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ABSTRACT

Low-Rank Adaptation (LoRA) presents an effective solution for federated fine-
tuning of Large Language Models (LLMs), as it substantially reduces communi-
cation overhead. However, a straightforward combination of FedAvg and LoRA
results in suboptimal performance, especially under data heterogeneity. We noted
this stems from both intrinsic (i.e., constrained parameter space) and extrinsic (i.e.,
client drift) limitations, which hinder it effectively learn global knowledge. In
this work, we proposed a novel Federated Residual Low-Rank Adaption method,
namely FRLoRA, to tackle above two limitations. It directly sums the weight of
the global model parameters with a residual low-rank matrix product (i.e., weight
change) during the global update step, and synchronizes this update for all local
models. By this, FRLoRA performs global updates in a higher-rank parameter
space, enabling a better representation of complex knowledge structure. Further-
more, FRLoRA reinitializes the local low-rank matrices with the principal singu-
lar values and vectors of the pre-trained weights in each round, to calibrate their
inconsistent convergence, thereby mitigating client drift. Our extensive experi-
ments demonstrate that FRLoRA consistently outperforms various state-of-the-art
FL methods across nine different benchmarks in natural language understanding
and generation under different FL scenarios.

1 INTRODUCTION

Federated Learning (FL) (Li et al., 2020a; Yin et al., 2021; Li et al., 2021b) allows multiple clients
to collaboratively train a globally shared model by transferring model parameters, emerging as an
effective distributed solution. However, applying this approach to Large Language Models (LLMs)
faces significant challenges due to their enormous parameter sizes (Liu et al., 2021; Ye et al., 2024b).
For example, GPT-4 (Achiam et al., 2023) has 1.75 trillion parameters, and even the smallest version
of LLaMA-2 (Touvron et al., 2023) has 7 billion parameters. Fully Fine-Tuning (FFT) such large
models in a federated setting leads to substantial communication overhead, making it impractical
for real-world applications. A promising solution is to integrate Parameter-Efficient Fine-Tuning
(PEFT) techniques to reduce the number of trainable parameters in LLMs.

Low-Rank Adaptation (LoRA) (Hu et al., 2021), a state-of-the-art PEFT technique, freezes the pre-
trained weights and injects low-rank matrices into specific layers of the model, offering an excellent
solution for federated fine-tuning of LLMs. However, we found that a straightforward combination
of FedAvg (McMahan et al., 2017) and LoRA (see Figure 1 (a)) struggle to effectively learn global
knowledge (see Figure 1 (c)), particularly when the data across clients is a non-Independent and
Identically Distribution (non-IID1), leading to serious performance degradation. This is contrary
to the goal of FL, which aims to represent the learned knowledge of all clients through the global
model. The above issue arises from both intrinsic and extrinsic factors. Extrinsically, the data
heterogeneity can result in client drift (Karimireddy et al., 2020) (see Figure 1 (d)), and this phe-
nomenon is more pronounced with LoRA compared to FFT, as the parameters in LoRA are locally
quadratic (Liu et al., 2024). Intrinsically, both the local and global low-rank matrices are con-
strained to updates in the parameter space with a rank no greater than r. Such constrained parameter
space makes it difficult to effectively capture the diverse knowledge of all clients.

1We use “data heterogeneity” and “non-IID” interchangeably.
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Figure 1: Illustration of (a) FedAvg with LoRA and (b) FRLoRA, where superscripts t denote
timestamps and → highlights their differences. Specifically, FedAvg iteratively updates local and
global low-rank matrices, whereas FRLoRA directly updates the parameters of the local and global
models Ŵ t−1 by summing their weights with a residual low-rank matrix product. (c) Average
Frobenius norm of global ∆W and (d) Average standard deviation of local low-rank matrices ver-
sus the communication rounds, revealing that FRLoRA can effectively learn global knowledge and
mitigate client drift. More details can be seen in Appendix §A.

While the non-IID has been widely explored in FFT-based FL (Ye et al., 2023), little is understood
about how to tackle it in LoRA-based FL. Previous empirical studies (Ye et al., 2024a;b) have indi-
cated that simply integrating LoRA with existing heterogeneous FL methods like FedProx (Li et al.,
2020b) and SCAFFOLD (Karimireddy et al., 2020) fails to address data heterogeneity. This primar-
ily arises from the different update patterns and learning capabilities between LoRA and FFT (Liu
et al., 2024). Consequently, there is a need for a more nuanced approach to improve the performance
of LoRA-based FL.

To this end, we propose a novel Federated Residual Low-Rank Adaptation approach, namely
FRLoRA, to handle the data heterogeneity in LoRA-based FL. Instead of only updating local and
global low-rank matrices, during the global update step, FRLoRA (see Figure 1 (b)) directly update
the weight of the global model2 parameters by summing its weights with a residual low-rank ma-
trix product (i.e., weight change) and synchronize this update for all local models, which makes the
update pattern similar to that of FFT-based FL. By accumulating residuals with increasing rounds,
the global updates can be conducted in higher-rank parameter space, enabling a more flexible rep-
resentation of complex knowledge structures. Moreover, FRLoRA reinitializes the local low-rank
matrices with the principal singular values and vectors of the pre-trained weights in each round.
This ensures that the local low-rank matrices are consistently updated in the principal singular space
of the pre-trained weights, benefiting to alleviate client drift (see Figure 1 (d)). Based on the above
two aspects, FRLoRA effectively captures global knowledge (see Figure 1 (c)), thereby significantly
improving the performance of the global model.

Contribution. In this work, we improve the LoRA-based FL by addressing both intrinsic and
extrinsic limitations, yielding a novel FL method, FRLoRA. Different from previous paradigms that
only update local and global low-rank matrices, FRLoRA directly update the weight of the local
and global model parameters. We conducted extensive experiments on nine benchmarks across
different language tasks under various FL scenarios, including IID and non-IID, as well as partial
and full participation, adequately demonstrating the superiority of FRLoRA over the state-of-the-art
FL methods.

2 RELATED WORK

2.1 LARGE LANGUAGE MODELS

Generally, LLMs, also known as foundational language models (Myers et al., 2024) like GPT-
3/4 (Brown, 2020; Achiam et al., 2023), LLaMA-2/3 (Touvron et al., 2023; Dubey et al., 2024),
and PaLM (Chowdhery et al., 2023) have learned abundant knowledge by being pre-trained on mas-
sive public language corpus (Raffel et al., 2020; Gao et al., 2020), achieving tremendous success in

2We term the original part of the LLM without injected low-rank matrices as “model”.
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various applications. Their versatility in language tasks has attracted researchers to fine-tune them
across a broad spectrum of fields, such as healthcare (Singhal et al., 2023; Xie et al., 2024; Wang
et al., 2023), to further enhance their capabilities for specialized downstream tasks. Accompanying
this trend is the emergence of various language model fine-tuning methods, such as Instruction-
Tuning (IT) (Mishra et al., 2022; Zhang et al., 2023b) and Reinforcement Learning from Human
Feedback (RLHF) (Bai et al., 2022). However, all of them train the models using centralized data.
In real-world applications, data is typically distributed across different users’ edge devices, such
as mobile phones and laptops. Due to privacy regulations like GDPR (Voigt & Von dem Bussche,
2017), collecting this data can be expensive and even infeasible. In this work, we aim to explore how
to utilize FL to fine-tune LLMs in a distributed and effective manner. This facilitates the effective
utilization of discrete data from different users.

2.2 PARAMETER-EFFICIENT FINE-TUNING

PEFT (Mangrulkar et al., 2022) has emerged as an important technique for reducing training param-
eters in fine-tuning large pre-trained models (Xu et al., 2023). Instead of fine-tuning all parameters,
PEFT introduces only a small number of trainable parameters at specific locations of networks, such
as input tokens (Li & Liang, 2021; Lester et al., 2021) and layers (Houlsby et al., 2019), while
keeping the rest of parameters frozen. Recently popular LoRA methods (Hu et al., 2021; Liu et al.,
2024; Zhang et al., 2023a; Gao et al., 2024; Lin et al., 2024) fine-tune LLMs by injecting two train-
able low-rank matrices into the layers of the base model. It not only effectively compresses training
costs but also shows outstanding performance across a range of language tasks. Inspired by this,
several works (Wu et al., 2024; Vavekanand & Sam, 2024; Ye et al., 2024b;a) introduced LoRA
into FL to decrease the communication cost of federated fine-tuning LLMs. However, most of them
ignore data heterogeneity in real-world scenarios, which can significantly degrade the performance
of LoRA-based FL. This motivates us to improve the performance of LoRA-based FL under data
heterogeneity.

2.3 FEDERATED LEARNING

Federated Fine-tune Large Language Models. FL has become a de facto distributed solu-
tion. Since FL can protect user privacy, it has been widely used in privacy-sensitive areas like
finance (Long et al., 2020; Chatterjee et al., 2023) and medical (Feng et al., 2022; Yan et al., 2024;
Jiang et al., 2023). The tremendous success of FL has also attracted the attention of researchers to in-
troduce it into LLMs (Qu, 2024; Fan et al., 2023; Han et al., 2024; Zhang et al., 2024). For example,
FederatedScope-LLM (Kuang et al., 2024) built a comprehensive package for federated fine-tuning
LLMs and explored the federated instruction tuning. OpenFedLLM (Ye et al., 2024b) provided the
empirical results for federated instruction tuning and federated value alignment. Besides, Ye et al.
(2024a) provided realistic benchmarks and empirical results for federated fine-tuning LLMs. These
foundational studies have greatly advanced the development of this field. In contrast to them, this
work focuses on a different challenge: how to effectively fine-tune LLMs, especially under data
heterogeneity. Similar to us, Sun et al. (2024) proposed FFA-LoRA to improve the performance of
LoRA-based FL under differential privacy and data heterogeneity by fixing the matrix A in LoRA.
This can further diminish the learning capability of LoRA, resulting in degraded performance under
realistic heterogeneous FL settings.

Data Heterogeneity in Federated Learning. The standard FL process was introduced by Fe-
dAvg (McMahan et al., 2017), a pioneer algorithm, which updates the global model by averaging
the weights of local model parameters. Despite its success, the performance of FedAvg is inevitably
compromised by practical challenges such as data heterogeneity (Zhao et al., 2018; Ye et al., 2023)
or model heterogeneity (Alam et al., 2022). Data heterogeneity (Ye et al., 2023) is a fundamen-
tal challenge in FL, with a typical example being the non-IID across different clients (Zhao et al.,
2018). This issue causes local model bias due to skewed data, which affects global aggregation and
leads to significant degradation in the global model’s performance, a phenomenon known as client
drift. (Karimireddy et al., 2020; Li et al., 2022). To address this, several studies have proposed en-
hanced versions of FedAvg, either by modifying local training (Li et al., 2021a; Tan et al., 2022;
Luo et al., 2021; Zhang et al., 2022; Gao et al., 2022; Yan et al., 2023), global aggregation (Li et al.,
2020c; Wang et al., 2020; Li et al., 2023; Fallah et al., 2020), or both (Jiang et al., 2022; Huang et al.,
2023). However, these enhancements primarily target data heterogeneity in FFT-based FL. Apply-
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ing them to LoRA-based FL may not yield favourable results due to the distinct update patterns and
learning capabilities between LoRA and FFT (Liu et al., 2024). As evidence, previous empirical
studies (Ye et al., 2024a;b) have shown that combining several well-known heterogeneous FL algo-
rithms (e.g., FedProx (Li et al., 2020b) and SCAFFOLD (Karimireddy et al., 2020)) with LoRA can
result in worse performance than FedAvg+LoRA. Therefore, how to address the data heterogeneity
in LoRA-based FL remains an unsolved question, which is the main goal of this work.

3 METHODOLOGY

3.1 PRELIMINARY

Low-Rank Adaptation. When fine-tuning LLMs on downstream tasks, LoRA (Hu et al., 2021)
only updates the parameters of some layers, e.g., self-attention. Consider a layer in the network,
LoRA freezes the pre-trained weight W 0 ∈ Rd1×d2 and leans the weight change ∆W by injecting
two trainable low-rank matrices B ∈ Rd1×r and A ∈ Rr×d2 , where rank r ≪ min(d1, d2). The
updated weight is expressed as:

W̃ = W 0 +∆W = W 0 +BA. (1)

To ensure consistency with the pre-trained weight during the initial phase, B is initialized as a
zero matrix, while A is initialized with Gaussian noise N (0, σ2). Besides, a hyper-parameter α is
typically used to scale ∆W , and the scaling factor is α

r .

Federated Learning with Low-Rank Adaptation. Consider a FL system with K clients and a
central server, each client k ∈ [K] has a private dataset Dk for downstream tasks such as natural
language understanding or generation. Each dataset Dk contains nk training samples {(xi, yi)}nk

i=1
and our goal is to federated fine-tune a global LLM f(W 0) on these discrete data. Due to the
large size of LLMs, we cannot train and transmit all model parameters. A straightforward approach
is to directly combine FedAvg with LoRA (Ye et al., 2024b;a), where each client maintains local
low-rank matrices and optimizes them by minimizing the empirical risk:

FG =
1

K

nk∑
k=1

Fk, and Fk =
1

nk

∑
(xi,yi)∼Dk

ℓ(f(xi;W
0;Bt

k;A
t
k); yi), (2)

where FG and Fk are global and local objectives, Bt
k and At

k are the low-rank matrices at t-th round
training, and ℓ is the loss function. All updated local low-rank matrices will be transferred to the
server and we can get the global low-rank matrices:

Bt
G =

1

K

K∑
k=1

Bt
k, At

G =
1

K

K∑
k=1

At
k. (3)

The updated global low-rank matrices Bt
G and At

G will be returned to each client as the initialization
for the next round of training, where B0

G ∼ 0 and A0
G ∼ N (0, σ2). The weight of final fine-tuned

global model parameters after T rounds can be written as:

W̃ T = W 0 +∆W T = W 0 +BT
GA

T
G. (4)

Limitation. The above method is easy to implement and can significantly reduce communication
overhead when fine-tuning LLMs. However, it fails to effectively capture global knowledge, es-
pecially under data heterogeneity. This issue arises from two factors: ❶ constrained parameter
space and ❷ client drift, where ❶ is the intrinsic limitation of LoRA-based FL and ❷ is the extrinsic
influence caused by data heterogeneity.

3.2 FEDERATED RESIDUAL LOW-RANK ADAPTION

To tackle the above two limitations in LoRA-based FL, we propose a new FL method, FRLoRA.
Algorithm 1 shows its whole training procedure, and we describe each part of our framework in
detail below.

4
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Algorithm 1: FRLoRA
Input: Number of clients K, communication rounds T , learning rate η, Pre-trained weight W 0, Datasets

D1, D2, . . . , DK , rank r

Output: Fine-tuned weight W̃ T

1 Server-side Execution:
2 USV ← SV D(W 0)

3 B0
G← U [: r]

√
S[: r], A0

G←
√

S[: r]V [: r] // Global initialize for LoRA

4 Ŵ 0←W 0 −B0
GA

0
G // Consistent with pre-trained model

5 for round t = 1, 2, ..., T do
6 for client k = 1, 2, ...,K parallelly do
7 Bt

k,A
t
k ← Local Training (k,Bt−1

G ,At−1
G , t)

8 end
9 Bt

G← 1
K

∑K
k=1 B

t
k, At

G← 1
K

∑K
k=1 A

t
k // Parameter aggregation

10 ∆W t←Bt
GA

t
G −B0

GA
0
G, Ŵ t← Ŵ t−1 +∆W t // Ŵ t,∆W t keep consistent

between server and clients, we thus use same symbol
11 end
12 W̃ T ← Ŵ T +B0

GA
0
G

13 return W̃ T // Fine-tuned weight

14 Local Training (k,Bt−1
G ,At−1

G , t):
15 Save B0

G and A0
G

16 Bt
k ←B0

G, At
k ←A0

G // Local initialize for LoRA
17 for (xi, yi) ∼ Dk do
18 Fk ← ℓ(f(xi; Ŵ

t−1;Bt
k;A

t
k); yi)

19 Bt
kA

t
k ←Bt

kA
t
k − η∇Fk

20 end
21 return Bt

k and At
k to server

Initialization in Principal Singular Space. LoRA typically initializes B as 0 and A with Gaussian
noise. Such initialization makes convergence challenging, and optimizing with the data heterogene-
ity results in inconsistent convergence rates across different clients, further exacerbating client drift.
This hinders the global ∆W from capturing task-specific information. To this end, we initialize B
and A in principal singular space of the pre-trained weight inspired by Meng et al. (2024), enabling
faster learning of task-specific information for downstream tasks. Specifically, we first decompose
the pre-trained weights using Singular Value Decomposition (SVD) as follows:

USV = SV D(W 0), (5)

where U ∈ Rd1×d1 and V ∈ Rd2×d2 are the singular vectors with orthonormal columns, and
S ∈ Rd1×d2 is a diagonal matrix containing the singular values in descending order. We then use
the principal singular values and vectors to initialize B0

G and A0
G, which can be written as:

B0
G = U [: r]

√
S[: r], A0

G =
√
S[: r]V [: r]. (6)

B0
G and A0

G will be sent to each client to initialize the local low-rank matrices. Additionally, to
ensure consistency, the weight of the global model parameters will be updated accordingly:

Ŵ 0 = W0 −B0
GA

0
G. (7)

Local Update Step. Each client performs local training on its dataset and the local objective of
Eq. (2) can be rewritten as:

Fk =
1

nk

∑
(xi,yi)∼Dk

ℓ(f(xi; Ŵ
t−1;Bt

k;A
t
k); yi). (8)

We send the optimized local low-rank matrices Bt
k and At

k to the server, which then uses Eq. (3) to
update the global low-rank matrices.

Global Update Step. Different from the traditional LoRA-based FL methods, FRLoRA directly
updates the weight of the global model parameters by adding a residual of the low-rank matrix
product, which bridges the gap with FFT-based FL.

5
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After getting global low-rank matrices Bt
G and At

G, we can get a residual of the low-rank matrix
product as:

∆W t = Bt
GA

t
G −B0

GA
0
G. (9)

The residual matrix ∆W t represents the weight change learned in this round, and it will be added
to the weights of the global model parameters:

Ŵ t = Ŵ t−1 +∆W t. (10)

The updated weight Ŵ t of the global model parameters will be frozen again, and the local low-rank
matrices of FRLoRA will be reinitialized to B0

G and A0
G, preparing for the next round of training.

This makes the update pattern of FRLoRA similar to that of FFT-based FL, where the weight of
model parameters from the previous round serves as the starting point for the next round of training.

Parameter Synchronization. Notably, the process of Eq. (7) and Eq. (10) are synchronized across
clients. As a result, each local model remains consistent with the global model, and we use the same
symbol Ŵ t to represent them. The final fine-tuned weight of Eq. (4) can be rewritten as:

W̃ T = Ŵ T +B0
GA

0
G. (11)

Analysis in §3.3 reveals that FRLoRA enables the global model to be updated in a higher-rank space,
effectively addressing Limitation ❶. Besides, reinitialization can be viewed as a recalibration of
local and global low-rank matrices, ensuring that the local training of each client always occurs in
the same global principal singular space, which benefits mitigate client drift (Limitation ❷).

3.3 THEORETICAL INSIGHTS

In this section, we conduct a theoretical analysis of the update patterns of FRLoRA and LoRA-based
FL. For LoRA-based FL, the final weight change of the global model parameters is represented by
BT

GA
T
G. Applying the basic rank inequality, we obtain:

rank(BT
GA

T
G) ≤ min(rank(AT

G), rank(BT
G)), (12)

where rank(AT
G) ≤ min(r, d2) and rank(BT

G) ≤ min(d1, r). Consequently, since LoRA-based FL
only updates the low-rank matrices, the global updates are restricted to a low-rank subspace with a
rank no greater than r.

In contrast, the final fine-tuned weight of FRLoRA can be expressed as:

W̃ T = W 0 +∆W 1 +∆W 2 + . . .+∆W T︸ ︷︷ ︸
residual accumulation

. (13)

We also present the following additive rank inequality:
Lemma 1. (Additive Rank Inequality) For any two matrices M1 and M2, it holds that:

rank(M1 +M2) ≤ rank(M1) + rank(M2). (14)

Given that FRLoRA reinitializes in each training round and that the local and global updates for each
round are independent, the rank of the residual accumulation increases with the number of rounds
according to Lemma 1. This implies that global updates occur in a higher-rank parameter space,
which enables the global model to capture more complex knowledge structures.

From another perspective, ∆W t can be interpreted as the total gradient of the global model over
a round by minimizing FG. As FRLoRA learns in the principal singular space of the pre-trained
model during each round, the gradient ∆W t of FRLoRA is larger compared to that of LoRA-based
FL, based on the analysis of Meng et al. (2024). This allows the global model to acquire more
task-specific knowledge, as illustrated in Figure 1 (c).

4 EXPERIMENTS

To validate the effectiveness of our method. We conducted comprehensive experiments across both
Natural Language Understanding (NLU) and Natural Language Generation (NLG) tasks. We com-
pared our method against 9 state-of-the-art baselines, including FedAvg (McMahan et al., 2017),

6
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FedProx (Li et al., 2020b), SCAFFOLD (Karimireddy et al., 2020), FedAvgM (Hsu et al., 2019),
FedAdagard (Reddi et al., 2021), FedYogi (Reddi et al., 2021), FedAdam (Reddi et al., 2021),
FlexLoRA (Bai et al., 2024) and FFA-LoRA (Sun et al., 2024). The experiments involved 4
NLU benchmarks: RTE (Wang et al., 2019), COLA (Wang et al., 2019), 20NG (Lang, 1995)
and QNLI (Wang et al., 2019), as well as 5 NLG benchmarks: MetaMathQA (Yu et al., 2023),
Alpaca-GPT4 (Peng et al., 2023), FedAya (Ye et al., 2024a), Fed-ChatbotIT (Ye et al., 2024a),
and Fed-WildChat (Ye et al., 2024a). All experiments were implemented using PyTorch and con-
ducted on an NVIDIA A100 GPU with 40 GB of memory. Due to page limitations, more details and
results are presented in the Appendix §B and §C.

4.1 QUANTITATIVE COMPARISON ON NLU TASKS

Task Setup. Following Kuang et al. (2024), we randomly partition the training set of each bench-
mark using the Dirichlet distribution sampling (Dk ∼ Dir(β)), which is a commonly employed
strategy for simulating realistic data heterogeneity (Ye et al., 2023). The level of data heterogeneity
is controlled by β, where a smaller β means higher heterogeneity. In our experiments, β is set to
0.5. We simulate a scenario with 5 clients, all of which participate in training during each round. To
evaluate the performance of all methods, we use the validation sets of RTE, COLA, and QNLI, and
the test set of 20NG. Accuracy is used as the evaluation metric for RTE, QNLI, and 20NG, while
the Matthews correlation coefficient is employed for COLA.

Table 1: Experimental results on varios NLU
benchmarks. Best results are marked in bold.

Method RTE COLA 20NG QNLI

FedAvg 70.75 63.96 66.83 90.37
FedProx 69.31 63.41 66.48 90.05
SCAFFOLD 67.15 62.83 65.78 89.60
FedAvgM 61.73 43.82 67.04 89.91
Fedadagrad 66.42 54.27 63.48 87.57
FedYogi 63.53 55.20 66.44 86.21
FedAdam 66.06 56.30 66.94 89.69
FFA-LoRA 68.69 58.43 66.88 89.33
FlexLoRA 70.28 62.56 65.98 90.03

FRLoRA (Ours) 75.81 64.80 69.41 91.10

Implementation Details. We utilize
RoBERTa-base (Liu, 2019) for the NLU
tasks. For LoRA, we set the parameter r to
16 and α to 32. The AdamW optimizer is
used with a batch size of 64, a learning rate
of 2e-4 and cosine annealing schedules. All
methods are trained for 200 rounds. The lo-
cal update step is set to 10 for RTE and 30
for QNLI, 20NG, and COLA based on the
quantity of data in each dataset.

Results. As shown in Table 1, directly in-
tegrating heterogeneous FL methods with
LoRA does not achieve better performance
on the NLU task compared to FedAvg. This
is primarily due to the differing update pat-
tern between FFT and LoRA, which is con-
sistent with previous empirical findings (Ye
et al., 2024b;a). Furthermore, we observe
that FFA-LoRA performs worse than Fe-
dAvg in our experimental setting. This is
due to FFA-LoRA’s focus on differential privacy, as well as the discrepancy between our task setup
and its original configuration, which employed manually partitioned data. Such partitioning does
not fully reflect the complexity of real-world scenarios, leading to a mismatch in performance under
our experimental settings. The results in the real-world data heterogeneity setting suggest that up-
dating only matrix B in FFA-LoRA fails to effectively capture global knowledge. In contrast, our
meticulous design enables FRLoRA to consistently outperform all baselines. It achieves significant
improvements over FedAvg, such as increasing performance from 70.35% to 75.81% on RTE and
from 66.83% to 69.41% on 20NG. This demonstrates that FRLoRA can effectively address the issue
of data heterogeneity in NLU tasks.

4.2 QUANTITATIVE COMPARISON ON NLG TASKS

Task Setup. Our experiments for NLG tasks follow previous empirical studies (Ye et al., 2024a;b).
For MetaMathQA and Alpaca-GPT4, we partition the datasets in an IID manner, with 10 clients for
MetaMathQA and 20 clients for Alpaca-GPT4. In each round, we randomly select 2 clients to par-
ticipate in training. Fed-Aya, Fed-ChatbotIT and Fed-WildChat are realistic benchmarks with data
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Table 2: Experimental results on NLG tasks, where MetaMathQA and Alpaca-GPT4 are used
as the training dataset, respectively. Results are copied from (Ye et al., 2024b). Avg. is the average
result of corresponding metrics, and the best results are marked in bold.

Method MetaMathQA Alpaca-GPT4

GSM8K Math Avg. Vicuna MT-1 MT-2 MT-Avg Avg.

FedAvg 34.95 4.48 19.71 7.925 4.650 2.025 3.346 4.486
FedProx 35.40 4.66 20.03 7.875 4.538 1.848 3.201 4.320
SCAFFOLD 35.78 5.08 20.43 7.675 4.689 2.288 3.488 4.535
FedAvgM 34.79 4.64 19.71 7.938 4.838 2.038 3.456 4.567
FedAdagrad 29.64 4.06 16.85 7.931 4.675 2.025 3.350 4.495
FedYogi 30.09 4.04 17.06 8.031 4.550 1.938 3.244 4.440
FedAdam 31.84 4.12 17.98 7.975 4.650 2.175 3.413 4.508
FFA-LoRA 28.05 3.78 15.91 7.862 4.712 1.950 3.331 4.463
FlexLoRA 34.09 4.31 19.20 7.884 4.561 2.012 3.286 4.435

FRLoRA (Ours) 44.27 5.22 24.74 8.044 4.775 2.481 3.635 4.733

Table 3: Experimental results on NLG tasks, where Fed-Aya is used as the training dataset and
evaluated on Ref-GPT4. Results are copied from (Ye et al., 2024a). Avg. is the average result of
all evaluation metrics, and the best results are marked in bold.

Method ar en es fr pt ru te zh Avg.

FedAvg 2.50 8.00 5.50 5.35 4.95 5.65 2.00 5.25 4.90
FedProx 3.20 7.10 5.90 5.65 4.85 5.20 1.60 5.80 4.92
SCAFFOLD 2.65 7.75 6.30 5.35 5.00 6.35 1.45 4.90 4.97
FedAvgM 3.00 7.80 5.35 5.00 5.30 5.65 1.90 5.00 4.86
FedAdagrad 2.50 7.85 5.15 5.25 4.45 5.75 1.55 5.50 4.75
FedYogi 2.00 8.45 6.15 4.55 3.85 6.30 1.65 4.93 4.73
FedAdam 2.40 8.50 5.25 4.70 4.35 5.40 1.90 5.20 4.71
FFA-LoRA 2.10 7.90 5.70 5.15 4.30 5.15 1.65 4.60 4.56
FlexLoRA 2.60 8.20 5.25 5.05 4.70 5.20 1.85 4.75 4.70

FRLoRA (Ours) 4.45 7.75 6.15 6.65 4.75 6.25 1.55 6.95 5.56

heterogeneity, consisting of 38, 237, and 100 clients, respectively. Correspondingly, we randomly
select 4, 10, and 5 clients to participate in training each round.

Evaluation. The evaluation process of NLG tasks is fundamentally different from NLU tasks. We
use the following benchmarks for evaluation: GSM8K (Cobbe et al., 2021) Math (Yu et al., 2024),
Ref-GPT4 (Ye et al., 2024a), MT-Bench (Zheng et al., 2024) and Vicuna (Chiang et al., 2023).
For GSM8K and Math, we use accuracy as the evaluation metric. For the remaining benchmarks,
we employ GPT-4 (Achiam et al., 2023) to rate the generated responses on a scale from 1 to 10.
All benchmarks are open-ended evaluations. MT-Bench assesses both one-turn and two-turn con-
versations, with MT-1 and MT-2 representing the scores for one-turn and two-turn interactions,
respectively. Other benchmarks focus solely on one-turn conversations.

Implementation Details. We employ LLaMA-2-7B (Touvron et al., 2023) for NLG tasks. For
MetaMathQA and Alpaca-GPT4, we set r to 32 and α to 64. For the remaining three benchmarks, r
and α are set to 16 and 32, respectively. The AdamW optimizer is used with a learning rate of 5e-4
for MetaMathQA and Alpaca-GPT4, and 2e-4 for other benchmarks, following a cosine annealing
schedule. We conduct training with rounds of either 100 or 200. For all benchmarks, IT is employed
as the fine-tuning paradigm, utilizing the instruction template of Alpaca (Taori et al., 2023).
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Table 4: Experimental results on NLG tasks, where Fed-ChatbotIT and Fed-WildChat are used
as training dataset, respectively. Results are copied from (Ye et al., 2024a). Avg. is the average
result of corresponding metrics, and the best results are marked in bold.

Method Fed-ChatbotIT Fed-WildChat

MT-1 Vicuna Ref-GPT4 Avg. MT-1 Vicuna Ref-GPT4 Avg.

FedAvg 4.30 6.93 5.29 5.51 4.81 7.99 5.88 6.22
FedProx 4.25 7.21 5.00 5.49 4.86 7.93 5.74 6.17
SCAFFOLD 3.86 7.35 4.82 5.34 4.78 7.93 5.57 6.09
FedAvgM 4.34 7.17 4.76 5.42 4.52 8.07 5.85 6.14
FedAdagrad 3.94 7.50 4.99 5.48 4.76 7.76 5.93 6.14
FedYogi 4.13 7.20 5.00 5.44 4.78 8.04 5.48 6.10
FedAdam 3.88 7.32 5.02 5.41 4.54 8.03 5.68 6.08
FFA-LoRA 3.78 6.85 5.45 5.36 4.37 7.79 5.57 5.91
FlexLoRA 4.17 7.02 5.40 5.53 4.88 7.91 5.78 6.19

FRLoRA (Ours) 4.31 7.49 5.62 5.80 4.64 8.24 7.00 6.63

(a) (b) (c)

Figure 2: Illustration of global training loss versus communication rounds on (a) RTE, (b) 20NG,
and (c) MetaMathQA.

Results. Table 2 depicts the results of all methods on MetaMathQA and Alpaca-GPT4 benchmarks
with IID distribution. In this setting, the impact of client drift is decreased. However, LoRA-based
FL still suffers challenges from the intrinsic limitation. In contrast, FRLoRA can effectively address
it, resulting in significant performance improvements over all baselines. For example, it improves
the average accuracy from 19.71% to 24.74% on MetaMathQA. Furthermore, Tables 3 and 4 show
the performance of all methods on three realistic benchmarks, i.e., Fed-Aya, FedChatbotIT and Fed-
WildChat, with data heterogeneity. Although FRLoRA performs lower than the best baselines on
some metrics, it consistently outperforms all baselines on the average metrics across various bench-
marks. The above results show the superiority of FRLoRA compared to all baselines, demonstrating
its effectiveness in addressing data heterogeneity in NLG tasks.

Moreover, the experiments are conducted in the partial participation setting, demonstrating that
FRLoRA can effectively learn global knowledge even when only a subset of clients participates in
training. This expands the range of scenarios where our method can be applied. In contrast, FFA-
LoRA yields worse performance on five benchmarks compared to FedAvg, as freezing matrix A
restricts its learning capability, particularly in the partial participation setting.

4.3 CONVERGENCE

In Figure 2, we show the global training loss, i.e., FG in Eq. (2), of all FL methods versus com-
munication rounds on RTE, 20NG, and MetaMathQA. Since FRLoRA train low-rank matrices in
the principal singular space, it exhibits a faster convergence rate compared to other methods. This
further presents the superiority of our method. Moreover, as illustrated in Figure 2 (a), the learning
mechanism of FRLoRA leads to more stable convergence.
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Table 5: Results of ablation study on RTE, 20NG, MetaMathQA, and Fed-WildChat. Best
results are marked in bold.

Method NLU MetaMathQA Fed-WildChat

RTE 20NG GSM8K Math Avg. MT-1 Vicuna Ref-GPT4 Avg.

FedAvg 70.75 66.83 34.95 4.48 19.71 4.81 7.99 5.88 6.22

FRLoRA-v1 74.12 67.68 36.02 4.73 20.37 4.84 7.96 5.91 6.23
FRLoRA-v2 69.81 65.77 36.81 4.92 20.86 4.58 7.84 6.08 6.16
FRLoRA-v3 58.62 63.19 39.08 5.01 22.04 4.43 8.03 6.34 6.26

FRLoRA (Ours) 75.81 69.41 44.27 5.22 24.74 4.64 8.24 7.00 6.63

4.4 ABLATION STUDY

Effectiveness of Update Mechanism. To access the effectiveness of update mechanism in FRLoRA,
we built up FRLoRA-v1: FedAvg initializes B0

k and A0
k using the principal singular values and

vectors of pre-trained weight, i.e., FedAvg+PiSSA (Meng et al., 2024). The results in Table 5 show
that FRLoRA yields consistent improvements over FRLoRA-v1 on all datasets across different
tasks. This strongly demonstrates the effectiveness of update mechanism in FRLoRA, which enables
the global model to be updated in higher-rank parameter space, allowing a better capture of the
diverse knowledge from all clients.

Effectiveness of Initialization Mechanism. To further explore the effectiveness of initialization
mechanism in FRLoRA, we constructed FRLoRA-v2, a variant that employs standard initialization
methods, i.e., zero and Gaussian noise, to reinitialize Bt

k and At
k at each round. Additionally, we

developed FRLoRA-v3, a variant that the weight of local and global model parameters is updated
directly using the global low-rank matrix and the Eq. (10) can be rewritten as Ŵ t = Ŵ t−1 +
Bt

GA
t
G. Following, we reinitialize Bt+1

k and At+1
k with the principal singular values and vectors of

W t similar to Eq. (5)-(7).

As shown in Table 5, the performance of FRLoRA-v2 suggests that relying solely on the parameter
residual mechanism is insufficient to handle data heterogeneity, as standard initialization struggles
to converge properly, resulting in the degradation of global knowledge ∆W t. As an excellent
complement, reinitializing in the principal singular space at each round can effectively address this
issue and significantly improve the performance under both IID and non-IID settings. Additionally,
a comparison between FRLoRA and FRLoRA-v3 reveals that using SVD to decompose new model
weights for initialization at each round results in worse performance compared to our approach. This
is attributed to the instability of the SVD operation, using frequently can significantly affect model
convergence. Additionally, it also incurs a large amount of computational overhead.

5 CONCLUSION

In this work, we address the challenge of data heterogeneity in LoRA-based FL. We observe that
LoRA struggles to effectively capture global knowledge in heterogeneous FL settings due to both
intrinsic and extrinsic limitations. To overcome these limitations, we introduce a novel approach,
FRLoRA, which directly updates model parameters by learning a residual low-rank matrix product
in the principal singular space of pre-trained weight. We validate the effectiveness of FRLoRA
through extensive experiments across nine benchmarks from different language tasks. Furthermore,
we offer a deeper understanding of our method from both theoretical and empirical perspectives.
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Table 6: Detailed information of NLU datasets.

Datasets RTE COLA QNLI 20NG

Task Inference Linguistic acceptability Inference Text classification
# Labels 2 2 2 20
# Train 2.49k 8.55k 105k 11.31k
# Test 277 1.04k 5.46k 7.53k
# Clients (Total) 5 5 5 5
# Clients (Train) 5 5 5 5
Metric Accuracy Matthews correlation Accuracy Accuracy

Table 7: Detailed information of NLG datasets.

Datasets MetaMathQA Alpaca-GPT4 Fed-Aya Fed-ChatbotIT Fed-WildChat

Task Question answering Single-turn chat Single-turn chat Single-turn chat Multi-turn chat
Domain Math General Multilingual General Multilingual
# Train 395k 52k 25,513 6166 52,703
# Clients (Total) 10 20 38 237 100
# Clients (Train) 2 2 4 10 5

A EMPIRICAL ANALYSIS

In this section, we conduct an empirical analysis to reveal the update pattern of LoRA in FL. Drawing
on RTE as the running example, we first record the average Frobenius norm of global ∆W , which
serves as an indicator of the task-specific knowledge that LoRA acquires for downstream tasks (Si
et al., 2024). Notably, the global ∆W for FRLoRA is the residual accumulation term in Eq. (13).
Additionally, we track the standard deviation among all local low-rank matrices across clients during
the update process, which provides a measure of the level of client drift.

The results versus the communication rounds, illustrated in Figure 1 (c) and (d), show that data het-
erogeneity hinders LoRA from effectively capturing global knowledge and incurs significant client
drift among local low-rank matrices, resulting in serious performance degradation from 76.89% to
70.75%. In contrast, our proposed method, FRLoRA, exhibits a distinct update pattern and enhanced
learning capacity under data heterogeneity. As we can see, FRLoRA learns more global knowledge
throughout the entire communication process compared to FedAvg (non-IID). Even compared to Fe-
dAvg (IID), FRLoRA also learns more global knowledge in the early stages (before 50 rounds). This
indicates that the update mechanism of FRLoRA facilitates the rapid capture of global knowledge.
Moreover, we further found that FRLoRA can significantly mitigate client drift due to its reinitial-
ization mechanism. As a result of these positive effects, FRLoRA improves accuracy from 70.75%
to 75.81%.

B EXPERIMENTAL DETAILS

Our experimental setup follows previous empirical studies (Ye et al., 2024a;b). Detailed information
about the datasets used for NLU tasks is provided in Table 6, while Table 7 outlines the datasets for
NLG tasks. The training configuration is summarized in Table 8.

B.1 DATASETS OF NLU TASKS

As shown in Table 6, the NLU experiments are conducted on four datasets, involving different tasks:

• RTE (Wang et al., 2019): A two-class classification task based on news and Wikipedia
text, where the goal is to determine whether one sentence entails another.
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Table 8: Detailed information of training configuration.

Configuration Batch size r α Rounds Local steps Learning rate

RTE 32 16 32 200 10 2e-4
COLA 32 16 32 200 30 2e-4
QNLI 32 16 32 200 30 2e-4
20NG 32 16 32 200 30 2e-4
MetaMathQA 16 32 64 200 10 5e-4
Alpaca-GPT4 16 32 64 200 10 5e-4
Fed-Aya 4 16 32 200 10 2e-4
Fed-ChatbotIT 4 16 32 100 5 2e-4
Fed-WildChat 4 16 32 100 10 2e-4

• COLA (Wang et al., 2019): It consists of English sentences annotated with acceptability
judgments, indicating whether each sentence is grammatically correct based on linguistic
theory.

• QNLI (Wang et al., 2019): A sentence pair classification task where the goal is to determine
if a context sentence from a paragraph contains the answer to a given question.

• 20NG (Lang, 1995): A text classification task to categorize news documents into 20 differ-
ent newsgroups.

The 20NG dataset contains 20 categories, while the other three datasets consist of two categories.
For all datasets, we partition their training set into 5 clients using Dirichlet distribution sampling
(Dk ∼ Dir(β)), where a smaller β indicates higher data heterogeneity. By default, β is set to
0.5. All clients participate in the training process during each round. For evaluation, we report the
accuracy (%) on the validation set of RTE, COLA, and QNLI, and Matthews correlation (%) on the
test set of 20NG. # Train and # Test represent the number of training and testing samples.

B.2 DATASETS OF NLG TASKS

Training Datasets. Table 7 provides detailed information on five training datasets for various NLG
tasks, including:

• MetaMathQA (Yu et al., 2023): A dataset containing 395k question answering pairs for
math problem solving, augmented from the training sets of GSM8K (Cobbe et al., 2021)
and MATH (Yu et al., 2024).

• Alpaca-GPT4 (Peng et al., 2023): A collection of 52k English instruction-following exam-
ples about general knowledge generated by GPT-4, used to fine-tune large language models
(LLMs).

• Fed-Aya (Ye et al., 2024a): A multilingual instruction tuning dataset with 38 clients and
25,513 samples, including 6 high-resource and 2 low-resource languages.

• Fed-ChatbotIT (Ye et al., 2024a): It is a collection of human-annotated preference data
from 237 clients with 6166 data samples that capture diversities of realistic use cases in
single-turn query of LLMs.

• Fed-WildChat (Ye et al., 2024a): It is a collection of multilingual conversations between
humans and ChatGPT, containing 100 clients with 52,703 data samples, representing real-
world multi-turn interactions between humans and chatbots.

For MetaMathQA and Alpaca-GPT4, we select 20k samples and partition them in an IID manner,
with 10 and 20 clients, respectively. At each round, 2 clients are randomly selected to participate in
the training. Fed-Aya, Fed-ChatbotIT, and Fed-WilChat are real-world benchmarks with data het-
erogeneity constructed by Ye et al. (2024a), where we randomly select 4, 10, and 5 clients per round
for training. Additionally, we fine-tune LLMs using instruction tuning with Alpaca’s instruction
template (Taori et al., 2023).
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Evaluation Benchmarks. We evaluate fine-tuned LLMs on the following test benchmarks:

• GSM8K (Cobbe et al., 2021) & Math (Yu et al., 2024): Both of them are question-
answering datasets focused on math problem solving. We use their test sets for evaluation.

• MT-Bench (Zheng et al., 2024): A benchmark designed to evaluate both one-turn (MT-1)
and two-turn (MT-2) conversational capabilities of language models across various tasks,
including writing, roleplay, reasoning, math, coding, extraction, STEM, and humanities.

• Vicuna (Chiang et al., 2023): This benchmark evaluates the one-turn instruction-following
capability of language models, covering a range of topics including coding, writing, math,
counterfactual reasoning, Fermi problems, common sense, and roleplay.

• Ref-GPT4 (Ye et al., 2024a): It serves as an in-domain evaluation benchmark, where 50
unseen data samples are randomly selected as the test set. For instance, when a model is
fine-tuned on the Fed-Aya dataset, the unseen samples are drawn from Fed-Aya for evalu-
ation.

For GSM8K and Math, we use accuracy (%) to evaluate the performance of LLMs in solving math
problems. For the other three benchmarks, we input the outputs of the LLMs into GPT-4 using
instruction templates (Ye et al., 2024a), and GPT-4 score them on a scale of 1 to 10, as shown in
Table 12 and 13. The prompt template used in GPT-4 Judger from Ye et al. (2024a;b).

B.3 BASELINES

To demonstrate the effectiveness of our approach, we employ several state-of-the-art heterogeneous
FL methods as baselines:

• FedAvg (McMahan et al., 2017): A pioneering algorithm that trains models on local
datasets and updates the global model by averaging the local model parameters.

• FedProx (Li et al., 2020b): It guides local training by introducing a proximity term between
the local model and global model parameters.

• SCAFFOLD (Karimireddy et al., 2020): During local training, it corrects local gradients
by introducing control variates.

• FedAvgM (Hsu et al., 2019): It updates the global model through the momentum update
mechanism.

• FedAdagrad & FedYogi & FedAdam (Reddi et al., 2021): They integrate adaptive op-
timization methods into FL, with the difference lying in the use of different computation
strategies to obtain the global update. This global update is then applied to the global model
through the momentum update mechanism.

• FFA-LoRA (Sun et al., 2024): It addresses privacy concerns and mitigates data hetero-
geneity issues by fixing the A matrix for each client and only optimizing the B matrix.

Aside from FFA-LoRA, the remaining methods are centered on FFT-based FL, which we integrate
with LoRA. We utilize the hyperparameters specified in Ye et al. (2024a) for these methods.

B.4 MODELS

We use RoBERTa-base and LLaMA-2-7B as the base models for NLU and NLG tasks, respectively.
The total number of model parameters (# Param.base) and trainable parameters (# Param.trainable)
are shown in the Table 9.

Table 9: Illustration of the number of model parameters.

Configure # Param.base # Param.trainable

RoBERTa-base r = 16 & α = 32 125.82M 1.77M
LLaMA-2-7B r = 16 & α = 32 6738M 2.09M
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Table 10: Experimental results under various ranks, where MetaMathQA is used as the training
dataset. Avg. is the average result of corresponding metrics, and the best results are marked in bold.

Method r = 16 r = 32 r = 64

GSM8K Math Avg. GSM8K Math Avg. GSM8K Math Avg.

FedAvg 32.67 4.64 18.65 34.95 4.48 19.71 37.45 5.38 21.41
FedProx 32.29 4.32 18.30 35.40 4.66 20.03 36.39 4.98 20.68
SCAFFOLD 32.97 4.70 18.84 35.78 5.08 20.43 32.37 4.64 18.50
FedAvgM 32.44 4.42 18.43 34.79 4.64 19.71 35.57 4.72 20.14
FedAdagrad 28.65 4.18 16.41 29.64 4.06 16.85 31.76 4.86 18.31
FedYogi 30.32 4.00 17.16 30.09 4.04 17.06 33.96 4.70 19.33
FedAdam 31.23 4.14 17.68 31.84 4.12 17.98 34.26 5.18 39.44
FFA-LoRA 25.17 3.60 14.38 28.05 3.78 15.91 31.00 4.50 17.75

FRLoRA (Ours) 39.57 5.60 22.58 44.27 5.22 24.74 45.56 6.88 26.22

Table 11: Experimental results under various LLMs, where MetaMathQA is used as the training
dataset. Avg. is the average result of corresponding metrics, and the best results are marked in bold.

Method Qwen2-1.5B Gemma-2B LLaMA-2-7B

GSM8K Math Avg. GSM8K Math Avg. GSM8K Math Avg.

FedAvg 16.30 1.66 8.98 36.08 15.00 25.54 34.95 4.48 19.71
FedProx 16.98 2.20 9.59 35.63 14.30 24.96 35.40 4.66 20.03
SCAFFOLD 14.02 1.56 7.79 37.07 14.52 25.79 35.78 5.08 20.43
FedAvgM 10.31 0.76 5.53 36.69 13.80 25.24 34.79 4.64 19.71
FedAdagrad 43.82 2.92 23.37 34.64 14.14 24.39 29.64 4.06 16.85
FedYogi 0.83 0.40 0.61 34.49 13.84 24.16 30.09 4.04 17.06
FedAdam 1.28 0.48 0.88 34.57 13.46 24.01 31.84 4.12 17.98
FFA-LoRA 36.01 4.24 20.12 32.90 14.28 23.59 28.05 3.78 15.91

FRLoRA (Ours) 52.08 17.34 34.71 42.30 15.24 28.77 44.27 5.22 24.74

C ADDITIONAL EXPERIMENTS

C.1 VARIOUS RANKS

In this section, we investigate the impact of varying ranks. Specifically, we adjust the rank to {16,
32, 64} while keeping the scale factor α

r fixed at 2, with all other experimental settings remaining
constant. The experimental results on MetaMathQA are shown in Table 10. As observed, most
methods exhibit a consistent trend: higher ranks yield improved performance. This is attributed to
the greater learning capacity of larger ranks, enabling more effective representation of knowledge
across diverse clients. These findings corroborate our claim in § 1. Moreover, FRLoRA consistently
outperforms all other methods at different ranks, indicating its scalability and robustness to rank
variations. Besides, we also observe that FRLoRA (r=16) achieved even higher performance than
FedAvg (r=64), demonstrating its effectiveness in addressing the constrained parameter space.

C.2 VARIOUS LLMS

We further evaluate the effectiveness of our method across different LLMs. To this end, we selected
two models with varying architectures and sizes: Qwen2-1.5B (Yang et al., 2024) and Gemma-
2B (Team et al., 2024), and conducted additional experiments on MetaMathQA. The r and α were
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set to 32 and 64, respectively, while keeping all other experimental settings unchanged. Specifically,
FedYogi and FedAdam achieved poor results, with average accuracies (Avg.) of only 0.61% and
0.88%, respectively. On the other hand, FedAdagrad exhibited significant performance improve-
ments compared to other baselines, which contrasts with its behaviour on Gemma-2B and Llama-2-
7B. Notably, FRLoRA consistently outperforms all baselines across the three LLMs, even achieving
superior performance with Qwen2-1.5B, a smaller model compared to the other two. This demon-
strates the strong generalizability of our method across different LLM architectures and scales.

Table 12: Examples of judgement by GPT-4 on Vicuna.

Question: How many text messages are sent globally in a minute? Try to explain your answer. Your
explanation should take the reader through your reasoning step-by-step.

FedAvg: Let’s take a look at the data and see what we can uncover. According to a report by The Guardian,
there were 47.9 billion text messages sent globally in 2019.

Now, let’s break it down:

- The report states there were 4.6 trillion text messages sent globally in 2019. This equals to 12.6 billion
text messages sent per day.

- According to a report by GlobalData, there were 6.18 trillion texts sent in 2019, which is roughly 17 billion
texts per day.

To explain this further, we can look at the data from the reports and consider that the reports are from 2019,
and that it is likely that the number of text messages sent has increased since then.

In the end, there is no definitive answer as to how many text messages are sent globally in a minute, but we
can estimate that on average, around 12-17 billion text messages are sent in a minute. The figure could be
higher or lower depending on the source and the time period considered.

GPT-4 Judger: The assistant’s response is detailed and well-reasoned, but there is a significant error
in the calculations. The assistant correctly cites data from The Guardian and GlobalData, but the con-
version from daily to minute text messages is incorrect. If there are 12.6 billion to 17 billion texts sent
per day, this does not translate to the same number being sent per minute. The assistant should have
divided the daily figure by the number of minutes in a day (1440) to get the correct answer. This error
significantly impacts the accuracy and relevance of the response. Therefore, the rating is lower. Rat-

ing: [[3]]
FRLoRA: Unfortunately, there is no definitive answer to the number of text messages sent globally in
a minute, as this figure would require the collection of data from all telecommunication companies and
mobile phone operators across the globe. It is difficult to estimate the number of texts sent per second, let
alone per minute. However, according to Statista, in 2022, the number of text messages sent in the U.S.
alone was 114.7 billion per month, which equals to about 2,978 million per day. This means that a large
number of text messages are being sent globally every minute, but it is difficult to determine an exact figure.

To explain further, the number of text messages sent in a minute would depend on several factors such as
the population of the countries, the frequency of texting, and the number of mobile phone subscribers. For
example, in countries with a large population and a high rate of mobile phone penetration, such as India
and China, the number of text messages sent per minute would be significantly higher than in countries with
smaller populations or lower mobile phone usage, like Sweden or Norway. Additionally, the number of text
messages sent would also vary depending on the time of the day, as people tend to send more texts during
peak hours, such as during office hours or after work.

In conclusion, the number of text messages sent globally in a minute is not a fixed figure but varies depending
on several factors. While we cannot give an exact number, we can say that texting is a popular form of
communication and a large number of texts are being sent globally every minute.

GPT-4 Judger: The assistant’s response is highly informative and detailed. It explains why it’s difficult to
provide an exact number of text messages sent globally per minute, citing the need for data from all telecom-
munication companies and mobile phone operators worldwide. The assistant also provides a statistic from
Statista to give a sense of the scale of text messaging in the U.S., which helps to illustrate the global scale.
The assistant further explains the factors that would influence the number of texts sent per minute, such as
population size, mobile phone usage, and time of day. The assistant’s response is accurate, relevant, and

provides a good depth of information, even though it couldn’t provide a specific number. Rating: [[9]]
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Table 13: Examples of judgement by GPT-4 on Vicuna.

Question: What are the main differences between Python and JavaScript programming languages?

FedAvg: Python and JavaScript are two popular programming languages that have many similarities, but
there are some key differences between them. Here are some of the main ones:

1. Python is an object-oriented programming language, while JavaScript is a functional programming
language. Object-oriented programming is used to organize and structure code by grouping related data
and methods into objects. Functional programming, on the other hand, focuses on functions and their
interactions with other functions rather than on objects and classes. 2. Python is a high-level programming
language, while JavaScript is a low-level programming language. This means that Python requires less
manual memory management and handles memory allocation automatically, while JavaScript requires the
programmer to manage memory manually. 3. Python has a built-in collection of standard libraries, while
JavaScript does not. Python’s standard library is extensive, making it easier for programmers to write
code for common tasks without having to reinvent the wheel. JavaScript, on the other hand, requires the
programmer to write their own code or use third-party libraries to perform the same tasks. 4. Python has a
syntax that is more readable and natural than JavaScript, making it easier for programmers to understand
and write code in Python. JavaScript has a syntax that is more compact and concise, which can make it
easier to write code quickly. 5. Python is an interpreted programming language, while JavaScript is a
compiled programming language. This means that JavaScript code is first translated into machine code
before it is executed, while Python code is executed directly by the interpreter. 6. Python is a dynamic
programming language, while JavaScript is a static programming language. This means that Python code
can be executed at any time and the results may change, while JavaScript code must have a specific order
and cannot change.

Overall, the choice between Python and JavaScript depends on the specific needs and preferences of the
programmer. While both languages have their strengths and weaknesses, they are both widely used and
have a large developer community.

GPT-4 Judger: The assistant’s response is detailed and provides a comprehensive comparison be-
tween Python and JavaScript. However, there are some inaccuracies in the information. For instance,
JavaScript is not a low-level programming language, it’s also high-level like Python. Also, JavaScript
is not a compiled language, it’s interpreted just like Python. Furthermore, JavaScript is not a
purely functional programming language, it supports both object-oriented and functional programming
paradigms. Lastly, JavaScript is not a static language, it’s dynamic like Python. These inaccuracies
significantly affect the quality of the response. Therefore, the rating is: [[3]]

FRLoRA: Python and JavaScript are both popular programming languages used for web development and
general-purpose scripting. However, there are several key differences between the two languages:

1. Language Typing: Python is a strongly typed language, which means that variables must have a specific
data type. JavaScript, on the other hand, is a loosely typed language, meaning that variables can have any
data type. 2. Syntax: Python has a more rigid syntax compared to JavaScript. For example, in Python,
indentation is used to indicate structure, while in JavaScript, curly braces are used to denote blocks of
code. 3. Data Structures: In Python, there are several built-in data structures such as lists, dictionaries,
sets, and tuples. JavaScript, on the other hand, has a more limited set of built-in data structures, including
arrays and objects. 4. Functions: Functions in Python are first-class citizens, which means that they can
be assigned, passed as arguments, and returned from other functions. In JavaScript, functions are second-
class citizens, meaning that they can only be passed as arguments and returned from other functions. 5.
Object-Oriented Programming: Both languages support Object-Oriented Programming (OOP), but Python
has a more explicit focus on it, with features such as classes and inheritance. JavaScript has a more limited
support for OOP, with only classes and prototypes. 6. Web Development: Both languages can be used for
web development, but Python is typically used for back-end development, while JavaScript is used for front-
end development. Python can be used to build web applications using frameworks like Django or Flask,
while JavaScript is used to build interactive client-side interfaces using frameworks like React or Angular.

Overall, both Python and JavaScript are powerful and versatile languages, but they have different strengths
and weaknesses, and they are used for different types of development projects.

GPT-4 Judger: The assistant’s response is highly informative, accurate, and detailed. It covers the main
differences between Python and JavaScript, including language typing, syntax, data structures, functions,
object-oriented programming, and their uses in web development. The assistant also provides examples to
clarify the points. The response is well-structured and easy to understand, making it very helpful for
someone trying to understand the differences between these two programming languages. Therefore, I
would rate this response highly. Rating: [[9]]
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Table 14: Communication cost per round on Alpaca-GPT4 with LLaMA-2-7B, where r is 32.
Cost.P denotes the communication overhead from participating training clients, Cost.NP represents
the overhead from non-participating clients, and Cost.T indicates the total communication cost.

Method Cost.P (MB) Cost.NP (MB) Cost.T (MB) Vicuna MT-1 MT-2 MT-Avg Avg.

Partial Participation Setting
FFT-based FL 13476× 2 0 26952 Out of Memory
FedAvg 8.388 × 2 0 16.77 7.925 4.650 2.025 3.346 4.486
FRLoRA 8.388 × 2 4.194 × 18 92.26 8.044 4.775 2.481 3.635 4.733
Full Participation Setting
FFT-based FL 13476× 20 0 269520 Out of Memory
FedAvg 8.388 × 20 0 167.76 8.039 4.833 2.458 3.645 4.743
FRLoRA 8.388 × 20 0 167.76 8.125 4.984 2.806 3.895 4.952

C.3 COMMUNICATION OVERHEAD

In the full participation setting, where all clients are involved in training every round, FRLoRA in-
curs no additional overhead, as local models remain consistent through parameter synchronization.
However, in the partial participation setting where only a subset of clients participate in training ev-
ery round, FRLoRA introduces extra communication overhead because inactive clients must receive
the global low-rank matrix from the server for the parameter synchronization. Since synchronization
occurs through the global low-rank matrices, the increased communication cost remains acceptable.
As shown in Table 14, the additional overhead introduced by FRLoRA per round is 75.49 MB,
which accounts for only 0.28% of the communication cost in FFT-based FL. This demonstrates
that LoRA-based FL can significantly reduce the communication overhead when fine-tuning LLMs.
Furthermore, FRLoRA does not increase the communication cost per client. As the communication
channels between each client and the server are independent and parallel, the overhead from inactive
clients does not affect overall communication efficiency.

Besides, we further present the performance in the full participation setting. It can be observed
that under this setting, FRLoRA does not incur any additional communication overhead while main-
taining superior performance. This also indicates that the performance improvement in the partial
participation setting does not stem from the increased communication overhead caused by inactive
clients.

C.4 EFFICIENCY OF SVD COMPUTATION

Table 15: Time and peak memory for the SVD
computation.

Model Time Peak Memory
RoBERTa-base 1.48 s 0.25 MB
LLaMA-2-7B 197.82 s 0.65 MB

We conducted an analysis of the time and mem-
ory requirements for the SVD computation in our
method. As shown in Table 15, the computa-
tional cost of SVD is minimal in terms of mem-
ory, with peak memory consumption remaining
under 1 MB for both models. While the time cost
scales with model size, SVD is performed only
once, rendering its overall impact negligible compared to the whole training phase.

C.5 ANALYSIS OF CLIENT DRIFT

In this section, we further analyze the effectiveness of our method in mitigating client drift. To
achieve this, we calculate the cosine similarity among local updates ∆W t

k across different clients.
We compare the results of FedAvg and FRLoRA on RTE, using the same number of training rounds
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(a) FedAvg (non-IID) (b) FedAvg (IID) (c) FRLoRA (non-IID)

Figure 3: Illustration of the cosine similarity distribution among local updates across different
clients on RTE.

Figure 4: Accuracy comparison of different
FL methods in terms of various β on RTE.

Figure 5: Illustration of global training
loss versus communication rounds on RTE.

to ensure a fair evaluation. The results show that the cosine similarity between clients in FedAvg
(IID) (see Figure 3 (b)) is distributed significantly higher than in FedAvg (non-IID) (see Figure 3
(a)), and FRLoRA (non-IID) (see Figure 3 (c)) exhibits a higher distribution compared to FedAvg
(non-IID). This further demonstrates the effectiveness of FRLoRA in reducing client drift, promoting
more consistent model convergence under data heterogeneity.

C.6 EFFECT OF DATA HETEROGENEITY

In this section, we investigate the impact of data heterogeneity on our method by varying the β of
the Dirichlet distribution across the values 0.1, 0.3, 0.5, 0.7, 0.9 on the RTE dataset, where smaller
values of β correspond to higher data heterogeneity. As shown in Figure 4, we can observe that the
accuracy of all methods increases with the increase of β, and FRLoRA significantly outperforms the
other methods at different values of β. Moreover, the gap is larger when β is small, indicating the
effectiveness of FRLoRA in addressing data heterogeneity.

C.7 ANALYSIS OF INITIALIZATION

To further investigate the impact of initialization on FRLoRA, we compared the convergence behav-
ior of FRLoRA-v2 with our method. As stated in §4.4, FRLoRA-v2 is a variant that reinitializes
the low-rank matrices to zero and Gaussian noise in each round. The results in Figure 5 demon-
strates that FRLoRA-v2 exhibits slower and less stable convergence compared to FRLoRA. This
demonstrates the effectiveness of FRLoRA’s initialization strategy in addressing the convergence
challenges associated with standard initialization methods, enabling faster and more stable conver-
gence. This facilitates ∆W t in effectively capturing global knowledge.
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