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ABSTRACT

Reinforcement Learning (RL) has experienced great success in complex games
and simulations. However, RL agents are often highly specialized for a particular
task, and it is difficult to adapt a trained agent to a new task. In supervised learning,
an established paradigm is multi-task pre-training followed by fine-tuning. A
similar trend is emerging in RL, where agents are pre-trained on data collections
that comprise a multitude of tasks. Despite these developments, it remains an
open challenge how to adapt such pre-trained agents to novel tasks while retaining
performance on the pre-training tasks. In this regard, we pre-train an agent on
a set of tasks from the Meta-World benchmark suite and adapt it to tasks from
Continual-World. We conduct a comprehensive comparison of fine-tuning methods
originating from supervised learning in our setup. Our findings show that fine-
tuning is feasible, but for existing methods, performance on previously learned
tasks often deteriorates. Therefore, we propose a novel approach, Learning-to-
Modulate (L2M), that avoids forgetting by modulating the information flow of
the pre-trained model. Our method outperforms existing fine-tuning approaches,
and achieves state-of-the-art performance on the Continual-World benchmark. To
facilitate future research in this direction, we collect datasets for all Meta-World
tasks and make them publicly available.

1 INTRODUCTION

Reinforcement Learning (RL) has been instrumental in training agents capable of achieving notable
successes, both in simulation, and in the real-world (Silver et al., 2016; Vinyals et al., 2019; Berner
et al., 2019; Arjona-Medina et al., 2019; Bellemare et al., 2020; Degrave et al., 2022). However, such
agents are usually highly specialized and incapable of performing well outside of a narrowly-defined
task. Furthermore, adapting a pre-trained agent for a new task by fine-tuning usually results in
decreased performance on prior tasks. This effect is well-known in the literature as catastrophic
forgetting (McCloskey & Cohen, 1989).

A common paradigm to learn multiple tasks concurrently is multi-task learning (Caruana, 1997).
However, typically, not all tasks we want an agent to learn are available at training time. In this case,
new tasks must be learned in a sequential manner. Learning a new task ideally leverages knowledge
from previously learned tasks and does not adversely affect the performance on them. A promising
direction to obtain such agents is leveraging the Transformer architecture (Vaswani et al., 2017). Due
to its capability of disentangling tasks, induced by the multi-head attention mechanism, such models
excel at learning multiple tasks concurrently from large offline datasets (Lee et al., 2022; Reed et al.,
2022; Jiang et al., 2022; Brohan et al., 2022). We want to leverage this capability in RL, thereby
obtaining agents that can quickly learn new skills and tasks. However, it remains an open question
how new tasks and capabilities can be added to the repertoire of an agent, without adversely affecting
performance on previously learned tasks.

A common practice in supervised learning is to adapt pre-trained models to multiple downstream
tasks. Established approaches include parameter efficient fine-tuning (PEFT) (Houlsby et al., 2019;

∗Contact: schmied@ml.jku.at

1



Reincarnating Reinforcement Learning Workshop at ICLR 2023

Liu et al., 2022), and prompt-based tuning (PBT) approaches (Lester et al., 2021; Li & Liang, 2021).
Both PBT, and PEFT, incorporate a small set of new parameters to adapt a pre-trained model to new
tasks at minimum cost. Thus, these methods intrinsically avoid catastrophic forgetting. However, it is
unclear how well these methods can be adopted for training RL agents from offline datasets. Current
approaches to learn a wide range of tasks from offline datasets employ Behavioural Cloning (Bain
& Sammut, 1995), or upside-down RL (Schmidhuber, 2019; Srivastava et al., 2019). These works
include Multi-game Decision Transformers (MGDT, Lee et al., 2022), PromptDT (Xu et al., 2022),
Gato (Reed et al., 2022) and VIMA (Jiang et al., 2022), which only consider full fine-tuning (FT) or
PBT to adapt to new tasks.

Figure 1: Visualization of t-SNE clustering of
state embeddings for the first ten MT40 tasks. Sim-
ilar tasks are clustered together, while dissimilar
tasks are apart (legend is available in Appendix F).

Our goal is to identify methods that effi-
ciently adapt to new tasks, while maintaining
knowledge of prior tasks. We use the Meta-
World/Continual-World (Yu et al., 2020; Wol-
czyk et al., 2021) benchmark and conduct a com-
prehensive evaluation of methods for adapting
pre-trained Transformer models in an offline set-
ting (Levine et al., 2020). We first pre-train
a multi-task Decision Transformer (DT, Chen
et al., 2021; Lee et al., 2022) before adapting the
pre-trained model to new tasks using various FT,
PEFT, and PBT methods. We find that FT meth-
ods adjust well to new tasks, but performance
on previous tasks generally decreases. PBT, in
contrast, retains performance on previous tasks
but does not adapt well to new tasks. There-
fore, we propose a new approach, Learning-to-
Modulate (L2M), which is based on two recent
methods from NLP and computer vision. Our
method, L2M, learns a modulation pool that
consists of keys associated with learnable mod-
ulation vectors. Therefore, we assume that tasks
can be well discriminated, such that different
tasks leverage different modulation vectors. In-
deed, we observe such a clustering of tasks after
pre-training in the learned embedding layers (Fig. 1) of our model. We show that L2M is capable
of quickly adapting to new tasks, while maintaining performance on prior tasks. Moreover, L2M
introduces only 0.21% additional parameters per task relative to the full model parameters.

To summarize, we make the following contributions:

• We conduct a broad evaluation of fine-tuning, parameter-efficient fine-tuning, and prompting
methods for Transformers in RL.

• We propose L2M for efficient fine-tuning of a frozen pre-trained model by modulating
the information flow via learnable modulation vectors. On Continual-World, our approach
attains scores 27% higher than results in prior work, while merely adding 0.21% additional
parameters per task.

• We release a dataset of trajectories collected in the Meta-World benchmark.

2 METHOD

Based on fine-tuning approaches from the field of NLP, we design a method tailored towards
parameter-efficient task acquisition in Reinforcement Learning. Our aim is to avoid forgetting of
previously acquired tasks.

2.1 BACKGROUND

We assume a Markov decision process (MDP) represented by the tuple (S,A,P,R). S and A denote
state and action spaces, respectively, with states st ∈ S and actions at ∈ A at timestep t. The
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Figure 2: Illustration of L2M. (a) We construct a query qt by aggregating the embedded history of
state-tokens. (b) The query qt is matched with learnable keys in a modulation pool, which map to
learnable modulation vectors. We retrieve the modulation vectors with the highest similarity between
qt and every key in the modulation pool. (c) Retrieved modulation vectors modify the pre-trained
and frozen multi-task DT.

transition function P(st+1 | st, at) takes a state-action pair and yields a probability distribution over
next states. The reward function R(rt | st, at) maps a given state-action pair to a scalar reward rt.
In addition, we assume access to a dataset D = {τi} |Bi=1, where τi = (s0, a0, r0, . . . , sT , aT , rT )
represents a trajectory consisting of state-action-reward triplets and B defines the number of trajecto-
ries in D. Following Chen et al. (2021) and Lee et al. (2022), we augment each trajectory τi with
returns-to-go R̂t =

∑T
t′=t rt′ . We aim to find a policy πθ(at | st−K:t, R̂t−K:t, at−K:t−1, rt−K:t−1)

with parameters θ and context length K that maximizes the expected return.

2.2 TRAINING DATASET

We train all methods on the Meta-World/Continual-World (Yu et al., 2020; Wolczyk et al., 2021)
benchmark. This benchmark consists of 50 challenging robotic tasks, which we split into a set of
40 pre-training tasks and 10 evaluation tasks. In particular, we use Meta-World v2, instead of v1
used by Wolczyk et al. (2021), but will refer to it as Meta-World throughout this work. Details on
the tasks and differences between Meta-World v1 and Meta-World v2 are provided in Appendix A.
Meta-World comprises diverse tasks for robotic manipulation, such as grasping, manipulating objects,
opening/closing a window, pushing buttons, locking/unlocking a door, and throwing a basketball.
The state representation is similar across tasks to allow for transfer between them. The benchmark is
designed to evaluate the agent’s generalization ability to unseen tasks.

As Transformer-based methods in RL struggle with training in an online-setting, we collect datasets by
training task-specific agents on all Meta-World tasks. We generate a large dataset of 10K trajectories
for each of the 50 tasks1. The task-specific agents are trained via the Soft Actor Critic (SAC) algorithm
(Haarnoja et al., 2018). The datasets comprise the entire replay buffer of the task-specific agents.
Consequently, each dataset contains mixed behaviours, ranging from random to expert, depending on
the performance of the task-specific agent. We choose this collection scheme since prior work has
illustrated the benefits of training agents on data that comprises mixed behaviour (Lee et al., 2022).

Each pre-training dataset contains 10K trajectories of length 200, which amounts to 2 million
transitions per task, i.e., state-RTG-action-reward tuples. Over all MT40 tasks, we get 80 million
transitions (=320 million tokens) in total. For CW10, we follow the same procedure and obtain a
dataset consisting of 20 million transitions, which corresponds to 80 million tokens.

2.3 LEARNING-TO-MODULATE (L2M)

L2M combines ideas for parameter-efficient fine-tuning from the NLP literature and prompting
techniques from the computer vision literature. The first component, Infused Adapter by Inhibiting
and Amplifying Inner Activations ((IA)3, Liu et al., 2022), allows for PEFT by interleaving a pre-
trained model with modulation vectors that are tuned for each new task. The second component,

1Available at: https://github.com/ml-jku/L2M
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namely Learning-to-prompt (L2P, Wang et al., 2022c), learns a pool of prompts, such that each new
task maps to a different prompt that is prepended to the model input.

Similar to L2P, we define a modulation pool that contains a set of M keys, Kpool = {ki} |Mi=1. Each
ki is associated with a set of modulation vectors {lik,b, liv,b, liff,b} as values, for each layer block b of
a DT with B layer blocks, where lk ∈ Rdk , lv ∈ Rdv , and lff ∈ Rdff . dk, dv, and dff correspond
to the dimensions of the keys, queries, and feed-forward activations in the DT, respectively. Since
we follow a GPT-2-like architecture, dk = dv and dff = 4 ∗ dk. We interleave each Transformer
layer with separate modulation vectors, resulting in dk + dv + 4 ∗ dff learnable parameters per layer.
At time t, we compose all states in a trajectory τ into a matrix S≤t after they are processed via the
embedding layer of the DT. Subsequently, we reduce the matrix to a query vector qt ∈ Rdq by an
aggregation function g(·):

qt = g(S≤t) (1)
For the aggregation function g(·), we use mean-pooling by default. Further, we retrieve a set of
modulation vectors {ljk,b, l

j
v,b, l

j
ff,b} |Bb=1 by the maximum similarity between each k ∈ Kpool in

the modulation pool and the query qt at timestep t:
j = argmax

k∈Kp

sim(qt,k)n(k)
−1 (2)

In our case, sim(·, ·) corresponds to the cosine similarity and n(k)−1 represents the inverse selection
count for key k up to the current task. This way, we discourage that queries for different tasks attend
to the same key. Subsequently, we use {ljk,b, l

j
v,b, l

j
ff,b} |Bb=1 to modulate the attention mechanism in

the DT, as proposed by Liu et al. (2022):

(ljv ⊙ V )⊤softmax
(
β(ljk ⊙K)Q

)
(3)

Here, ⊙ corresponds to element-wise multiplication, and β = 1√
dk

. Also, Q, K, V refer to queries,

keys, and values in the self-attention, respectively. Further, ljff modulates the activations of the
position-wise feed-forward activations in DT. All modulation vectors are initialized to ones, and, thus,
the activations remain unchanged at the start of training. All keys in Kpool are initialized uniformly
between [−1, 1].

L2M unifies the benefits of both, (IA)3 and L2P in the RL setting. It assures high-performance and
few additional learnable parameters, while it avoids forgetting on the pre-trained tasks. Moreover, it
provides a simple task-matching mechanism and enables scalability to numerous tasks.

3 EXPERIMENTS

We use the Meta-World benchmark to conduct a broad evaluation of established fine-tuning techniques
in RL. We split the collected datasets into training and test sets. Particularly, we follow Wolczyk
et al. (2021) and split the datasets into 40 Meta-World tasks (MT40) and 10 Continual-World tasks
(CW10). The average performance of SAC across all tasks for MT40 and CW10 is shown in Table
1. Overall, 81% of all MT40 and 100% of CW10 tasks can be solved by the expert agent. More
details on the training procedure, including hyperparameters, success rate distributions, individual
task scores, and learning curves, are available in Appendix D.

First, we pre-train a DT on all MT40 datasets simultaneously, we refer to this as multi-task DT (see
Section 3.1). Next, we conduct a broad evaluation of different FT, PEFT and PBT methods to adapt
the pre-trained model to each of the CW10 tasks. We do not compare against meta-RL algorithms, as
Mandi et al. (2022) showed that FT approaches perform on-par or better on several tasks. Section 3.2
shows results for fine-tuning on all CW10 tasks individually. Finally, we show results for training
all methods in a continual RL setup, in which tasks are introduced sequentially (Section 3.3). Our
experiment setup is illustrated in Figure 9 in Appendix C.

We report IQM and 95% bootstrapped confidence intervals, as proposed by Agarwal et al. (2021)
(across 3 seeds per method and 50K bootstrap samples). In line with prior work on pre-trained
models in RL (Lee et al., 2022; Jiang et al., 2022), we train our methods offline via return-conditioned
upside-down RL to predict the next actions using the MSE loss. During evaluation, we set the target
return to the maximum observed return in the respective dataset. We also found that a constant proxy
of 2000 for the target return, yields similar performance.
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Dataset Success Rate Mean Reward
MT40 0.84 ± 0.34 1414.62 ± 439.39
CW10 1.0 ± 0.0 1540.49 ± 184.43

Table 1: Performance measures for data collection with SAC across MT40 and CW10 tasks. Mean
and standard deviation are shown.

3.1 PRE-TRAINING

We pre-train a multi-task DT on all 80 million transitions of the generated MT40 datasets. We use the
same underlying GPT-2-like network architecture as Lee et al. (2022). Implementation details and
hyperparameters are provided in Appendix E. The aim is to have a single agent that can perform all 40
tasks. We experiment with different model sizes, varying the number of Transformer layers, number
of heads per layer and embedding dimension (Table 5 and Figure 12 in the Appendix). We observe a
saturation in performance beyond a certain number of parameters. The best performing architecture
uses 4 layers, 8 heads and embedding dimension 512. We show strong performance (measured in
the success rate) on the MT40 pre-training tasks (81%), but poor zero-shot generalization on CW10
(10%) (see Table 5, Appendix E).

We analyse the learned representations of the model via t-SNE (Van der Maaten & Hinton, 2008).
Figure 1 illustrates emerging clusters of learned state embeddings for 10 tasks in MT40. We observe
decent task separation. Similar tasks are clustered together (e.g., button-press-v2 and button-press-
wall-v2), whereas dissimilar tasks are well separated (e.g., assembly-v2 and bin-picking-v2). We
repeat this analysis for other token types and a larger set of tasks in Figures 13 and 14 in the Appendix,
respectively. We give a detailed explanation of the clustering procedure in Appendix F.

3.2 SINGLE-TASK EXPERIMENTS

We evaluate the performance of various FT, PEFT and PBT strategies on CW10 in a single task
setup. Overall, we compare a total of 10 methods: (1) Full fine-tuning (FT), (2) FT of action head
(FT-head), (3) FT of last Transformer layer and action head (FT-last+head), (4) Adapters (Houlsby
et al., 2019), (5) (IA)3 (Liu et al., 2022), (6) Prompt-tuning (Lester et al., 2021), (7) Prefix-tuning
(Li & Liang, 2021), (8) P-tuning v2 (Liu et al., 2021b), (9) PromptDT (Xu et al., 2022), and (10)
VIMA (Jiang et al., 2022). A detailed list of hyperparameters and training details for each method
are provided in Appendix G. We fine/prompt-tune the pre-trained model for each task individually,
and the performance is aggregated over all 10 tasks. A more detailed description of each method is
available in Appendix B.

(a) (b)

Figure 3: (a) IQM and 95% CIs of success rates for single-task experiments on CW10. Models have
been pre-trained on MT40 and are then optimized for each CW10 task individually. We report the
IQM over all 10 tasks in CW10. (b) Success rate vs. fraction of trained parameters trained for various
fine-tuning techniques on single-task experiments on CW10.
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Figure 3(a), shows the results for all 10 methods. Fine-tuning-based approaches attain considerably
higher scores than prompt-tuning based approaches. This is expected, since FT utilizes the entire
model capacity to learn the new task, while there is no guarantee for preserving knowledge about
previously acquired tasks. Thereby, FT represents an upper bound in terms of performance. Adapters
achieve the second-highest scores on average, followed by (IA)3 and FT-last+head. Notably, regular
prompt-tuning (i.e., prepending learnable prompts to the input) performs worse than merely fine-
tuning the action head for each task.

We highlight the efficacy of the different methods by comparing the fraction of parameters trained
against attained performance (see Figure 3(b)). For visualization purposes, we do not show PromptDT,
since it does not introduce additional parameters and exhibits low performance. FT updates all
parameters, while Adapters update two orders of magnitude less parameters (2%). Notably, (IA)3,
trains approximately the same amount of parameters as Prompt-tuning (0.21%), but attains drastically
higher performance. This result indicates a trade-off between the number of trained parameters and
performance. This trade-off is particularly apparent in a multi-task setup, as the number of additional
parameters linearly scales with the number of new tasks to learn.

3.3 CONTINUAL-LEARNING EXPERIMENTS

Our goal is to adapt a pre-trained model to novel tasks, while mitigating forgetting of tasks learned
during pre-training. However, in practice it is unlikely that training data for all novel tasks is available
from the start but rather over time when new tasks are defined. Therefore, we adapt the pre-trained
model to the CW10 tasks in a sequential manner, as proposed by Wolczyk et al. (2021). Moreover,
we evaluate forgetting by measuring the performance on tasks acquired during pre-training after
fine-tuning on all 10 tasks.

Figure 4: IQM and 95% CIs of success rates for
CRL experiments on CW10. Models have been
pre-trained on MT40 and are then trained on the
tasks from CW10 sequentially. On each task, we
train for 100K steps and then move to the next task
in the sequence. We report the IQM over all 10
tasks in CW10.

We compare the following methods: Full fine-
tuning (FT), training task-specific action heads
(FT-head), and tuning the last layer and task-
specific action heads (FT-last+head). Addition-
ally, we augment the PBT methods of the pre-
vious section with a prompt pool as in L2P,
which enables learning of task-specific prompts.
We refer to these methods as L2P + Prompt-
tuning (L2P-PT), L2P + Prefix-tuning (L2P-
PreT), L2P + P-tuning v2 (L2P-Pv2), and L2P
+ VIMA (L2P-VIMA). We note that L2P-PT
reflects the original version of L2P proposed
by Wang et al. (2022c). Additionally, we com-
pare with two established methods from Con-
tinual RL, namely Elastic Weight Consolidation
(EWC, Kirkpatrick et al., 2017), and L2 (Kirk-
patrick et al., 2017). Moreover, we add another
implementation of L2M, which is equipped with
an oracle that provides information on what
task is currently being observed. In line with
Wolczyk et al. (2021), we use separate action
heads per task for L2P and L2M. We do not
show performance for Adapters and PromptDT.
PromptDT learns prompts during pre-training,
and thus, results in equal performance as for the
single-task setup. Adapters perform well in the single-task setting, but incur much more parameters
than L2M. For our 10 fine-tuning tasks, this amounts to approx. 20% of the parameters of the entire
model. To illustrate an upper bound of performance, we again add two multi-task baselines, which
train on all CW10 tasks simultaneously, either from scratch (FT-multi-task-scratch), or after the
pre-training stage (FT-multi-task-pre-trained).

We train each method for 100K steps per task in CW10. After every 100K steps, we switch the dataset
to the next in the task-sequence. We retain the same task sequence as Wolczyk et al. (2021) (see
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Figure 5: Learning curves for CRL experiments on CW10. On each task, we train for 100K steps
and then move to the next task in the sequence.

Appendix A), and evaluate after every 5000 updates. Further training details and hyperparameters are
shown in Appendix H.

In Figure 4, we show the success rates of all methods on CW10. In addition, in Figure 5 we present the
corresponding learning curves during training. L2M outperforms all other approaches on CW10 and
achieves an average success rate of 67% across all tasks. Adding a task oracle to L2M increases the
success rate to 77% and approaches the single-task performance of (IA)3 (84%). Similarly, as in the
single-task setting, L2P combined with different prompting approaches performs significantly worse
than L2M, except for L2P-Pv2 (55%). Interestingly, the established CRL method EWC performs
poorly, merely reaching 27% average success. Further, L2 reaches only 13% average success,
indicating that it learned a single task. Similar results for EWC were reported by Ben-Iwhiwhu et al.
(2022). To the best of our knowledge, the results of our method L2M are the highest reported results
on Continual-World v2 to date. Prior work reports average success rates of roughly 40% (Caccia
et al., 2022; Ben-Iwhiwhu et al., 2022).

In addition, in Table 7 in Appendix H we report forgetting and rewards obtained at the end of training.
As expected, FT and FT-last+head exhibit significant forgetting. Similarly, EWC suffers from a
strong forgetting effect. L2 does not exhibit any forgetting, as it only learned to perform a single task
in the first place. In contrast, FT-head reaches higher scores, indicating that the DT backbone learns
features that generalize across tasks during pre-training. The PBT-based approaches perform well
in terms of forgetting, however, achieve comparably low success rates. L2M achieves the highest
reward, while mitigating forgetting. Overall, the pre-trained multi-task baseline achieves the highest
success rate vs forgetting trade-off, which highlights the importance of the pre-training stage.

Figure 6: Performance on the MT40 pre-training tasks after fine-tuning on CW10.
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Finally, we evaluate performance on the MT40 tasks after fine-tuning. To remain task-agnostic
with L2M and L2P-based methods, we train a set of 40 keys for 50K steps on the same dataset as
used for pre-training. During fine-tuning, we concatenate this set of keys to the remaining keys in
the prompt pool. Figure 6 shows performance on the MT40 tasks. While multi-task FT achieves
strong performance on CW10, the performance on MT40 experiences a severe drop to 18%. In
contrast, L2M and L2P-based approaches maintain a similar performance level as prior to fine-tuning.
Although we add extra keys for the pre-training tasks, the performance of L2M, and L2P approaches
does not reach the performance after pre-training. We surmise this is due to conflation effects in the
prompt pool and aim to investigate that in more detail in future work.

3.4 ABLATIONS

Aggregation token. As specified in Section 2.3, we use embedded state-tokens aggregated
over the sequence as query for the prompt pool in L2M and L2P. This design choice is in-
spired by the observed task separation in the embedding layer after pre-training (see Figure 1).
We perform an ablation study on the choice of tokens representing the query (Figure 7). In-
deed, we observe that using the state-token results in the best performance, as it aids task sep-
aration. In contrast, using information of rewards or actions alone deteriorates performance.

Figure 7: Ablation on the aggregation token used
in L2M. Matching tasks based on state embed-
dings achieves the highest success rate.

Limited data. We repeat our main experiments
in a limited data regime. We reduce the dataset
size to 1%, 5%, 10% and 20% of the original
size, which amounts to 20K transitions (= 100
trajectories), 100K (= 500 trajectories), 200K (=
1000 trajectories), and 400K (= 2000 trajectories),
respectively. To account for the limited dataset
size, we also reduce the number of update steps
to 50K. In line with prior work in offline RL,
the limited datasets are subsampled uniformly
(Lee et al., 2022; Agarwal et al., 2020; Kumar
et al., 2020). Overall, we find that with fewer
data points, performance degrades (see Appendix
H). However, the overall performance ranking
remains the same.

Excluding modulation vectors. One important
design choice in L2M is the placement of the
modulation vectors lv , lk and lff . Therefore, we
conduct an ablation study in which we exclude
either of the three modulation vectors when fine-
tuning on CW10. In Figure 8, we present the results for all variants at the end of training. Removing
lv or lk results in similar performance as regular L2M. In contrast, removing lff results in worse
performance (45.5%). Indeed, when dropping lv and lff or lk and lff in combination, we also
observe a substantial decrease in performance. These findings suggest that modulating the attention
mechanism is not as important as modulating the position-wise feed-forward layer.

Pool size. By default, we use a pool size (Section 2) of 20 and 50 for L2M and L2P, respectively.
The size of the pool determines the potential overlap between task-specific prompts. Intuitively, a
larger pool should result in less forgetting. To investigate the effect of larger pool sizes, we conduct
ablation studies presented in Figures 19 and 20 in Appendix H. Indeed, we find that using a larger
pool size results in better performance for both L2P and L2M. Contrary, reducing the pool size results
in a severe drop in performance. L2M with pool size of 50 attains 76.7% average success rate, and
thus comes close to multi-task FT. However, increasing the pool size also increases the number of
additional parameters. Thus, the pool size trades-off performance and number of affordable additional
parameters.

Action head. Using separate action heads makes the method reliant on task information. Ultimately,
we aim for a CRL method that is task-agnostic. In turn, we conduct an ablation study with and
without separate action heads per task for L2M. We report our results in Figure 21 in Appendix H.
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Figure 8: Performance on CW10 when excluding either of the three modulation vectors lv, lff , lk
(or combinations thereof).

Indeed, we do not find a significant performance difference between L2M with and without separate
action heads. Thus, L2M is well suited for a task-agnostic setting.

4 RELATED WORK

Transformers in RL. Since the inception of Transformers (Vaswani et al., 2017) there has been a
widespread adoption of the underlying architecture in many areas of Machine Learning research such
as NLP (Devlin et al., 2019; Radford et al., 2019; Brown et al., 2020), computer vision (Dosovitskiy
et al., 2021; He et al., 2022; Radford et al., 2021; Fürst et al., 2022; Ramesh et al., 2021; Rombach
et al., 2022), speech recognition (Radford et al., 2022; Baevski et al., 2020) or video generation
(Ho et al., 2022; Singer et al., 2022). More recently, Transformers have found their way into RL.
Chen et al. (2021) introduced the Decision Transformer (DT), that obtained competitive results on
the offline RL benchmark D4RL (Fu et al., 2020). Similarly, Trajectory Transformer (Janner et al.,
2021) is based on GPT (Radford et al., 2018) and relies on dynamics modelling. Lee et al. (2022)
extended DT to a multi-game setup and learn to play 46 Atari games. Meanwhile, a variety of
DT-variants have been proposed (Zheng et al., 2022; Wang et al., 2022a; Shang et al., 2022; Meng
et al., 2021). Siebenborn et al. (2022) replace the Transformer in DT with an LSTM (Hochreiter &
Schmidhuber, 1997). PromptDT (Xu et al., 2022) demonstrated that prompting a pre-trained DT
model with expert trajectories can improve the agent’s ability to generalize to new tasks. However,
the tasks they consider do not differ substantially (e.g., running forward vs. backward). Jiang et al.
(2022) presented a prompt-based Transformer for robot manipulation, that integrates multi-modal
prompts via cross-attention. Furthermore, Reed et al. (2022) trained a Transformer that scaled to
over 600 tasks. Most recently, Brohan et al. (2022) presented a scalable Transformer for real-world
robotics manipulation. Other works use a Transformer backbone for history compression in online
RL (Parisotto et al., 2020; Paischer et al., 2022). Li et al. (2023) cover the landscape of Transformers
in RL in more detail.

Continual and multi-task RL. Many CRL methods were proposed for computer vision, but can
also be applied to a CRL setting. Early works include regularization approaches, such as EWC
(Kirkpatrick et al., 2017), Synaptic Intelligence (Zenke et al., 2017), Memory-aware Synapses
(Aljundi et al., 2018), Gradient Episodic Memory (GEM, Lopez-Paz & Ranzato, 2017) and A-GEM
(Chaudhry et al., 2019). Other approaches rely on adding new modules to existing architecture (Rusu
et al., 2016), iterative pruning (Mallya & Lazebnik, 2018), or improved exploration (Steinparz et al.,
2022). A number of approaches have been tested on the Continual-World benchmark (Wolczyk et al.,
2021), including 3RL (Caccia et al., 2022), ClonExSAC (Wolczyk et al., 2022) and Modulating
masks (Ben-Iwhiwhu et al., 2022). More recently, Wang et al. (2022c) introduce L2P, which learns to
prompt a frozen Vision Transformer (Dosovitskiy et al., 2021) and consistently outperforms prior
methods on a number of CL benchmarks. Other follow-up works that rely on a prompting mechanism
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for CL have been proposed (Wang et al., 2022b; Smith et al., 2022; Razdaibiedina et al., 2023).
Recent works provide a comprehensive overview of the field of CRL (Hadsell et al., 2020; Lesort
et al., 2020; Khetarpal et al., 2022; Baker et al., 2023).

Parameter-efficient fine-tuning and Prompting. Large-language models (LLMs) are pre-trained
on vast amounts of data Devlin et al. (2019); Radford et al. (2019); Brown et al. (2020). After
pre-training, it is desirable to specialize or fine-tune the foundation model (Bommasani et al., 2021)
to a downstream task. A common way is fine-tuning all network weights or a fraction thereof (e.g.,
last layer or head). Fine-tuning the entire network is costly and/or may not be practical for multi-task
settings. Parameter-efficient fine-tuning methods and prompt-based tuning offer attractive alternatives.
Houlsby et al. (2019) repurposed Adapter modules (Rebuffi et al., 2017) to interleave pretrained
Transformer layers. Variations thereof have been proposed (Bapna et al., 2019; Pfeiffer et al., 2021;
2020). Low Rank Adaptation injects trainable low-rank decomposition matrices into every layer of the
model (Hu et al., 2022). Liu et al. (2022) proposed (IA)3, which modulates the inner activation flow
of the Transformer layers by elementwise multiplication with learned modulation vectors. Prompt
tuning conditions a LLM by prepending learnable prompts to the embedded input sequence (Lester
et al., 2021). Similarly, prefix-tuning adds learnable prefix vectors to the keys and values of each
attention head input Li & Liang (2021). P-tuning v2, applies learnable prompts at each Transformer
layer, not just at the input layer (Liu et al., 2021b). Liu et al. (2021a) give a comprehensive overview
of prompt-based learning. Finally, a number of methods, such as Compacter (Karimi Mahabadi et al.,
2021) and UniPELT (Mao et al., 2022), combine ideas from both categories.

5 CONCLUSION

Adapting agents to new tasks, while preserving performance on previously learned tasks, remains
a major challenge towards more general RL agents. Consequently, we conduct a comprehensive
evaluation of established fine-tuning methods for Transformers in RL. We evaluate both how well
new tasks are learned and how strongly performance deteriorates on the pre-training tasks. While
standard fine-tuning of a pre-trained model adapts well to new tasks, it suffers from severe forgetting.
Prompt-based tuning techniques evade forgetting, while reaching lower performance on new tasks.
We propose a novel method, L2M, which performs well in both dimensions. L2M efficiently fine-
tunes the pre-trained model via learnable modulation vectors, and attains the best performance in
terms of reward and forgetting. Also, L2M scales well for learning multiple new tasks and can be
used in a task-agnostic manner.

Currently, our method uses a single set of modulation vectors for each task. In the future, we would
like to investigate the compositionality of learned modulation vectors across tasks. We envision that
associative memory methods, such as modern Hopfield networks (Ramsauer et al., 2021), which
are able to store large sets of information (Widrich et al., 2020) and retrieve combinations thereof,
will improve our method. We plan on incorporating such approaches in our method in future work.
Also, while our current model is able to solve 50 challenging robotics tasks, the diversity of the
training data is still modest. A number of additional offline datasets are available for RL (Fu et al.,
2020; Gulcehre et al., 2020; Lu et al., 2022). We aim to expand our work to more domains, such as
DMControl (Tassa et al., 2018), or Atari (Bellemare et al., 2013).
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transfer in continual reinforcement learning. arXiv preprint arXiv:2209.13900, 2022.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
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A ENVIRONMENTS

A.1 META-WORLD

For our experiments, we use environments from the Meta-World benchmark (Yu et al., 2020). Meta-
World tasks consist of a Sawyer robotic arm simulated using the MuJoCo physics engine (Todorov
et al., 2012). The set of all tasks in MT40 along with their descriptions are listed in Table 2.

The observation space is 39-dimensional. The first 18 dimensions the 3D position of the gripper,
1D normalized measure of gripper state, 3D position of the first object, 4D quaternion of the first
object, 3D position of the second object, 4D quaternion of the second object. The next 18 values
correspond to the same at the previous time step. The final 3 values correspond to the 3D position of
the goal. The action space is 4-dimensional, with all actions in range [−1, 1]. The first three action
dimensions correspond to the change in position of the gripper, and the final value represents the
normalized force applied by the gripper (Yu et al., 2020). For each environment, the reward functions
are manually engineered, and scaled to have a maximum value of 10 when the goal is achieved and a
minimum of 0. The exact definitions are provided in Yu et al. (2020).

A.2 CONTINUAL-WORLD

The Continual-World benchmark was proposed by Wolczyk et al. (2021) and is built on top of
Meta-World. Continual-World is a challenging CRL benchmark, and selects 10 of the 50 tasks
contained in Meta-World. The task sequence used in Continual-World is known as CW10:

hammer-v2, push-wall-v2, faucet-close-v2, push-back-v2, stick-pull-v2, stick-pull-v2, handle-press-
side-v2, push-v2, shelf-place-v2, window-close-v2, and peg-unplug-side-v2.

A.3 DIFFERENCE BETWEEN META-WORLD V1 AND V2 ENVIRONMENTS

Continual-World benchmark was published using v1 of Meta-World. However, in the meantime v2
has been released. While the v1 environments had a 9 dimensional observation space, the observation
space is 39-diemsional in v2. Another major change with the v2 environments is the introduction
of dense reward functions, that guide the agent along the sequence of tasks: caging, gripping and
moving in such a way that if at any point the agent fails, it will learn to try again. Further, the rewards
are designed to lie in [0, 10].

B PARAMETER-EFFICIENT FINE-TUNING AND PROMPTING

Fine-tuning. In full fine-tuning, the entire pre-trained model is trained on the new task. Other
common variations thereof are fine-tuning the action head, the last layer or both together, which is
also the choice in this work.

Adapters. The parameter efficient use of adapters for transfer in the context of Transformers was
proposed by Houlsby et al. (2019). The adapter consists of a down-projection, a non-linearity and an
up-projection along with a skip connection. Two Adapter modules are added to every Transformer
block. During training, only the Adapters (and optionally LayerNorms) are updated, while the rest is
kept frozen. This significantly reduces the number of parameters to train, while preserving the ability
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Task Description
assembly-v2 Pick and place a nut onto a peg.
basketball-v2 Pick and drop the ball into the basket.
bin-picking-v2 Pick a puck from one bin and place into another.
box-close-v2 Pick a lid and place on top of a box.
button-press-topdown-v2 Press a button from the top.
button-press-topdown-wall-v2 Press a button behind a wall from the top.
button-press-v2 Press a button horizontally.
button-press-wall-v2 Press a button behind a wall horizontally.
coffee-button-v2 Push a button for coffee.
coffee-pull-v2 Pull a mug from under the coffee machine.
coffee-push-v2 Push a mug below the coffee machine.
dial-turn-v2 Turn a dial by 180 degrees.
disassemble-v2 Pick up a nut out of a peg.
door-close-v2 Close a safe door.
door-lock-v2 Lock the safe door by rotating the lock counter-clockwise.
door-open-v2 Open a safe door.
door-unlock-v2 Unlock the safe door by rotating the lock clockwise.
drawer-close-v2 Close an open drawer.
drawer-open-v2 Open a closed drawer.
faucet-open-v2 Open a faucet by rotating it clockwise.
hand-insert-v2 Insert the gripper into a hole.
handle-press-v2 Press down on a handle.
handle-pull-side-v2 Pull a handle up sideways.
handle-pull-v2 Pull up a handle.
lever-pull-v2 Pull up a lever by 90 degrees.
peg-insert-side-v2 Insert a peg sideways into a hole.
pick-out-of-hole-v2 Pick a puck out of a hole.
pick-place-v2 Pick and place a puck at the goal spot.
pick-place-wall-v2 Pick and place a puck at a goal spot behind a wall.
plate-slide-back-side-v2 Slide a puck back, sideways out a goal.
plate-slide-back-v2 Slide a puck back out of a goal.
plate-slide-side-v2 Slide a puck sideways into a goal.
plate-slide-v2 Slide a puck into a goal.
reach-v2 Reach a goal position with the gripper.
reach-wall-v2 Reach a goal position behind a wall with the gripper.
soccer-v2 Push a ball into the goal.
stick-push-v2 Pick up a stick and use it to push an object.
sweep-into-v2 Sweep a puck into a hole.
sweep-v2 Sweep a puck off the table.
window-open-v2 Open a sliding window.

Table 2: MT40 environment descriptions. Adapted from (Yu et al., 2020).
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to adapt to new tasks. Houlsby et al. (2019) adapt a BERT (Devlin et al., 2019) model to 26 different
text classification tasks, while training only roughly 4% of the parameters and attaining almost the
same performance as full fine-tuning.

(IA)3: Infused Adapter by Inhibiting and Amplifying Inner Activations. (IA)3 was proposed by
(Liu et al., 2022) and discussed in more detail in Section 2.

Prompt-tuning. Lester et al. (2021) learn soft prompts to enable a frozen pre-trained GPT-3 (Brown
et al., 2020) model to generalize to downstream tasks. On tasks that involve domain shifts, prompt-
tuning reduces overfitting and may even outperform full fine-tuning. In prompt-tuning, the learnable
prompts are prepended to the input sequence, while the rest of the pre-trained model is kept frozen.
This allows to effectively factor out the learnable task parameters from the model parameters.

Prefix-tuning. Prefix-tuning (Li & Liang, 2021) is another PBT-approach. Similar to prompt-tuning,
prefix-tuning prepends learnable vectors (i.e., prompts) to the input. However, unlike in prompt-
tuning, the learnable prompts are prepended to the keys and values of the attention head input.
Therefore, prefix-tuning also incurs more parameters than prompt-tuning, but typically results in
better performance.

P-tuning v2. Liu et al. (2021b) proposed P-tuning v2 as a successor of prefix-tuning. Instead of
prepending continuous prompts only on the input layer, P-tuning v2 prepends them for every layer of
the pre-trained model. This simple modification results in more parameters, but better performance. In
particular, P-tuning v2 matches the performance of full fine-tuning on a number of NLP benchmarks
and is effective across model sizes (330M to 10B parameters).

PromptDT. PromptDT (Xu et al., 2022) showcases few-shot adaptation capabilities of a pre-trained
DT model on a number of MuJoCo tasks. In PromptDT the prompt is represented by an expert
trajectory. During pre-training, the prompts are embedded via a learnable prompt embedding layer.
As in regular prompt-tuning, the embedded prompts are prepended to the embedded input sequence.
However, the considered tasks do not differ substantially (e.g., running forward vs. backward) and
the PromptDT architecture requires changes to the pre-training stage.

VIMA. Jiang et al. (2022) presented VIMA, a prompt-based Transformer architecture for robot
manipulation. In particular, VIMA integrates multi-modal prompts via cross-attention layers and
operates on image-based inputs. The resulting architecture is capable of solving tasks like visual goal
reaching and one-shot video imitation.

EWC and L2. EWC (Kirkpatrick et al., 2017) is an established regularization-based technique
for continual learning. EWC helps to prevent forgetting of previous tasks when learning a new
task by protecting parameters that are important for previously learned tasks. EWC uses the Fisher
information matrix as a regularization term, which measures the sensitivity of each parameter with
respect to each task and, thus, indicates which parameters need to be protected. L2 is used as a
baseline in the original EWC publication (Kirkpatrick et al., 2017) and utilizes the L2 penalty to
protect previously learned weights.

C EXPERIMENT SETUP

In Figure 9, we illustrate our experiment setup. We pre-train a multi-task DT on all MT40 datasets
simultaneously (Section 3.1). Then we fine-tune the pre-trained model to 10 new tasks (CW10). We
compare the fine-tuning performance in two setups. First, in a single-task setup in which we adapt
the pre-trained model to each of the CW10 tasks individually (Section 3.2). Second, a continual RL
setup, in which tasks are introduced sequentially to the pre-trained model (Section 3.3).

D DATA COLLECTION

To collect datasets, we select SAC as our expert agent of choice (Haarnoja et al., 2018). On each
of the 50 tasks contained in Meta-World, we train a separate expert. We use the same network
architecture as Wolczyk et al. (2021), 4 linear layers with 256 neurons, LayerNorm (Ba et al., 2016)
after the first layer and LeakyReLU (Maas et al., 2013) activations, for both actor and critic. We
use α = 0.01 for the LeakyReLU instead of α = 0.2 used by Wolczyk et al. (2021), as this choice
performed better empirically. For each task, we train SAC for 2 million steps and record the entire
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Figure 9: Illustration of our experiment setup. First, we pre-train a multi-task Decision Transformer
on 40 Meta-World tasks (MT40). Then we fine-tune the pre-trained model to 10 new tasks (CW10).
Environment images are adapted from Yu et al. (2020).

Figure 10: Histogram for success rates over all tasks. The majority of all MT50 tasks can be solved
successfully at the end of training by single-task SAC, while on a minority of tasks the agents fails to
achieve successful completion.

replay buffer. For every 50 interaction steps, we perform 50 gradient steps using Adam (Kingma &
Ba, 2015)). We keep other parameters fixed at their default values in stable-baselines3. This
includes the learning rate of 3e−4, batch size of 256, discount factor 0.99, and automatic entropy
tuning. The target networks are synced after every update step with an update coefficient of 0.005.
We evaluate the current policy after every 10K interaction steps. Each evaluation run consists of 10
individual evaluation episodes, and scores are average over all 10 episodes. The success rates already
provide a measure of trajectory quality (TQ) for all individual datasets. Additional measures such as
state-action coverage (SACo) can also be computed (Schweighofer et al., 2022).

The final datasets, contains 2 million transitions (i.e., state-RTG-action-reward tuples). This amounts
to 100 million transitions in total for all 50 tasks (=400 million tokens), 80 million (=320 million
tokens) and 20 million (=80 million tokens) for MT40 and CW10, respectively. Each trajectory is 200
steps long, and thus each dataset consists of 10K trajectories. In Tables 3 and 4, we list the success
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Task Success Rate Mean Reward
assembly-v2 0.0 1206.9
basketball-v2 0.9 1375.95
bin-picking-v2 0.0 474.81
box-close-v2 0.0 759.15
button-press-topdown-v2 1.0 1299.24
button-press-topdown-wall-v2 1.0 1296.16
button-press-v2 1.0 1430.44
button-press-wall-v2 1.0 1508.16
coffee-button-v2 1.0 1499.17
coffee-pull-v2 1.0 1313.88
coffee-push-v2 0.6 508.14
dial-turn-v2 0.8 1674.29
disassemble-v2 1.0 1396.55
door-close-v2 1.0 1535.4
door-lock-v2 1.0 1712.65
door-open-v2 1.0 1544.32
door-unlock-v2 1.0 1733.64
drawer-close-v2 1.0 1845.92
drawer-open-v2 1.0 1710.65
faucet-open-v2 0.9 1727.98
hand-insert-v2 1.0 1607.17
handle-press-v2 1.0 1854.79
handle-pull-side-v2 1.0 1613.72
handle-pull-v2 1.0 1581.75
lever-pull-v2 1.0 1449.05
peg-insert-side-v2 1.0 1545.19
pick-out-of-hole-v2 1.0 1435.64
pick-place-v2 0.0 6.59
pick-place-wall-v2 0.1 702.59
plate-slide-back-side-v2 1.0 1766.24
plate-slide-back-v2 1.0 1773.56
plate-slide-side-v2 1.0 1663.35
plate-slide-v2 1.0 1667.35
reach-v2 1.0 1858.99
reach-wall-v2 1.0 1831.14
soccer-v2 0.4 445.84
stick-push-v2 1.0 1470.71
sweep-into-v2 1.0 1761.69
sweep-v2 1.0 1458.35
window-open-v2 1.0 1537.59

Average 0.84 ± 0.34 1414.62 ± 439.39

Table 3: Data collection on MT40.

rates and average rewards achieved on all MT40 and CW10 tasks, respectively. In addition, we show
the success rate distribution and the learning curves on all 50 tasks in Figures 10 and 11, respectively.
Across tasks, we observe notable differences in learning behaviour. The expert learns some tasks
already after a few thousand interaction steps. On others, it takes much longer, if the expert succeeds
at all. These differences in learning behaviour can be attributed to task difficulty. The harder the task,
the longer it takes the agent to discover successful behaviour. For example, it is easier to open a door
than to play basketball.
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Figure 11: Learning curves for data-collection runs on all MT40 tasks with SAC.

23



Reincarnating Reinforcement Learning Workshop at ICLR 2023

Task Success Rate Mean Reward
faucet-close-v2 1.0 1768.87
hammer-v2 1.0 1632.21
handle-press-side-v2 1.0 1842.17
peg-unplug-side-v2 1.0 1373.45
push-back-v2 1.0 1373.32
push-v2 1.0 1672.88
push-wall-v2 1.0 1594.37
shelf-place-v2 1.0 1376.92
stick-pull-v2 1.0 1344.29
window-close-v2 1.0 1426.45

Average 1.0 ± 0.0 1540.49 ± 184.43

Table 4: Data collection on CW10.

Layers Heads Embedding Dim Reward Parameters Success Rate Mean Reward
1 2 128 False 368K 0.62 1168.69
1 2 128 True 368K 0.55 1063.69
3 2 256 False 2.7M 0.81 nan
3 2 256 True 2.7M 0.75 nan
3 4 256 False 2.7M 0.78 1356.59
3 4 256 True 2.7M 0.79 1359.49
4 4 512 False 13.3M 0.75 nan
4 4 512 True 13.3M 0.77 nan
4 8 512 False 13.3M 0.8 1395.83
4 8 512 True 13.3M 0.81 1398.04
6 12 768 True 43.5M 0.8 1384.57

Table 5: Pre-training on MT40.

E PRE-TRAINING

We train our multi-task DT for a total of 1M update steps, with context length of 20 transitions (80
tokens). We use a learning rate of 3 · 10−4, 1000 linear warm-up steps, gradient clip of 0.25, weight
decay of 0.02, a batch size of 64 sequences, dropout of 0.2, and train using the AdamW optimizer
(Loshchilov & Hutter, 2018). We base our implementation on the DT version in Transformers,
and keep their default values for remaining parameters (Wolf et al., 2020) .

We use the same underlying GPT-2 like network architecture as Lee et al. (2022). We do, however,
not make use of the proposed expert-action inference mechanism, as discussed in Section 3.1. Instead,
we set the target return to the maximum return in the respective dataset and use a reward scale of 200
for all environments.

In Table 5 and Figure 12, we show the aggregate scores and learning curves across different model
architectures. We vary the number of layers, the number of heads, the embedding dimension and
whether reward conditioning is enabled. Overall, we do not observe considerable performance
differences. Only for small models (365K) performance degrades.

F TASK SEPARATION ANALYSIS

To better understand what the DT learns, we visualize token embeddings using t-SNE (Van der
Maaten & Hinton, 2008). First, we sample 256 state-RTG-action-reward sequences of length 20 (i.e.,
80 tokens) for each task and record the activations of each (frozen) Transformer block. For each
sequence, we then average the activations over the sequence. This can be done across the whole
sequence or individually per token-type (i.e., for states, RTGs, actions, rewards). Each token has the
same dimensionality. For the default multi-task DT model we use, the embedding dimension is set
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Figure 12: Learning curves for pre-training runs on MT40 with different architectural choices of
the Transformer network (L = # of layers, H = # of heads, E = embedding dimension, RC = reward
conditioned).

to 512. Thus, we end up with 256 512-dimensional vectors per task. We cluster all vectors using
t-SNE. We use 2 embedding-space dimensions, perplexity of 30, 10K optimization steps, and the
cosine distance.

In Figure 13, we show the t-SNE visualizations of all tokens combined, as well as for state, action,
RTG, and reward tokens individually on the first 10 tasks in MT40. For states and all tokens, we
observe good cluster separation. Also, for actions some clusters can be observed, but the overall
separation is worse. In contrast, for rewards and RTG, we do not observe distinct clusters. This is
expected, as we are only visualizing the embedding tokens. However, when moving up the layer
hierarchy, we also observe decent cluster separation for reward and RTG tokens.

In Figure 14, we present the t-SNE visualization for state tokens on the first 20 tasks in MT40. Here
we also observe good cluster separation.

G SINGLE-TASK EXPERIMENTS

We compare 10 different methods in this setting:

1. Full fine-tuning (FT)

2. FT of action head

3. FT of last Transformer layer and action head

4. Adapters (Houlsby et al., 2019)

5. (IA)3 (Liu et al., 2022)

6. Prompt-tuning (Lester et al., 2021)

7. Prefix-tuning (Li & Liang, 2021)

8. P-tuning v2 (Liu et al., 2021b)

9. PromptDT (Xu et al., 2022)

10. VIMA (Jiang et al., 2022)

On each task, we train for 100K update steps. Every 5000 update steps, we evaluate the fine-tuned
multi-task DT within the actual environment for 10 evaluation episodes and average performance
across each evaluation episode. The final performance scores are aggregated over all CW10 tasks.
We show the aggregated task performances in Table 6. In addition, we provide the respective learning
curves in Figure 15. We test for statistical significance at the end of the training via a one-sided
Wilcoxon rank-sum test (Wilcoxon, 1992) using a confidence level of α = 5%, and report the
p-values in parentheses. FT obtains the highest score of 92% average success across all CW10 tasks
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(b) States (c) Return-to-go

(d) Reward (e) Actions

(f) All

Figure 13: t-SNE visualization of state/RTG/action/reward embeddings in first Transformer block
for the first ten tasks in MT40.

26



Reincarnating Reinforcement Learning Workshop at ICLR 2023

Figure 14: t-SNE visualization of state token embeddings in first Transformer block for the first
twenty tasks in MT40.

Method Success Rate Mean Reward
FT 0.92 ± 0.15 1525.88 ± 207.45
FT-last+head 0.84 ± 0.22 1400.84 ± 373.35
FT+head 0.46 ± 0.3 860.87 ± 495.58
Prefix-tuning 0.66 ± 0.31 1158.22 ± 434.45
P-tuning v2 0.67 ± 0.35 1208.78 ± 485.07
Prompt-tuning 0.41 ± 0.43 817.2 ± 676.57
PromptDT 0.19 ± 0.01 389.53 ± 7.78
VIMA 0.79 ± 0.28 1365.88 ± 364.88
Adapters 0.88 ± 0.23 1455.27 ± 309.31
(IA)3 0.84 ± 0.28 1404.17 ± 362.49

FT multi-task-scratch 0.85 ± 0.07 1481.39 ± 66.03
FT multi-task-pre-trained 0.95 ± 0.02 1560.89 ± 19.71

Table 6: Aggregate scores for all single-task experiments on the full dataset.

and significantly outperforms all other single-task methods, except for Adapters (p = 0.49), (IA)3

(p = 0.26) and FT-last+head (p = 0.11).

The first 8 methods share the same pre-trained multi-task DT. PromptDT and VIMA require custom
changes to the pre-training stage, and we train separate models of the same scale for each. At
evaluation time, PromptDT is prompted with expert trajectories and, thus, does not require additional
learning. VIMA, requires custom designed prompts at training and evaluation time. However, these
do not exist in Meta-World (and notably most other benchmarks). In our version of VIMA, we
use expert prompts at training time. For learning new tasks with VIMA, we employ prompt tuning
for better performance, instead of expert prompts. In Table 6 we also provide the scores for two
multi-task baselines, which train on all CW10 tasks at once. The first multi-task model trains on all
CW10 tasks from scratch, the second multi-task model starts from the pre-trained MT40 model.

For FT variations and Adapters, we use a learning rate of 1e−4. For all other methods, we use a
learning rate of 1e−3. For Adapters, we employ a reduction factor of 16 for the down-projection. For
all prompt-tuning approaches, we use a prompt length of 25 and a dropout rate of 0.2. We found
these values to be optimal in preliminary experiments. For Adapters and (IA)3 we do not use Dropout
(Srivastava et al., 2014).
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Figure 15: Learning curves for single-task experiments on the full dataset aggregated over all CW10
tasks.

Figure 16: Learning curves for multi-task baselines on CW10, trained either from scratch or fine-
tuned from the multi-task DT trained on MT40.

G.1 MULTI-TASK TRAINING FROM SCRATCH VS. FROM PRE-TRAINED MODEL

In Table 6, we report the scores for model variants that train on all CW10 tasks at once in a multi-task
fashion. While the first one is trained from scratch, the second one starts from the pre-trained model
on MT40. In addition, we show the respective learning curves in Figure 16. The purpose of this
experiment is to better understand whether pre-training on MT40 helps for fine-tuning on CW10.
Indeed, we observe that the pre-trained model outperforms the learning curve of the model trained
from scratch (p = 0.092), and attains 10% higher scores. Notably, the pre-trained model reaches its
final performance only after a few thousand steps (first evaluation after 5000 steps).

H CL EXPERIMENTS

H.1 HYPERPARAMETERS

We compare 10 different methods in this setting:

1. Full FT,

2. FT of action head,

3. FT of last Transformer layer and action head,

4. L2P + Prompt-tuning,

5. L2P + Prefix-tuning,
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Method Success Rate Mean Reward Forgetting
FT 0.08 ± 0.01 219.32 ± 16.09 0.82 ± 0.33
FT-last+head 0.17 ± 0.02 308.57 ± 25.32 0.63 ± 0.3
FT-head 0.43 ± 0.04 832.3 ± 20.44 -
EWC 0.27 ± 0.02 525.31 ± 7.1 0.63 ± 0.35
L2 0.13 ± 0.03 290.36 ± 50.17 0.0 ± 0.03
L2P + prompt tuning 0.29 ± 0.03 607.94 ± 68.51 0.14 ± 0.2
L2P + prefix tuning 0.38 ± 0.03 747.68 ± 46.05 0.14 ± 0.19
L2P + P-tuning v2 0.55 ± 0.07 901.08 ± 116.05 0.17 ± 0.2
L2P + VIMA 0.25 ± 0.05 527.14 ± 92.92 -0.07 ± 0.1
L2M 0.67 ± 0.03 1117.68 ± 41.06 0.04 ± 0.08
L2M + oracle 0.77 ± 0.01 1277.99 ± 23.23 -

FT-multi-task-scratch 0.85 ± 0.07 1481.39 ± 66.03 -
FT-multi-task-pre-trained 0.95 ± 0.02 1560.89 ± 19.71 -

Table 7: Continual RL experiments on full dataset.

6. L2P + P-tuning v2,
7. L2P + VIMA,
8. EWC (Kirkpatrick et al., 2017),
9. L2 (as used by Kirkpatrick et al. (2017)),

10. L2M.

We train each method for 100K steps per task in CW10, with a batch size of 64. After every 100K
update steps, the policy switches to the next task in the sequence. We retain the same task sequence
as Wolczyk et al. (2021) and do not reset the optimizer at task switches. Again, we evaluate after
every 5000 update steps, but now evaluation is done on all 10 tasks. This results in 20K evaluation
steps per evaluation run (10 evaluation runs per task × 10 tasks). For all L2P-based approaches, we
use a prompt size of 25 and a prompt pool of 50 by default. For L2M, we use a pool size of 20. For
EWC, we tune the value of the penalty (Figure 23).

H.2 AGGREGATE RESULTS

We show the aggregate success rates, mean rewards obtained, and forgetting scores for all methods in
Table 7. All metrics are reported at the end of training. The forgetting scores are computed as defined
by Wolczyk et al. (2021). In Table 7, we also include the multi-task performance scores on all CW10
tasks (same as in Appendix G). Multi-task FT represents the upper bound in terms of performance.
L2M achieves the highest success rates and significantly outperforms all other considered methods,
except for L2P + P-tuning v2 (p = 0.1).

In Figure 17, we plot the performance against the percentage of parameters trained for each method.
Full fine-tuning, EWC and L2 update 100% of all parameters. For FT and L2, we observe poor
performance due to forgetting. EWC performs slightly better, yet suffers strongly from forgetting.
Similarly, FT of the last layer and action head performs poorly, while updating around 24.2% of all
parameters. FT of the action head only updates 0.61% of all parameters. Notably, L2M obtains the
best overall results while only requiring 4.28% additional parameters for all 10 tasks. In contrast, L2P
+ P-tuning v2 already incurs 14.1%. However, we note that for all L2P and L2M-based approaches,
the final percentage of parameters to store can be lowered. This is because not all parameters in the
prompt pool may be used and, thus, unused ones can be discarded.

H.3 AGGREGATION TOKEN ABLATION

For the main L2P and L2M results, we use embedded state-tokens aggregated over the entire sequence
as input to the task-inference mechanism. This design choice is inspired by insights gained from
the task separation analysis conducted in Section 3.1. Therefore, we conduct an ablation study on
this design choice in Figure 18. We compare state-tokens to using action-token, reward-tokens, and
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Figure 17: Performance vs. Percentage of parameters updated for CL experiments.
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Figure 18: Aggregation token ablation.

all tokens combined. Indeed, we observe that using the state-token outperforms using all tokens
(p = 0.05), action tokens (p = 0.05), and reward tokens (p = 0.038), as it aids task separation. In
contrast, using information of rewards or actions alone does not suffice.

H.4 POOL SIZE ABLATION

By default, we use a pool size of 20 and 50 for L2M and L2P, respectively. However, the size of the
pool determines how much potential overlap there is between selected prompts or modulation vectors.
A larger pool should result in less forgetting. To investigate this hypothesis, we conduct ablation
studies presented in Figures 19 and 20. Indeed, we find that using a larger pool size results in better
performance for both L2P and L2M. Conversely, a reduced pool size leads to decreased performance.
L2M with pool size of 50 attains 76.7% average success rate, and thus comes close to the upper
bound with task oracle. However, increasing the pool size also increases the number of additional
parameters. Thus, the pool size trades-off performance and number of additional parameters one can
afford.

H.5 ACTION HEAD ABLATION IN L2M

All experiments with L2M and L2P, we present in this work, use separate action heads per task,
following the standard setting by Wolczyk et al. (2021). Using separate action heads makes the
method reliant on task information. Ideally, a CRL method should be task-agnostic, i.e., able to
perform a task without being given prior information on what task has to be solved (He et al., 2019;
Zeno et al., 2021; Caccia et al., 2022). To investigate this, we conduct an ablation study with and
without separate action heads per task for L2M. We report our results in Figure 21. Indeed, we do
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Figure 19: Pool size ablation for L2M. (Pool size=100 needs to be rerun, runs were cancelled.)

Figure 20: Pool size ablation for L2P + P-tuning v2.

not find a significant performance difference between L2M with and without separate action heads
(p = 0.35). Thus, L2M is well suited for a task-agnostic setting.

H.6 EXCLUDING MODULATION VECTORS IN L2M

We conduct another ablation study for L2M, in which we exclude either of the three modulation
vectors lv, lk and lff , for keys, values and hidden activation in the pointwise feedforward block,
respectively. In Section, 3.3 and Figure 22, we already presented the main results of these experiments.
In Figure 22, we additionally provide the learning curves for all variations. Overall, we observed that
removing lv or lk results in similar performance as regular L2M across all CW10 tasks. We do not
find a significant difference between excluding either of them (p = 0.3). In contrast, removing lff

Figure 21: Head ablation.
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Figure 22: Excluding the modulation vectors lv , lk, or lff in L2M.

Figure 23: EWC ablation with different values for λ.

results in worse performance (45.5%). This indicates that lff is the most important component in
(IA)3, at least in our experiments. Indeed, when dropping lv and lff or lk and lff in combination, we
also observe a substantial performance decline. The opposite is true, when removing both lk and lv
while preserving lff . This variant performs better, but worse, than regular L2M.

H.7 LIMITED DATA ABLATION

In this ablation study, we analysed the effect of limited data on the performance of the compared
methods. Therefore, we created four data subsets containing 1%, 5%,10% and 20% of the original
dataset, respectively. We find that with fewer data points, performance degrades for all methods.
Nevertheless, the relative performance ranking of the considered methods remains unchanged.

H.8 EWC ABLATION

For EWC (Kirkpatrick et al., 2017), we compare different values for λ = {400, 1e4, 1e5, 1e6} . In
Figure 23, we show the learning curves for all variations. When using a small value for λ, we observe
strong forgetting, and, thus, poor overall performance. Only for λ = 1e6 we observe signs of learning
across tasks.
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Method Dataset fraction Success Rate Mean Reward Forgetting
FT-last+head 1% 0.04 ± 0.01 168.78 ± 24.25 0.54 ± 0.09
FT-head 1% 0.5 ± 0.06 949.78 ± 65.18 -0.03 ± 0.05
L2P + prompt-tuning 1% 0.29 ± 0.05 635.94 ± 96.58 0.08 ± 0.15
L2P + prefix-tuning 1% 0.35 ± 0.09 682.32 ± 154.63 0.11 ± 0.11
L2P + P-tuning v2 1% 0.43 ± 0.03 806.91 ± 103.69 0.14 ± 0.04
L2M + oracle 1% 0.54 ± 0.06 992.36 ± 106.87 0.03 ± 0.09
L2M 1% 0.49 ± 0.04 835.9 ± 100.89 0.0 ± 0.14

FT-last+head 5% 0.12 ± 0.05 279.37 ± 73.9 0.65 ± 0.05
FT-head 5% 0.49 ± 0.05 890.79 ± 52.18 -0.08 ± 0.08
L2P + prompt-tuning 5% 0.35 ± 0.09 629.52 ± 71.72 0.05 ± 0.09
L2P + prefix-tuning 5% 0.36 ± 0.1 657.16 ± 128.83 0.1 ± 0.12
L2P + P-tuning v2 5% 0.43 ± 0.08 769.63 ± 123.33 0.17 ± 0.07
L2M + oracle 5% 0.68 ± 0.08 1161.55 ± 119.87 0.02 ± 0.05
L2M 5% 0.57 ± 0.09 966.07 ± 154.02 0.01 ± 0.03

FT-last+head 10% 0.11 ± 0.04 249.32 ± 41.73 0.68 ± 0.05
FT-head 10% 0.45 ± 0.06 896.46 ± 83.57 0.03 ± 0.03
L2P + prompt-tuning 10% 0.32 ± 0.02 630.93 ± 76.26 0.04 ± 0.12
L2P + prefix-tuning 10% 0.38 ± 0.09 703.31 ± 100.46 0.15 ± 0.04
L2P + P-tuning v2 10% 0.49 ± 0.06 818.6 ± 55.46 0.17 ± 0.07
L2M + oracle 10% 0.72 ± 0.09 1202.89 ± 75.23 -0.01 ± 0.03
L2M 10% 0.55 ± 0.07 945.51 ± 162.3 0.05 ± 0.02

FT 20% 0.07 ± 0.06 182.86 ± 29.48 0.79 ± 0.03
FT-last+head 20% 0.19 ± 0.09 333.47 ± 58.62 0.65 ± 0.06
FT-head 20% 0.47 ± 0.04 856.58 ± 87.19 0.02 ± 0.03
L2p + prompt-tuning 20% 0.31 ± 0.06 618.33 ± 106.59 0.12 ± 0.07
L2P + prefix-tuning 20% 0.39 ± 0.09 694.06 ± 96.73 0.15 ± 0.13
L2P + P-tuning-v2 20% 0.39 ± 0.06 762.86 ± 71.23 0.22 ± 0.1
L2M + oracle 20% 0.73 ± 0.07 1214.22 ± 89.41 -0.02 ± 0.06
L2M 20% 0.66 ± 0.05 1066.36 ± 95.22 0.01 ± 0.05

Table 8: Continual RL experiments across dataset fractions. We compare 1%, 5%, 10%, 20%.
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