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ABSTRACT

While modern large language models (LLMs) achieve high accuracy on many challeng-
ing math benchmarks, they often struggle to recognize the insolvabilty of ill-posed prob-
lems. However, existing benchmarks for insolvable problems are either modified from
elementary-level math questions or lack rigorous validation of their insolvability. There
is a lack of benchmarks featuring inherently insolvable problems that require deep math-
ematical knowledge to identify their insolvability. To fill the gap, we introduce Math-
Trap300, the first benchmark consisting of 300 insolvable, ill-posed math problems with
fundamental mathematical contradictions that demand deep domain knowledge to detect.
In this work, we manually derived these problems from their well-posed counterparts
through careful modifications and rigorous verification of ill-posedness by PhD-level ex-
perts. We then present a fine-grained, three-stage LLM judge framework, designed from
the observation of LLMs’ responses to insolvable problems. The framework captures sig-
nals from both final answers and intermediate reasoning, providing richer metrics and
enabling a more faithful assessment of insolvability recognition. Our evaluation of recent
advanced LLMs on MathTrap300, combined with a detailed analysis of their response
patterns, reveals a clear drop in accuracy from well-posed problems to their insolvable
counterparts. Common failure modes are categorized into hallucination, guessing, and
neglect of conditions, etc. It is also observed that even when models recognize the insolv-
abilty, they still attempt to force a solution, a form of sycophantic behavior. Dataset and
the evaluation code are available

1 INTRODUCTION

Large language models (LLMs) have made rapid and substantive progress on mathematical reasoning,
achieving high accuracies on widely used benchmarks such as MATH (Hendrycks et al., 2021), AMC
or AIME, especially after the emergence of reinforcement learning to incentivize LLM reasoning (Guo
et al., 2025; Jaech et al., 2024). However, despite the impressive performance on well-posed math datasets,
modern LLMs still struggle with identifying the insolvability when they face ill-posed math questions. In
practice, a confident but spurious “solution” can be more harmful than abstention, so the capabiltiy of iden-
tifying insolvability is essential. Most current math benchmarks primarily target on using increasingly hard,
well-posed problems to guide the improvement of LLM reasoning, but less benchmarks focus on measuring
LLMs’ performance on insolvable problems.

There are several previous works on insolvable math benchmarks (Zhao et al., 2024; Ma et al., 2025; Tian
et al., 2024; Xue et al., 2025). Nevertheless, these efforts exhibit several common limitations. First, many
of the problems are derived from elementary-level mathematics (Zhao et al., 2024; Tian et al., 2024; Ma
et al., 2025), resulting in low difficulty that fails to challenge contemporary LLMs, especially reasoning
models. Second, some datasets (Xue et al., 2025) are adapted from competition-level problems, but the
automatic modification pipeline via LLMs makes a substantial portion of problems actually still solvable,
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Figure 1: A demonstration of insolvable problems derived from original problems with rigorous mathe-
matical insolvability, and corresponding model responses. Despite the insolvability, both responses cannot
recognize it and force final answers. Left: Contradiction - the insolvable problem creates mathematical
inconsistency adding another variable ϵ whose range precludes any positive m. Right: Missing Condition -
the insolvable problem lacks sufficient constraints by changing the target coefficient from 100 to 121.

or non-mathematical traps. Finally, LLMs often show complex behaviors when face insolvable problems,
while symbolic or string-matching based methods for assessment Xue et al. (2025) are too rigid to capture
such nuanced responses, and LLM judges with single binary metrics cannot cannot disentangle the diverse
failure modes of LLMs.

To address these gaps, we introduce MathTrap300, a manually curated, double-verified dataset of 300 in-
herently insolvable mathematical problems with missing or contradictory conditions. Two sample problems
are shown in 1. The difference between our work and previous works are shown in Table 1.

Method Difficulty Verified Insolvability Fair Assessment Pattern Analysis

MathTrap (Zhao et al., 2024) ✗ ✓ ● ✗
PMC (Tian et al., 2024) ✗ ✗ ● ✗
UMP (Ma et al., 2025) ✗ ✗ ● ●
ReliableMath (Xue et al., 2025) ✓ ✗ ✗ ●
MathTrap300 (Ours) ✓ ✓ ✓ ✓

Table 1: Compact comparison with previous works. Legend: ✓ good, ● limited, ✗ poor.

Specifically, our contributions are:

1. Inherent mathematical insolvability with quality controls: MathTrap300 contains 300 problems
crafted and double-verified by PhD-level experts. We implement paraphrasing to mitigate training
contamination and memorization effect (Huang et al., 2025).
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2. Three-stage judge pipeline: Beyond binary scoring, we decompose model behavior into three
components: final-answer claim of insolvability, midway identification, and problem modification.
Each component is assessed by LLM judges with sophisticated procedure to construct few-shot
prompts. The reliability of the judge system is verified by the alignment of human judge.

3. Benchmarking with detailed pattern analysis: We benchmark 28 state-of-the-art models on
MathTrap300 and report the diverse metrics using our LLM judge. A detailed pattern analysis
is conducted to classify the common behaviors of LLM response when facing insolvable problems.
A correlation of sycophancy behaviors and capability of handling insolvability is proposed based
on our observation.

MathTrap300 establishes a rigorous benchmark for evaluating LLMs’ ability to recognize mathematical
impossibility, providing essential insights for developing more reliable mathematical reasoning systems.

2 RELATED WORKS

2.1 MATH REASONING BENCHMARKS

To evaluate LLMs’ reasoning capability, numerous math reasoning benchmarks have been proposed. Repre-
sentative ones include GSM8K (Cobbe et al., 2021), MATH (Hendrycks et al., 2021), Minerva (Lewkowycz
et al., 2022), OlympiadBench (He et al., 2024), AMC, and AIME. As LLM reasoning keeps improving, the
community expect higher difficulty of math benchmarks to avoid saturation. For some recently released
models such as Grok-4 and GPT-5, their accuracies on AIME has already exceeded 90%.

2.2 VARIANTS OF REASONING BENCHMARKS

In addition to proposing harder math benchmarks, another line is creating the variants based on existing
benchmarks to assess data contamination, memorization, or robustness against irrelevant information. GSM-
IC (Shi et al., 2023) introduces irrelevant descriptions into GSM8K to test a model’s sensitivity to distracting
information, which shows significant performance drop. Functional MATH (Srivastava et al., 2024) modi-
fies the problems of MATH into a dynamic, functional benchmarks. MATH2 (Shah et al., 2024) extracts the
requried skills of two random problems from MATH, and combine them to generate a harder problem re-
quiring compositional skills. Similarly, GSM-Symbolic (Mirzadeh et al., 2024) created a symbolic template
of GSM8K, where the numeric values, names etc. can changed by programming, and great data contam-
ination is observed across a series of models. MATH-Perturb (Huang et al., 2025) introduces simple and
hard perturbation into MATH by minimal editing, where the solution logic keeps unchanged for the former
and fundamentally changed for the later. Memorization is observed where models try to follow the paths of
original problems.

2.3 BENCHMARKS FOR INSOLVABLE MATH PROBLEMS

MathTrap (Zhao et al., 2024) one of the pioneering work on insolvable problems. However, the dataset
only has around 150 problems and mostly derived from elementary-level problems. The single LLM-based
judge only limits diagnostic resolution. Another concurrent pioneering work is UMP, (Ma et al., 2025)
where, similarly, most questiosn are elementary-level and the "unreasonability” automatically introduced
by LLMs are more about commonsense-level contradictions rather than math. PMC (Tian et al., 2024) au-
tomatically converts arithmetic problems at scale (around 5000) into missing-condition and contradictory-
condition variants, but still most are easy questions and automatic generation makes the insolvability super-
ficial. ReliableMath (Xue et al., 2025) is the first one to use competition-level math problems in insolvable
math benchmarks, but the automatic pipeline yields “pseudo-insolvability”, where the removed / inserted
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Figure 2: Insolvable problem construction process.

information does not impact the solvability. In addition, ReliableMath uses the appearance of "unsolvable"
in final answer as the criterion, leading to underestimated accuracies.

Examples of these problematic questions from existing benchmarks can be found in Appendix A.

3 METHODS

3.1 DATASET CONSTRUCTION

MathTrap300 collects problems from MATH, AIME 2025, AMC, Chinese high school and selective admis-
sion exams, and original items authored by the authors. In addition, we adapted 37 questions from MathTrap
(Zhao et al., 2024) to ensure sufficient discriminative power. We restrict attention to well-stated problems
and exclude ambiguity classes that arise from vague wording. We modify the problems so that the resul-
tant questions are either contradictory, where the conditions in the problem cannot simultaneously exist, or
missing conditions, where the given information is insufficient to determine the desired values. Figure 1
gives concrete examples of these two insolvability types. In total, MathTrap300 contains 274 Contradiction
problems and 26 Missing Condition problems.

Following (Huang et al., 2025), we observed strong memorization effects of perturbed insolvable questions
and therefore paraphrase original problems with an LLM before inserting subtle insolvability edits: para-
phrases follow strict renaming and notation-preservation rules so they preserve content and difficulty while
reducing lexical overlap. For quality control we recruited domain-qualified reviewers (strong recent high-
school competitors, STEM undergraduates, and PhD-level researchers); problems were required to confuse
competitive screening models (e.g., o4-mini) during triage—these screening models are explicitly excluded
from final benchmarks to avoid bias—and each item receives an LLM proofreading pass (clarity and insolv-
ability checks) followed by authors’ review.

3.2 EVALUATION METHODS

For the accuracy of original problems, we directly compare the answer generated by LLMs with the ground-
truth answer. First the symbolic comparison library adopted from Shao et al. (2024) is adopted. In ordre
to handle the answers that cannot be recognized by symbolic comparison, answers that is concluded as
incorrect by symbolic comparison will be feed into a LLM to compare the equivalence. Kimi K2 is used and
the prompt can be seen in supplementary materials.

3.3 THREE-STEP LLM JUDGE

For problems intentionally designed to be insolvable, we evaluate models with a three-step judge pipeline.
Prior work has typically relied on a single judge or binary criterion, which can overlook the diverse ways
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in which models signal awareness of contradictions. Our approach, inspired by earlier work on multi-
stage evaluation of mathematical reasoning (Sheng et al., 2025), extends this idea to specifically capture
the nuanced ways models might recognize insolvability. Unlike binary classification, this framework credits
partial recognition in intermediate reasoning steps, thereby providing a more comprehensive assessment of
models’ mathematical awareness, as illustrated in Figure 3.

Figure 3: Decision pipeline for insolvability recognition. A model response is passed through three se-
quential judges (final-answer, identification, modification). The insolvability is recognized if either the final
answer declares insolvability, or if the model both identifies the issue in its reasoning and proposes a reason-
able modification.

1. Final-answer judge. Does the final answer assert insolvability (e.g., “no solution”, “insufficient in-
formation”) ? A correct final answer for an insolvable problem is to explicitly declare it insolvable.
Otherwise, the response is passed to the next judge

2. Midway-identification judge. Is the model aware the nature of the insolvability in its intermediate
reasoning (e.g., “constraints A and B contradict because . . . ”, or “there seems to be a typo here”).

3. Problem-modification judge. If the model recognizes the issue, does it attempt a reasonable
modification to the problem that would make it solvable (for example, adding a plausible missing
constraint, or fixing a variable domain).

Decision rule. Let J1, J2, and J3 denote the binary outputs of the final-answer, identification, and
problem-modification judges, respectively. A model is considered to recognize the insolvability if:

Recognition = J1 ∨ (J2 ∧ J3)

To illustrate how these rules manifest in practice, Figure 4 provides concrete examples of acceptable and
unacceptable behaviours for both Contradiction and Missing Condition insolvabilities.

Model Accuracy Precision Recall F1-score

Final Answer 1.00 1.00 1.00 1.00
Midway Identification 0.92 0.88 1.00 0.94
Problem Modification 0.74 0.61 1.00 0.76
Overall Assessment 0.79 0.72 1.00 0.84

Table 2: Performance metrics derived from confusion matrices.

To assess the reliability of our judge pipeline, we constructed confusion matrices for each of the three judges
(final-answer, midway-identification, and problem-modification) and compared them against human labels;
implementation and tuning details appear in the Supplementary Materials.
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Figure 4: Acceptable model behaviours. For Contradiction problem, a correct response either explicitly
states the inconsistency or proposes a natural correction. For Missing Condition problem, a correct response
either states the underdetermination or adds a natural constraint to make the problem well-posed.

Among the three judges, the final-answer judge exhibits the strongest alignment with human annotations,
achieving perfect precision and recall (1.00). The midway-identification judge improves coverage by captur-
ing intermediate contradiction signals, though at the cost of a modest drop in precision (0.88). By contrast,
the problem-modification judge attains high recall (1.00) but substantially lower precision (0.61), indicating
that many model-proposed fixes judged positive by the pipeline are not judged reasonable by human annota-
tors. Overall, the combined decision rule yields an F1 score of about 84%. Unlike prior work that typically
relies on a single, rigid judging criterion, which leads to systematic underestimation of overall recognition
accuracy, our multi-judge scheme provides a more balanced and arguably fairer estimate. In fact, since our
rule admits high recall (and thus allows in more false positives), it may even overestimate performance, but
we view this as reasonable: the rule reflects models’ ability to detect contradictions at any reasoning step
and to attempt plausible fixes, which is a more faithful measure of their practical sensitivity to insolvability.

4 EXPERIMENTAL RESULTS

4.1 LLMS PERFORMANCE

To ensure comparability, we therefore restrict evaluation to non-empty responses only. With the judge
pipeline validated, we evaluate a broad set of LLMs on both the original problems and our insolvable edits.
Table 4.1 reports benchmark accuracy.Because some models (e.g., Grok, OpenAI) have very long token
outputs, we set the maximum generation length to 21,000 tokens. However, when such models exhaust this
budget prematurely during the thinning stage, they may terminate with an empty response.
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Table 3: Benchmark accuracy (non-empty responses)

Model Final Ans. Acc Identify Acc Overall Acc Original Acc Acc.Drop

Open Chat Models

DeepSeek-V3.1 9.33 84.00 80.67 84.67 4.00
Kimi-K2-Instruct-0905 19.33 70.33 65.00 82.00 17.00
Llama3.3-70B-Instruct 1.33 33.00 28.67 67.33 38.67
Llama4-Maverick-Instruct 4.67 53.33 46.67 77.00 30.33
Llama4-Scout-Instruct 1.67 44.00 37.33 76.67 39.33
Qwen2.5-72B-Instruct 3.00 38.67 34.33 67.67 33.33
Qwen3-235B-A22B-Instruct-2507 8.67 93.67 90.33 88.00 -2.33
Qwen3-30B-A3B-Instruct-2507 7.33 90.33 87.33 86.33 -1.00

Open-source Reasoning LLMs

DeepSeek-reasoner 9.33 96.33 88.00 94.67 6.67
gpt-oss-120b 26.67 92.33 90.33 87.67 -2.67
gpt-oss-20b 30.00 93.67 89.00 87.33 -1.67
Phi-4-reasoning-plus 4.00 32.33 28.67 64.33 35.67
Qwen3-235B-A22B-Thinking-2507 6.33 93.33 79.00 91.00 12.00
Qwen3-30B-A3B-Thinking-2507 8.67 94.67 90.67 92.00 1.33
Qwen3-8B (Thinking) 5.33 95.33 87.67 80.67 -7.00
Qwen2.5-Math-72B-Instruct 3.67 39.33 35.67 70.00 34.33

Proprietary Chat LLMs

Gemini 2.5 Flash (no thinking) 23.00 89.67 83.67 89.33 5.67
Claude Sonnet 4 (no thinking) 6.00 69.00 64.00 78.67 14.67
gpt-4o-2024-11-20 18.00 28.33 27.00 61.67 34.67
gpt-4.1-2025-04-14 24.33 75.67 72.67 76.67 4.00

Proprietary Reasoning LLMs

claude-sonnet-4 (extended thinking) 11.67 90.00 83.67 86.33 2.67
Gemini 2.5 Flash (with thinking) 27.00 93.67 88.33 87.33 -1.00
Gemini 2.5 Pro 20.00 91.67 85.33 91.33 6.00
Grok-4 19.05 70.13 68.40 95.89 27.49
Grok-3-mini-beta 6.00 91.67 81.67 88.67 7.00
o3-2025-04-16 33.11 77.26 74.58 92.33 17.75
o4-mini-2025-04-16 30.00 64.33 63.00 90.00 27.00
gpt-5-2025-08-07 45.15 85.28 83.61 90.67 7.05

Trap vs. Original Accuracy. Accuracy on trap instances is substantially lower than on original prob-
lems for almost all models. Even the strongest systems (e.g., GPT-5, o3, Gemini 2.5 Pro) show nontrivial
drops (4–18%), while weaker open-chat baselines such as Llama-3.3, Llama-4, or Qwen-2.5 Instruct mod-
els suffer losses exceeding 30%. This confirms that our trap edits introduce genuine difficulty rather than
superficial perturbations. Interestingly, a handful of large reasoning models (e.g., GPT-OSS-120B, Qwen-
3 Instruct/Thinking) report negative drops, meaning their trap accuracy actually surpasses performance on
original items—likely reflecting robustness to noisy or underspecified conditions.
Reasoning vs. Chat Models. Reasoning-oriented models clearly outperform general-purpose chat mod-
els, especially on the identify and overall recognition metrics. Open reasoning systems like Qwen-3-30B-
Thinking (90.7% overall) and GPT-OSS-20B/120B (≈ 90% overall) consistently surpass their chat counter-
parts with the same or larger parameter counts. Proprietary reasoning systems (GPT-5, o3, Claude-Sonnet-
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Figure 5: Token Usage Ratio Comparison (Insolvable vs Original Problems).

extended, Gemini-Flash-thinking) also achieve strong recognition, often exceeding 80 overall, while their
paired chat models fall 10–20 % lower. This gap highlights the importance of deliberate step-by-step rea-
soning traces in surfacing contradictions, whereas chat-style models often generate fluent but overconfident
responses that ignore hidden inconsistencies.

5 FAILURE MODES ANALYSIS

Guess The model’s reasoning traces often contain tentative checks or partial diagnostics, suggesting some
awareness of inconsistency. However, it rarely proceeds to an explicit declaration of insolvability or to a
minimal corrective reformulation. Instead, it cycles through heuristic approaches or concludes with a nu-
merical answer lacking derivational support (see Case 1 in Figure 6). Such outputs are typically accompanied
by hedging expressions and brief diagnostic cues, but without a substantiated rationale. Likely contribut-
ing factors include a systemic preference for producing determinate answers over abstention, insufficient
prompting for impossibility certification, and truncated reasoning that prevents full verification. In evalua-
tion, these cases artificially inflate apparent competence on final-answer metrics, as superficially confident
numbers mask unresolved uncertainty in the underlying reasoning, which corresponds to the judge output
(J1, J2, J3) = (0, 1, 0).

Hallucinate The model produces intermediate steps, lemmas, or algebraic manipulations that appear valid
but lack justification. Typical instances include fabricated identities, unjustified substitutions, or rule ap-
plications outside their valid scope, which yield fluent yet invalid derivations (see Case 2). Such outputs
are often expressed with confidence and fluency, making errors difficult to detect without careful checking.
Contributing factors likely include training objectives that emphasize persuasive natural language over for-
mal correctness and the absence of built-in symbolic reasoning or step-level verification. In evaluation, these
behaviors can mislead superficial checks and inflate estimates of model competence.

Constraint-ignore The model fails to enforce domain constraints, such as positivity, integrality, distinct-
ness, or interval bounds—and continues with derivations that render the solution invalid for the original
problem (see Case 3). Typical signs include final answers lying outside the stated domain or reasoning traces
that never enumerate or check the relevant conditions, which typically produce (0, 0, 0). Likely contributing
factors are over-reliance on algebraic templates without constraint-checking mechanisms and limited train-
ing exposure to constraint-sensitive examples. In evaluation, these outputs may be scored as correct despite
being logically invalid, leading to overestimation of model performance.

8
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Across the three failure modes, models also exhibit two common fallback behaviors when faced with difficult
instances. First, they resort to exhaustive case enumeration or brute-force testing rather than producing a
concise analytic diagnosis. Second, they expand reasoning into lengthy, low-level arithmetic computations
that increase verbosity and raise the likelihood of basic computational errors. These behaviors lead to long,
repetitive reasoning traces that obscure the central logical claims, inflate token usage, and amplify arithmetic
mistakes. As a result, automated judges are less effective, and genuine diagnostic signals become harder to
detect. Mitigation strategies include discouraging unnecessary enumeration or redundancy (e.g., through
brevity or efficiency penalties), requiring concise justification before permitting extensive casework, and
automatically compressing or extracting key claims from verbose reasoning so that downstream symbolic
checks can focus on the essential steps.

In summary, the judge-validated taxonomy indicates that larger reasoning-oriented models with longer
chain-of-thought traces are more effective at detecting and diagnosing unsolvable problems, whereas many
models still default to guessing, fabricating steps, or brute-force enumeration.

Figure 6: Failure Pattern Analysis

6 CONCLUSION

We conclude that MathTrap300, a curated set of 300 expert-verified insolvable math problems, together with
our three-stage LLM judge reveals a clear reliability gap: modern LLMs show a marked drop in performance
on trap instances and do not reliably detect deep mathematical insolvability. Crucially, failure to recognize
insolvability is strongly correlated with sycophantic forcing of answers - models that produce fluent, accom-
modating outputs are far less likely to report “no solution” and frequently emit pseudo-solutions even when
their own intermediate reasoning signals a contradiction. We release MathTrap300 and the judge code to
support follow-up research.
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A DETAILED ANALYSIS OF PRIOR WORK LIMITATIONS

Figure 7
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Figure 8
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B EXPERIMENTAL DETAILS

B.1 EXPERIMENTAL SETUPS

Table 4: List of LLMs with their default parameters

Model Size (B) Temp. Top_p Top_k Max_tokens Reasoning effort

Open Chat Models

DeepSeek-V3.1 671 0 N/A N/A 20000
Kimi-K2-Instruct-0905 1000 0.6 0.95 N/A 20000
Llama3.3-70B-Instruct 70 0.6 0.95 20 20000
Llama4-Maverick-Instruct 402 0 N/A N/A 20000
Llama4-Scout-Instruct 109 0 N/A N/A 20000
Qwen2.5-72B-Instruct 72 0.6 0.95 20 20000
Qwen3-235B-A22B-Instruct-2507 238 0.7 0.8 20 20000
Qwen3-30B-A3B-Instruct-2507 30 0.7 0.8 20 20000

Open-source Reasoning LLMs

DeepSeek-V3.1-Think 671 0 N/A N/A 20000
GPT-oss-120b 120 1 1 N/A 20000
GPT-oss-20b 20 1 1 N/A 20000
Phi-4-reasoning-plus 14.7 0.8 0.95 50 20000
Qwen3-235B-A22B-Thinking-2507 238 0.6 0.95 20 20000 18000
Qwen3-30B-A3B-Thinking-2507 30 0.6 0.95 20 20000 18000
Qwen3-8B (Thinking) 8 0.6 0.95 20 20000 18000
Qwen2.5-Math-72B-Instruct 72 0 N/A N/A 4096

Proprietary Chat LLMs

Gemini 2.5 Flash (no thinking) – 1 0.95 64 20000
claude-sonnet-4-20250514 (no thinking) – 1 0.95 N/A 20000
GPT-4o-2024-11-20 – 0.6 0.95 N/A 16384
GPT-4.1-2025-04-14 – 0.6 0.95 N/A 20000

Proprietary Reasoning LLMs

claude-sonnet-4-20250514 (extended thinking) – 1 0.95 N/A 20000 18000
Gemini 2.5 Flash (with thinking) – 1 0.95 64 20000 18000
Gemini 2.5 Pro – 1 0.95 64 20000 18000
grok-4 – 0.6 0.95 N/A 20000
grok-3-mini-beta – 0.6 0.95 N/A 20000 high
o3-2025-04-16 – N/A N/A N/A 20000 medium
o4-mini-2025-04-16 – N/A N/A N/A 20000 medium
GPT-5-2025-08-07 – N/A N/A N/A 20000 medium
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B.2 FAILURE PATTERN ANALYSIS TRAP PROBLEM ANNOTATION

Figure 9: Failure Pattern Analysis Trap Problem Annotation
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