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Abstract

Adversarial attacks are a major challenge001
faced by current machine learning research.002
These purposely crafted inputs fool even the003
most advanced models, precluding their de-004
ployment in safety-critical applications. Ex-005
tensive research in computer vision has been006
carried to develop reliable defense strategies.007
However, the same issue remains less explored008
in natural language processing. Our work009
presents a model-agnostic detector of adver-010
sarial text examples. The approach identi-011
fies patterns in the logits of the target classi-012
fier when perturbing the input text. The pro-013
posed detector improves the current state-of-014
the-art performance in recognizing adversarial015
inputs and exhibits strong generalization capa-016
bilities across different NLP models, datasets,017
and word-level attacks.018

1 Introduction019

Despite recent advancements in Natural Language020

Processing (NLP), adversarial text attacks continue021

to be highly effective at fooling models into mak-022

ing incorrect predictions (Ren et al., 2019; Wang023

et al., 2019; Garg and Ramakrishnan, 2020). In par-024

ticular, syntactically and grammatically consistent025

attacks are a major challenge for current research026

as they do not alter the semantical information and027

are not detectable via spell checkers (Wang et al.,028

2019). While some defense techniques addressing029

this issue can be found in the literature (Mozes030

et al., 2021; Zhou et al., 2019; Wang et al., 2019),031

results are still limited in performance and text at-032

tacks keep evolving. This naturally raises concerns033

around the safe and ethical deployment of NLP034

systems in real-world processes.035

Previous research showed that analyzing models’036

logits leads to promising results in discriminating037

manipulated inputs (Wang et al., 2021; Aigrain and038

Detyniecki, 2019; Hendrycks and Gimpel, 2016).039

However, logits-based adversarial detectors have040

been only studied on computer vision applications. 041

Our work transfers this type of methodology to the 042

NLP domain amd its contribution can be summa- 043

rized as follows: 044

(1) We introduce a logits-based metric called 045

Word-level Differential Reaction (WDR) captur- 046

ing words with a suspiciously high impact on the 047

classifier. The metric is model-agnostic and also 048

independent from the number of output classes. 049

(2) Based on WDR scores, we train an adversar- 050

ial detector that is able to distinguish original from 051

adversarial input texts preserving syntactical cor- 052

rectness. The approach substantially outperforms 053

the current state of the art in NLP. 054

(3) We show our detector to have full transferabil- 055

ity capabilities and to generalize across multiple 056

datasets, attacks, and target models without need- 057

ing to retrain. Our test configurations include trans- 058

formers and both contextual and genetic attacks. 059

(4) By applying a post-hoc explainability method, 060

we further validate our initial hypothesis—i.e. the 061

detector identifies patterns in the WDR scores. Fur- 062

thermore, only a few of such scores carry strong 063

signals for adversarial detection. 064

2 Background and Related Work 065

2.1 Adversarial Text Attacks 066

Given an input sample x and a target model f , 067

an adversarial example x′ = x + ∆x is gener- 068

ated by adding a perturbation ∆x to x such that 069

arg max f(x) = y 6= y′ = arg max f(x′). Al- 070

though this is not required by definition, in practice 071

the perturbation ∆x is often imperceptible to hu- 072

mans and x′ is misclassified with high confidence. 073

In the NLP field, ∆x consists in adding, remov- 074

ing, or replacing a set of words or characters in the 075

original text. Unlike image attacks—vastly studied 076

in the literature (Zhang et al., 2020) and operating 077
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in high-dimensional continuous input spaces—text078

perturbations need to be applied on a discrete in-079

put space. Therefore, gradient methods used for080

images such as FGSM (Goodfellow et al., 2014)081

or BIM (Kurakin et al., 2017) are not useful since082

they require a continuous space to perturb x. Based083

on the text perturbation introduced, text attacks can084

be distinguished into two broad categories.085

Visual similarity: These NLP attacks generate086

adversarial samples x′ that look similar to their087

corresponding original x. These perturbations usu-088

ally create typos by introducing perturbations at the089

character level. DeepWordBug (Gao et al., 2018),090

HotFlip (Ebrahimi et al., 2018) , and VIPER (Eger091

et al., 2019) are well-known techniques belonging092

to this category.093

Semantic similarity: Attacks within this cate-094

gory create adversarial samples by designing sen-095

tences that are semantically coherent to the origi-096

nal input and also preserve syntactical correctness.097

Typical word-level perturbations are deletion, in-098

sertion, and replacement by synonyms (Ren et al.,099

2019) or paraphrases (Iyyer et al., 2018). Two main100

types of adversarial search have been proposed.101

Greedy algorithms try each potential replacement102

until there is a change in the prediction (Li et al.,103

2020; Ren et al., 2019; Jin et al., 2020). On the104

other hand, genetic algorithms such as Alzantot105

et al. (2018) and Wang et al. (2019) attempt to find106

the best replacements inspired by natural selection107

principles.108

2.2 Defense against Adversarial Attacks in109

NLP110

Defenses based on spell and syntax checkers111

are successful against character-level text attacks112

(Pruthi et al., 2019; Wang et al., 2019; Alshemali113

and Kalita, 2019). In contrast, these solutions are114

not effective against word-level attacks preserving115

language correctness (Wang et al., 2019). We iden-116

tify methods against word-level attacks belonging117

to two broad categories:118

Robustness enhancement: The targeted model119

is equipped with further processing steps to not120

be fooled by adversarial samples without identify-121

ing explicitly which samples are adversarial. For122

instance, Adversarial Training (AT) (Goodfellow123

et al., 2014) consists in training the target model124

also on manipulated inputs. The Synonym Encod-125

ing Method (SEM) (Wang et al., 2019) introduces126

an encoder step before the target model’s input 127

layer and trains it to eliminate potential perturba- 128

tions. Instead, Dirichlet Neighborhood Ensemble 129

(DNE) (Zhou et al., 2020) and Adversarial Sparse 130

Convex Combination (ASCC) (Dong et al., 2021) 131

augment the training data by leveraging the convex 132

hull spanned by a word and its synonyms. 133

Adversarial detection: Attacks are explicitly 134

recognized to alert the model and its developers. 135

Adversarial detectors were first explored on im- 136

age inputs via identifying patterns in their corre- 137

sponding Shapley values (Fidel et al., 2020), acti- 138

vation of specific neurons (Tao et al., 2018), and 139

saliency maps (Ye et al., 2020). For text data, pop- 140

ular examples are Frequency-Guided Word Substi- 141

tution (FGWS) (Mozes et al., 2021) and learning 142

to DIScriminate Perturbation (DISP) (Zhou et al., 143

2019). The former exploits frequency properties of 144

replaced words, while the latter uses a discrimina- 145

tor to find suspicious tokens and uses a contextual 146

embedding estimator to restore the original word. 147

2.3 Logits-Based Adversarial Detectors 148

Inspecting output logits has already led to promis- 149

ing results in discriminating between original and 150

adversarial images (Hendrycks and Gimpel, 2016; 151

Pang et al., 2018; Kannan et al., 2018; Roth et al., 152

2019). For instance, Wang et al. (2021) trains a re- 153

current neural network that captures the difference 154

in the logits distribution of manipulated samples. 155

Aigrain and Detyniecki (2019), instead, achieves 156

good detection performance by feeding a simple 157

three-layer neural network directly with the logit 158

activations. 159

Our work adopts a similar methodology but fo- 160

cuses instead on the NLP domain and thus text 161

attacks. In this case (1) logic-based metrics to iden- 162

tify adversarial samples should be tailored to the 163

new type of input and (2) detectors should be tested 164

on currently used NLP models such as transformers 165

(Devlin et al., 2019). 166

3 Methodology 167

The defense approach proposed in this work be- 168

longs to the category of adversarial detection. It 169

defends the target model from attacks generated 170

via word-level perturbations belonging to the se- 171

mantic similarity category. The intuition behind 172

the method is that the model’s reaction to original- 173

and adversarial samples is going to differ even if 174

the inputs are similar. 175
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Figure 1: Overview of the proposed method.

Figure 1 shows the overall pipeline of the ap-176

proach. Given a text classifier f trained on the task177

at hand, the pipeline’s goal is to detect whether the178

currently fed input x is adversarial. In 3.1, we ex-179

plain in greater detail how we measure the model180

f ’s reaction to a given input x. This quantity—181

later indicated with WDR(x, f)—is then passed182

to the adversarial detector, whose training proce-183

dure is described in 3.2. Finally, in 3.3, we provide184

detailed information about the setup of our experi-185

ments such as target models, datasets, and attacks.186

3.1 Interpreting the Target Model and187

Measuring its Reaction: Word-Level188

Differential Reaction189

Adversarial attacks based on semantic similarity190

replace the smallest number of words possible191

to change the target model’s prediction (Alzantot192

et al., 2018). Thus, we expect the replacements193

transforming x into x′ to play a big role for the out-194

put. If not, we would not have f(x′) substantially195

different from f(x). To assess the reaction of the196

target model f to a given input x, we measure the197

impact of a word via the Word-level Differential198

Reaction (WDR) metric. Specifically, the effect of199

replacing a word xi on the prediction200

y∗ = arg max
y
p(y|x)201

is quantified by202

WDR(xi, f) = f(x\xi)y∗ −max
y 6=y∗

f(x\xi)y203

where f(x\xi)y indicates the output logit for204

class y for the input sample x without the word xi.205

Specifically, xi is replaced by an unknown word206

token. If x is adversarial, we could expect to find207

perturbed words to have a negative WDR(xi, f)208

as without them the input text should recover its 209

original prediction. Table 1 shows an example pair 210

of original and adversarial text together with their 211

corresponding WDR(xi, f) scores. The original 212

class is recovered after removing a perturbed word 213

in the adversarial sentence. This switch results in a 214

negative WDR. However, even if the most impor- 215

tant word is removed from the original sentence 216

(’worst’), the predicted class does not change and 217

thus WDR(xi, f) > 0. 218

Our adversarial detector takes as input 219

WDR(x, f), i.e. the sorted list of WDR scores 220

WDR(xi, f) for all words xi in the input sentence. 221

As sentences vary in length, we pad the list with 222

zeros to ensure a consistent input length for the 223

detector. 224

3.2 Adversarial Detector Training 225

The adversarial detector is a machine-learning clas- 226

sifier that takes the model’s reaction WDR(x, f) as 227

input and outputs whether the input x is adversarial 228

or not. To train the model, we adopt the following 229

multi-step procedure: 230

(S1) Generation of adversarial samples: Given 231

a target classifier f , for each original sample 232

available x, we generate one adversarial exam- 233

ple x′. This leads to a balanced dataset con- 234

taining both normal and perturbed samples. 235

The labels used are original and adversarial 236

respectively. 237

(S2) WDR computation: For each element of the 238

mixed dataset, we compute the WDR(x, f) 239

scores as defined in Section 3.1. Once more, 240

this step creates a balanced dataset containing 241

WDR(x, f) for both normal and adversarial 242

samples. 243
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Original sentence: Negative Review (Class 0) Adversarial sentence: Positive Review (Class 1)
This is absolutely the worst trash I have ever This is absolutely the tough trash I have ever
seen. It took 15 full minutes before I realized seen. It took 15 full minutes before I realized
that what I was seeing was a sick joke! [...] that what I was seeing was a silly joke! [...]
Removed xi Logit Logit WDR Removed xi Logit Logit WDR

Class 0 Class 1 WDR(xi, f) Class 0 Class 1 WDR(xi, f)

∅ 3.44 -3.46 6.89 ∅ -1.85 2.17 4.02
worst 1.68 -1.75 3.43 tough 2.14 -1.50 -3.64
sick 3.34 -3.42 6.76 silly 1.38 -1.37 -2.75
absolutely 3.40 -3.45 6.86 absolutely -0.31 0.48 0.79
realized 3.41 -3.47 6.89 realized -1.07 1.36 2.43

Table 1: WDR(xi, f) scores computed for an original sentence and its corresponding adversarial perturbation.
Results show how when removing adversarial words such as tough or silly, the original class is recovered and the
WDR becomes negative. ∅ corresponds to the prediction without any replacements

(S3) Detector training: The output of the second244

step (S2) is split into training and test data.245

Then, the training data is fed to the detector246

for training along with the labels defined in247

step (S1).248

Please note that no assumption on f is made. At249

the same time, the input of the adversarial detector—250

i.e. the WDR scores—does not depend on the num-251

ber of output classes of the task at hand. Hence,252

the adversarial detector is model-agnostic w.r.t. the253

classification task and the classifier targeted by the254

attacks.255

In our case, we do not pick any particular ar-256

chitecture for the adversarial detector. Instead, we257

experiment with a variety of models to test their258

suitability for the task. In the same spirit, we test259

our setting on different target classifiers, types of260

attacks, and datasets.261

3.3 Experimental Setup262

To test our pipeline, four popular classification263

benchmarks were used: IMDb (Maas et al., 2011),264

Rotten Tomatoes Movie Reviews (RTMR) (Pang265

and Lee, 2005), Yelp Polarity (YELP) (Zhang et al.,266

2015), and AG News (Zhang et al., 2015). The first267

three are binary sentiment analysis tasks in which268

reviews are classified in either positive or negative269

sentiment. The last one, instead, is a classification270

task where news articles should be identified as one271

of four possible topics: World, Sports, Business,272

and Sci/Tech.273

As main target model for the various tasks we274

use DistilBERT (Sanh et al., 2020) fine-tuned on275

IMDb. We choose DistilBert—a transformer lan-276

guage model (Vaswani et al., 2017)—as trans- 277

former architectures are widely used in NLP ap- 278

plications, established as state of the art in several 279

tasks, and generally quite resilient to adversarial 280

attacks (Morris et al., 2020). Furthermore, we 281

employ a Convolutional Neural Network (CNN) 282

(Zhang et al., 2015), a Long Short-Term Memory 283

(LSTM) (Hochreiter and Schmidhuber, 1997), and 284

a full BERT model (Devlin et al., 2019) to test trans- 285

ferability to different target architectures. All mod- 286

els are provided by the TextAttack library (Morris 287

et al., 2020) and are already trained1 on the datasets 288

used in the experiments. 289

We generate adversarial text attacks via 290

four well-established word-substitution-based tech- 291

niques: Probability Weighted Word Saliency 292

(PWWS) (Ren et al., 2019), Improved Genetic Al- 293

gorithm (IGA) (Jia et al., 2019), TextFooler (Jin 294

et al., 2020), and BERT-based Adversarial Exam- 295

ples (BAE) (Garg and Ramakrishnan, 2020). The 296

first is a greedy algorithm that uses word saliency 297

and prediction probability to determine the word 298

replacement order (Ren et al., 2019). IGA, instead, 299

crafts attacks via mutating sentences and promot- 300

ing the new ones that are more likely to cause a 301

change in the output. TextFooler ranks words by 302

importance and then replaces the ones with the 303

highest ranks. Finally, BAE, leverages a BERT 304

language model to replace tokens based on their 305

context (Garg and Ramakrishnan, 2020). All at- 306

tacks are generated using the TextAttack library 307

(Morris et al., 2020). 308

1https://textattack.readthedocs.io/en/latest/3recipes/models.html,
released under MIT License
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We investigate several combinations of datasets,309

target models, and attacks to test our detector in a310

variety of configurations. Because of its robustness311

and well-balanced behavior, we pick the average312

F1-score as our main metric for detection. How-313

ever, as in adversarial detection false negatives can314

have major consequences, we also report the recall315

on adversarial sentences. Later on, in 4.3, we also316

compare performance with other metrics such as317

precision and original recall and observe how they318

are influenced by the chosen decision threshold.319

4 Experimental Results320

In this section, we report the experimental results321

of our work. In 4.1, we study various detector ar-322

chitectures to choose the best performing one for323

the remaining experiments. In 4.2, we measure our324

pipeline’s performance in several configurations325

(target model, dataset, attack) and we compare it326

to the current state-of-the-art adversarial detectors.327

While doing so, we also assess transferability via328

observing the variation in performance when chang-329

ing the dataset, the target model, and the attack330

source without retraining our detector. Finally, in331

4.3, we look at how different decision boundaries332

affect performance metrics.333

4.1 Choosing a Detector Model334

The proposed method does not impose any con-335

straint on which detector architecture should be336

used. For this reason, no particular model has337

been specified in this work so far. We study six338

different detector architectures in one common set-339

ting. We do so in order to pick one to be utilized340

in the rest of the experiments. Specifically, we341

compare XGBoost (Chen and Guestrin, 2016), Ad-342

aBoost (Schapire, 1999), LightGBM (Ke et al.,343

2017), SVM (Hearst et al., 1998), Random For-344

est (Breiman, 2001), and a Perceptron NN (Singh345

and Banerjee, 2019). All models are compared346

on adversarial attacks generated with PWWS from347

IMDb samples and targeting a DistilBERT model348

fine-tuned on IMDb. A balanced set of 3, 000349

instances—1, 500 normal and 1, 500 adversarial—350

was used for training the detectors while the test351

set contains a total of 1360 samples following the352

same proportions.353

As shown in Table 2, all architectures achieve354

competitive performance and none of them clearly355

appears superior to the others. We pick XGBoost356

(Chen and Guestrin, 2016) as it exhibits the best357

Model F1-Score Adv. Recall
XGBoost 92.4 95.2
AdaBoost 91.8 96.0
LightGBM 92.0 93.7
SVM 92.0 94.8
Random For-
est

91.5 93.7

Perceptron
NN

90.4 88.1

Table 2: Performance comparison of different detec-
tor architectures on IMDb adversarial attacks generated
with PWWS and targeting a DistilBERT transformer.

F1-score. The main hyperparameters utilized are 358

29 gradient boosted trees with a maximum depth of 359

3 and 0.34 as learning rate. We utilize this detector 360

architecture for all experiments in the following 361

sections. 362

4.2 Detection Performance 363

Tables 3a and 3b report the detection performance 364

of our method in a variety of configurations. In 365

each table, the first row represents the setting—i.e. 366

combination of target model, dataset, and attack 367

type—in which the detector was trained. The re- 368

maining rows, instead, are w.r.t. settings in which 369

we tested the already trained detector without per- 370

forming any kind of fine-tuning or retraining. 371

We utilize a balanced training set of size 3, 000 372

and 2, 400 samples respectively for the detectors 373

trained on IMDb adversarial attacks (Table 3a) and 374

on AG News attacks (Table 3b). All results are 375

obtained using balanced test sets containing 500 376

samples. The only exceptions are the configura- 377

tions (DistilBERT, RTMR, IGA) and (DistilBERT, 378

AG News, IGA) which used test sets of size 480 379

and 446 respectively due to data availability. 380

To the best of our knowledge, the FGWS method 381

from Mozes et al. (2021) is the best detector avail- 382

able and was already proven to be better than DISP 383

(Zhou et al., 2019) by its authors. Hence, we utlize 384

FGWS as baseline for comparison in all config- 385

urations. Analogously to our method, FGWS is 386

trained on the configuration in the first row of each 387

table and then applied to all others. More in detail, 388

we fine-tune its frequency substitution threshold 389

parameter δ (Mozes et al., 2021) until achieving a 390

best fit value of δ = 0.9 in both training settings. 391

From what can be seen in both tables, the pro- 392

posed method consistently shows very competi- 393
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Configuration WDR (Ours) FGWS (Mozes et al., 2021)
Model Dataset Attack F1-Score Adv. F1-Score Adv.

Recall Recall
DistilBERT IMDb PWWS 92.1 ± 0.5 94.2 ± 1.1 89.5 82.7
LSTM IMDb PWWS 84.1 ± 3.4 86.8 ± 8.5 80.0 69.6
CNN IMDb PWWS 84.3 ± 3.1 90.0 ± 6.2 86.3 79.6
BERT IMDb PWWS 92.4 ± 0.7 92.5 ± 1.8 89.8 82.7
DistilBERT AG News PWWS 93.1 ± 0.6 96.1 ± 2.2 89.5 84.6
DistilBERT RTMR PWWS 74.1 ± 3.1 85.1 ± 8.6 78.9 67.8
DistilBERT IMDb TextFooler 94.2 ± 0.8 97.3 ± 0.9 86.0 77.6
DistilBERT IMDb IGA 88.5 ± 0.9 95.5 ± 1.3 83.8 74.8
DistilBERT IMDb BAE 88.0 ± 0.9 96.3 ± 1.0 65.6 50.2
DistilBERT RTMR IGA 70.4 ± 5.5 90.2 ± 6.9 68.1 55.2
DistilBERT RTMR BAE 68.5 ± 4.3 82.2 ± 9.0 29.4 18.5
DistilBERT AG News BAE 81.0 ± 4.3 95.4 ± 3.8 55.8 44.0
BERT YELP PWWS 89.4 ± 0.6 85.3 ± 1.7 91.2 85.6
BERT YELP TextFooler 95.9 ± 0.3 97.5 ± 0.6 90.5 84.2

(a) Performance results for detector trained on (DistilBERT, IMDb, PWWS).

Configuration WDR (Ours) FGWS (Mozes et al., 2021)
Model Dataset Attack F1-Score Adv. F1-Score Adv.

Recall Recall
DistilBERT AG News PWWS 93.6 ± 1.5 94.8 ± 2.4 89.5 84.6
LSTM AG News PWWS 94.0 ± 1.0 94.2 ± 2.2 88.9 84.9
CNN AG News PWWS 91.1 ± 1.4 91.2 ± 2.6 90.6 87.6
BERT AG News PWWS 92.5 ± 0.9 93.0 ± 1.8 88.7 83.2
DistilBERT IMDB PWWS 91.4 ± 0.6 93.0 ± 1.9 89.5 82.7
DistilBERT RTMR PWWS 75.8 ± 0.9 78.5 ± 4.8 78.9 67.8
DistilBERT AG News TextFooler 95.7 ± 0.7 97.3 ± 1.2 87.0 79.4
DistilBERT AG News BAE 86.4 ± 1.1 94.5 ± 1.8 55.8 44.0
DistilBERT AG News IGA 86.7 ± 1.5 93.6 ± 2.1 68.6 58.3
DistilBERT RTMR IGA 73.7 ± 1.5 85.4 ± 5.2 68.1 55.2
DistilBERT RTMR BAE 71.0 ± 1.1 75.2 ± 6.0 29.4 18.5
DistilBERT IMDB BAE 88.1 ± 0.9 97.0 ± 1.0 65.6 55.2
BERT YELP PWWS 86.2 ± 1.4 77.2 ± 3.1 91.2 85.6
BERT YELP TextFooler 95.4 ± 0.3 94.7 ± 0.9 90.5 84.2

(b) Performance results for detector trained on (DistilBERT, AG News, PWWS).

Table 3: Adversarial detection performance of our defense against the state of the art FGWS under several setups.
Results were obtained with a detector trained on two different configurations as indicated in the first row of each
table. For all other rows, i.e. test configurations, differences w.r.t the training setup have been highlighted. To in-
crease the results’ statistical significance, we average the performance across 30 different data-splits of the training
configuration. Additionally, we report the corresponding 95% confidence intervals. Given the deterministic nature
of FGWS, different data-splits lead to the same performance and hence confidence intervarls are not reported as
they are trivial (±0).

tive results in terms of F1-score and outperforms394

the baseline in 22 configurations out of 28 (worse395

in 5) and is on average better by 8.96 percentage396

points. At the same time, our methods exhibits a397

very high adversarial recall, showing a strong ca- 398

pability at identifying attacks and thus producing a 399

small amount of false negatives. 400
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Generalization to different target models:401

Starting from the training configurations, we vary402

the target model while maintaining the other com-403

ponents fixed (rows 2-4 of each table). Here, the404

detector achieves state-of-the-art results in all test405

settings, occasionally dropping below the 90% F1-406

score on a few simpler models like LSTM and CNN407

while not exhibiting any decay on more complex408

models like BERT.409

Generalization to different datasets: Analo-410

gous to the previous point, we systematically sub-411

stitute the dataset component for evaluation (rows412

5-6 of each table). We notice a substantial decay in413

F1-score when testing with RTMR (74.1 - 75.8%)414

since samples are short and, therefore, may contain415

few words which are very relevant for the predic-416

tion, just like adversarial replacements. Neverthe-417

less, removing adversarial words still result in a418

change of prediction to the original class thereby419

preserving high adversarial recall."420

Generalization to different attacks: Results421

highlight a good reaction to all other text attacks422

(rows 7-9 of each table) and even experiences a con-423

siderable boost in performance against TextFooler.424

In contrast, the baseline FGWS significantly suffers425

against more complex attacks such as BAE, which426

generates context-aware perturbation.427

Besides testing generalization properties via sys-428

tematically varying one configuration component429

at the time, we also test on a few settings present-430

ing changes in multiple ones (rows 10-14 of each431

table). Also in these settings, the proposed method432

maintains a very competitive performance, with433

noticeable drops only on the RTMR dataset.434

4.3 Tuning the Decision Boundary435

Depending on the application in which the detector436

is used to monitor the model and detect malicious437

input manipulations, different performance metrics438

can be taken into account to determine whether it439

is safe to deploy the model. For instance, in a very440

safety-critical application where successful attacks441

lead to harmful consequences, adversarial recall442

becomes considerably more relevant as a metric443

than the F1-score.444

We examine how relevant metrics change in re-445

sponse to different choices for the discrimination446

threshold. Please note that a lower value corre-447

sponds to more caution, i.e. we are more likely to448

output that a certain input is adversarial.449

Figure 2 and Table 4 show performance results 450

w.r.t. different threshold choices. We notice that 451

decreasing its value from 0.5 to 0.15 can increase 452

the adversarial recall to over 98% at a small cost 453

in terms of precision and F1-score (< 2 percent- 454

age points). Applications where missing attacks— 455

i.e. false negatives—have disastrous consequences 456

could take advantage of this property and consider 457

lowering the decision boundary. This is particularly 458

true if attacks are expected with a low frequency 459

and an increase in false positive incurs only minor 460

costs. 461

0.00 0.25 0.50 0.75 1.00
Decision Threshold

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce
 M

et
ric

Performance for different decision thresholds

Adversarial recall
Precision (weighted avg.)
F1-score (weighted avg.)
Original recall

Figure 2: Performance metrics w.r.t. different decision
thresholds for our XGBoost classifier on the configura-
tion (IMDb, DistilBERT, PWWS). Input sentences are
classified as adversarial when their probability is higher
than the decision threshold.

DT Precision F1 Adv. Orig.
Recall Recall

0.5 92.5 92.4 95.2 89.5
0.4 92.3 92.0 96.4 87.5
0.3 92.4 91.8 97.6 85.9
0.15 91.5 90.3 98.4 82.3

Table 4: Performance comparison using different deci-
sion thresholds (DT) for our XGBoost classifier on the
configuration (IMDb, DistilBERT, PWWS). The used
default value is 0.5.

5 Discussion and Qualitative Results 462

5.1 Understanding the Adversarial Detector 463

The proposed pipeline consists of a machine 464

learning classifier—e.g. XGBoost—fed with the 465

model’s WDR scores. The intuition behind the 466

approach is that words replaced by adversarial at- 467

tacks play a big role in altering the target model’s 468

7



decision. Despite the competitive detection perfor-469

mance, the detector is itself a learning algorithm470

and we cannot determine with certainty what pat-471

terns it can identify.472

To validate our original hypothesis, we apply a473

popular explainability technique—SHAP (Lund-474

berg and Lee, 2017)—to our detector. This allows475

us to summarize the effect of each feature at the476

dataset level. We use the official implementation2477

to estimate the importance of each WDR and use a478

beeswarm plot to visualize the results.479

Figure 3: WDR scores with the highest impact (SHAP
value) on the detector’s prediction. Feature n−1 corre-
sponds to the n-th WDR. For instance, feature 0 is the
first and largest WDR score.

Figure 3 shows that values in the first positions—480

i.e. 0, 1, and 2—of the input sequence are those481

influencing the adversarial detector the most. Since482

in our pipeline WDR scores are sorted based on483

their magnitude, this means that the largest WDR484

of each prediction are the most relevant for the485

detector. This is consistent with our hypothesis486

that replaced words substantially change output487

logits and thus measuring their variation is effective488

for detecting input manipulations. As expected,489

negative values for the WDR correspond to a higher490

likelihood of the input being adversarial.491

We also notice that features after the first three492

do not appear in the naturally expected order. We493

believe this is the case as for most sentences it is494

sufficient to replace two-three words to generate an495

adversarial sample. Hence, in most cases, only a496

few WDR scores carry important signals for detec-497

tion.498

2https://github.com/slundberg/shap, released under MIT
License

5.2 Challenges and Limitations 499

While WDR scores contain rich patterns to identify 500

manipulated samples, they are also relatively expen- 501

sive to compute. Indeed, we need to run the model 502

once for each feature—i.e. each word—in the input 503

text. While this did not represent a limitation for 504

our use-cases and experiments, we acknowledge 505

that it could result in drawbacks when input texts 506

are particularly long. 507

Our method is specifically designed against 508

word-level attacks and it does not cover character- 509

level ones. However, the intuition seems to some 510

extent applicable also to sentences with typos and 511

similar artifacts as the words containing them will 512

play a big role for the prediction. This, like in the 513

word-level case, needs to happen in order for the 514

perturbations to result in a successful adversarial 515

text attack and change the target model’s prediction 516

6 Conclusion 517

Adversarial text attacks are a major obstacle to the 518

safe deployment of NLP models in high-stakes ap- 519

plications. However, although manipulated and 520

original samples appear indistinguishable, inter- 521

preting the model’s reaction can uncover helpful 522

signals for adversarial detection. 523

Our work utilizes logits of original and adver- 524

sarial samples to train a simple machine learning 525

detector. WDR scores are an intuitive measure of 526

word relevance and are effective for detecting text 527

components having a suspiciously high impact on 528

the output. The detector does not make any as- 529

sumption on the classifier targeted by the attacks 530

and can be thus considered model-agnostic. 531

The proposed approach achieves very promis- 532

ing results, considerably outperforming the previ- 533

ous state-of-the-art in word-level adversarial detec- 534

tion. Experimental results also show the detector 535

to possess remarkable generalization capabilities 536

across different target models, datasets, and text 537

attacks without needing to retrain. These include 538

transformer architectures such as BERT and well- 539

established attacks such as PWWS, genetic algo- 540

rithms, and context-aware perturbations. 541

We believe our work sets a strong baseline on 542

which future research can build to develop better 543

defense strategies and thus promoting the safe de- 544

ployment of NLP models in practice. We release 545

our code to the public to facilitate further research 546

and development 3. 547

3GitHub URL hidden to keep anonymity, released upon
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