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Abstract

Recently, graph neural networks (GNNs) have shown success at learning representations
of brain graphs derived from functional magnetic resonance imaging (fMRI) data. The
majority of existing GNN methods, however, assume brain graphs are static over time and
the graph adjacency matrix is known prior to model training. These assumptions are at
odds with neuroscientific evidence that brain graphs are time-varying with a connectivity
structure that depends on the choice of functional connectivity measure. Noisy brain graphs
that do not truly represent the underling fMRI data can have a detrimental impact on the
performance of GNNs. As a solution, we propose Dynamic Brain Graph Structure Learning
(DBGSL), a novel method for learning the optimal time-varying dependency structure of
fMRI data induced by a downstream prediction task. Experiments demonstrate DBGSL
achieves state-of-the-art performance for sex classification using real-world resting-state
and task fMRI data. Moreover, analysis of the learnt dynamic graphs highlights prediction-
related brain regions which align with existing neuroscience literature. Code available at
https://github.com/ajrcampbell/dynamic-brain-graph-structure-learning.
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1. Introduction

Functional magnetic resonance imaging (fMRI) is primarily used to measure blood-oxygen
level dependent (BOLD) signal in the brain (Huettel et al., 2004). It is one of the most com-
monly used non-invasive imaging techniques for investigating brain function. Typically, this
is accomplished by using a statistical measure of pairwise dependence (e.g. Pearson correla-
tion) to summarize the functional connectivity (FC) between BOLD signals of anatomically
separated brain regions (Friston, 1994). The resulting FC matrices (or functional connec-
tomes) have been widely used in graph-based network analysis to understand how the brain
works (Sporns, 2022).

Graph neural networks (GNNs) are a type of deep neural network capable of learning
representations of graph-structured data (Wu et al., 2020a). By taking FC matrices to
represent brain graphs, GNNs have shown recent success at fMRI-related prediction tasks
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ranging from phenotypes such as sex (Azevedo et al., 2022) and age (Gadgil et al., 2020),
cognitive tasks (Zhang et al., 2021), and brain disorders (Li et al., 2021).

The majority of existing GNN methods applied to fMRI data, however, make two key
assumptions: (1) brain graphs are static (i.e. not time-varying), and (2) the true dependency
structure between brain regions is known. Although convenient, both assumptions are at
odds with a growing body of neuroscientific evidence that FC dynamically changes over
time (Calhoun et al., 2014), and that no one statistical measure of dependency exists for
truly capturing FC (Mohanty et al., 2020). To ensure that GNNs are able to learn useful
representations for use in downstream tasks, it is of high priority to establish the most
appropriate way to construct dynamic graphs that best reflect the underling fMRI data.

Contributions As a solution, we propose Dynamic Brain Graph Structure Learning
(DBGSL), the first end-to-end trainable GNN-based model able to learn task-specific dy-
namic brain graphs from fMRI data in a supervised fashion. Specifically, DBGSL con-
structs dynamic graph adjacency matrices using spatially attended brain region embeddings
learnt from windowed BOLD signals. In addition, DBGSL leverages temporal attention and
learnable edge sparsity to further improve classification performance and interpretability.
DBGSL achieves state-of-the-art performance for the task of sex classification using real-
world resting-state and task fMRI data. Finally, an analysis of the learnt dynamic graphs
highlights prediction-related brain regions which align with existing neuroscience literature.
Code available on GitHub1.

2. Related work

Brain graph classification Recent brain graph classification methods tend to be GNN-
based and use static measures of FC for graph construction (Azevedo et al., 2022; Kim and
Ye, 2020; Li et al., 2021). To incorporate temporal dynamics, Gadgil et al. (2020) propose
a variant of the spatial-temporal GNN (Yan et al., 2018) for fMRI data. However, only
graph node features are time-varying whilst the adjacency matrix remains static. More
recently, Kim et al. (2021) leverage spatial-temporal attention within a transformer frame-
work (Vaswani et al., 2017) to classify dynamic brain graphs. However, the graph adjacency
matrix is assumed to be unweighted, and similar to previous methods, still requires careful
selection of a FC measure.

Graph structure learning Several graph structure learning (GSL) methods (Zhu et al.,
2021; Kalofolias et al., 2017) have been proposed for learning the dependency structure of
a dataset, particularly multivaraite timeseries (Cao et al., 2020; Wu et al., 2020b). Un-
fortunately, a single static graph is usually learnt for all samples making these methods
unsuitable for multi-subject fMRI data where differences in subject-level brain graphs are
known to be discriminative (Finn et al., 2015). The GSL-based methods proposed in Mah-
mood et al. (2021), Riaz et al. (2020), and (Kan et al., 2022) are all fMRI specific and
learn brain graphs from BOLD signals for use in downstream classification tasks. However,
unlike DBGSL, these previous methods assume brain graphs are static.

1. https://github.com/ajrcampbell/dynamic-brain-graph-structure-learning
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Figure 1: The conceptual framework of DBGSL. Dynamic graph learner G1:T =
(A1:T ,F1:T ) = FθG(X1:T ′) = fθW (fθE (fθS (fθP (X1:T ′)))). Dynamic graph clas-
sifier ŷ = FθC (G1:T ) = fθT (fθF (G1:T )).

3. Problem formulation

We formulate dynamic brain GSL in terms of a supervised multivariate timeseries classi-
fication problem. Let X1:T ′ = (x1, . . . ,xT ′) ∈ RV×T ′

denote BOLD signals from V brain
regions measured over T ′ timepoints and y ∈ [0, . . . C − 1] a corresponding class label. We
assume X1:T ′ has a true but unknown nonstationary dependency structure. By letting
each brain region correspond to a graph node, we summarize this dependency structure
as a dynamic brain graph G1:T = (A1:T ,F1:T ) consisting of a dynamic adjacency matrix
A1:T ∈ RV×V×T≥0 and dynamic node feature matrix F1:T ∈ RV×B×T over T ≤ T ′ snapshots.

Given a dataset D ⊂ X × Y consisting of N subjects data (X1:T ′ , y) ∈ D, we aim
to train a model Fθ(·) = FθG ◦ FθC (·) with parameters θ = θG ∪ θC that can predict class
labels ŷ given input X1:T ′ using an intermediary learnt dynamic brain graph i.e. Fθ(X1:T ′) =
FθC (FθG(X1:T ′)) = FθC (G1:T ) = ŷ. Training consists of minimizing the discrepancy between
the actual label y and the predicted label ŷ, described by a loss function L(y, {ŷ, G1:T }).
The optimization objective is therefore θ∗ = arg minθ E(X1:T ′ ,y)∈D[L(y, Fθ(X1:T ′))].

4. Method

As shown in Figure 1, DBGSL consists of two main components: (1) a dynamic graph
learner FθG : X → G, and (2) a dynamic graph classifier FθC : G → Y. We henceforth
expand upon the architecture of the dynamic graph learner (Section 4.1), the dynamic
graph classifier (Section 4.2), and set-out the training objective (Section 4.3).

4.1. Dynamic graph learner

Split windows The dynamic graph learner maps BOLD signals onto a dynamic brain
graph such that FθG(X1:T ′) = G1:T . To do this, X1:T ′ is first split into windows using a
temporal-splitting stack transformation fθW (·) following

fθW (X1:T ′) = X̃1:T = (X̃1, . . . X̃T ), X̃t = XtS:tS+P , t = 1, . . . , T (1)

where P and S are hyperparameters specifying window length and stride, respectively,
X̃1:T ∈ RP×V×T and T = b(T ′ − 2(P − 1) − 1)/S + 1c. The hyperparameters are chosen
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such that each X̃>t ∈ RV×P has a stationary dependency structure within the window of
length P timepoints. We leave more data driven methods for selecting P , such as statistical
tests for stationary (Dickey and Fuller, 1981), as future work.

Temporal feature extraction Next, the windowed BOLD signals are input to a 2D
convolutional neural network (CNN) fθE (·) in order to extract KE-dimensional feature em-
beddings for each brain region independently such that fθE (X̃1:T ) = HG

1:T ∈ RKE×V×T . To
achieve this, we implement fθE (·) as a inception temporal convolutional network (I-TCN)
adapted from Wu et al. (2020b). Specifically, our version of I-TCN takes dilated con-
volutional kernels and causal padding from original temporal convolutional network (Bai
et al., 2018) and combines it with a multi-channel feature extraction in a inception struc-
ture (Szegedy et al., 2015). More formally, suppose fθE (·) consists of LG layers, then for
the l-th layer with M convolutional filters we have

H
(l)
1:T = ReLU

(
BatchNorm

(
H

(l−1)
1:T + ||Mm=1H

(l−1)
1:T ∗d W(l)

m

))
(2)

where H
(l−1)
1:T ,H

(l)
1:T ∈ RKE×V×T are input and output embeddings, respectively, W

(l)
m ∈

RbKE/Mc×KE×1×Sm is the m-th 2D convolutional filter, and H
(0)
1:T = X̃1:T , H

(LG)
1:T = HG

1:T .
The symbols || and ∗d denote concatenation along the feature dimension and convolution
operator with dilation factor d > 0, respectively. Following Oord et al. (2016), we set
d = 2l−1 to exponentially increase the receptive field size of each convolutional kernel with
the number of layers and enforce S1 < · · · < SM to allow simultaneous use of small/large
kernel lengths to extract short/long-term temporal patterns within a single layer.

Dynamic adjacency matrix Since the feature extractor learns embeddings for each
brain region independently, to account for spatial relationships we use a self-attention mech-
anism fθS (·). Specifically, at each snapshot we use the embedding HG

t ∈ RV×KE to learn the
dependency structure between brain regions using a simplified version of scaled dot-product
self-attention (Vaswani et al., 2017) following

At = fθS (HG
t ) = Sigmoid

(
QtK

>
t√

KS

)
, Qt = HG

t WQ, Kt = HG
t WK (3)

where Qt,Kt ∈ RN×KS denote query and key matrices, respectively, which are calculated via
KS-dimensional linear projections using trainable matrices WQ,WK ∈ RKE×KS . We take
each At to be a brain graph adjacency matrix, which by definition is weighted and directed.
To make At undirected, which is commonly assumed for brain graph analysis (Friston, 1994),
we simply fix WQ = WK . Computing self-attention matrices over the entire sequence of
feature embeddings results in a dynamic adjacency matrix A1:T ∈ (0, 1)V×V×T summarizing
dynamic FC between brain regions.

Edge sparsity By definition, each dynamic adjacency matrix A1:T is a fully-connected
graph at every snapshot. Not only does this make the learnt adjacency matrices difficult to
interpret, but it also makes the application of GNNs for learning downstream tasks compu-
tationally expensive and susceptible to noise. To tackle this issue, we propose a version of
the soft threshold operator (Donoho, 1995) fθP (·) to enforce edge sparsity following

fθP (ai,j,t) = ReLU(ai,j,t − Sigmoid(θP )), ∀ai,j,t ∈ A1:T (4)
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where Sigmoid(θP ) ∈ (0, 1) specifies a learnable edge weight threshold. Clearly when ai,j,t ≤
Sigmoid(θp) then fθP (ai,j,t) = 0. To ensure the threshold Sigmoid(θP ) starts close to 0 we
initialize θP ≈ −10 so that A1:T is not mode overly sparse too early on during training.

Dynamic node feature matrix For dynamic node features F1:T we take the windowed
timeseries and compute a (sample) correlation matrix at each snapshot following Ft =
D̃−1
t ΣtD̃

−1
t where D̃t =

√
diag(Σt) and Σt = 1

P−1X̃>t (IP − 1
P 1>P1P )X̃t with IP and 1P

being a P × P identity matrix and 1 × P matrix of all ones, respectively. This choice
is motivated by previous work on static brain graphs where a node’s FC profile achieves
superior performance over other features (Li et al., 2021; Kan et al., 2022; Cui et al., 2022)

4.2. Dynamic graph classifier

Spatial-temporal feature extraction We next use a LC-layered recurrent GNN fθF (·)
similar to Seo et al. (2018) to learn a spatial-temporal representation of G1:T . For simplicity,
we implement the recurrent mechanism using a gated recurrent unit (GRU) (Cho et al.,
2014) and each gate as a graph convolutional network (GCN) (Kipf and Welling, 2016).

Specifically, the GCN for each gate is defined GCN(Ft,At) = D̂
−1/2
t ÂtD̂

−1/2
t FtW1 where

W1 ∈ RKC×KC is a trainable weight matrix and D̂t = diag(Ât1
>
1×V ) is the degree matrix

with Ât = At + IV . The l-th layer of the GRU at each snapshot is then described following

R
(l)
t = Sigmoid(GCN(H̃

(l−1)
t ||H̃(l)

t−1,At)), U
(l)
t = Sigmoid(GCN(H̃

(l−1)
t ||H̃(l)

t−1,At)) (5)

C
(l)
t = Tanh(GCN(H̃

(l−1)
t ||R(l)

t � H̃
(l)
t−1,At)), H̃

(l)
t = U

(l)
t � H̃

(l)
t−1 + (1−U

(l)
t )�C

(l)
t (6)

where R
(l)
t ,U

(l)
t ∈ RV×KC are the reset and update gates, respectively, and H̃

(l)
t ∈ RV×KC

is the hidden state such that H̃
(0)
t = Ft with H̃

(l)
0 ∈ 0V×KC

being initialized as a matrix of
zeros. The symbols � and || denote the Hadamard product and the feature-wise concate-
nation operator, respectively. Iterating through (5)-(6) for each graph snapshot, we end up

with per-layer output embeddings H
(l)
1:T ∈ RV×KC×T which we concatenated along the fea-

ture dimension, to combine information from neighbors that are up to LC-hops away from
each node, and then averaged over the node dimension to create a sequence of brain graph

embeddings denoted HC
1:T = φ(||LC

l=1H
(l)
1:T ) ∈ RKCLC×T where φ = 1

V 11×V is an average
pooling matrix.

Temporal attention readout To emphasize snapshots with the most important brain
graph embeddings, we next employ a novel temporal attention readout layer fθT (·) adapted
from squeeze-and-excite attention networks (Hu et al., 2018). More formally, we define a
temporal attention score matrix α ∈ (0, 1)1×T following

α = Sigmoid(ReLU(ψHC
1:TW2)W3) (7)

where W2 ∈ RT×τT , W3 ∈ RτT×T are trainable weight matrices that encode tempo-
ral dependencies via a bottleneck controlled by the hyperparameter τ ∈ (0, 1] and ψ =

1
KCLC

11×KCLC
. The final graph-level representation hG ∈ RLCKC is obtained using the

temporal attention score matrix to take the weighted sum over snapshots following hG =
(α�HC

1:T )ξ> where ξ = 11×T is a sum pooling matrix. The representation is then passed
through a linear layer mapping it onto unscaled log probabilities log p(y|X1:T ′) ∈ RC .
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4.3. Loss function

We train DBGSL by minimizing cross-entropy loss LCE(y, ŷ) as well as a collection of prior
constraints on the learnt graphs denoted R(G1:T ) such that L(y, {ŷ, G1:T }) = LCE(y, ŷ) +
R(G1:T ) where LCE(y, ŷ) = −

∑C
c=1 1(y = c) log p(y|X1:T ′)c. This encourages DBGSL to

learn task-aware dynamic graphs that encode interpretable class differences into A1:T .

Regularization constraints Since connected nodes in a graph are more likely to share
similar features (McPherson et al., 2001) we add a regularization term encouraging fea-
ture smoothness of the learnt graphs defined as LFS(A1:T ,F1:T ) = 1

V 2

∑T
t=1 Tr(F>t L̂tFt)

where Tr(·) denotes the matrix trace operator and L̂t = D
−1/2
t LtD

−1/2
t is the (symmet-

ric) normalized Laplacian matrix defined as Lt = Dt − At where Dt = diag(At1V×1)
which makes feature smoothness node degree independent (Ando and Zhang, 2006). Fur-
thermore, to discourage volatile changes in graphs between timepoints we also add a prior
constraint encouraging temporal smoothness defined as LTS(A1:T ) =

∑T−1
t=1 ||At −At+1||1

where || · ||1 denotes the matrix L1-norm. Moreover, to encourage the learning of a large
sparsity parameter Softmax(θP ) in (4), we further add a sparsity regularization term de-
fined LSP(A1:T ) =

∑T
t=1 ||At||1. In combination with LCE(·, ·), this ensures only the most

import task-specific edges are kept in A1:T . The final loss function we seek to minimize is

L(y, {ŷ, G1:T }) = LCE(y, ŷ) + λFSLFS(F1:T ,A1:T ) + λTSLTS(A1:T ) + λSPLSP(A1:T ) (8)

where λFS, λTS, λSP ≥ 0 are hyperparameters weighting regularization contributions.

5. Experiments

We evaluate the performance of DBGSL on the task of biological sex classification, a widely
used benchmark for supervised deep learning-based models designed for fMRI data (Kim
et al., 2021; Gadgil et al., 2020; Azevedo et al., 2022). Biological sex differences in the brain
are supported by a large body of neuroscience literature (Bell et al., 2006; Mao et al., 2017).

Datasets We construct two datasets using publicly available fMRI data from the Human
Connectome Project (HCP) (Van Essen et al., 2013). The first dataset consists of resting-
state fMRI data from N = 1, 095 subjects with T ′ = 1, 200 (HCP-Rest). The second
dataset consists of task fMRI data from N = 926 subjects performing the emotional task
with T ′ = 176 (HCP-Task). We parcellate the fMRI data into V = 243 region-wise BOLD
signals using the Brainnetome atlas (Fan et al., 2016). The biological sex of each subject is
taken as a class label C = 2. We refer to Appendix A for further details on each dataset.

Baselines We compare DBGSL against a range of baselines broadly grouped by whether
they take as input static/dynamic brain graphs or region-wise BOLD signals. For static
(linear) baselines, we include kernel ridge regression (KRR) (He et al., 2020) and support
vector machine (SVM) (Abraham et al., 2017). For static deep learning baselines we in-
clude a multilayer perception (MLP) and BrainnetCNN (BNCNN) (Kawahara et al., 2017)
where for dynamic baselines we include ST-GCN (STGCN) (Gadgil et al., 2020) and STA-
GIN (Kim et al., 2021). For GSL baselines, we include FBNetGen (FBNG) (Kan et al.,
2022) and Deep fMRI (DFMRI) (Riaz et al., 2020). Finally, we include a bidirectional
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LSTM (BLSTM) (Hebling Vieira et al., 2021) which learns directly from BOLD signals.
Further details about each baseline model can be found in Appendix B.

Implementation We split both datasets into 80/10/10% training/validation/test data
maintaining class proportions. For fairness of comparison, all models are trained using
the Adam optimizer (Kingma and Ba, 2014) with decoupled weight decay (Loshchilov and
Hutter, 2017). We use the hyperparameter settings described in the original implementation
of each baseline model as the starting point for tuning. We train all model for 5, 000 epochs
using early-stopping with a patience of 15 based on the lowest accuracy on the validation
dataset. Finally, we train all models 5 times using different random seeds as well as dataset
splits. Further implementation details can be found in Appendix C.

Evaluation metrics Overall performance is evaluated using mean test accuracy (ACC)
and area under the receiver operator curve (AUROC). For model comparisons, we use
the almost stochastic order (ASO) test (Del Barrio et al., 2018; Dror et al., 2019) with
significance level α = 0.05 and correct for multiple comparisons (Bonferroni, 1936).

Results Sex classification results are summarized in Table 1. Clearly DBGSL is the best
performing model across both datasets as measured by accuracy and AUROC. On HCP-
Rest, DBGSL outperforms the second-best baseline KRR in terms of accuracy by 8.82
percentage points (pp) whereas on HCP-Task the second-best baseline SVM is outperformed
by 8.17 pp, with both gains being statistically significant. Similar to the findings of He
et al. (2020), when considering only static brain graphs the linear baselines KRR and SVM
either outperform each deep learning baseline or the difference in result is not statistically
significant. We attribute the superior performance of DBGSL to the brain graph being
learnt rather than fixed prior to training as well as incorporating temporal dynamics. For
further analysis (including ASO test scores), we refer to Appendix D.

Table 1: Sex classification results for HCP-Rest and HCP-Task (mean plus/minus standard
deviation across five runs). First and second-best results are bold and underlined,
respectively. Statistically significant difference from DBGSL marked *.

Model
HCP-Rest HCP-Task

ACC (%, ↑) AUROC (↑) ACC (%, ↑) AUROC (↑)

KRR 83.50± 1.94 * 0.9187± 0.0025 * 81.37± 2.17 * 0.9031± 0.0185 *
SVM 82.70± 2.68 * 0.9170± 0.0089 * 83.16± 1.91 * 0.9097± 0.0184 *
MLP 81.47± 3.29 * 0.9091± 0.0281 * 81.10± 3.44 * 0.8837± 0.0250 *
BLSTM 81.50± 1.26 * 0.9058± 0.0081 * 77.24± 4.05 * 0.8526± 0.0188 *
BNCNN 76.83± 7.46 * 0.6156± 0.0837 * 70.66± 8.23 * 0.5945± 0.0499 *
STGCN 62.63± 4.50 * 0.6991± 0.0264 * 54.87± 3.37 * 0.5629± 0.0355 *
DFMRI 82.65± 3.40 * 0.8941± 0.0342 * 81.34± 2.19 * 0.8024± 0.0317 *
FBNG 81.57± 2.90 * 0.8967± 0.0170 * 77.16± 3.90 * 0.8548± 0.0320 *
STAGIN 83.13± 2.11 * 0.8597± 0.0467 * 81.88± 2.73 * 0.8088± 0.0404 *
DBGSL 92.32 ± 2.22 0.9623 ± 0.0433 89.54 ± 3.48 0.9496 ± 0.0423
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Figure 2: Sex-discriminative brain region scores z (normalized to [0, 1]) for HCP-Rest (top)
and HCP-Task (bottom).

6. Interpretability analysis

A major strength of DBGSL is it’s ability to learn task-ware dynamic brain graph structure
from BOLD signals which have uses beyond classification. To highlight the brain region(s)
that are most sex-discriminative, we create a brain region score vector using temporally
weighted node degree z = 1

T

∑T
t=1(

∑V
j=1 Aj,t)αt) ∈ RV . We take all regions falling within

the top 20% across all subjects in the test dataset and plot them with respect to the intrinsic
connectivity networks of Yeo et al. (2011) in Figure 2.

Results For HCP-Rest, 25.5% of the highest scores are within the default mode network
(DMN), a key network that is consistently observed in resting-state fMRI studies (Mak
et al., 2017; Satterthwaite et al., 2015). Within the DMN the brain regions with the highest
sex-prediction ability are localized in the dorsal anterior cingulate cortex, middle frontal
gyrus, and posterior superior temporal cortex. These fronto-temporal brain regions are
key components of the theory of mind network, which underlies a meta-cognitive function
in which females excel (Adenzato et al., 2017). Another key region in theory of mind
tasks, the posterior superior temporal cortex is found to reliably predict sex within the
ventral attention network (VAN). For HCP-Task, 30.6% of the highest scores are in the
parahippocampal gyrus, medial occipital cortex, and superior parietal lobule which form a
posterior visual network (VSN). The fact that such regions best discriminated males from
females reflects differences in the ability to process emotional content and/or sex-related
variability in directing attention to certain features of emotional stimuli (Mackiewicz et al.,
2006), like the facial expressions from the HCP task paradigm (Markett et al., 2020). For
further analysis we refer to Appendix E.

7. Conclusion

We propose Dynamic Brain Graph Structure Learning (DBGSL), an end-to-end trainable
model capable of learning optimal time-varying dependency structure from fMRI data in
the form of a dynamic brain graph. To the best of our knowledge, we are the first to
propose and address a dynamic GSL problem via GNN-based deep learning on BOLD signals
derived from fMRI data. Central to our approach is the use of spatial-temporal attention to
exploit the inherent inter and intra relationships of brain region BOLD signals. Extensive
experiments on two real-world fMRI datasets demonstrates that DBGSL achieves state-of-
the-art results for sex classification. Future research directions include evaluating DBGSL
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on more brain classifications tasks such as age or fluid intelligence, learning the optional
window size and stride from the data, and incorporating higher-order brain interactions
into the GSL process.
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Appendix A. Datasets

We construct two multivariate timeseries classification datasets using publicly available
fMRI scans from the Human Connectome Project (HCP) S1200 release2 (Van Essen et al.,

2. https://db.humanconnectome.org
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2013). All HCP data is collected from voluntary healthy participants with informed consent
and is fully anonymized. The two datasets differ depending on whether the subjects are
resting (HCP-Rest) or performing a specific task (HCP-Task) during the acquisition of the
images.

HCP-Rest We consider resting-state fMRI scans minimally pre-processed following the
pipeline described in Glasser et al. (2013). A total of N = 1, 095 subjects are selected
from the first scanning-session (of four) using left-right phase encoding. The subjects are
instructed to rest for 15 minutes during image acquisition. The repetition time (TR), i.e.
the time between successive image acquisitions, is 0.72 seconds resulting in T ′ = 1, 200
images per subject. We took the biological sex of each subject as a label making the total
number of classes C = 2. Female subjects accounted for 54.4% of the total dataset.

HCP-Task We consider task fMRI scans from the emotional task minimally pre-processed
following the pipeline described in Glasser et al. (2013). A total of N = 926 are selected
from the first scanning-session (of two) with left-right phase encoding. For the emotional
task, subjects are asked to indicate which of two faces or which of two shapes presented at
the bottom of a screen match the face (or shape) at the top of the screen. With TR = 0.72
seconds and a scanning session lasting 2.11 minutes, the number of images per subject is
T ′ = 176. Female subjects accounted for 51.2% of the total dataset.

Further preprocessing Since the fMRI scans from both datasets are a timeseries of
3D brain volumes, we parcellate them into V = 243 mean brain region (210 cortical, 36
subcortical) BOLD signals of length T ′ time points using the Brainnetome atlas 3 (Fan
et al., 2016). Each timeseries is then transformed into a z-score, by standardizing region-
wise, in order to remove amplitude effects. Finally, to balance class proportions across both
datasets, the minority class is randomly oversampled.

Appendix B. Baselines

We compare DBGSL against a range of different baseline models, all having been previously
used to classify fMRI data with publicly available code. The baselines are broadly grouped
by whether they take as input static FC, dynamic FC, or BOLD signals. To make the
comparison fair, we include traditional machine learning models as recent studies have
shown they achieve comparable results to deep learning-based models on fMRI data (He
et al., 2020).

Kernel ridge regression4 (KRR) (He et al., 2020) Kernel ridge regression (KRR)
combines ridge regression, i.e. linear least squares with L2-norm regularization, with the
kernel trick in order to learn a linear function in the space induced by the kernel and the
input data (Murphy, 2012a). Following He et al. (2020), we use a linear kernel and keep the
weight on the regularization loss as a tunable hyperparameter. As input, KRR takes the
vectorized lower-triangle (excluding the principal diagonal) of static FC matrices computed
using Pearson correlation.

3. https://atlas.brainnetome.org
4. https://github.com/ThomasYeoLab/CBIG/blob/master/stable_projects/predict_phenotypes/

He2019_KRDNN/
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Support vector machine (SVM) (Abraham et al., 2017) Support vector machine
learns vectors defining a hyperplane, i.e. a decision boundary, that maximizes the margin
between input data from different classes after projection into a higher dimensional space
using a kernel function (Murphy, 2012b). Following Abraham et al. (2017), we use a linear
kernel and keep the weight on the regularization loss as a tunable hyperparameter. Similar to
KRR, SVM takes as input a vectorized static FC matrix computed using Pearson correlation.

Multilayered perceptron4 (MLP) (Hebling Vieira et al., 2021) A multilayered per-
ceptron (MLP) taking as input vectorized static FC matrices computed using Pearson cor-
relation. Used as a baseline in Kawahara et al. (2017) and Gadgil et al. (2020), we fol-
low Hebling Vieira et al. (2021) and implement MLP using three linear layers with dropout,
batch normalization, and rectified linear unit (ReLU) activation functions after the first two
layers. The hidden dimension in each layer is treated as a tunable hyperparameter.

Bi-directional long short-term memory (BLSTM) (Hebling Vieira et al., 2021) A
bi-directional long short-term memory (BI-LSTM) recurrent neural network which is able to
learn patterns directly from the BOLD signals rather than from precomputed FC matrices.
Following Hebling Vieira et al. (2021), we use two bi-directional LSTM layers (Graves and
Schmidhuber, 2005) each processing BOLD signals forward in time and backward in time
with the hidden representations being combined via addition. The hidden dimension in
each layer is kept as a tunable hyperparameter.

BrainNetCNN4 (BNCNN) (Kawahara et al., 2017) A convolutional neural network
with specially designed cross convolutional filters, i.e. edge-to-edge and edge-to-node, used
for learning topological features directly from static FC matrices taken as input. Originally
proposed in Kawahara et al. (2017), we use the implementation from He et al. (2020)
with four layers and keep the number of hidden channels in the last layer as a tunable
hyperparameter.

Spatio-temporal graph convolutional network5 (STGCN) (Gadgil et al., 2020) A
GNN consisting of three spatio-temporal blocks implemented as a GCN layer for extracting
spatial features and a 1D convolutional layer for extracting temporal. Node features are
taken as windows of BOLD signals and the adjacency matrix is taken to be the average FC
matrix, computed using Pearson correlation, over all subjects in the training dataset. We
treat the number of hidden features as a hyperparameter to be tuned.

Deep fMRI (DFMRI) (Riaz et al., 2020) A deep learning-based GSL method which
learns static brain graphs directly from BOLD signals using a 1D CNN feature extractor,
a MLP graph constructor, and a MLP graph classifier (Riaz et al., 2020). Inspired by
Siamese-networks (Bromley et al., 1993), the graph constructor learns a similarity score
between pairs of extracted features from two different brain regions. We treat the hidden
dimension in the graph classifier as a tunable hyperparameter.

Functional brain network generator6 (FBNG) (Kan et al., 2022) A GSL method
similar to DEEP-FMRI which learns static brain graphs directly from BOLD signals but
instead using a LSTM feature extractor and a GNN as a graph classifier (Kan et al., 2022).

5. https://github.com/sgadgil6/cnslab_fmri
6. https://github.com/Wayfear/FBNETGEN
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Unlike DEEP-FMRI which uses a MLP to learn a graph adjacency matrix, FBNG simply
takes the inner product between extracted features. FBNETGEN also introduces a group
inter loss that aims to maximize the difference in learnt graphs across different classes,
while keeping those within the same class similar. The hidden dimension in graph classifier
is treated as a tunable hyperparameter.

Spatio-temporal attention graph isomorphism network7 (STAGIN) (Kan et al.,
2022) A joint GNN and transformer that takes as input attributed unweighted dynamic
graphs derived from sliding window FC. Following Kim et al. (2021), we use Pearson corre-
lation as the measure of FC and binarize the matrices by thresholding the top 30-percentile
values as connected. We fix the number of layers in the GNN to four and treat the node
embedding dimension as a hyperparameter to be tuned.

Appendix C. Implementation

Software and hardware All models are developed in Python 3.7 (Python Core Team,
2019) using scikit-learn 1.1.1 (Pedregosa et al., 2011), PyTorch (Paszke et al., 2019), and
numpy 1.1.1 (Harris et al., 2020). All metrics are implemented using TorchMetrics 1.1.1 (Nicki
Skafte Detlefsen et al., 2022) and statistical significance tests are carried out using deep-
significance 1.1.1 (Ulmer et al., 2022). Experiments are performed on a Linux server (Debian
5.10.113-1) with a NVIDIA RTX A6000 GPU with 48 GB memory and 16 CPUs.

Training and testing All baselines are implemented as per the original paper and/or
code repository given in Appendix B. To ensure differences in classification performance
could be attributed as much as possible to differences in model architecture, paper specific
training and testing strategies are removed. In particular, during inference for STGCN and
BLSTM only a single model is used to make predictions instead of an ensemble of models.
Furthermore, we removed mixup/label smoothing from FBNG, and did not use the one-cycle
learning rate scheduler for STAGIN. These different training and testing strategies can all
be considered types of regularization, the addition of which, would benefit the performance
of any model.

Hyperparameter optimization We use model and training hyperparameter values de-
scribed in the original implementation of each baseline as a starting point for hyperpa-
rameter tuning on the validation dataset. Since searching for the optional values of hy-
perparameters for every baseline is outside the scope of the paper, we focus mainly on
tuning regularization loss weights (KRR, SVM) and the dimensions of hidden layers (MLP,
BLSTM, BNCNN, STGCN, DFMRI, FBNG, STAGIN). For DBGSL, we fix the number of
filters in the temporal feature extractor fθE (·) to M = 3 and the bottleneck in the temporal
attention layers fθT (·) to τ = 0.5. For all other hyperparameters see Table 2.

7. https://github.com/egyptdj/stagin
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Table 2: Optimal hyperparameter values for DBGSL on HCP-Rest and HCP-Task (based
on 5 runs, lowest validation accuracy).

Hyperparameter Range HCP-Rest HCP-Task

Training
- Batch size {5, 10, 20, 50} 20 20
- Learning rate {1e-2, 1e-3, 1e-4} 1e-3 1e-3
- Weight decay {1e-5, 1e-4, 1e-3} 1e-4 1e-4
Model
- Dynamic graph learner

– Window length, P {5, 10, 30, 50, 70, 100} 50 30
– Window stride, S {1, 3, 5, 10, 25, 50} 3 1
– Number of layers, LG {1, 2, 3, 4, 5, 6} 4 4
– Number of features, KE {8, 16, 32, 128, 256} 64 64
– Filter sizes, Sm {{3, 5, 7}, {4, 8, 16}} {4, 8, 16} {4, 8, 16}
– Embedding size KS {4, 8, 16, 32, 64, 128} 16 16

- Dynamic graph classifier
– Number of layers, LC {1, 2, 3, 4, 5, 6} 3 3
– Number of features, KC {8, 16, 32, 64, 128, 256} 64 64

- Feature smoothness, λFS {1e-4, 1e-3, 1e-2} 1e-4 1e-4
- Temporal smoothness, λTS {1e-4, 1e-3, 1e-2} 1e-3 1e-4
- Sparsity, λSP {1e-4, 1e-3, 1e-2} 1e-3 1e-3

Appendix D. Experiments

D.1. Sex classification

Figure 4 shows individual almost stochastic order (ASO) test (Dror et al., 2019)8 statistics
for the sex classification task. The ASO test has been recently proposed to test the statis-
tical significance of deep learning models. In general, the ASO test determines whether a
stochastic order (Reimers and Gurevych, 2018) exists between two models based on their re-
spective sets of test dataset scores obtained from multiple runs, i.e., different random seeds.
Given test dataset scores of two models A and B over multiple runs, the ASO test computes
a test-statistic εmin that indicates how far model A is from being significantly better than
model B. When the distance εmin = 0.0, one can claim that model A is stochastically
dominant over model B, denoted A � B, with a predefined significance level α ∈ (0, 1).
When εmin < 0.5 one can say model A almost stochastically dominates model B, denoted
A � B. On the other hand, when εmin = 1.0, this means B � A. For εmin = 0.5, no order
can be determined.

8. https://github.com/Kaleidophon/deep-significance
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D.2. Ablation study

We conduct an ablation study to investigate the impact on performance of DBGSL without
(w/o) key model components. Specifically, within the dynamic graph learner FθG(·) we
replace the I-TCN fθE (·) with a 1D convolution with filter length 4 (w/o inception), replace
self-attention fθS (·) with a normalized Person correlation matrix (w/o spatial att.), remove
edge sparsity fθP (·) with λSP = 0 (w/o sparsity), and remove temporal attention fθT (·)
(w/o temporal att.). In addition, we also remove feature smoothness λFS = 0 (w/o feature
reg.) and temporal smoothness λTS = 0 (w/o temporal reg.) graph regularization terms
from the loss function.

Table 3: Ablation study results on HCP-Rest and HCP-Task (mean plus/minus standard
deviation across five runs). Best results are bold. ∆ = percentage point (pp)
change, w/o = without model component. Statistically significant difference from
DBGSL marked *.

Model
HCP-Rest HCP-Task

ACC (%, ↑) ∆ (pp) ACC (%, ↑) ∆ (pp)

DBGSL 92.32 ± 2.22 89.54 ± 3.48
- w/o inception fθE (·) 91.22 ± 2.69 ↓ 1.10 * 88.79 ± 2.34 ↓ 0.75
- w/o self att. fθS (·) 89.97 ± 3.04 ↓ 2.34 * 86.80 ± 3.76 ↓ 2.74 *
- w/o sparsity fθP (·), λSP = 0 92.32 ± 2.23 ↓ 1.04 * 87.00 ± 2.33 ↓ 2.54 *
- w/o temporal att. fθT (·) 92.26 ± 2.43 ↓ 0.06 87.56 ± 2.84 ↓ 1.98 *
- w/o feature reg. λFS = 0 92.29 ± 2.39 ↓ 0.03 88.50 ± 2.87 ↓ 1.04
- w/o temporal reg. λTS = 0 92.12 ± 2.21 ↓ 0.20 88.43 ± 3.23 ↓ 1.11

Results Table 3 summarizes the ablation study results. Clearly the use of self-attention
significantly improves accuracy across both datasets (HCP-Rest ↑ 2.34 pp vs HCP-Task ↑
2.74 pp) since it allows for task-aware spatial relationships between brain regions to be built
into the dynamic graph adjacency matrix for use by the graph classifier. Similarly, sparsity
also significantly improves accuracy (HCP-Rest ↑ 1.04 pp vs ↑ 2.54 pp HCP-Task) since
it removes noisy edges from the dynamic adjacency matrix thereby reducing errors from
being propagated to node representations in the graph classifier. Finally, the effect of the
I-TCN is significant for HCP-Rest (↑ 1.10 pp) but only marginal for HCP-Task (↑ 0.75 pp)
which might be explained by the fact that the BOLD timeseries from the former dataset
are collected over a longer time period then the latter thereby benefiting more from larger
kernel sizes being able to extract longer temporal patterns.

D.3. Hyperparameter sensitivity

We conduct a sensitivity analysis on the main hyperparameters which influence the com-
plexity of DBGSL. In particular, for the dynamic graph learner FθG(·) we vary window
length P , window stride S, embedding size KE , and number of layers LG. On the other
hand, for the dynamic graph classifier FθC (·) we vary number of layers LC and number of
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features KC . For each experiment, we change the parameter under investigation and fix
other parameters to their optimally tuned values.

Figure 3: Sensitivity analysis results on HCP-Rest and HCP-Task. Results are mean
plus/minus standard deviation across five runs.

Results Figure 3 shows the results of the hyperparameter sensitivity analysis. On both
HCP-Rest and HCP-Task we see that increasing window length P decreases accuracy which
we attribute to the fact that more data within a window makes it harder for the dynamic
graph learner to identify fast changes between brain regions that are task discriminative.
A similar relationship holds for increasing window stride S due to the loss of information
among contiguous regions of BOLD signals when building dynamic graphs. Furthermore,
increasing the depth of information propagation beyond 3 hops in the dynamic graph clas-
sifier decreases performance as shown by the number of layers LC . Finally, increasing the
number of layers LG and embedding size KE in the graph learner as well as the number of
features KC in the graph classifier each show diminishing returns for performance gains.

Appendix E. Interpretability analysis

Figure 5 shows an example dynamic adjacency matrix from a dynamic brain graph learnt
by DBGSL A1:T compared to a dynamic FC matrix calculated using Pearson correlation
AC

1:T following Calhoun et al. (2014).
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Figure 4: Almost stochastic order (ASO) test scores for the sex classification task on HCP-
Test and HCP-Task. ASO scores are expressed as εmin at α = 0.05 significance
level adjusted for multiple comparisons using the Bonferroni correction. Read
from row to column e.g. for HCP-Rest accuracy (top left) DBGSL (row) is
stochastically dominant over STAGIN (column) with εmin of 0.01.
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Figure 5: Dynamic FC matrix calculated using Pearson correlation AC
1:T (normalized to

[0, 1]) and dynamic adjacency matrix learnt by DBGSL A1:T , using the same
BOLD signals from HCP-Rest and a window size and stride of P = 50 and
S = 3, respectively.

E.1. Sex-discriminative brain regions

We provide further details on the sex-discriminative brain region scores from Figure 2
in Tables 4-9. All brain regions and their respective MNI coordinates are taken from
the Brainnetome atlas (Fan et al., 2016). Brain regions are further grouped into intrinsic
connectivity networks from Yeo et al. (2011) as well as lobe and gyrus (the outermost layer
of the brain).
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Lobe Gyrus (hemi-
sphere)

Region MNI (x, y,
z)

Score

Limbic lobe Cingulate gyrus
(left)

A23d dorsal area 23 -4, -39, 31 0.93

Frontal lobe Middle frontal
gyrus (left)

A8vl ventrolateral area
8

-33, 23, 45 0.92

Frontal lobe Superior frontal
gyrus (right)

A10m medial area 10 8, 58, 13 0.87

Frontal lobe Superior frontal
gyrus (right)

A9l lateral area 9 13, 48, 40 0.85

Temporal lobe Middle temporal
gyrus (right)

A21r rostral area 21 51, 6, -32 0.83

Temporal lobe Posterior superior
temporal sulcus
(left)

rpSTS rostroposte-
rior superior temporal
sulcus

-54, -40, 4 0.82

Temporal lobe Middle temporal
gyrus (left)

A21c caudal area 21 -65, -30, -12 0.81

Temporal lobe Superior tempo-
ral gyrus (right)

A22r rostral area 22 56, -12, - 5 0.72

Frontal lobe Inferior frontal
gyrus (right)

A45c caudal area 45 54, 24, 12 0.72

Frontal lobe Orbital gyrus
(left)

A12/47o orbital area
12/47

-36, 33, -16 0.69

Parietal lobe Precuneus (left) A31 Area 31 (Lc1) -6, -55, 34 0.23
Limbic lobe Cingulate gyrus

(right)
A32sg subgenual area
32

5, 41, 6 0.23

Table 4: Sex-discriminative brain region scores (normalized to [0, 1]) in the default mode
network (DMN) for HCP-Rest (top left Figure 2).
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Lobe Gyrus (hemi-
sphere)

Region MNI (x, y,
z)

Score

Temporal lobe Superior tempo-
ral gyrus (left)

A22c caudal area 22 -62, -33, 7 0.83

Parietal lobe Inferior parietal
lobule (right)

A40rv rostroventral
area 40 (PFop)

55, -26, 26 0.79

Frontal lobe Superior frontal
gyrus (right)

A6m medial area 6 7, -4, 60 0.78

Parietal lobe Postcentral gyrus
(right)

A2 area 2 48, -24, 48 0.77

Frontal lobe Precentral gyrus
(left)

A4t area 4 (trunk re-
gion)

-13, -20, 73 0.77

Frontal lobe Precentral gyrus
(left)

A4ul area 4 (upper limb
region)

-26, -25, 63 0.73

Parietal lobe Postcentral gyrus
(left)

A1/2/3tru area 1/2/3
(trunk region)

-21, -35, 68 0.71

Parietal lobe Postcentral gyrus
(right)

A1/2/3tonIa area 1/2/3
(tongue and larynx re-
gion)

56, -10, 15 0.70

Temporal lobe Superior tempo-
ral gyrus (right)

TE1.0 and TE1.2 51, -4, -1 0.22

Table 5: Sex-discriminative brain region scores (normalized to [0, 1]) in the somatomotor
network (SMN) for HCP-Rest (top middle Figure 2).
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Lobe Gyrus (hemi-
sphere)

Region MNI (x, y,
z)

Score

Temporal lobe Posterior superior
temporal sulcus
(left)

Caudoposterior supe-
rior temporal sulcus

-52, -50, 11 0.72

Limbic lobe Cingulate gyrus
(right)

A24cd caudodorsal area
24

4, 6, 38 0.70

Frontal lobe Inferior frontal
gyrus (left)

A44v ventral area 44 -52, 13, 6 0.55

Frontal lobe Inferior frontal
gyrus (left)

A44op opercular area
44

-39, 23, 4 0.51

Limbic lobe Cingulate gyrus
(right)

A32p pregenual area 32 5, 28, 27 0.48

Frontal lobe Inferior frontal
gyrus (right)

A44v ventral area 44 54, 14, 11 0.47

Insular lobe Insular gyrus
(left)

dIa dorsal agranular in-
sula

-34, 18, 1 0.46

Frontal lobe Precentral gyrus
(right)

A4tl area 4 (tongue and
larynx region)

54, 4, 9 0.45

Table 6: Sex-discriminative brain region scores (normalized to [0, 1]) in the ventral attention
network (VAN) for HCP-Rest (top right Figure 2).
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Lobe Gyrus (hemi-
sphere)

Region MNI (x, y,
z)

Score

Temporal lobe Parahippocampal
gyrus (right)

TH area TH (medial
PPHC)

19, -36, -11 0.92

Occipital lobe Medioventral
occipital cortex
(left)

vmPOS ventromedial
parietooccipital sulcus

-13, -68, 12 0.91

Occipital lobe Medioventral
occipital cortex
(left)

rCunG rostral cuneus
gyrus

-5, -81, 10 0.88

Occipital lobe Medioventral
occipital cortex
(right)

rLinG rostral lingual
gyrus

18, -60, -7 0.58

Occipital lobe Lateral occipital
cortex (right)

OPC occipital polar
cortex

22, -97, 4 0.56

Parietal lobe Inferior parietal
lobule (left)

A39c caudal area 39
(PGp)

-34, -80, 29 0.55

Limbic lobe Cingulate gyrus
(right)

A23v ventral area 23 9, -44, 11 0.54

Parietal lobe Precuneus (right) dmPOS dorsomedial
parietooccipital sulcus
(PEr)

16, -64, 25 0.50

Occipital lobe Medioventral
occipital cortex
(right)

vmPOS ventromedial
parietooccipital sulcus

15, -63, 12 0.40

Temporal lobe Fusiform gyrus
(right)

A37mv medioventral
area 37

31, -62, -14 0.38

Temporal lobe Parahippocampal
gyrus (left)

TL area tl (lateral
PPHC, posterior
parahippocampa)

-28, -32, -18 0.37

Temporal lobe Fusiform gyrus
(right)

A37lv lateroventral area
37

43, -49, -19 0.37

Occipital lobe Medioventral
occipital cortex
(right)

rCunG rostral cuneus
gyrus

7, -76, 11 0.36

Occipital lobe Lateral occipital
cortex (right)

iOccG inferior occipital
gyrus

32, -85, -12 0.36

Temporal lobe Parahippocampal
gyrus (right)

TL area TL (lat-
eral PPHC, posterior
parahippocamp)

30, -30, -18 0.36

Table 7: Sex-discriminative brain region scores (normalized to [0, 1]) in the visual network
(VSN) for HCP-Task (bottom left Figure 2).
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Lobe Gyrus (hemi-
sphere)

Region MNI (x, y,
z)

Score

Subcortical nuclei Thalamus (right) mPMtha pre-motor
thalamus

12, -14, 1 0.72

Subcortical nuclei Thalamus (right) mPFtha medial pre-
frontal thalamus

7, -11, 6 0.66

Subcortical nuclei Thalamus (right) cTtha caudal temporal
thalamus

10, -14, 14 0.65

Insular lobe Insular gyrus
(left)

vIa ventral agranular
insula

-32, 14, -13 0.61

Subcortical nuclei Basal ganglia
(left)

vCa central caudate -12, 14, 0 0.60

Subcortical nuclei Basal ganglia
(left)

vmPu ventromedial
putamen

-23, 7, -4 0.46

Subcortical nuclei Basal ganglia
(right)

dlPu dorsolateral puta-
men

29, -3, 1 0.45

Subcortical nuclei Thalamus (right) Otha occipital thalamus 13, -27, 8 0.41
Limbic lobe cingulate gyrus

(left)
A24rv rostroventral
area 24

-3, 8, 25 0.36

Table 8: Sex-discriminative brain region scores (normalized to [0, 1])in the subcortical net-
work (SCN) for HCP-Task (bottom middle Figure 2).
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Lobe Gyrus (hemi-
sphere)

Region MNI (x, y,
z)

Score

Parietal lobe Superior parietal
lobule (right)

A5l lateral area 5 35, -42, 54 0.92

Frontal lobe Precentral gyrus
(right)

A6cvl caudal ventrolat-
eral area 6

51, 7, 30 0.51

Parietal lobe Superior parietal
lobule (left)

A7c caudal area 7 -15, -71, 52 0.50

Frontal lobe Superior frontal
gyrus (left)

A6dl dorsolateral area 6 -18, -1, 65 0.42

Temporal lobe Inferior temporal
gyrus (right)

A37elv extreme lat-
eroventral area 37

53, -52, -18 0.42

Parietal lobe Superior parietal
lobule (right)

A7r rostral area 7 19, -57, 65 0.41

Parietal lobe Inferior parietal
lobule (right)

A40rd rostrodorsal area
40 (PFt)

47, -35, 45 0.40

Temporal lobe Middle temporal
gyrus (right)

A37dl dorsolateral area
37

60, -53, 3 0.40

Table 9: Sex-discriminative brain region scores (normalized to [0, 1]) in the dorsal attention
network (DAN) for HCP-Task (bottom right Figure 2).
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