 0.04 0.15
dili Lipinski 0.41 ± 0.04 0.60
dili ChemBERTa-2 0.80 ± 0.05 0.55

pampa ncats Tanimoto - ECFP2 −0.33 ± 0.01 0.50
pampa ncats Tanimoto - MACCS −0.40 ± 0.01 0.15
pampa ncats Dice - ECFP2 −0.22 ± 0.01 0.35
pampa ncats Dice - MACCS −1.00 ± 0.00 0.05
pampa ncats Cosine - ECFP2 −0.49 ± 0.01 0.35
pampa ncats Cosine - MACCS −1.00 ± 0.00 0.05
pampa ncats Sokal - ECFP2 −0.28 ± 0.02 0.65
pampa ncats Sokal - MACCS −0.36 ± 0.02 0.25
pampa ncats RG - ECFP2 −0.36 ± 0.02 0.15
pampa ncats RG - MACCS −1.00 ± 0.00 0.00
pampa ncats MAPc - Jaccard −0.27 ± 0.02 0.80
pampa ncats MolFormer 0.13 ± 0.02 0.80
pampa ncats BUTC −1.00 ± 0.00 0.00
pampa ncats Lipinski −0.30 ± 0.05 0.50
pampa ncats ChemBERTa-2 −0.18 ± 0.07 0.40

half life Tanimoto - ECFP2 −0.34 ± 0.00 0.60
half life Tanimoto - MACCS −0.70 ± 0.01 0.20
half life Dice - ECFP2 −0.47 ± 0.01 0.40
half life Dice - MACCS 0.50 ± 0.00 0.10
half life Cosine - ECFP2 −0.67 ± 0.00 0.40
half life Cosine - MACCS −1.00 ± 0.00 0.05
half life Sokal - ECFP2 −0.68 ± 0.00 0.70
half life Sokal - MACCS −0.11 ± 0.01 0.35
half life RG - ECFP2 0.48 ± 0.01 0.20
half life RG - MACCS −1.00 ± 0.00 0.05
half life MAPc - Jaccard −0.12 ± 0.01 0.80
half life MolFormer −0.08 ± 0.01 0.85
half life BUTC 0.80 ± 0.04 0.15
half life Lipinski 0.46 ± 0.05 0.60
half life ChemBERTa-2 0.36 ± 0.04 0.55
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Table 2: Complete analysis of all similarity functions (Part II). Measurement error corresponds to
the standard error of the mean for 5 independent runs.

Dataset Similarity metric Monotonicity Dynamic range
ld50 Tanimoto - ECFP2 0.96 ± 0.00 0.45
ld50 Tanimoto - MACCS 0.54 ± 0.01 0.20
ld50 Dice - ECFP2 0.97 ± 0.00 0.30
ld50 Dice - MACCS 1.00 ± 0.00 0.05
ld50 Cosine - ECFP2 0.79 ± 0.01 0.30
ld50 Cosine - MACCS 1.00 ± 0.00 0.05
ld50 Sokal - ECFP2 0.93 ± 0.00 0.65
ld50 Sokal - MACCS 0.57 ± 0.01 0.35
ld50 RG - ECFP2 1.00 ± 0.00 0.10
ld50 RG - MACCS −1.00 ± 0.00 0.00
ld50 MAPc - Jaccard 0.94 ± 0.00 0.70
ld50 MolFormer 0.48 ± 0.02 0.85
ld50 BUTC −0.90 ± 0.05 0.15
ld50 Lipinski 0.51 ± 0.06 0.70

E HYPERPARAMETER SEARCH FOR HPO

Table S3 describes the hyperparameter space defined for all experiments.

Table 3: Hyperparameter search space for each learning algorithm.
Model Trials Hyperparameter search space

Name Type Range Log-scale

SVM 200

C float 1 × 10−3 - 103 Yes
kernel categorical linear, poly, rbf, sigmoid NA
degree (only kernel poly) integer 2-5 No
coef0 (only with poly or sigmoid) float 10−8 - 1 Yes
epsilon (only regression) float 10−5 - 1 Yes

KNN 200

K integer 1-30 No
Weights categorical uniform, distance NA
algorithm categorical ball tree, kd tree, brute NA
leaf size (only with ball or kd tree) integer 5 - 100 No
power of Minkowski metric integer 1 - 3 No

RF 200

number of estimators integer 10-5,000 No
criterion categorical gini*, entropy*, log loss*,

MSE**, MAE**, friedman MSE** NA
minimum samples per split integer 2 - 100 No
maximum features categorical log2, sqrt NA
complexity parameter (ccp alpha) float 10−10 - 10−3 Yes

LightGBM 200

number of estimators integer 10-5,000 No
minimum child samples integer 10 - 500 No
minimum split gain float 10−10 - 10−3 Yes
regularization α 10−10 - 10−3 Yes
learning rate float 10−7 - 10−1 Yes

F VISUALISATION OF THE CHEMICAL SPACE

This appendix contains the visualisation of the level of overlap between the training and testing
partitions of the dataset in the chemical space defined by the ECFP fingerprints.
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Figure 2: UMAP representation of the chemical space covered by the training (blue) and testing
(red) partitions of all molecular datasets considered during this study.
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G DETAILED HESTIA ANALYSES FOR ALL ADMET DATASETS

This appendix contains the detailed Hestia analyses for all ADMET datasets considered in this study.

Figure 3: Hestia analyses for the comparison of learning algorithms for the 6 ADMET datasets
considered in this study.

H DETAILED HESTIA ANALYSES FOR ALL PROTEIN DATASETS

Figure 4: A: Analysis of dynamic range. B: Analysis of monotonicitys. Violin plot show the
dispersion in the GOOD curve slope across 8 alternative representation methods and 5 runs per
representation (total of 40 experiments)
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Figure 5: Analyses for the comparison of PLM embeddings algorithms for the optimal temperature
for catalysis.
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