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ABSTRACT

We consider the latent traversal problem in studying and exploring the chemical
space with the learned latent space of a generative model. We propose a new
framework, ChemFlow, that unified previous molecule manipulation and opti-
mization method with a dynamical system perspective. Specifically, we formulate
the problem as learning a vector field that transports the mass of the molecular
distribution to the region with desired molecular properties or structure diversity.
We also propose several alternative dynamics which exhibit various advantages
over previous methods. We validate the efficacy of our proposed methods on both
supervised and unsupervised molecule manipulation and optimization scenarios.

1 INTRODUCTION

Unveiling the structure of the chemical space and designing efficient search algorithms to explore
it is a long-standing challenge in chemistry (Bohacek et al., 1996; Lipinski et al., 2012). Recently,
with the promising results by deep generative models to generate valid molecules, more attention
has been attracted to study the structure of the learned latent space of those models and optimization
methods over the latent space to find better molecule candidates (Du et al., 2022a).

Initially, researchers explicitly introduces additional constraints to encourage a disentangled latent
space such that any dimension learns a meaningful factor that may correspond to a molecular prop-
erty (Du et al., 2022b;c). However, it turns out the assumption is too strong thus cannot learn a mean-
ingful latent space. Inspired by the study of interpretability of generative models on images (Shen
et al., 2020), Du et al. (2023) leverage the observed structure similarity and the “linear separability”
assumption (Gomez-Bombarelli et al., 2018) to leverage a linear model on the pre-trained model
to find meaningful paths in the latent space corresponding to molecular properties. Another branch
of work explicitly focus on leveraging the smooth and low-dimensional latent space for molecule
optimization with a commonly used approach is gradient ascent over the latent vectors (Liu et al.,
2018; Griffiths & Hernandez-Lobato, 2020).

In this paper, we propose a new framework, ChemFlow, based on potential flows to efficiently ex-
plore the latent structure of molecule generative models. Specifically, we unify previous approaches
(gradient-based optimization, linear latent traversal, and disentangled traversal) under the realm of
flow that transforms data density along time via a vector field. In contrast to previous linear models,
our framework is flexible to learn nonlinear transformations inspired by popular partial differen-
tial equations (PDEs) such as heat and wave equations. We also analyze the special properties of
each distinct dynamics. For example, under the mild assumption, Langevin dynamics by Fokker
Planck equation exhibit convergence to the global minimum. Our framework can also generalized
to both supervised and unsupervised settings. Particularly in the unsupervised setting, we introduce
a structure diversity potential to find directions that maximize the structure change of the molecules.
We conduct extensive experiments with physicochemical properties and drug-related properties on
both molecule manipulation and optimization experiments. The experiment results demonstrate the
proposed alternative methods using different dynamical priors achieve better or comparable results
with existing approaches.

2 BACKGROUND: TRAVERSING LATENT SPACE OF MOLECULES

The latent space Z of molecule generative models is often learned through an encoder function fy(-)
and a decoder function g, (-) such that the encoder maps the input molecular structures € X’ into
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Figure 1: ChemFlow framework: (1) a pre-trained encoder fy(-) and decoder g, (-) that maps
between molecules & and latent vectors 2, (2) we use a property predictor () ( )ora
“Jacobian control” ( ) as the guidance to learn a vector field V@(z,,t) that maximizes
the change in certain molecular properties (e.g. plogP, QED) or molecular structures, (3) during the
training process, we add additional dynamical regularization on the flow. The learned flows move
the latent samples to change the structures and properties of the molecules smoothly. (Better seen in
color). The flow chart illustrates a case where a molecule is manipulated into a drug-like caffeine.

an (often) low-dimensional and continuous space (i.e. latent space) while the decoder maps the
latent vectors z € Z back to molecular structures z’. Note that this encoder-decoder architecture is
general and can be realized by popular generative models such as VAEs, flow-based models, GANSs,
and diffusion models (Jin et al., 2018; Madhawa et al., 2019; Cao & Kipf, 2018; Vignac et al., 2023).
For simplicity, we focus on VAE-based methods in this paper. To traverse the learned latent space of
molecule generative models, two approaches have been proposed: gradient-based optimization and
latent traversal.

The gradient-based optimization methods first learn a proxy function h(-) parameterized by a neural
network that provides the direction to traverse (Zang & Wang, 2020). This can be formulated as a
gradient flow following the direction of steepest descent of the potential energy function h(-) and
discretized, as follows:

dz; = =V, h(z)dt

Zt = Zt—1 — Vzh(zt,l)dt (l)
The latent traversal approaches leverage the observation of linear separability in the learned latent
space of molecule generative models (Gomez-Bombarelli et al., 2018). Since the direction is as-
sumed to be linear, it can be found easily. ChemSpace (Du et al., 2023) learns a linear classifier
that defines the separation boundary of the molecular properties. Then the normal direction of the
boundary provides a linear direction n € Z for traversing the latent space:

z = 2o+ nt ()

We notice that the above gradient flow and linear traversal can be analyzed and designed in a dynam-
ical system perspective, e.g. linear traversal can be considered as a special case of wave functions.
This connection inspires us to consider designing more dynamical traversal approches.

We leave a more substantial background for Wasserstein gradient flow and related work in Appendix
Sec. A and Sec. E, respectively.

3 METHODOLOGY

We present ChemFlow as a unified framework for latent traversals in chemical latent space as po-
tential flows (detailed in Appendix A). Motivated by the optimal transport theory of Wasserstein
gradient flows, we parameterize a set of scalar potential energies ¥ = MLPyx(z,t) € R using
Physics-informed Neural Networks (PINNs) and take potential flow V¢ to traverse the latent sam-
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Learning latent potential flows. Given a pre-trained molecule generative model gy, : £ — X
with prior distribution p(z), we would like to model K different latent trajectories that correspond
to different molecule properties. The optimal transport is given by Hamilton-Jacobi Equation (HJE):

0 1
a (Zat) + §||vz¢(zat)||2 =0 (4)

where the velocity field is defined as the potential flow V¢. The HIJE is usually interpreted as
fluid-dynamic optimal transport, i.e., under the velocity field V¢, the fluid will evolve to the target
distribution with the optimal transport cost. Despite the optimality in moving distributions, HJE
may not create smooth trajectories due to the advection field V¢, which may not lead to desired
smooth property variations. Alternatively, we can sacrifice the optimal transport property and restrict
the advection term to enforce other types of dynamics for smooth spatiotemporal dynamics. For
example, we can specify the flow to follow the wave-like dynamics with the coefficient c:

82
Tk(zt7 t) = @(bk(zt? t) - szi(bk(zt? t) (5)

The above constraint empirically produces highly diverse and realistic trajectories. We use a

PINN (Raissi et al., 2019) to enforce the PDE constraint. Compared with traditional PDE solvers,

PINNs can be orders of magnitude faster. Our PINN objective is to minimize:

=

T Dol ze )l Lo = 11V2¢" (20, 0)I13 (6)
t=0

where T represents the total number of traversal steps, £, restricts the energy to obey our physical

constraints, and £ restricts ¢(z, t) to match the initial condition.

L, =

Supervised semantic potential guidance. When an explicit semantic potential or labeled data
for the semantic of interest is available, we can use the provided semantic potential to guide the
learning of the flow. Firstly, we train a surrogate model h, : X — R (parameterized by a deep
neural network) to predict the corresponding molecular property. Then we use the trained surrogate
model as guidance to learn flows that drive the increase of the property:

d = (~Vahy(g4(20), V26" (21,1)), Lp = —sign(d)|d|3 )

The intuition behind this objective is to learn the vector field z; such that it aligns with the direction
of the steepest descent (negative gradient) of the objective function. Note that the sign of the dot
product matters as it determines minimizing or maximizing the property.

Unsupervised structure diversity guidance. When no explicit potential function is provided to
learn the flow, we need to define a potential that captures the change of the molecular properties. As
molecular properties are determined by the structures, we devise a potential energy that maximizes
the continuous structure change of the generated molecules. Inspired by Song et al. (2023b), we
couple the traversal direction with the Jacobian of the generator to maximize the traversal variations
in the molecular space. We therefore introduce the guidance £ s as follows:

ag(zt) 8g(zt)v st(z t)
3zt azt = b 2
where we perform the first-order Taylor approximation on the left equation. In the unsupervised set-
ting, for sufficiently small e, if the Jacobian-vector product (the underlined term in Eq. (8)) can cause
large variations in the generated sample, the direction is likely to correspond to certain properties of
molecules. Compared to the supervised setting which maximizes the change of the molecular prop-
erties, it aims to find the direction that causes the maximal change of the structures. This can in turn
effectively push the initial data distribution to the target one concentrated on the maximum property
value. The Jacobian guidance will compete with the dynamical regularization (e.g. wave-like form)
on the flow to yield smooth and meaningful traversal paths. In high-dimensional space, a trivial
solution exists such that all the flows learn the exact same direction. To encourage the model to
learn more disentangled paths, we design a disentanglement regularization detailed in Appendix B.

2
vz¢k(zt7t)a ‘Cj = -

9(z + €V 0" (24, 1)) ~ g(z:) + € (8)
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In Appendix C, we show one particular property of a specific flow governed by Fokker Planck
equation such that it is equivalent to simulating Langevin dynamics in the latent space which has
weak convergence to the global minimizer of the molecular property.

4 EXPERIMENTS

We conduct experiments by pre-training a VAE model on a commonly used molecular dataset
(ZINC250k (Irwin & Shoichet, 2005)). We compare our proposed methods against two baseline
methods with linear traversal (Du et al., 2023) and gradient flow-based traversal (Eckmann et al.,
2022). For all other details, we defer to Appendix F.

Due to the space limit, we defer all experiments related to molecule manipulation in Appendix E.5.
In the main paper, we only report results for molecule optimization in the latent space.

5 | Random Random-1D |  ChemSpace | Gradient Flow Wave (SPV) Wave (UNSUP) HJ (SPV) HJ (UNSUP) LD
0 | 455+13.3(99.5) 13.412.3(19.5)

49.9£122(99.5) | 30.6+17.9(87.8) 13.8+12.9(30.9) 41.7+188(97.8) 48.7+123(99.6) 40.8+19.3(96.6) 57.1%11.3(100.0)
0.2 ]20.7+14.4(81.8) 11.9£11.1(18.0) | 26.3+16.8(86.9) | 23.2+162(77.8) 123£10.8(28.7) 18.0+14.7(68.6) 23.2+16.1(822) 162+13.4(70.1) 32.0+16.3(96.4)
0.4 | 12.8+10.7(57.0) 9.9+10.1(14.9) | 154+13.9(61.8) | 13.9+11.8(57.6) 9.6+9.2(22.9) 9.4+9.2(41.9) 13.2+£12.0(56.2)  9.0+9.1(46.5) 16.3+£12.4 (77.4)
0.6 | 8.0x£83(29.5) 6.4£8.0(7.9) 9.5 +10.0 (30.0) 9.2+8.8(31.8) 6.9+7.1(13.9) 6.5+7.0(24.1) 8.3£8.1(28.7) 6.3£7.4(25.8) 9.8 £9.3 (47.0)

Table 1: Similarity-constrained QED maximization. The value of QED is scaled by 100 for
better presentation.

Constrained molecule optimization. Molecule optimization is one of the fundamental problems in
drug and materials discovery where we aim to find molecules with better properties (Brown et al.,
2019). Following the procedures described in JT-VAE (Jin et al., 2018) and LIMO (Eckmann et al.,
2022), we select the 800 molecules with the lowest QED scores in the ZINC250k dataset and per-
form 1,000 steps of optimization until all methods are converged. Table 1 reports the statistics of
QED improvements under different similarity constraints. Among all the approaches, Langevin
dynamics achieves the best overall performance. As we analyze above, it is more suitable for the
optimization task than other dynamical priors. In addition, we further show it enjoys a faster con-
vergence rate empirically than other dynamical priors as well in Figure 5. Surprisingly, we observe
that the random direction performs also quite well on molecule optimization tasks. This observation
motivates us to study the structure of the latent space. We show that the molecular structure distribu-
tion on the latent space follows a high-dimensional Gaussian distribution and the random direction
increases the norm of the latent vectors that have strong correlations with molecular properties. We
analyze this systematically in Appendix G. It is also notable that although random directions could
be effective in optimizing molecules, the distribution of the entire molecule sets being optimized
does not change accordingly as shown in Figure 2.
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Figure 2: Molecular property distribution shifts following the latent traversal path.

We also report additional experiment on unconstrained and multi-objective molecule optimization
results in Appendix F.7 and E.8, respectively.

5 CONCLUSION, LIMITATION AND FUTURE WORK

In this paper, we propose a unifying framework that learns a flow transformation through a vector
field for traversing the latent space of molecule generative models. Under this framework, we pro-
pose a variety of dynamical regularizations which exhibit different properties. We hope this unifying
framework can open up a new research avenue to study the structure and dynamics of the latent space
of molecule generative models.
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A WASSERSTEIN GRADIENT FLOW

Gradient flows define the curve (t) € R™ that evolves in the direction of steepest descent of a func-
tion F : R™ — R. The time evolution of the gradient flow is given by the ODE &’ (¢) = —V.F (x(t)).
The choice of the functional F determines the metric space and the associated geodesics. Wasser-
stein gradient flows describe a special type of gradient flow where F is set to be the Wasserstein
distance. For example, as introduced in Benamou & Brenier (2000), the commonly used Lo, Wasser-
stein distance has the following dynamic formulation:

Wa(po, p1)* = Iaivn { // %p(w,t)|v(az,t)|2 dx dt : Op(x,t) = =V - (v(&t)p(a:,t))} )

where pg and p; are two probability measures at the source and target distributions, respectively.
Interestingly, if we take the gradient of a potential energy V¢ as the velocity field applied to a
distribution, the time evolution of V¢ can be seen to minimize the Wasserstein distance and thus
follow optimal transport.

In Appendix A, we give detailed derivations of how the vector fields minimize the L, Wasserstein
distance and discuss some PDEs of the density evolution that can be interpreted under different
learned potentials.
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As shown in the main paper, based on the dynamic formulation of optimal transport (Benamou &
Brenier, 2000), the L, Wasserstein distance can be re-written as:

Wa(po, p1) :If)livn \///Pt(z)|vt(z)|2dzdt (10)

where v;(z) is the velocity of the particle at position z and time ¢, and p;(z) is the density du(z) =
pt(z)dz. The distance can be optimized by the gradient flow of a certain function on space and
time. Consider the functional F : R™ — R that takes the following form:

Fi) = [ Ulpnlz))dz an
The curve is considered as a gradient flow if it satisfies VF = —% pt(z) (Ambrosio et al., 2005).
Moving the particles leads to:
d ’ dp: (Z)
4 = d 12
$Fw = U1 ds (12)
The velocity vector satisfies the continuity equation:
dpi(z
pctli ) =-V. (vt(z)pt(z)) (13)

where —V - (vt(z) pt(z)) is the tangent vector at point p;(z). Eq. (12) can be simplified to:

14
— [ V(U n@))uzlz) 2 14
On the other hand, the calculus of differential geometry gives
d .
SF () = DifiFly, (<V - (w(=)pi(2))) = (VF. =V - (w(2)pi(2)); (15

where (, ) s is a Riemannian distance function which is defined as:

(= (wi(2)pu(2)), =V - (wa(2)pi(2)))s = / wi(2)wa(2) f(2) dz (16)

This scalar product coincides with the Wy distance according to Benamou & Brenier (2000). Then
Eq. (14) can be similarly re-written as:

d /
SF (W) = (V- (VU (pu(2)pu(2) ). =V - (vi(2)pu(2) )5 a”
So the relation arises as:
VF ==V (VU (pu(2))pu(2) (8)
Since we have VF = — 4 p,(z), the above equation can be re-written as
Son(z) = V- (VU (pu(2)pu(2)) (19

The above derivations can be alternatively made by JKO schemes (Jordan et al., 1996). This explic-
itly defines the relation between evolution PDEs of p;(z) and the internal energy U. For our method,
we use the gradient of our scalar energy field Vu(z,t) to learn the velocity field which is given by
U’ (pt(z)). Interestingly, driven by certain specific velocity fields Vu(z,t), the evolution of p(z,t)
would become some special PDEs. Here we discuss some possibilities:

Heat Equations. If we consider the energy function U as the weighted entropy:

Ulpi(2)) = pi(2z)log(pe(2)) (20)
We would have exactly the heat equation:
d d
-4 = 21
dtpt(z) e pi(z) =0 (21)
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Injecting the above equation back into the continuity equation leads to the velocity field v;(z) as

dpe(z) d
PE =V (w2)pn(2)) = —5pu() o
(2) = =25 T log(pu(2)

When our Vu(z,t) learns the velocity field —V log(p:(2z)), the evolution of p(z,t) would become
heat equations.

Fokker Planck Equations. For the energy function defined as:

U(pi(2)) = =A- pi(2) + pi(2) log(pi(2)) (23)
we would have the Fokker-Planck equation as
d d d
— —[VA - — = 24
L o(2) + L[V Ap(2)] -~ [oi(2)] = O, %)
The velocity field can be similarly derived as
vi(2) = VA = Vlog(p:(2)) (25)

For the velocity field VA — V log(p:(z)), the movement of p(z, t) is the Fokker Planck equation.

Porous Medium Equations. If we define the energy function as

1 m
Ulpi(2) = ——pi"(2) 26)
Then we would have the porous medium equation where m > 1 and the velocity field:
d d m m—2
P2 = 50" (2) = 0, w(z) = —mp™ " Vp (27)

When the Vu(z,t) learns the velocity —mp™~2Vp, the trajectory of p(z,t) becomes the porous
medium equations.

B ADDITIONAL METHOD DETAILS

Disentanglement Regularization. While the above formulation can encourage smooth dynamics
and meaningful output variations, the potential flows are likely to mine identical directions which all
correspond to the maximum Jacobian change. To avoid such a trivial solution, we adopt an auxiliary
classifier [, to predict the potential index and use the cross-entropy loss to optimize it:

k=1y(20;2041), L = Lop(k, k) (28)

Where x; = g(z:) is the generated sample from timestep ¢. We see the extra classifier guidance
would encourage each potential flow to be independent and find distinct properties.

C CONNECTION WITH LANGEVIN DYNAMICS FOR GLOBAL OPTIMIZATION

In scenarios where our flow adheres to the dynamics of the Fokker-Planck equation, our approach
may also be interpreted as employing a learned potential energy function to simulate Langevin
Dynamics for global optimization (Gardiner et al., 1985). Notably, the convergence of Langevin dy-
namics, particularly at low temperatures, tends to occur around the global minimum of the potential
energy function (Chiang et al., 1987). The continuous and discretized Langevin dynamics are as
follows:

dz; = —V_h,(2)dt + V2dw,

Zt = Zt—1 — Vzhn(zt_l)dt =+ V ZdtN(O,[)

Proposition C.1. (Global Convergence of Langevin Dynamics, adapted from Gelfand & Mitter
(1991)). Given a langevin dynamics in the form of

zi = 21 — ay (Vo hy(ze—1) + ug) + bywy (30)
where w is a d-dimensional Brownian motion, a; and b; are a set of positive numbers with ap, b —

0, and u; is a set of random variables in R™ denoting noisy measurements of the energy function
hay (). Under mild assumptions, z; converges to the set of global minima of hy(-) in probability.

(29)

10
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Following Proposition C.1, we show that the learned latent potential can be used to search for
molecules with optimal properties and it converges to the global minima of the learned latent poten-
tial.

D ALGORITHMS

Due to space limit, we demonstrate the training and inference procedure for ChemFlow in Alg. 2
and Alg. 2, respectively.

Algorithm 1 ChemFlow Inference / Traversal

Require: Pre-trained encoder fy, pre-trained potential function ¢, (optional) pre-trained proxy
function h, timestamps 7', step size «, LD strenth 3
1: Sampling: zg = fp(xo)
2: fort=1,...,T do
3:  if Langevin Dynamics then
4 zt =241 — aVhy(ze—1) + BV2aN(0,1)
5:  else if Gradient Flow then
6: zr =21 — aVhy(2i-1)
7
8
9
0:

else
zr=2zi1 +aVap(zi_q,t — 1)
end if

10: end for

Algorithm 2 ChemFlow Training
Require: Pre-trained encoder fy, decoder g, (optional) classifier [, timestamps T, # of potential
functions K
1: Initialize ¢7(-) <~ MLPforj =1,..., K
2: repeat
3:  Sampling: zg = fy(xg),t ~ Categorical(T), k ~ Categorical(K)

4. fori=1,...,tdo

5: Ziv1 = Z; + quﬁ’“(zi, Z)

6: end for

7:  Decode: x; = gy (2t), Tit1 = gy (Ze41)
8:  if unsupervised then

9: Classification: k = I, (z¢; T¢11)
10: Loss: L=L, +Lys+Ls+ Ly
11: else

12: Loss: L=L, +Lys+ Lp
13:  endif

14:  Back-propagation through the Loss £
15: until converged

E RELATED WORK

E.1 MACHINE LEARNING FOR MOLECULE GENERATION

Molecules are highly discrete objects and two branches of methods are thus developed to design
or search new molecules (Du et al., 2022a). One idea is to leverage the advancement of deep gen-
erative models which approximate the data distribution from a provided dataset of molecules and
then sample new molecules from the learned density. This idea inspires a line of work developing
deep generative models from variational auto-encoders (VAE) (Gémez-Bombarelli et al., 2018; Jin
et al., 2018), generative adversarial networks (GAN) (Guimaraes et al., 2017; Cao & Kipf, 2018),
normalizing flows (NF) (Madhawa et al., 2019; Zang & Wang, 2020) and more recently diffusion
models (Hoogeboom et al., 2022; Vignac et al., 2023; Jo et al., 2022). However, to respect the combi-
natorial nature of molecules, another line of work leverage combinatorial optimization to search new

11



Submitted to the ICLR 2024 Workshop on Al4DifferentialEquations In Science

molecules including genetic algorithm (GA) (Jensen, 2019), Monte Carlo tree search (MCTS) (Yang
et al., 2017), reinforcement learning (RL) (You et al., 2018), but often with sophisticated optimiza-
tion objectives beyond simple valid molecules.

E.2 GOAL-ORIENTED MOLECULE GENERATION

In addition to simply generating valid molecules, a more realistic application is to generate
molecules with desired properties (Du et al., 2022a). For deep generative model-based methods,
it is naturally combined with on-the-fly optimization methods such as gradient-based or Bayesian
optimization (in low data regime) as it often maps data to a low-dimensional and smooth latent
space thus more friendly for these optimization methods (Griffiths & Hernandez-Lobato, 2020). For
methods that do not explicitly reduce the dimensionality of data such as diffusion models, Schneu-
ing et al. (2022) propose an evolutionary process to iteratively optimize the generated molecules.
As it is observed that the learned latent space exhibits explicit structure (Gémez-Bombarelli et al.,
2018), Du et al. (2023) leverage such property to learn a linear classifier to find the latent direction
to optimize the property of given molecules. In opposition to deep generative models, combinatorial
optimization methods are often inherently associated with optimization, e.g. reward function in RL,
selection criteria in GA, etc (Fu et al., 2022; Loeffler et al., 2023).

E.3 LATENT TRAVERSAL FOR SEMANTIC IMAGE EDITING

Beyond molecule generation, there is a vast literature on the study of the latent space of generative
models on images for image editing and manipulation (Goetschalckx et al., 2019; Jahanian et al.,
2020; Voynov & Babenko, 2020; Hirkonen et al., 2020; Zhu et al., 2020; Peebles et al., 2020; Shen
& Zhou, 2021; Song et al., 2022; 2023b;a;c). Here we highlight some representative supervised and
unsupervised approaches. Supervised methods usually require pixel-wise annotations. Interface-
GAN (Shen et al., 2020) leverages face image pairs of different attributes to interpret disentangled
latent representations of GANs. Jahanian et al. (2020) explores linear and non-linear walks in the
latent space under the guidance of user-specified transformation. Compared to supervised meth-
ods, unsupervised ones mainly focus on discovering meaningful interpretable directions in the latent
space through extra regularization. Voynov & Babenko (2020) proposes to jointly learn a set of or-
thogonal directions and a classifier to learn the distinct interpretable directions. SeFa (Shen & Zhou,
2021) and HouseholderGAN (Song et al., 2023c) propose to use the eigenvectors of the (orthog-
onal) projection matrices as interpretable directions to traverse the latent space. More relevantly,
Song et al. (2023b) proposes to use wave-like potential flows to model the spatiotemporal dynamics
in the latent spaces of different generative models.

F EXPERIMENTS DETAILS

F.1 BASELINES
We compare with the following baselines:

* Random: we take a linear direction that is sampled from Multi-variant Gaussian distribution
in the high dimensional latent space and normalized to unit length for all molecules across
all time steps.

* Random 1D: we take a unit vector where only 1 randomly selected dimension is either 1 or
-1 as the linear direction.

* ChemSpace (Du et al., 2023): a separation boundary of the training dataset in latent space
w.r.t. the desired property is classified by an Support vector machine (SVM). Then we take
the normal vector corresponding to the positive separation as the manipulation direction of
control.

e LIMO (Eckmann et al., 2022) / Gradient Flow: a VAE-based generative model that encodes
the input molecules into SELFIES (Krenn et al., 2019) and auto-regressive on the tokenized
molecule. LIMO uses Adam optimizer to reverse optimize on the input latent vector z
whereas Gradient Flow is equivalent to using an SGD optimizer for the same purpose.

12
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F.2 MOLECULE PROPERTIES
We report the following metrics for our experiments:

* Penalized logP: Estimated octanol-water partition coefficient penalized by synthetic ac-
cessibility (SA) score and the number of atoms in the longest ring.

F.2.1 MISALIGNMENT OF NORMALIZATION SCHEMES FOR PENALIZED LOGP

We noticed that plogP is a commonly reported metric in recent molecule discovery literature but
does not share the same normalization scheme. Following Gémez-Bombarelli et al. (2018, Eq. 1),
the SA scores and a ring penalty term were introduced into the calculation of penalized logP as the
following

J°¢P (m) = logP(m) — SA(m) — ring-penalty(m)

Each term of logP(m), SA(m), and ring-penalty(m) are normalized to have zero mean and unit
standard derivation across the training data. However, no sufficient details were included in their
paper or their released source code on how the ring-penalty(m) is computed. Specifically, 3 imple-
mentations are widely used in various works.

Penalized by the length of the maximum cycle without normalization where ring-penalty(m)
is computed as the number of atoms on the longest ring - 6 in their implementation. Neither
logP(m), SA(m), or ring-penalty(m) is normalized.

Penalized by the length of the maximum cycle with normalization where ring-penalty(m) is
computed same as without normalization. We report plogP using this metric.

Penalized by number of cycles As described by Jin et al. (2018), ring-penalty(m) is computed
as the number of rings in the molecule that has more than 6 atoms. LIMO reports plogP using this
metric.

F.3 EXPERIMENTS SETUP

Datasets. We consider a commonly used molecular dataset to study drug-related properties,
ZINC250k which is a subset of the ZINC database (Irwin & Shoichet, 2005) containing ~250,000
commercially available compounds for virtual screening. The molecules in the dataset is firstly en-
coded as SELFIES strings for molecule representations and then tokenized into input IDs following
the language modeling commons with [PAD] and other special tokens. All input IDs are padded to
the maximum length in the overall dataset.

Implementations. We establish our framework by pre-training a VAE model that learns a latent
space of molecules and is capable of generating new molecules by decoding latent vectors from the
latent space. We adapt the framework in Eckmann et al. (2022) which is a basic VAE architecture
with molecular SELFIES string representations plusing an MLP for surrogate property predictor.
See Appendix F.3 for all implementation and hyper-parameter details.

Model variants. As discussed in Section 3, our proposed framework is general to incorporate
different dynamical priors to learn the flow. For the experiments, we consider four types of dynamics
including gradient flow (GF), Wave flow (Wave, Eq. (5)), Hamilton Jacobi flow (HJ, Eq. (4)) and
Langevin Dynamics or equivalently Fokker Planck flow (LD, Eq. (29)).

Pre-trained VAE We adjust the VAE architecture from LIMO that consisting a 64-dimension em-
bedding, 1024 latent space size, 3-hidden-layer encoder, and 3-hidden-layer decoder both with 1D
batch normalization and ReLU activation functions. The hidden layer sizes are {2000, 1000, 1000}
for the encoder and reversely for the decoder. We empirically find that replacing the ReLU activation
function with its newer variant Mish activation function (Misra, 2020) results in faster convergence
and better validation loss. All the experiments reported in this paper use this Mish-activated variant
of VAE. The VAE is trained using an AdamW (Loshchilov & Hutter, 2017) optimizer with default
settings of PyTorch implementation, 0.001 initial learning rate, and 1,024 training batch. To better

13
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prevent the model from being stacked at a sub-optimal local minimum, a cosine learning rate sched-
uler with periodic restart is applied. The VAE is trained for 150 epochs with 4 restarts on 90% of the
ZINC250k dataset and validated with the rest 10% data. The checkpoint corresponding to the best
validation loss epoch is selected.

Surrogate Predictor Similarly, we find that the Mish activation function improves the perfor-
mance of the original MLP predictor described by LIMO. The predictor consists of 3 linear hidden
layers of size 1024 with Mish activation function. Similar to the LIMO setups, we find that the
choice of optimizer and training hyperparameters like learning rate or learning rate scheduler is cru-
cial for successful training. Like LIMO, we use PyTorch Lightning to choose the optimal learning
rate for the Adam optimization. The predictor is trained for 20 epochs on 100,000 randomly gen-
erated samples and validated with 10,000 unseen data. The epoch with the best validation loss is
selected.

PDE PINN We use an MLP structure to parameterize the potential energy function. The spatial
time input ¢ is embedded with a sinuous positional embedding followed by a linear layer. The
spacial input z is encoded with a linear layer and ReLU activation function. We empirically find
that the Tanh and GELU activation function of MLP does not help PINN learn the corresponding
Jacobian structure. Therefore, a ReLU activation function is used instead. The training of PINN
follows uses 90,000 random data and 10,000 unseen data for validation. For unsupervised settings,
10 disentangled potential energy functions are trained for 70 epochs with a batch size 100. The
epoch with the best validation loss is selected.

Reproducibility All the experiments including baselines are conducted on one RTX 3090 GPU
and one Nvidia A100 GPU. The code implementation will be released upon the acceptance of the

paper.
F.4 MORE EXPERIMENT RESULTS

We conduct more experiments to analyze the performance of the proposed methods systematically.
They are referred and discussed in the main paper.
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Figure 3: Distribution for predicted properties and the ground truth. We hypothesize there is
a training and generalization errors in the surrogate model. We have observed the distribution of
predicted and ground truth property values are different.
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‘ PLOGP SA QED DRD2 JNK3 JSK3B

0 0.138 0.334  -0.055 0.099 0.198 0.284
1 0.012 0.096 0.214 -0.041 -0.110 -0.162
2 -0.097 0.177 0.308 0.283 -0.060 -0.087
3 -0.008 0.404 0.321 0.135 -0.114  -0.179
4 0.022 0.028 0.332 0.045 -0.110 -0.173
5 0.043 0.005 0.167 -0.115 -0.108 -0.192
6 0.076  -0.018 0.280 0.025 -0.129  -0.215
7 0.005 0.039 0.099 -0.125 -0.091 -0.124
8 0.010 0.006 0.320 0.061 -0.134  -0.162
9 0.043 0.189 0.248 0.038 -0.111 -0.137
INDEX | 0 3 4 2 0 0

Table 2: Pearson Correlation. The average Pearson correlation between the sequence of real
properties and sequence of time steps along the manipulation trajectory following a learned potential
function ¢*(z, t) using wave equations.

PLOGP SA QED DRD2 JNK3 GSK3B

0 0.062 0.176  0.105 -0.107 -0.066  -0.069
1 0.086 -0.027 0.291 -0.017 -0.125 -0.160
2 0.009 0.131 -0.018 -0.008 0.007 0.010
3 -0.008 -0.028 0.123  -0.065 -0.038  -0.052
4 0.052  0.032  0.254 -0.027 -0.095 -0.197
5 0.199 0.416 -0.310 -0.233  0.150 0.228
6 0.036  0.002 0.292 0.019 -0.103 -0.134
7 -0.055  0.392  0.035 0.005  0.009 0.023
8 0.046  -0.04 0.296 -0.037 -0.127 -0.158
9 0.051  -0.007 0.320 -0.075 -0.115 -0.155
INDEX | 5 5 9 6 5 5

Table 3: Pearson Correlation. The average Pearson correlation between the sequence of real
properties and sequence of time steps along the manipulation trajectory following a learned potential
function ¢*(z,t) using Hamilton Jacobi equations.

| Random Random-1D | ChemSpace | Gradient Flow Wave (spv) Wave (unsup) HJ (spv) HJ (unsup) LD

4§

0 | 11.28+7.46 (98.0) 5.50+7.26(23.6) | 11.05+7.66(96.8) | 10.81 +8.12(94.8) 10.75+7.99 (96.6) 9.88+9.89(92.5) 10.64+11.13(86.9) 9.81+9.48(89.0) 11.65%7.96(97.1)
0.2 | 7.28+6.40(71.6) 4.90+6.56(22.1) | 7.77 £6.75 (78.1) 7.12 £6.18 (72.0) 7.03+6.82(71.5) 6.15+7.39 (46.9) 6.41 £7.72(71.1) 4.60£6.22(30.9) 7.24+6.07 (72.0)
04 | 4.66+5.56(425) 3.67+549(16.8) | 5.36+5.84(48.0) | 435+4.86(39.5) 429+536(44.1) 239£3.56(21.6) 3.15+5.05(49.1) 1.53£2.66(9.2) 4.44+4.94(38.8)
0.6 | 290+4.67(182) 1.81£3.71(9.0) | 3.54+4.46(20.9) | 2.53+3.52(11.9) 1.81+3.26(18.9) 1.00+1.16(10.1) 1.14+1.83(24.8) 0.56+0.36 (3.1) 279 +3.80 (12.9)

Table 4: Similarity-constrained plogp maximization. For each method with minimum similarity
constraint ¢, the results in reported in format mean + standard derivation (success rate %) of absolute
improvement, where the mean and standard derivation are calculated among molecules that satisfy
the similarity constraint. The value of QED is scaled by 100 for better presentation.
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Figure 4: Distribution shift for QED optimization The distribution almost doesn’t change during
1,000 steps of optimization, implying that the flow is close to zero almost everywhere
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Figure 5: Optimization Convergence Langevin Dynamics shows faster convergence and achieves
greater improvement in QED.

F.5 MOLECULE MANIPULATION RESULTS

| PLOGP (1) QED (1) SA (1) DRD2 () INK3 (1) GSK3B (1)
RANDOM-1D | 0.10/0.80 0.20/0.20 0.60/1.10 0.50/1.50  10.60/35.10  0.40/1.10
RANDOM 5.90/36.30  7.10/23.10  7.90/28.20 10.30/57.60 14.70/62.50  9.90/43.10

CHEMSPACE | 6.60/21.20 7.70/21.40 6.80/24.20 5.40/69.50 10.70/64.50 10.60/35.50

WAVE (UNSUP) | 4.20/23.70 6.00/22.00 4.30/18.10 7.10/68.60 7.30/33.20 5.00/15.00
WAVE (SPV) 7.30/40.20 4.60/15.00 8.70/28.30 2.30/19.40 4.30/38.50 1.70/21.00
HJ (unsup) 7.30/38.80 6.00/21.20 1.90/7.40 8.00/71.10 11.10/55.80 8.90/45.40

HJ (spv) 3.00/21.60 6.60/20.70 7.40/28.00 3.90/33.20 5.60/20.00 3.20/16.20
GF (spv) 11.10/44.50 12.40/27.50 14.30/41.00 6.60/23.70 11.80/35.20 13.70/41.20
LD (spv) 11.20/45.30 11.40/26.80 14.40/40.40 1.70/10.10 7.40/24.60 8.40/38.20

Table 5: Success Rate of traversing latent molecule space to manipulate over a variety of
molecular properties. Numbers reported are strict success rate/relaxed success rate in %. (SPV
denotes supervised scenarios, UNSUP denotes unsupervised scenarios).

F.6 MOLECULE MANIPULATION

Molecule manipulation is a relatively new task proposed in Du et al. (2023) to study the performance
latent traversal methods. Specifically, the main idea of molecule manipulation is to find smooth local
changes of molecular structures that simultaneously improve molecular properties which is essential
to help chemists systematically understand the chemical space. As our methods are general in both
learning the traversal direction with surrogate model (supervised) or with only structure change
(unsupervised), we evaluate below the performance of both use cases.

Supervised Molecule Manipulation Table 5 shows the success rate results of manipulating 1,000
randomly sampled molecules to optimize each desired property. Following Du et al. (2023), we
traverse the latent space for 10 steps in the traversal direction of each method as reported the strict
and relaxed success rate. Details of the definition of these metrics can be found in Appendix F.2.
Among all the approaches, our method with gradient flow achieves the highest success rates on
multiple properties such that it takes the steepest descent of the surrogate model. When the step size
is small enough, it is reasonable to learn a smooth path. However, the results vary across properties.
One particular example is DRD2 such that supervised approaches all fail to achieve good success
rates.

Unsupervised Molecule Manipulation As the correspondence between specific molecular proper-
ties and learned latent potential flows is not explicitly given in the unsupervised scenario, we use
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an artificial process to mimic the use case in reality. Specifically, we learned 10 different poten-
tial energy functions representing 10 disentanglement potential flows following Algorithm 2 using
Wave equation and Hamilton-Jacobi equation and validated them on 1,000 unseen molecules. For
each potential flow, we measure the real properties of molecules generated along the manipulation
trajectory of 10 steps. We report the average of all Pearson correlations between the sequence of
properties and time step sequence from 1 to 10 in Table 2 for Wave eqn. and Table 3 for HJ eqn.
The best correction potential flow is selected for each property representing the learned Jacobian
structural change that would most effectively optimize the corresponding property.

In Table 5, we can observe that even though it is without supervised training of traversal directions,
the flow still learns meaningful directions from molecular structure to property changes. Surpris-
ingly, the results of manipulating molecules for DRD2, JNK3, and GSK3B in unsupervised settings
are better than in supervised settings. We hypothesize that this is partially because of the training
and generalization errors of the surrogate model, as shown in Appendix Figure 3. On the contrary,
the structure change measurement does not provide supervision but is reliable. We would like to
point out that this is an open question in chemistry, often referred as to the structure-activity rela-
tionship (Dudek et al., 2006), such that it is important to know the correspondence between structure
and activity. We believe this is a promising result to demonstrate that generative models “realize”
molecular property by learning from structures.

Among the quantitative results, it is notable that the random direction achieves surprisingly high
success rates, we argue that’s because of the specific property of the learned latent space. The
underneath generative model regulated the latent space to be smooth such that similar molecular
structures are often mapped to close areas in the latent space. We also analyze in Appendix G such
that we find some molecular properties are highly correlated with their latent vector norms in which
a random direction always increases the norm and therefore successfully manipulates a portion of
molecules by chance.

F.7 ADDITIONAL MOLECULE OPTIMIZATION RESULTS

METHOD PLOGP QED

‘ IsT 2ND 3RD | 1T 2ND 3RD
RANDOM 4.13 3.50 3.37 ] 0.933 0.931 0.927
CHEMSPACE 3.91 3.76 3.69 0.929 0.925 0.921
LIMO (REPROD.) 4.13 4.04 4.00 | 0.939 0.936 0.933
‘WAVE (SPV) 3.06 2.97 2.48 | 0.933 0.933 0.931
WAVE (UNSUP) 3.51 3.24 3.14 | 0.932 0.932 0.931
HJ (spv) 3.24 3.09 2.68 0.943 0.928 0.927
HJ (UNSUP) -0.80 -1.39 -1.52 | 0.932 0.931 0.931
LD 4.33 4.07 3.99 | 0.941 0.935 0.932

Table 6: Unconstrained plogP and QED maximization. All results are produced on the same
VAE pre-trained on the ZINC250k dataset. (SPV denotes supervised scenarios, UNSUP denotes
unsupervised scenarios).

Baselines. For molecule optimization, we follow the same experiment procedure as in Eckmann
et al. (2022)?. To ensure a fair comparison, we use the same pre-trained VAE model for all the
methods. The details about the baselines are reported in Appendix F.2.1.

Unconstrained Molecule Optimization. For unconstrained optimization problems, we randomly
sample 100K molecules from the latent space and report the top 3 scores after 100 steps of manipu-
lation of each method in Table 6. All methods use 0.1 relative step sizes for fair comparison. Among
them, we observe that gradient flow and Langevin dynamics are the two best approaches that find
better candidates than other methods. This is reasonable since they are taking the steepest descent
of the energy function in Euclidean and probability space, respectively. However, we notice that in

"The original method was trained on a much larger training set (2M vs 250K), we report the reproduced
results for fair comparison. We also use SGD instead of Adam to align with our scheme.

Note that we notice there is a misalignment of normalization schemes for the plogP property in the previous
literature, so we only rerun and compare with related methods that align with our normalization scheme. Details
can be found in Appendix F.2.
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Figure 2, Langevin dynamics pushes the entire distribution much further than gradient flow despite
the optimal solutions are similar. In addition, we find that despite the random direction seeming to
be effective in optimizing molecules, it does not push the distribution much.

F.8 MULTI-OBJECTIVE OPTIMIZATION RESULTS

5 | Random Random-1D | ChemSpace | Gradient Flow Wave (SPV) Wave (UNSUP) HI (SPV) HJ (UNSUP) LD
I QED

0 | 45.5£133(995) 13.0£127(13.6) | 47.0£12.9(99.6) | 31.9+17.9(89.9) 146+ 144(268) 39.0%185(96.1) 452+13.7(989)  40.6%19.4(96.8)  47.0 % 13.1(99.6)
02| 207+144(81.8) 112+11.0(126) | 259+ 167 (88.2) | 23.0+ 164 (80.0) 12311.7(24.2)  183£14.0(694) 227+156(84.9) 155£128(714)  27.6+163(92.1)
04 | 128+107(57.0)  93+87(10.8) | 155+13.2(634) | 144 126(594) 98+100(198)  10.0£9.6(43.2)  139£120(57.5)  9.2+9.4(46.2) 1542125 (71.4)
0.6 | 8.0+83(29.5) 69+67(58) | 97£10.1(31.6) | 9.4+9.1(322)  6865(124) 6.4+7.0 (24.9) 9.3+9.7(30.2) 6.4+7.3(26.9) 9.6+ 9.4 (40.1)

| SA

0 | 834£8.06(372) 649+7.06(109) | 792+7.71 (42.8) | 9.56 +849 (44.0) 637+630(129) 1521£10.17(89.2) 893+839(52.1) 1603+ 1031 (91.0) 11.51 % 10.44 (69.2)
02 | 670711 (27.0) 647 +7.10(10.6) | 6.63+6.71 (36.1) | 7.19+6.66 (35.8) 577581 (124)  7.69£651(70.8) 669661 (38.8) 735634 (685)  7.51£7.41(45.4)
04 | 480+573(19.1)  5.06£4.95(9.4) | 475+545(25.2) | 5.27+530(26.6) 4.54+4.51(10.5) 3.92+3.86(459) 521+£572(29.2) 422+4.09(46.8) 450 +4.95(33.6)
0.6 | 261+321(109) 3.83£3.73(6.0) | 2.89+322(154) | 3.04£3.62(17.1) 3.44%3.59(7.1)  222£197(259) 3.23+340(186) 273+285(27.8)  2.75£3.09(20.1)

Table 7: Similarity-constrained Multi-objective (QED+SA) maximization. The value of QED
and SA is scaled to both have a range from 0 to 100 for an equal-weighted sum. The method with
the highest equal-weighted sum score of QED+SA of each structure similarity level is bolded.

Multi-objective Molecule Optimization. As we are learning distinct vector fields and potential
energy functions for each property, they can be readily added together for multi-objective optimiza-
tion (Eckmann et al., 2022; Du et al., 2023). To generate molecules that are optimized on multiple
properties, we use a similar setting as similarity-constrained molecule optimization to select 800
molecules from the ZINC250k dataset with the lowest QED and aim to generate molecules with
high QED as well as SA simultaneously. At each time step, the latent vector is optimized following
the averaged direction of two supposed potential flow directions. This scheme could be seamlessly
generalized to m-objectives optimization and is commonly used in related works. Table 7 shows
that Langevin dynamics and ChemSpace achieve the best or competitive performance at all similar-
ity cutoff levels.

G LATENT SPACE VISUALIZATION AND ANALYSIS
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Figure 6: Latent Vector Norm. Distribution of the norm of the latent vectors projected from
training dataset onto the learned latent space.

As observed in experiments such that random directions perform surprisingly well on molecule
manipulation and optimization tasks, we look into the learned latent space to understand its structure.
As the prior of a VAE is an isotropic Gaussian distribution, we first verify if the learned variational
poster also follows a Gaussian distribution and we find that it does learn so from the evidence shown
in Figure 6, where the norm of the molecule projected to the latent space concentrate around 32
which is around v/d such that the latent dimension d is 1024. We also visualize in Figure 7 that
how the properties of the molecules in the training dataset are related to their latent vector norms.
Surprisingly, we find a strong correlation between almost all molecular properties and their latent
norms. Combining this two evidences, it is not surprising that a random latent vector taking a random
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direction will change the molecular property smoothly and monotonically. In addition, we further
plot when we traverse along a random direction in the latent space, how the change of the norm
may correspond to the change of a certain property. Among them, we find that SA is particularly
in strong positive correlation with the traversal in Figure 8. Though the emergence of the structure
in the latent space is interesting and suggests that better algorithms can be developed to exploit the
structure, we leave this to future work.
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Figure 7: Embedding Norm against Property Value of each path. Norm and property value of
molecules along the direction of latent traversal with a random direction. The middle curve shows
the mean property value and latent embedding norm for all paths. The shaded area is the standard
deviation of property value.
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Figure 8: Embedding Norm against Property Value of each Molecule. Scatter plot of norm and
property value of individual molecules in the training set encoded in the latent space.

H QUALITATIVE EVALUATIONS

In addition to quantitative evaluations, we demonstrate some qualitative evaluations in this section.
We showcase one selected manipulation path Figure 9 in by gradient flow (GF) on plogP. We can see
the learned path follows the trend to replace the O-containing non-stable macrocycle step by step
with six- or three-member rings while optimizing the desired property (i.e, plogP). For molecule
optimization, we also showcase one selected path Figure 13 Fokker Planck flow on plogP. We also
observe a similar trend such that it replaces the N-containing fused ring step by step with three-
member rings while optimizing the desired property (i.e., plogP). Additional molecule manipulation
paths are shown in Figure 10, Figure 11, Figure 12, and optimization paths are shown in Figure 14,
Figure 15, Figure 16.

plogp: -10.38 plogp: -9.09 plogp: -1.52 plogp: -1.52 plogp: -1.52 plogp: -1.27 plogp: -1.27 plogp: -1.27 plogp: -1.27 plogp: -0.99
sim: 1.00 sim: 0.12 sim: 0.18 sim: 0.18 sim: 0.18 sim: 0.04 sim: 0.04 sim: 0.04 sim: 0.04 sim: 0.04

Figure 9: Molecule Manipulation Trajectory. The figure shows a full 10 step manipulation by
gradient flow on plogP. Each molecule in the figure represents a step in the path.
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plogp: -14.81 plogp: -14.81 plogp: -2.26 plogp: -2.26 plogp: -2.26 plogp: -2.26 plogp: -2.26 plogp: -2.26 plogp: -2.26 plogp: -2.00
sim: 1.00 sim: 1.00 sim: 0.19 sim: 0.19 sim: 0.19 sim: 0.19 sim: 0.19 sim: 0.19 sim: 0.19 sim: 0.17

Figure 10: Molecule Manipulation Trajectory Molecule manipulation by random direction on
plogP.

plogp: -25.19 plogp: -2.35 plogp: -3.05 plogp: -2.93 plogp: -3.90 plogp: -2.35 plogp: -2.19 plogp: -2.19 plogp: -2.19 plogp: -2.19
51m 1 00 sim: 0.06 sim: 0.06 sim: 0.07 sim: 0.06 sim: 0.06 sim: 0.06 sim: 0.06 sim: 0.06 sim: 0.06

Figure 11: Molecule Manipulation Trajectory Molecule manipulation by Fokker Planck flow on
plogP.

sa: 5.71 sa: 5.71 sa: 5.71 sa: 5.71 sa: 5.71 sa: 4.20 sa: 4.20 sa: 4.20 sa: 3.42 sa: 3.42
sim: 1.00 sim: 1.00 sim: 1.00 sim: 1.00 sim: 1.00 sim: 0.19 sim: 0.19 sim: 0.19 sim: 0.17 sim: 0.17

Figure 12: Molecule Manipulation Trajectory Molecule manipulation by unsupervised wave flow
on SA.

plogp -8.36 plogp -3.92 plogp -2.55 plogp -3.23 plogp -3.24 plogp -4.85 plogp -3.07 plogp -4.29 plogp -4.39 plogp -3.02
sim: 0.07 sim: 0.04 sim: 0.08 sim: 0.11 sim: 0.08 sim: 0.03 sim: 0.05 sim: 0.10 sim: 0.04 sim: 0.04

I

Figure 13: Molecule Optimization Trajectory. From left to right, each molecule is a step selected
from a full 1000 step optimization trajectory by Fokker Planck flow on plogP. Only 10 intermediate
steps, during which the molecules underwent changes, are shown in this gifure.

sa: 6.04 sa: 5.37 sa: 5.26 sa: 7.54 sa: 6.91 sa: 6.78 sa: 5.34 sa: 6.03 sa: 5.76 sa: 5.52
sim: 0.09 sim: 0.12 sim: 0.12 sim: 0.07 sim: 0.05 sim: 0.05 sim: 0.08 sim: 0.08 sim: 0.12 sim: 0.36

/ ~

Figure 14: Molecule Optimization Trajectory Molecule optimization by random direction on SA.

plogp: -38.41 plogp: 0.80 plogp: -1.36 plogp: -38.00 plogp: -2.13 plogp: -0.73 plogp: -0.71 plogp: -1.31 plogp: -1.76 plogp: 1.11
sim: 0.11 sim: 0.18 sim: 0.08 sim: 0.11 sim: 0.11 sim: 1.00 sim: 0.47 sim: 0.51 sim: 0.09 sim: 0.16

Figure 15: Molecule Optimization Trajectory Molecule optimization by unsupervised gradient
flow on plogP.

plogp: -30.74 plogp: -40.06 plogp: -3.23 plogp: -5.32 plogp: -4.35 plogp: -28.08 plogp: -68.95 plogp: -22.97 plogp: -16.53 plogp: -3.09
sim: 0.14 sim: 0.10 sim: 0.08 sim: 0.13 sim: 0.08 sim: 0.19 sim: 0.15 sim: 0.18 sim: 0.13 sim: 0.09

Figure 16: Molecule Optimization Trajectory Molecule optimization by unsupervised wave flow
on plogP.
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