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Abstract

Classic methods to calculate molecular properties are insufficient for large amounts
of data. The Transformer architecture has achieved competitive performance on
graph-level prediction by introducing general graphic embedding. However, the
direct spatial encoding strategy ignores important inductive bias for molecular
graphs, such as aromaticity and interatomic forces. In this paper, inspired by
the intrinsic properties of chemical molecules, we propose a chemistry-guided
molecular graph Transformer. Specifically, motif-based spatial embedding and
distance-guided multi-scale self-attention for graph Transformer are proposed to
predict molecular property effectively. To evaluate the proposed methods, we
have conducted experiments on two large molecular property prediction datasets,
ZINC, and PCQM4M-LSC. The results show that our methods achieve superior
performance compared to various state-of-the-art methods. Codes are available at
https://github.com/PSacfc/chemistry-graph-transformer.

1 Introduction

Molecular properties prediction is one of the most critical tasks and plays a vital role in many
downstream applications, from material discovery to drug design. Classic techniques, such as Density
Functional Theory (DFT), are computationally too expensive to deal with large amounts of data.
As molecules and graphs share similar structures, it is natural to model molecules as graphs for
representation learning in deep neural networks. In particular, graph neural networks (GNNs) [1]
have achieved considerable progress in chemistry calculation [2]. However, standard GNNs in
the neighborhood aggregation paradigm suffer from limited discriminative power in distinguishing
high-order graph structures as opposed to some low-order motif. Moreover, when GNNs go deeper,
the over-smoothing [3] problem gets worse for the message passing paradigm.

Transformer [4] has achieved remarkable progress in multiple domains [5, 6, 7] and could become a
new powerful workhorse for graph representation learning. Recently, Graphormer [8] added a set of
graph spatial-related encodings into the vanilla Transformer and achieved impressive performance on
graph-level prediction tasks. EGT [9] added a dedicated pathway for pairwise structural information
and proposed Edge-augmented Graph Transformer. Although Graphormer has a clear advantage of
generality, spatial encoding strategy ignores some most important molecular properties that commonly
persist in nature, like aromaticity [10] and interatomic forces [11].

Aromaticity [12] is a property of cyclic molecular structure that gives highly increased stability and
completely different chemical properties. Aromatic rings exhibit robust stabilization and connectivity
with their delocalized pi-electron around the rings. As shown in Fig. 1, fluorine atoms (F) on C6F5OH
are strongly influencing the hydroxy group (OH) through the aromatic ring’s pi-electrons, causing
C6F5OH to be one of the most acidic phenols with pKa = 5.5, where pKa is the acid dissociation
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Figure 1: Aromaticity and acidicity.
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Figure 2: Lennard-Jones potential

constant. That lower value of the acid dissociation constant represents strong acid. However, for
C4F9OH with more fluorine atoms, the pKa is only 7.05 through regular bonds, and the connectivity
strength is simply determined by spatial distance. Inspired by this phenomenon, we propose a
motif-based shortest path distance (SPD) embedding following the inductive bias as the interaction
between atoms in a single aromatic ring is vital.

Interatomic forces are composed of attraction and repulsion. Interatomic forces can also be described
as potential energy. Lennard-Jones potential [13] is the simplest interatomic interaction model widely
used:

VLJ(r) = 4ε[(
σ

r
)12 − (

σ

r
)6], (1)

where r is the distance between atoms. As shown in Fig. 2, different distance scales lead to different
kinds of forces. Two atoms repel each other at a close distance and attract each other at a further
distance. Thus, motivated by multi-scale self-attention [14], we propose a distance-guided multi-scale
self-attention for molecular graphs.

In this paper, we propose a chemistry-guided molecular graph Transformer. Inspired by Graphormer,
we take nodes in a graph as tokens fed into Transformer and propose two components to help
represent molecule graphs more naturally with chemical intuition. Firstly, we redefine distance
embedding related to connectivity and propose motif-based spatial embedding to explicit model
molecular aromatic. Secondly, we propose a distance-guided multi-scale self-attention. Only node
pairs under specific distance scales participate in attention bias calculation for each Transformer layer.
We have conducted extensive experiments on molecular property prediction datasets, including ZINC
[15] and PCQM4M-LSC [16]. The results show that our methods achieve superior performance
compared to state-of-the-art methods.

2 Preliminaries

Notations An undirected graph can be denoted as G = (V,E) where V = {v1, v2, ..., vn} is the
node set, n = |V | is the number of nodes and E is the edge set. Let X = {x1, x2, ..., xn} be the
node feature set where xi is the feature associated with node vi.

Transformers Multi-head self-attention is the main component of Transformer. Let H ∈ Rn×d

denote the input, where d is the hidden dimension. The self-attention module projects the input H into
three matrices Q,K, V by three parameter matrices WQ ∈ Rd×dQ ,WK ∈ Rd×dK ,WV ∈ Rd×dV .
These three matrices are projected back to each position by WO ∈ RhdV ×d where h is the number of
heads. The multi-head self-attention can be formalized as follows:

MultiHead(H) = [head1, head2, ..., headh]W
O, (2)

headi = softmax(Ai)Vi, (3)

Ai =
QKT

√
dK

, (4)

Q = HWQ,K = HWK , V = HWV . (5)

2



1

0

0 0

0

0 0
1
CH3

CH3

BCC

1

1

1 1

1

1 1
1
CH3

CH3

4 2

BCC

(a) Atom-based SPD (b) Motif-based SPD

Figure 3: Atom-based SPD vs. motif-based SPD.

Apart from the self-attention module, a position-wise feed-forward network (FFN) is also one of the
key components in Transformer. Let Hl be the hidden state of the lth layer, Hl+1 can be calculated
as follow:

Hl+1 = LayerNorm(Zl + FFN(Zl)), (6)
Zl = LayerNorm(Hl +MultiHead(Hl)), (7)

where LayerNorm(·) represents layer normalization in [17].

3 Methods

In this section, we redefine distance according to connectivity and propose motif-based spatial
embedding as the bias of self-attention in each layer. Then, we propose distance-guided multi-scale
self-attention in each token that pays attention to different distance scales in different layers. In
addition to these methods, we utilize centrality encoding, and edge encoding in Graphormer [8] for
augmenting structural information.

3.1 Motif-Based Spatial Embedding

We suppose the function distance between node pairs within a strong connectivity component is
smaller than its counterpart between node pairs among unconnected components. It is guided by
the vital concept of aromaticity in chemistry. In chemistry, aromaticity is a property of cyclic and
planar molecular structures with pi bonds in resonance that gives stronger stability than saturated
compounds and other geometric non-cyclic arrangments with the same set of atoms. The delocalized
electrons will significantly impact the molecular property as a whole other than on the individual
atom that consists of the molecule. Because most aromatic components in molecular graphs are
rings, we consider using a bi-connected component (BCC) [18] of an undirected graph to label such
inductive bias. The bi-connected component is a sub-graph in which any cut of edges has no influence
on whether it is connected. We use a shared shortened distance embedding to model the effect of
delocalized electrons on the individual atoms of aromatic rings. As in Fig. 3, the benzene ring is
regarded as a bi-connected component. The distance between carbons of methyl groups reduces from
4 to 2.

Firstly, for graph G(V,E), bi-connected components are found by [18]. Then, all nodes in a single bi-
connected component are treated as a single node to construct a new acyclic graph Gbcc(V bcc, Ebcc)
and disbcc(s, t) represents the SPD between vbccs and vbcct . Thus, for nodes vi ∈ vbccs and vj ∈ vbcct ,
the motif-based SPD dismotif (i, j) can be calculated in Eq. 8 as follows:

dismotif (i, j) =

{
0, s = t

disbcc(s, t), s ̸= t
. (8)

Finally, for self-attention of hth head Ah, motif-based spaial embedding utilizes motif-based SPD to
calculate embedding and serves as a bias term:

Ãh(i, j) = Ah(i, j) + emb(dismotif (i, j)). (9)
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Figure 5: Distance guided multi-scale self-attention.

Structural Debilitating Problem For data with solid connectivity, structural information debilitating
problem is introduced. To analyze the problem, we split ZINC (the complete details are provided
in the section of experiments) by the diameter of the motif-based graph. The diameter of the graph
means the maximum SPD of all node pairs. As results shown in Fig. 4, the performance in small
diameter is relatively poor.

3.2 Distance Guided Multi-Scale Self-Attention

To eliminate structural debilitating and utilize interatomic forces, we introduce multi-scale self-
attention. However, unlike NLP tasks, the distance between graph nodes is not regular as tokens
in a sequential language signal. Thus, multi-scale self-attention [14] is not directly applicable to
graph-related tasks. Distance-guided multi-scale attention is then proposed to tackle this problem,
and heads in different layers work on various scales.

As shown in Fig. 5, the interaction between weakly connected pairs with farther distances is ignored.
Thus, for a single head, we remove distance-related terms in the attention matrix when the distance
between nodes exceeds ωmulti:

Ãmulti
h (i, j) =

{
Ãh(i, j), disbcc(s, t) ≤ ωmulti

Ah(i, j), disbcc(s, t) ≥ ωmulti . (10)

Since scale selection is essential to capture hierarchical information, we design a Fibonacci scale
distribution from the intuitive graph perspective. Let L(L ≥ 2) denote the number of total layers and
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the distance scale of lth layer ωmulti
l is computed as follow:

ωmulti
l = S · zl

max(z)
, (11)

zl =

{
α · zl+1 + (2− α) · zl+2, l/k < L/k − 1

2, l/k = L/k − 1
1, l/k = L/k

, (12)

where α(0 ≤ α ≤ 2), S and k are hyper-parameters. Here α controls the scale distribution, S
controls the maximum scale size, and k represents that two adjacent k layers share the scale size.

4 Experiments

In this section, we conduct experiments on two molecular property prediction datasets, ZINC [15] and
OGB-LSC [16]. Then, we provide ablation studies to demonstrate the significance of each proposed
component. Finally, we analyze that distance-guided multi-scale self-attention effectively eases the
debilitating structural problem.

Datasets ZINC is one of the most popular real-world molecular datasets of 250K graphs. Similar to
benchmark [19], we choose the subset (12K) to regress molecular constrained solubility. In KDD Cup
2021, OGB-LSC was provided to the community to encourage the development of state-of-the-art
graph ML models for sizeable molecular graph datasets. The graph regression challenge of OGB-LSC,
PCQM4M-LSC, is a quantum chemistry dataset containing 3.8M molecular graphs. Specifically, the
task is to predict the HOMO-LUMO energy gap of molecules given their 2D molecular graphs.

4.1 Graph Representation

Baseline We benchmark our model with various GNNs such as GCN [20], GAT [21], GIN [22] and
MoleculeX [23]. In addition, we compare the recently proposed random walk-based method CRAWL
[24]. Especially, Transformer-based model SAN [25] , GT[26] and the challenge winning solution
Graphormer [8], is also compared.

Settings For both training procedures, we use Adam as the optimizer and adopt several warm-up
steps followed by a linear decay learning rate scheduler. For the ZINC dataset, the large model is not
encouraged. Thus parameters of the model are limited to under 500K. And we conduct experiments
with training procedures under 4 different seeds. The detailed experimental settings are shown in
Table 1.

Table 1: Experimental settings.

ZINC PCQM4M-LSCSMALL PCQM4M-LSC

#Layers 12 6 12
Hidden Dimensions 80 512 768

FFN Inner Dimension 80 512 768
#Attention Heads 32 32 32

Maximum Scale Size 8 15 15
#Adjacent Scale Groups 2 1 2

Scale Distribution Weight 1 1 1
Max Steps 400K 1M 1M

Max Epochs 10K 300 300
Learning Rate 3 · 10−4 3 · 10−4 2 · 10−4

Batch Size 256 128 128
Warm-up Steps 40K 60K 60K
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Table 2: Results on ZINC dataset. Red: best
model, Violet: SOTA baseline model

Methods #param Test MAE

GIN [22] 509, 549 0.526± 0.051
GAT [21] 531, 345 0.398± 0.007
GCN [20] 505, 341 0.367± 0.011
MPNN [2] 480, 805 0.145± 0.007
PNA [27] 387, 155 0.142± 0.010
GSN [28] − 0.101± 0.010

CRAWL [24] − 0.085 ± 0.004
GT [26] 588, 929 0.226± 0.014

SAN [25] 508, 577 0.139± 0.006
Graphormer [8] 489, 321 0.122± 0.006

EGT [9] − 0.108± 0.009

Ours 419, 729 0.085 ± 0.003

Table 3: Results on PCQM4M-LSC dataset. Red:
best model, Violet: SOTA baseline model.

Methods #param Valid MAE

GCN [20] 2.0M 0.1684
GIN [22] 3.8M 0.1536

GCN-VN [20] 4.9M 0.1510
GIN-VN [22] 6.7M 0.1396

DeeperGCN-VN [29] 25.5M 0.1398
MoleculeX [23] 34.1M 0.1278

GT [26] 0.6M 0.1400
GraphormerSMALL[8] 12.5M 0.1264

Graphormer [8] 47.1M 0.1234
EGT [9] 47.4M 0.1224

OursSMALL 12.7M 0.1245
Ours 47.3M 0.1223

Results Table 2 shows the performance on ZINC. It can be observed that our model surpasses most
models and approximates CRAWL with lower variance. Table 3 also summarizes performance on
PCQM4M-LSC and our model performs better than Graphormer [8] with similar parameter quantity.

4.2 Ablation Study

We perform a series of ablation studies on the ZINC dataset to illustrate each component’s effect in
the proposed methods. The results are shown in Table 4.

Spatial Embedding We compare atom-based spatial embedding to the proposed motif-based spatial
embedding. Although motif-based SPD introduces structural debilitating, it outperforms the vanilla
atom-based SPD. This phenomenon shows that motif-based SPD is suitable for molecular graphs,
and aromatic connectivity is vital for distance definition.

Multi-Scale Self-Attention To illustrate the importance of distance-guided multi-scale information,
we compare distance-guided multi-scale self-attention with complete scales in all layers. The result
shows that graph Transformer architecture with multi-scale self-attention yields a large margin of
performance improvement.

Table 4: Ablation study results on ZINC dataset.

Spatial Embedding Multi-Scale Test MAE
atom-based motif-based

✓ - - 0.122± 0.006
- ✓ - 0.098± 0.002
- ✓ ✓ 0.085 ± 0.003

4.3 Structural Debilitating Problem

We analyze the debilitating structural problem discussed above. We conduct ablation experiments
with models with and without multi-scale self-attention on different diameter graphs. The results in
Table 5, show that multi-scale self-attention significantly moderates the inconsistent performance
on various diameter graphs. Especially for shorter distances, with relatively more vital interatomic
forces, multi-scale self-attention achieves improvement more significantly.

5 Limitations

Although our methods achieve considerable progress, there are still some limitations. Firstly, we
merely treat all kinds of rings as bi-connected components. The chemical properties of aromatic rings
differ significantly from those of regular rings. Some sophisticated designs involving chemical bond
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Table 5: Multi-scale self-attention on different diameter graphs.

Multi-scale Diameter (MAE)
2 3 4 5 6 7 8 9 10

- 0.187 0.236 0.138 0.176 0.110 0.064 0.107 0.084 0.057
✓ 0.130 0.105 0.128 0.186 0.099 0.066 0.070 0.079 0.061

properties as filtering signals could help us separate those two cases and further improve our results.
Secondly, in our proposed methods, both edges represent the distance of a single unit, regardless of
their chemical bond type. Specifically, multi-scale self-attention is motivated by interatomic forces.
However, interatomic distance is related to bond length, bond angle, and dihedral angle [30], which
we did not introduce into our method.

6 Conclusions

This paper proposes a chemistry-guided transformer for the molecular graph forecasting task, which
achieves state-of-art performance. It can be seen as an example of how simple chemical intuitions can
significantly help us in chemical property forecasting tasks. To add chemistry-inspired inductive bias
into the graph Transformer, we propose a motif-based spatial embedding to represent aromaticity-
related connectivity. Moreover, we introduce a distance-guided multi-scale self-attention to consider
interatomic forces and eliminate the debilitating structural problem. Lastly, experiments show
that the proposed method considerably improves on two large benchmark datasets compared with
state-of-the-art algorithms.
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bourhood Aggregation for Graph Nets. In Advances in Neural Information Processing Systems (NeurIPS),
pages 13260–13271, 2020.

[28] Giorgos Bouritsas, Fabrizio Frasca, Stefanos P Zafeiriou, and Michael Bronstein. Improving graph neural
network expressivity via subgraph isomorphism counting. IEEE Transactions on Pattern Analysis and
Machine Intelligence (TPAMI), 2022.

[29] Guohao Li, Chenxin Xiong, Ali Thabet, and Bernard Ghanem. DeeperGCN: All you need to train deeper
gcns. arXiv preprint arXiv:2006.07739, 2020.

[30] Josef Michl. Organic chemical systems, theory. In Robert A. Meyers, editor, Encyclopedia of Physical
Science and Technology (Third Edition), pages 435–457. Academic Press, New York, third edition edition,
2003.

8


	Introduction
	Preliminaries
	Methods
	Motif-Based Spatial Embedding
	Distance Guided Multi-Scale Self-Attention

	Experiments
	Graph Representation
	Ablation Study
	Structural Debilitating Problem

	Limitations
	Conclusions

