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ABSTRACT

Despite the successes of deep neural networks (DNNs) on a broad range of tasks
little has been understood of why and how they achieve such victories due to their
complex architecture and their opaque black-box training processes. With the
goal to unveil the mystery of DNNs, in this work, we propose a general frame-
work called Concept-Monitor to uncover the black-box DNN training processes
automatically for the first time. Our proposed Concept-Monitor enables human-
interpretable visualization of the DNN training processes and thus facilitates trans-
parency as well as deeper understanding on how DNNs function and operate along
the training iterations. Using Concept-Monitor, we are able to observe and com-
pare different training paradigms at ease, including standard training, finetuning,
adversarial training and network pruning for Lottery Ticket Hypothesis, which
brings new insights on why and how adversarial training and network pruning
work and how they modify the network during training. For example, we find that
the lottery ticket hypothesis discovers a mask that makes neurons interpretable
at initialization, without any finetuning, and we also found that adversarially ro-
bust models have more neurons relying on color as compared to standard models
trained on the same dataset.

1 INTRODUCTION

Unprecedented success of deep learning have lead to their rapid applications to a wide range of tasks;
however, deep neural networks (DNNs) are also known to be black-box and non-interpretable. To
deploy these deep neural network (DNN) models into real-world applications, especially for the
safety-critical applications such as healthcare and autonomous driving, it is imperative for us to
understand what is going behind the black box. There have been a proliferation of research efforts
towards interpretating DNNs and they can be mainly divided into two categories: the first approach
focuses on attributing DNN’s prediction to the importance of individual-input and identify which
pixels or features are important (Zhou et al., 2016; Selvaraju et al., 2019; Sundararajan et al., 2017;
Smilkov et al., 2017) while the other approach investigates the functionalities (known as concept) of
each individual-neuron (Bau et al., 2017a; Mu & Andreas, 2020; Oikarinen & Weng, 2022).

However, most of these methods only focus on examining a DNN model after it has been trained,
and therefore missing out useful information that could be available in the training process. For
example, for a deep learning researcher and engineer, it would be very useful to know:

What are the concepts learned by the DNN model and how has the DNN model
learnt the concepts along the training process?

The answer to the above question would be useful in two-fold: (i) it can shed light on why and how
DNNs can achieve great success, which could be helpful to inspire new DNN training algorithms;
(ii) it can also help to debug DNNs and prevent catastrophic failure if anything goes wrong.

Motivated by the above question, it is the main goal of this work to develop a novel framework
Concept-Monitor, which makes the black-box DNNs training process become transparent and
human-understandable. Our proposed Concept-Monitor is scalable and automated – which are
crucial to demystify the opaque DNN training process efficiently and help researchers better under-
stand the training dynamics of the model. More formally, in this paper we provide the following
contributions:
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• We propose a general framework Concept-Monitor, which is the first automatic and effi-
cient pipeline to make the black-box neural network training transparent and interpretable.
Our pipeline monitors and tracks the training progress with human-interpretable concepts
which provide useful statistics and insights of the DNN model being trained

• We develop a novel universal embedding space which allows us to efficiently track how the
neurons’ concepts evolve and visualize their semantic evolution through out the training
process without the need to re-learn an embedding space proposed in prior work.

• We provide four case studies to analyze various deep learning training paradigms, including
training standard deep vision models, the mysterious lottery ticket hypothesis, adversarial
robust training and fine-tuning on a medical dataset. With Concept-Monitor, we are able
to discover new insights into the obscure training process that helps explain some of the
empirical observations and hypothesis of the black-box deep learning through the lens of
interpretability.

Figure 1: Our proposed Concept-Monitor is automated, scalable, training-free and makes DNN
training process transparent and human understandable.

Figure 2: Visualizing the concept evolution of Neuron 256 (blue) and Neuron 479 in Layer 4 (purple)
for standard training of Resnet-18 model on Places365 dataset using Concept-Monitor

2 BACKGROUND AND RELATED WORKS

2.1 NEURON-LEVEL INTERPRETABILITY METHODS

Recently, there has been a great interest towards understanding deep neural network models at the
neuron-level, which is different from mainstream methods that focus on interpreting individual de-
cisions through the input features and pixels (Ribeiro et al., 2016; Lundberg & Lee, 2017; Selvaraju
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et al., 2019; Sundararajan et al., 2017). We call this new direction as neuron-level interpretability
methods and review the representative techniques below. To begin with, the techniques in this di-
rection can be briefly divided into whether it needs to collect a curated annotated concept dataset
to dissect DNNs. For the techniques that require a curated probing data labelled with pre-defined
concepts, classic methods in this category includes Network dissection and its variation (Bau et al.,
2017b; Mu & Andreas, 2020) as well as Test Concept Activation Vector and its variation (Kim et al.,
2017; Goyal et al., 2019; Ghorbani et al., 2019). The key idea of Network dissection is to identify
concepts of neurons by calculating an Intersection over Unit (IoU) score of intermediate activation
maps and pre-defined concept masks, while the key idea of Test Concept Activation Vector is to use
directional derivatives to quantify the model’s sensitivity to the pre-defined concepts.

However, one limitation of this type of approach is the need of a curated probing dataset annotated
with concept labels which may be expensive and time-consuming to collect. On the other hand, a
recent method Clip-Dissect (Oikarinen & Weng, 2022) addresses this challenge by leveraging the
paradigm of multi-modal model (Radford et al., 2021) and allows automatic identification of neuron
concepts without the need of collecting concept labelled data. We note that these techniques are
all compatible to our proposed Concept-Monitor to facilitate automatic concept monitoring on the
DNN training process. In our experiments, we demonstrated the versatility of our Concept-Monitor
by showing the results with different concept detectors in section 3.2 when we study standard DNN
training process.

2.2 UNDERSTAND DNN TRAINING DYNAMICS

Most of the existing research has been primarily focused on analyzing models after training instead
of investigating how the interpretation/concepts change during the training DNN process, which
is the main focus of our work. We note that there is a recent work Concept-Evo (Park et al., 2022)
having the same goal as ours, but their proposed method is very different from our Concept-Monitor
and their methods have some limitations as discussed below. First, their main idea is to learn a
universal semantic space for each neuron, using a base model and then project the target model to
this space, while we do not need to perform any training. For example, their embedding space uses a
base model (VGG19 trained on imagenet) to project target neurons, while we use a pre-trained CLIP
(Radford et al., 2021) text encoder to define a universal embedding space. Their methods would be
much expensive than ours as they have to redo the learning every time they change the base model
or the probing dataset. Second, the approach proposed in Concept-Evo does not associate human-
interpretable concepts to the neurons and thus human intervention is required to actually describe
each of the neuron, which is another heavy cost (especially when the model size becomes larger and
when the training epochs increase) and hard to automate. On the other hand, our method is fully
automated and can explicitly provide top k human-understandable concepts for a neuron, which is
another advantage of our Concept-Monitor.

3 CONCEPT-MONITOR: A NOVEL, SCALABLE AND AUTOMATED TOOL TO
DEMYSTIFY BLACK-BOX DNN TRAINING PROCESS

In section 3.1 we detail the key components in Concept-Monitor including the concept detector
and the universal embedding space. Next in section 3.2, we use Concept-Monitor to demystify the
standard training process of a deep vision model and discuss the results and insights.

3.1 CONCEPT DETECTOR AND A UNIFIED EMBEDDING SPACE

Concept Detector: The first part of our method is to use a concept detector (ϕ) to automatically
identify the concept of a neuron at any stage in the training. Given a set of concept words S and a
probing image dataset Dprobe, a concept detector ϕ would return a concept word wn for a neuron
n that maximally activates it. To achieve automatic concept monitoring of a DNN training process,
we use two automated neuron-level interpretability tools, Network Dissection (Bau et al., 2017a)
and CLIP-Dissect (Oikarinen & Weng, 2022) as the concept detectors in our experiment as a proof-
of-concept, and we note that Concept-Monitor is compatible with other neuron-level tools as well.
Although the technical approach of each concept detector is different, we can actually unify them as
a tool calculating a distance metric dni which quantifies neuron n’s association with the concept wi.
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For example, the distance dni in Network-Dissection (Bau et al., 2017a) is defined to be the IoU score
between activation maps and concept masks, while the distance dni in CLIP-dissect (Oikarinen &
Weng, 2022) is a measure of the similarity between concept activation matrix and neuron activation
maps. Based on this distance metric, we can also define interpretable neuron, which are the neurons
whose distance to the closest concept word is less than some threshold, i.e. min(dni ) < τ , where the
threshold τ is dependent on the concept detector ϕ.

Unified embedding space: The second part of our method is to define a unified embedding space
in order to visually track neurons’ evolution. Here we detail the steps to project a neuron n into our
unified embedding space.

Step 1: To start with, we use wi to denote the ith concept in the concept set S and use vi to denote
the associated text embedding where vi = f(wi) with f being the text encoder of a pretrained large
language model. We use {v1, v2, . . . , v|S|} as the basis of our semantic space and project neurons
on this space using a weighted linear combination of vi of the neuron’s top-k concept words.

Step 2: Let Wn = [wn
1′ , w

n
2′ . . . w

n
k′ ] be the list of top k concept words for neuron n. For each neuron

n, we can then calculate the embedding un using Equation (1) below,

un =

k∑
i=1

λn
i f(w

n
i′) (1)

where λn
i is the weight of the concept wi′ for describing the neuron n and depends on the

concept-detector used. For Network-Dissection, (Bau et al., 2017a), we use the distance vec-
tor dn = [−IoU1′ ,−IoU2′ , · · · − IoUk′ ], and for CLIP-Dissect (Oikarinen & Weng, 2022)
dn = [−h1′ ,−h2′ · · · − hk′ ] where h is the point-wise mutual information distance metric pro-
posed in the CLIP-dissect paper. We can then calculate λn

i by fitting a softmax distribution on the

corresponding (negative) distance vector have λn
i = e−di′/

k∑
j=1

e−dj′ . The pseudo code for calcu-

lating the unified embedding space is presented in Appendix Algorithm 1

Remarks:

1. Note that since our method is general, when using a new concept detector, we only need to
change the distance vector dn associated with that concept detector, which describes how
closely related a neuron is to a specific concept.

2. Another benefit of our unified embedding space is that we can project any general concept
word α into the same embedding space by calculating its text embedding f(α). This lets
us mark the embedding space with concept ”anchors” (see the red stars in Fig 3), which
are concepts that a researcher thinks would be represented in a well trained model. The
researcher can then track whether and which neurons are converging or diverging away
from those anchors giving useful feedback during training.

3. Unlike prior work Concept-Evo (Park et al., 2022) which requires training an embedding
space every time when a base model changes, our unified semantic space doesn’t need
to train a base model or learn the image embeddings. Please refer to Table 1 for full
comparison between our method and Concept-Evo (Park et al., 2022).

Method Training
Free

Automatic
Concepts

Embedding space
Tracking

Embedding space
anchors

Flexible probing
dataset

ConceptEvo No No Yes No No

Concept-Monitor Yes Yes Yes Yes Yes

Table 1: Comparison between our method and a recent work Concept-Evo (Park et al., 2022)
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3.2 CASE STUDY (I) MONITORING STANDARD TRAINING

Now we use Concept-Monitor to investigate standard training of ResNet-18 model on Places365
dataset. We investigate the concept evolution of neurons at different epochs in the training using the
proposed unified embedding space described in section 3.1.

Figure 3: Case study (I): Analysis of Resnet-18 model on Places365 dataset using Broden as the
Dprobe. The figure shows our embedding space at three different epochs where each gray dot rep-
resents a neuron in layer 4 of the model and red stars represent anchor words. It can be seen that in
Epoch 0 neurons are clumped and as the model trains they spread out over the semantic space. Neu-
ron 479 (purple) and neuron 256 (blue) are can be seen to converge to concept anchors ”windmill”
and ”field” consistent with the activation images in Fig 2

Figure 4: Case study (I) The number of interpretable neurons in each layer separated by the category
of concept they encode on y axis vs different layers of the model on x axis plotted for three different
epochs. We see that the number of interpretable neurons increase as the model trains and that layer
4 learns more high level features as compared to layer 2 and 3.

Results and observations. Our main goal is to inspect the training process and study how the
concepts evolve across training and whether there is a correlation between accuracy and concept
generalization. The main results are plotted in Figure 3 and we summarize three observations from
the standard training below:

1. Model learns to look at more complex features as training progresses. As shown in Figure
2, initially neuron 479 is maximally activated by images containing ”striped” pattern. As the
training progresses, we can see that it starts to learn to identify windmill structures at Epoch 5
and stays the same for the rest of the training. Another examples is neuron 256 which moves
from grid pattern like concept of ”anechoic chambers” to learning the detect a ”field road”.

2. Shallower layers are comparatively more likely to learn low-level features like material and
texture while deeper layers learn more nuanced object detectors. We consider the broad
categories of [Material, Texture, Object, Part, Scene] to group neurons. These labels were also
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used in the original Broden dataset to group the labels. We find that the categories Scene, Object
and Part to be concerned with higher level concepts like Fields and Windmills while Textures to
be concerned with concepts like Striped, Matted etc. From Figure 4, its evident that Layer 2 and
Layer 3 are learning a lot more low level information than Layer 4.

3. Concept diversity happens later in the training. Using the unified embedding space in Figure
3 we can see that the neurons are clumped together in the middle initially (Epoch 0) and as the
training progresses they spread out and hence learn more generalized concepts. This suggests
that at the initial stage of the training, only a limited number of concepts have been learned and
these concepts are similar (close in the embedding space).

Discussion: Using our method in standard training, we have seen a correlation between training
stage and interpretability of a model. We notice that for a well trained model there is a progression
from a low level concepts understanding to higher level conceptual understanding. We propose that
an inverse relation might help to improve the model training as well, i.e., a good progression of
concepts learnt might indicate a well trained model. Using our methodology, specifically tracking
the neuron concept evolution in the unified embedding space, deep learning researchers can metic-
ulously monitor and manage the status of DNN training e.g., they can pause training or modify
hyper-parameters when they see neurons grouping up or not spreading out in the semantic space.

Using another concept detector: We show that Concept-Monitor is able to work with a another
concept-detector like Network Dissection (Bau et al., 2017a) by analyzing the same Resnet-18 model
trained on Places365 dataset. Our results are in Figure 14 in Appendix C and we can see that the
observations are consistent across different concept detectors:shallower layers are more likely to
learn low-level features like texture and that model learns more complex features as the training
progresses. We also see the embedding space starting from a clump in the center for Epoch 0 and
then spreading out indicating the generalization of the concepts learnt.

4 CASE STUDIES OF OTHER TRAINING PARADIGMS

In this section, we show the Concept-Monitor is versatile and can be used to study various training
paradigms to gain insights into how and why they work. We also provide useful observations and
insights that could help future researchers better understand these training procedures.

4.1 CASE STUDY (II) LOTTERY TICKET HYPOTHESIS

Lottery Ticket Hypothesis (LTH) (Frankle & Carbin, 2018) is a popular method to prune deep neu-
ral networks without sacrificing their performance. In this case study, we use Concept-Monitor to
demystify the success behind LTH in a human understandable way. The main idea of LTH is to use
iterative magnitude pruning (IMP) to prune the model iteratively by repeating the steps of training,
pruning and rewinding to an initial epoch. LTH hypothesizes the existence of ”winning tickets” at
initialization which are sub-networks within the network that can be trained to performance equiv-
alent to the original model. However, it was observed that rewinding to initial weight leads to a
performance drop and it is better to rewind to an earlier training epoch instead of fully reversing to
the initial weights. (Frankle et al., 2019a) attribute this phenomenon to SGD noise in initial training
and we will use Concept-Monitor to investigate LTH through the lens of interpretability. We train
a ResNet18 on CIFAR 10 dataset using IMP in 8 stages. For full details on our experimental setup,
please refer to Appendix section A.

We study LTH with three different rewinding stages of IMP: rewinding to initial weights(epoch 0),
epoch 5 and epoch 16. We found rewinding to epoch 5 performs better than rewinding to epoch 0 and
epoch 16 when the sparsity level is high, which we attribute to be the two extremes of initialization
i.e, initialization to epoch 0 in which the model is too noisy or initialization to epoch 16 in which the
model has learnt a rigid structure which would need to be rewired by pruning. For instance, when
pruned to 2.8% of initial weights, rewind to epoch 5 has 93.78% accuracy as compared to 91.8%,
93.4% of rewinding to epoch 0 and epoch 16 respectively. Rewinding to 0 is inefficient as noted by
(Frankle et al., 2019b) and rewinding to epoch 16 doesn’t give the model much freedom to adjust
to the sparse weights. We use Concept-Monitor to track the training process of these 3 different
rewinding strategies and plot the results in Fig 5 and Fig 9 in the appendix.

Observations and Results:
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(a) Number of interpretable neurons
after rewinding to initialization

(b) Percentage of interpretable neurons retaining their
concept vs Top-x Percentile interpretable neurons

Figure 5: Interpretability statistics of our iteratively pruned ResNet-18.

In our analysis, we make the following observations:

1. Pruning the network learns to encode some concepts without any fine tuning. Figure 5a
shows the number of interpretable neurons in layer 4 of the model after rewinding to initializa-
tion. We notice the trend that for rewinding to epoch 16 and epoch 5, the number of interpretable
neurons decreases as we increase the sparsity, but for rewinding to the initial weights (epoch 0)
the number of interpretable neurons increase. Since the weights are randomly initialized, the
only way there can be a gain in interpretable neurons is through the changes that happen during
pruning, i.e. the zeroing out of certain weights in the network. Hence, we believe that there is a
possibility that the training is learning to remove connections that are harming the network and
this leads to the resultant network to be different than the original (with the only change being that
some weights are zero). This leads to some neurons being activated to certain low level concepts
and hence our observation of increased interpretable neurons. We note that this phenomenon was
also observed by another work (Zhou et al., 2019) which says that IMP zeros out weights that
would ultimately go towards zero anyway after training. Hence, they hypothesize that a pruned
initial network encodes a portion of the training process itself, which they refer to as ”masking is
learning”. This also explains why we see interpretable neurons with just pruned initial weights.

2. The percentage of concepts retained through pruning is highest with Epoch 5 rewinding.
Figure 5b plots the percentage of top-x percentile interpretable neurons that retain their concepts
throughout the pruning process (y-axis) vs x percentile (x axis). In other words it plots the
relation of the interpretability of a neuron to its concept retention.Note that, interpretablity of
neurons is dependent on the threshold defined by the concept detector (see section 3.1). We see
that for rewind to epoch 16 as we decrease the interpretability the percentage of neurons retaining
concepts increases, or the more interpretable neurons are likely to lose their concepts during IMP,
while the less interpretable neurons keep their concepts. For rewind to epoch 5 we see that the
more interpretable neurons keep their concepts and the retention decreases as the neurons become
less interpretable. This leads us to the hypothesis that rewinding to epoch 5 learns concepts that
are more general and hence are able to be retained, while rewind to epoch 16 learns concepts that
are rigid and the model has to relearn those concepts to preserve accuracy during pruning. This
effect is also shown in the accuracy of the models in which rewinding to epoch 5 performs better
than rewinding epoch 16 at higher pruning.

Discussion: From observation 1, we find that it is very likely that the lottery ticket sparse pruning
mask actually encodes learning, which was also suggested in (Zhou et al., 2019) as ”masking is
learning”. It is also noted from observation 2 that certain rewinding points are more suitable to
retain concepts, e.g. epoch 5 in our case, and there is a correlation between this and the model
performance as noted by the accuracy at higher sparsity.

4.2 CASE STUDY (III) ADVERSARIAL TRAINING

DNNs are known to be vulnerable against small perturbations in their inputs (Szegedy et al., 2013).
This is problematic as networks can fail unexpectedly after small random or adversarial perturbations
which raises concerns over their safety. Fortunately, methods have been developed to defend against
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adversarial attacks, most popular of these being Adversarial Training (Madry et al., 2018). This
successfully makes networks more robust against such attacks, but comes at a cost of degraded
performance on clean test data. In this study, we apply Concept-Monitor to adversarial training to
better understand how adversarial training changes a network and why standard accuracy suffers.
We analyse a ResNet18 model trained on CIFAR10 with and without adversarial training. For full
details on our experimental setup please refer to Appendix section A.

Observations and Results: Using Concept-Monitor we have the following three observations.

1. Adversarially robust network has less interpretable neurons in late layers, but more in
earlier layers. In Fig 6, we plot the number of interpretable neurons in layer 2-4 at three different
training stages. It can be seen at the end of training that 293 out of 512 of the layer 4 neurons
are interpretable for standard training while only 215 out of 512 are interpretable for the robustly
trained model. For layer 3 it is 91 out of 256 for standard model and 125 out of 256 for the robust
model. We observe similar trend for layer 2 neurons, please refer to Fig 16 in Appendix.

2. Adversarially robust network relies more on colors, less on materials and textures. When
combining concepts detected across 3 layers, we observe that the robust model has a lot more
”color” neurons than the standard model (74 vs 15) Figure 16. In contrast, the standard model
has 154 neurons detecting ”textures” while robust model has only 97, and standard model has 10
”material” neurons compared to only 2 of the robust model. This finding is sensible as detecting
textures and materials often relies on high frequency patterns that are easily affected by l∞ noise
therefore the adversarial training forces the model to rely less on them and more on more resilient
features like color.

3. Standard training learns neurons detecting target in the second to last layer while robust
training does not. As seen in Figure 7, the standard network has many neurons detecting its
target classes present in the second to last layer. For example, the standard network has 17
interpretable neurons detecting cars and 13 neurons detecting horses in layer4, while the robust
network has no layer4 neurons detecting either car or horse.

Discussion: We find that adversarial training harms the ability of the network to detect certain con-
cepts that rely on high frequency patterns like texture. Since these patterns are useful for many tasks,
losing them may be a significant cause for the degradation in standard performance as observed in
the experiments. Another cause for poorer performance of the robust network may be the lack of
neurons detecting target class objects in second to last layer, but why this happens is still unclear to
us. We believe addressing these two issues may be the key to improving clean accuracy of robust
models. On the other hand, the robust network seems to learn more interpretable lower level features
perhaps learning a more diverse representation similar to the findings of (Salman et al., 2020) who
showed that adversarially robust models have better features for transfer learning.

Figure 6: Comparison of the types of concepts learned by standard training compared to PGD-
training with ϵ=8/255. We can see the robustly trained model has less interpretable neurons, es-
pecially on later layers. Interestingly, there is also a big difference between the types of concepts
learned by different models where the PGD trained model still has neurons detecting colors in later
layers, while missing concepts detecting textures and materials. Note these figures are the network
at the end of each epoch, so epoch 0 is after one epoch of training, not initialization.

8



Under review as a conference paper at ICLR 2023

Figure 7: Example neurons detecting the common concepts in layer4 of ResNet-18 for both standard
and adversarial training. We can see a large difference between the types of concepts encoded, where
standard training learns many neurons already detecting CIFAR-10 classes such as horse or car, most
neurons in the robust model are detecting simple patterns like colors.
4.3 CASE STUDY (IV) FINE-TUNING ON A MEDICAL DATASET

Figure 8: Number of interpretable neu-
rons vs epochs

In this section, we use Concept-Monitor to observe the
fine-tuning of a pretrained DNN on a diabetric retinopa-
thy dataset (APTOS, 2019). This experiment allows us
to test our method on a dataset from a different domain,
as well as gather insights on the process of finetuning a
pretrained model. The setup details are in Appendix A.

Observations and results: We probed the model training
at a few intermediate steps. We observe that for the initial
weights, as the neurons are pretrained on Imagenet, they
show a lot of diverse and high level concepts(as shown
in Figure 15 in Appendix). However, as the training pro-
gresses we notice that more neurons are getting activated
by textural concepts like dots and patterns rather than ob-
jects. This is what we expect because as the model gets
better at classifying retinopathy images shown in Figure
11, we expect it to rely more on textures and presence of ”dots” which is consistent to what we
observe here as shown by the top interpretable neurons in epochs 20 and 40 in Figure 15. From
Figure 8 we see that the number of interpretable neurons in ”object” category decreases as the train-
ing progresses while the number of interpretable neurons in the ”material” category increases which
further confirms our theory that the model learns to focus more on lower level features like material
and textures as compared to objects.

5 CONCLUSIONS

We have presented Concept-Monitor, a novel method to automatically track and monitor neural
network training process in a transparent and human-understandable way. With the 4 comprehensive
case studies on various deep learning training paradigms, we show that Concept-Monitor allows
us to better understand the underlying mechanism of standard DNN training, the two alternative
training methods, Lottery Ticket Hypothesis and adversarial training, as well as the fine-tuning
on medical task. With Concept-Monitor we discover that surprisingly lottery ticket hypothesis
prunes the network in a way that the neurons are interpretable even at initialization, discovering
interpretability hidden in random initialization. Furthermore, we discover that adversarial training
causes the hidden neurons to detect more simple concepts like colors while losing representations
of materials and target class objects. We also test our method on medical dataset and find that the
model learns to focus more on low level features which reflect the medical dataset.

Reproducibility statement: We acknowledge the importance of replicating our experiments and
for that reason we have explicitly mentioned the implementation details of all our experiments in
Appendix A.
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APPENDIX

A. EXPERIMENTAL SETUP

Standard training (section 3.2):

Setup: We train a Resnet-18 model on Places-365 dataset, which contains a lot of diverse classes
allowing the DNN model to learn diverse concepts. To reduce the training time, we randomly
selected 1000 images for each of the 365 classes and trained for 30 epochs reaching top-1 accuracy
of 48.3%. We use batch size of 256 and an initial learning rate of 0.1 with cosine annealing scheduler.

Probing methodology: We use Broden (Bau et al., 2017a) dataset as Dprobe and use associated
concept labels as a decoupled concept set S. Our embedding space, as described in section 3.1,
is computed using CLIP’s text embeddings of Broden labels as a basis. For visualizing in a 2-
dimension plot, we follow (Park et al., 2022) and use UMAP dimensionality reduction (McInnes
et al., 2018), as it preserves inter-point distance in the lower dimensions. We set k = 5 in Eq(1), i.e.
we use top-5 concepts to compute the embedding.

Lottery ticket hypothesis experiments (section 4.1):

Figure 9: Analysing Layer 4 for Resnet-18 using IMP at different stages of pruning. We observed
IMP with rewinding to initial weights, epoch 5 and epoch 16. The top plot is the accuracy vs training
stages, The red dots represent accuracy after rewinding, the green dots represent accuracy after
finetuning and pruning. The bottom plot is the number of interpretable neurons found at different
training stages.

Setup: We train ResNet 18 on CIFAR 10 dataset using IMP as in the LTH paper (Frankle & Carbin,
2018), rewinding to different initial weights. For each stage of IMP we train the model for 160
epochs, prune 40% of the weights and rewind to initialization. We consider rewinding to three
different stages: initial weights, epoch 5 and epoch 16, using (Chen et al., 2022) implementation as
reference.

Probing methodology: For our Dprobe, we use CIFAR 100 training dataset and for concept set S we
use broden labels.

Adversarial Learning experiments (section 4.2):

Setup: We perform adversarial training with PGD attacks on a ResNet-18 architecture. We follow
reop (Wong et al., 2020) and train the network with ϵ = 8/255 and l∞ perturbations for 40 epochs.
We compare it against a CIFAR-10 network trained using the same exact training setup but no
adversarial training. The standard model reaches a final accuracy 94.29%, while the robust model
reaches 83.42% accuracy on clean data and 50.00% robust accuracy against a PGD adversarial attack
as shown in Figure 10. The standard model expectedly performs really badly on adversarial images.
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Figure 10: Accuracy vs Epoch for standard and
robust model

Figure 11: Sample images in the diabetic
retinopathy detection training dataset. The key
features (e.g. dots and texture) are being detected
by the interpretable neurons in Fig 15.

Probing methodology: We use Broden images as Dprobe and for concept set S we use the broden
labels as the concepts can be easily categorized.

Fine-tuning on medical dataset (section 4.3)

Setup: We used ResNet-34 backbone pretrained on ImageNet dataset as our feature extractor and
used a simple linear layer as the classification head. We trained this network on the diabetic retinopa-
thy classification dataset (APTOS, 2019) (Figure 11) and it achieved an accuracy of 72.77%. We
followed the work from (Balaji, 2019) for our experiments. We use Broden as Dprobe and broden
labels as S.

B. CONCEPT-MONITOR ALGORITHM

Algorithm 1: Pseudo code for Concept-Monitor for a neuron n

Input : Neuron n, concept detector ϕ, Concept set S , Probing dataset Dprobe

Output: Embedding plot, Concept statistics
Function Concept-Monitor(ϕ, S, Dprobe)

for t from 1→ tepoch do
W t

n, d
t
n = ϕ(S, Dprobe, n)

λn
i =softmax(−dtn)

ut
n =

k∑
i=1

λn
i f(W

t
n[i]))

plot(ut
n)

Rn.append(W
t
n)

Dn.append(d
t
n)

end
stats← getStats(Rn, Dn)

C. VISUALIZING EVOLUTION IN THE EMBEDDING SPACE

Here we use Concept-Monitor’s unified embedding space to observe the evolution of few neuron’s
in layer 4 of ResNet-18 trained on Places 365 dataset as described in Section 3.1. Our embedding
space is designed in such a way that it is possible for us to add ”anchors” to it, which are positions
in the embedding space that represent a particular chosen concept. We show these anchors as red
stars in Figure 12. These anchors are fixed through training and mark the region of the embedding
space encoding a particular concept so a user may track neuron movements relative to those
anchors through training. For brevity we leave out the specific concept labels represented by the
anchors in the figure and enumerate them instead. We see that at the beginning most of the neurons
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are concentrated around anchors 14,13 and 16 which represent the concepts ”grid”,”dotted” and
”porous” respectively, which are low level features. This is expected as the model has just started
training and hasn’t learnt to encode high level concepts yet. Most neurons move away from this
space, except neuron 408 which stays in similar space throughout the training encoding low level
textural concepts.

We also would like to highlight the trajectory of neuron 190, which starts from bottom left and
slowly moves towards anchor 0 representing the concept minibike. By the end of training, this
neuron comes very close to the anchor denoting that it has successfully learnt that concept. This
concept of distance to the anchors can also be used as a quick visual aid to tell whether the concepts
that the neurons represent are strongly represented or not. If the neuron’s concept label is far from
the corresponding anchor in the space, we can safely mark that neuron as uninterpretable.

Figure 12: Visualizing evolution of a few neurons using unified embedding space

The labels corresponding to the anchors (red stars) in Figure 12 are 0 - minibike, 1 - exhaust hood, 2
- kitchen island, 3 - leaf, 4 - shower curtain, 5 - net, 6 - pantry, 7 - striped, 8 - countertop, 9 - granite,
10 - forecourt, 11 - cat, 12 - bed, 13 - grid, 14 - dotted, 15 - shower stall, 16 - porous, 17 - aqueduct,
18 - fabric.

D. CONCEPT MONITOR WITH DIFFERENT PROBING DATASET

As stated in section 3 our method with Clip-Dissect is able to work with any probing and concept
dataset. We provide most of our analysis using Broden dataset as it contains a collection of different
concept images and hence is able to provide much better results as compared to a limited dataset.
Here we provide an example of that by using CIFAR-100 training images as the probing dataset to
analyze the same model as section 3. As shown in section 3 and appendix A, neurons 479 represents
concept ”windmill” and neuron 256 represents the concept ”field-road”. We now use CIFAR-100
training images to monitor these neurons. From the embedding space in Figure 13 we can see that
neuron 256 converges to the ”Field” anchor. We also look at the highly activating images for each
neuron in Figure 13 and see that for neuron 479 the most activating images are tree like structures
across the sky which are the most similar images to windmills in the CIFAR-100 dataset. The point
of this exercise is that concept monitor as all other model dissection methods is dependent on the
probing dataset, however if we use clip-dissect we are able to use much larger and diverse datasets
since we don’t require any labelling of images and can simply use entire set of images directly.
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Figure 13: Analysis of Resnet-18 model trained on Places365 dataset using CIFAR100 training
images as the Dprobe. The top figure for each epoch is our embedding space where each blue dot
represents a neuron in layer 4 of the model. We look at two special neurons, neuron 479 (purple) and
neuron 256 (blue). We also project anchor words (shown in red) in the same embedding space. The
bottom figure shows the highly activating images for each neuron. (Neuron 479 on top and Neuron
256 at the bottom). We can see neuron 256 gets very close to the anchor ’Field’ in the embedding
space, as is evident in its highly activating images.

Figure 14: Analysis of Resnet-18 model trained on Places365 dataset using Network Dissection.
The top figure for each epoch is our unified embedding space where each gray dot represents a
neuron in layer 4 of the model and each red star is an anchor word. Neuron 479 (purple) and neuron
256 (blue) are tracked and are seen to converge to the anchors ”Windmill” and ”Field” which is
consistent with 3. The bottom figure is the number of interpretable neurons in each layer on y axis
vs different layers of the model on x axis, divided according to category of their assigned concepts.
Here too we see the same trend of increasing higher level concepts in layer 4 and a shift from low
level features to high level features in general as training progresses.
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Figure 15: Visualizing concepts learnt by top 5 interpretable neurons of layer 4 of ResNet 34 trained
on diabetic retinopathy dataset. We can see that as the training progresses the top concepts shift
from complex objects to patterns and textures.

Figure 16: Comparison of the types of concepts learned by standard training compared to PGD-
training with ϵ=8/255. We can see the robustly trained model has less interpretable neurons, es-
pecially on later layers. Interestingly, there is also a big difference between the types of concepts
learned by different models where the PGD trained model still has neurons detecting colors in later
layers, while missing concepts detecting textures and materials. Note these figures are the network
at the end of each epoch, so epoch 0 is after one epoch of training, not initialization.
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