
Point Cloud Dataset Distillation

Deyu Bo 1 Xinchao Wang 1

Abstract

This study introduces dataset distillation (DD) tai-
lored for 3D data, particularly point clouds. DD
aims to substitute large-scale real datasets with
a small set of synthetic samples while preserv-
ing model performance. Existing methods mainly
focus on structured data such as images. How-
ever, adapting DD for unstructured point clouds
poses challenges due to their diverse orientations
and resolutions in 3D space. To address these
challenges, we theoretically demonstrate the im-
portance of matching rotation-invariant features
between real and synthetic data for 3D distillation.
We further propose a plug-and-play point cloud
rotator to align the point cloud to a canonical
orientation, facilitating the learning of rotation-
invariant features by all point cloud models. Fur-
thermore, instead of optimizing fixed-size syn-
thetic data directly, we devise a point-wise gener-
ator to produce point clouds at various resolutions
based on the sampled noise amount. Compared
to conventional DD methods, the proposed ap-
proach, termed DD3D, enables efficient training
on low-resolution point clouds while generating
high-resolution data for evaluation, thereby sig-
nificantly reducing memory requirements and en-
hancing model scalability. Extensive experiments
validate the effectiveness of DD3D in shape clas-
sification and part segmentation tasks across di-
verse scenarios, such as cross-architecture and
cross-resolution settings.

1. Introduction
Dataset distillation (DD) (Wang et al., 2018) aims to distill
the knowledge of a large-scale dataset into a few synthetic
samples, where the models trained on the real and synthetic
data will have comparable performance. By doing so, DD

1National University of Singapore. Correspondence to: Xin-
chao Wang <xinchao@nus.edu.sg>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

significantly reduces the computational cost of training neu-
ral networks from scratch. Due to its remarkable efficiency
and effectiveness, DD has been used in a variety of do-
mains, such as image (Zhao et al., 2021; Zhao & Bilen,
2023; Cazenavette et al., 2022), video (Wang et al., 2024),
graph (Jin et al., 2022; Liu et al., 2024), etc.

Despite great progress, existing DD methods have primarily
been applied to structured 1D and 2D data, while the dis-
tillation of unstructured 3D data, e.g., point cloud, remains
largely unexplored. Point cloud data exists in large quan-
tities in machine vision. For example, MVPNet (Yu et al.,
2023) scans more than 87K point clouds from real-world
videos, and Objaverse-XL (Deitke et al., 2023) provides
more than 10M high-quality 3D assets. Training on such
datasets from scratch is time- and resource-intensive, high-
lighting the need for more efficient alternatives.

However, extending DD to 3D point clouds presents unique
challenges. First, point clouds with different orientations
represent the same semantic information, e.g., shapes. How-
ever, existing DD methods do not take the symmetry of data
into account, which cannot handle the randomly rotated
data and result in sub-optimal performance. As shown in
Figure 1(a), directly applying DD to the point clouds with
different orientations cannot obtain meaningful synthetic
data. Second, point clouds have flexible resolutions, i.e.,
the number of points, depending on specific models and
applications. Generally, a larger resolution encodes more
fine-grain information but also increases the computational
costs (Huang et al., 2024; Qiu et al., 2021). Existing DD
methods initialize the synthetic data as a fixed-size tensor,
which cannot be customized for different point cloud mod-
els. Moreover, the memory budget for fixed-size tensors
will increase rapidly when dealing with dense-resolution
scenes, e.g., segmentation (Chang et al., 2015).

Once the weaknesses of existing methods are identified, it
is natural to ask: How can we build a distillation frame-
work that overcomes the orientation and resolution issues
of 3D point clouds? To answer this question, we first theo-
retically prove that random rotations weaken the principle
components of real data, thereby degenerating the distil-
lation performance. Based on this discovery, we propose
DD3D, the first DD framework for 3D point clouds, illus-
trated in Figure 1(b). Specifically, DD3D first uses a rotator
to convert the point cloud into a canonical orientation by

1

Point Cloud Dataset Distillation

Distill

Match

(a) DD for point clouds

Rotate Distill Generate

Match

(256 Points)

(512 Points)

(1024 Points)
(Generator)

(b) DD3D for point clouds

Figure 1: Differences between vanilla DD and DD3D when distilling 3D point clouds.

learning a rotation-equivariant projection matrix to offset
random rotation. Then, the knowledge of rotation-invariant
data is distilled into a point-wise generator to predict the
point coordinates from noise, where the resolution is based
on the number of sampled noises. Finally, the rotator and
generator are jointly optimized by minimizing the gradient
differences between the real and synthetic data.

The contributions are summarized as follows. (1) We pro-
pose the first 3D distillation framework, DD3D, which can
eliminate the influence of random rotations and synthesize
point clouds at arbitrary resolutions. (2) We theoretically
prove that matching the rotation-invariant features can pre-
serve the principal components of real data and prevent data
degeneration. (3) DD3D can be trained with low-resolution
point clouds and generates high-resolution data for evalua-
tion, significantly reducing memory usage and enhancing
model scalability. (4) Extensive experiments on shape clas-
sification and part segmentation tasks validate the effective-
ness of DD3D over baselines.

2. Related Work
Dataset Distillation. Research on DD can be roughly di-
vided into two directions. The first is to explore advanced
matching objectives to improve the distillation performance.
For example, performance matching (Wang et al., 2018),
gradient matching (Zhao et al., 2021; Zhao & Bilen, 2021),
distribution matching (Zhao & Bilen, 2023; Wang et al.,
2022), trajectory matching (Cazenavette et al., 2022; Guo
et al., 2024; Du et al., 2023) and feature regression (Zhou
et al., 2022; Loo et al., 2022; Nguyen et al., 2021). On the
other hand, some methods innovate efficient data parameter-
izations to avoid directly optimizing the synthetic data. For
example, neural networks (Liu et al., 2022), spectral repre-
sentation (Shin et al., 2023), linear transformation (Deng &
Russakovsky, 2022), and up-sampling (Kim et al., 2022).
Among them, a special parameterization technique is to dis-
till the knowledge into a generative model (Zhao & Bilen,
2022; Wang et al., 2023; Zhang et al., 2023; Cazenavette

et al., 2023; Zhang et al., 2024a), which can generate diverse
synthetic data with unlimited samples. Although valid, these
methods rely on the prior knowledge of generative models
pre-trained on large-scale datasets, which is not feasible for
point clouds. A recent work1 also applies GM to point cloud
data. However, neither of them considers the orientation and
resolution issues. For a more detailed introduction to DD,
please refer to the recent surveys (Yu et al., 2024b; Lei &
Tao, 2024; Geng et al., 2023; Sachdeva & McAuley, 2023).

Point Cloud Analysis. Deep learning on point clouds plays
a vital role in 3D data analysis (Guo et al., 2021b). Tradi-
tional methods can be classified into three categories: Point-
based methods, e.g., PointNet (Qi et al., 2017a) and Point-
Net++ (Qi et al., 2017b), convolution-based methods, e.g.,
PointCNN (Li et al., 2018) and PointConv (Wu et al., 2019),
and relation-based methods, e.g., DGCNN (Wang et al.,
2019) and Point Transformer (Guo et al., 2021a). However,
these methods are rotation-sensitive and cannot handle point
clouds with different orientations. Some advanced meth-
ods are designed to learn rotation-equivariant or invariant
features, such as vector neuron (Deng et al., 2021), spheri-
cal harmonic (Poulenard et al., 2019), tensor field (Thomas
et al., 2018), and graph features (Kim et al., 2020; Zhao
et al., 2019). However, these methods introduce additional
operators and cannot be applied to rotation-sensitive meth-
ods. Another way is to project point clouds into the same
orientation. For example, principal component analysis
(PCA) leverages the eigenvectors of the covariance matrix
to transform point clouds into the direction with maximum
variance. But this approach suffers from the sign-ambiguity
issue (Xiao et al., 2020; Yu et al., 2020; Li et al., 2021).

3. Preliminary
Task Formulation. Suppose that T = {(Ci, yi)}|T |

i=1 is
a large-scale training dataset, where Ci is a point cloud
with label yi for the shape classification task. Each point

1https://github.com/kghandour/dd3d

2

https://github.com/kghandour/dd3d

Point Cloud Dataset Distillation

cloud has n points, represented as C = {P, V }, where
P ∈ Rn×3 represents the 3D coordinates of points and
V ∈ Rn×v indicates the part to which the point belongs
in segmentation task and v is the number of parts. The
goal of DD3D is to synthesize a much smaller point cloud
dataset S = {(Cj , yj)}|S|

j=1, where |S| ≪ |T |, such that a
classification or segmentation model fθ trained on T and
S will have comparable performance. Other tasks, such as
detection, are left for future studies.

Dataset Distillation. In order to effectively optimize the
synthetic data, existing DD methods adopt a bi-level opti-
mization paradigm, which can be formulated as:

min
S

LDD (fθ∗(S), fθ∗(T)) (1)

s.t. θ∗ = argmin
θ

Lcls(fθ(S), Y S), (2)

where the inner loop updates the model fθ on the synthetic
data, and the outer loop optimizes the synthetic data. In
particular, LDD is a metric that measures the distance be-
tween real and synthetic data. For example, gradient match-
ing (Zhao et al., 2021) minimizes the gradient differences.

Dataset Distillation with Rotations. Before detailing
the proposed method, we first give a general analysis of
how rotations affect the performance of DD. Let XS ∈
R|S|×d, XT ∈ R|T |×d denote the representations learned
by fθ on the synthetic data and real training data, respec-
tively, and d is the hidden dimension.
Theorem 3.1. Assume the classifier is a linear layer W
and Lcls can be simplified to the mean-squared error
∥XW − Y ∥2F . The objective of gradient matching is equal
to variance preserving:

min
S

LGM = min
S

D
(
∇WLS

cls,∇WLT
cls

)
(3)

⇒ min
S

∥∥X⊤
S XS −X⊤

T XT
∥∥2
F
, (4)

where D is a distance metric and ∇W is the gradient with
respect to W .

Theorem 3.1 reveals that synthetic data preserves the vari-
ance information of real data. We then analyze how random
rotations affect the variance of real data. Without loss of
generality, we assume that fθ is rotation-equivariant, i.e.,
fθ (PR) = fθ (P)R, where R ∈ SO(d) is a random rota-
tion matrix.
Theorem 3.2. Assume XT follows a d-dimensional mul-
tivariate Gaussian distribution N (µ,Σ). Let X ′

T be the
rotated representations of XT such that:

λmax

(
E
[
X ′

T
⊤
X ′

T

])
≤ λmax

(
E
[
XT

⊤XT

])
(5)

⇒ σmax (E [X ′
T]) ≤ σmax (E [XT]) , (6)

where λmax and σmax are the maximum eigenvalues and
singular values, respectively.

Theorem 3.2 states that random rotations reduce the max-
imum singular value of the data representations, implying
that the principle component of XT is weakened. In this
case, the synthetic data cannot effectively capture the dis-
tribution of the real data, degenerating model performance.
All proofs can be seen in Appendix A.

4. The Proposed Method
4.1. Plug-and-Play Point Cloud Rotator

Our analysis highlights the importance of learning rotation-
invariant representations for effective point cloud distillation.
However, many existing point cloud models lack this capa-
bility. To address this limitation, we introduce a plug-and-
play point cloud rotator that transforms point clouds into
a consistent canonical view. This transformation ensures
that all models can learn rotation-invariant representations,
enhancing their generalization and performance.

Rotation-equivariance. We leverage the orthogonality of
the rotation matrix to eliminate its influence, i.e., RR⊤ = I ,
where PCA is a typical method:

1

n

∑(
PR− PR

)⊤ (
PR− PR

)
= R⊤UΛU⊤R, (7)

where P is the center of P and U represents the eigen-
vectors of the covariance matrix. Importantly, the pro-
jection R⊤U maintains equivariance with respect to co-
ordinate rotations, ensuring (PR)(R⊤U) = PU remains
invariant. However, eigenvectors suffer from sign am-
biguity, implying that both ui and −ui are valid solu-
tions. As a result, the canonical view PU is not unique
and has 8 ambiguities in 3D space (Xiao et al., 2020;
Yu et al., 2020), i.e., PUQ = P [±u1,±u2,±u3], where{
Q ∈ R3×3|Qii = {1,−1} , Qij = 0,∀i ̸= j

}
.

Sign-invariant. Our proposed rotator r : Rn×3 → Rn×3 is
designed to enhance PCA by addressing the sign ambiguity
issue. To achieve this, the rotator learns a sign-equivariant
reflection matrix Q for each point cloud. This ensures that
the transformed representation satisfies PUQ · Q = PU ,
making it sign-invariant and improving the robustness of
rotation-invariant learning. Specifically, the rotator first lifts
the scalar coordinates to the vector representations:

H = [sin(±PU), sin(±2PU) · · · sin(±tPU)]
⊤

= [sin(PU), sin(2PU) · · · sin(tPU)]
⊤
Q,

(8)

where sin(·) is the sine function and t is the period of Fourier
features. An average pooling is then applied on H to learn
the representations of the whole point cloud. Finally, a
learnable vector w ∈ Rt is used to decode the reflection
matrix. The overall architecture of the rotation is formulated
as follows:

r(P) = PUQ ·Q = PUQ · Sign(w · Pool(HQ)), (9)

3

Point Cloud Dataset Distillation

(Generator)

Partition

Noise Labels Fuselage

Wing

Tail

Engine

Figure 2: DD3D for part segmentation task. Each noise is first pre-partitioned into different parts according to its value, e.g.,
the noise within (0, 0.45) is marked as fuselage. Then the generator maps the noise into different parts for gradient matching.

where Sign means the signs of a matrix. The reflection
matrix Q has the same signs as Q because the sinusoidal
features, pooling function, and linear decoder preserve the
sign information of HQ, which can solve the sign ambiguity
and learn sign-invariant representations.

Alternative Approaches. Several methods (Zhang et al.,
2024b; Yu et al., 2024a; Melnyk et al., 2024; Li et al., 2022;
Xu et al., 2021) have been proposed for learning rotation-
invariant representations, such as vector neurons (Deng
et al., 2021) and graph-based features (Kim et al., 2020).
However, these approaches modify the original point coor-
dinates, making it difficult to integrate with existing models.
Another line of work addresses the sign ambiguity issue
using pooling (Yu et al., 2020) and attention mechanisms
(Xiao et al., 2020; Li et al., 2021). While effective, these
methods are computationally expensive, as they require eval-
uating representations across all possible ambiguous views.

4.2. Point-wise Generator

Beyond rotation alignment, point cloud distillation must
also account for the variations in resolution. Unlike images,
point clouds do not have a fixed structure, making traditional
DD methods, which directly optimize fixed-size tensors,
unsuitable. To solve this issue, a promising solution is to
parameterize data with implicit neural representation (INR),
which has been widely used to generate data at arbitrary
resolutions (Sitzmann et al., 2020; Park et al., 2019; Chen
et al., 2021; Singh et al., 2023).

Point Denoising. Our solution is to use INR as a point-wise
generator g : R → R3, which takes a random noise as input
and predicts its corresponding 3D coordinates. Therefore,
the number of points is the same as the sampling noise,
which enables us to achieve low-resolution training and
high-resolution evaluation, thus significantly reducing the
computational costs and memory budget. See Section 5.6 for
more details. For implementation, we choose SIREN (Sitz-
mann et al., 2020) as generator, which is formulated as

g = [Φ1 ◦ Φ2 ◦ · · · ◦ ΦL]WP , Φi = sin(ziwi + bi), (10)

where L is the number of layers, ◦ denotes the cascade of
neural networks, Φi is a multi-layer perceptron (MLP) with
sine activation function in the i-th layer, and WP ∈ Rd×3

is the decoder to generate 3D point coordinates.

Conditional Modulating. While the point-wise genera-
tor can synthesize point clouds at arbitrary resolutions, it
lacks class-conditional control, limiting its ability to gen-
erate category-specific data. To address this, we introduce
a modulator c : Rd → Rd, which is implemented as an-
other MLP Ψ, to encode the label information and generate
conditions for the point cloud generation:

c = Ψ1 ◦Ψ2 ◦· · ·◦ΨL, Ψi = ReLU (miw
′
i + b′i) , (11)

where ReLU(·) = max(0, ·), mi ∈ Rd denotes the condi-
tional representations. The first layer input, m1, is a one-hot
matrix encoding class labels. Assume that there are K
classes in total, and each class has N synthetic samples,
then m1 ∈ RKN and w′

1 ∈ RKN×d.

The learned conditional representations are then used to
modulate each layer of the generator, adjusting the fre-
quency and phase features dynamically. The complete ar-
chitecture is as follows:

g ⊙ c = [(Ψ1 ⊙ Φ1) ◦ (Ψ2 ⊙ Φ2) ◦ · · · ◦ (ΨL ⊙ ΦL)]W,
(12)

where ⊙ is the element-wise multiplication. For clarity, in
the following sections, we use g(ϵ, k) to denote g ⊙ c with
the k-th condition.

Noise Distribution. For noise sampling, we use uniform
distribution instead of Gaussian distribution. The reasons
are two-fold. First, INR requires inputs to be normalized
within [0, 1], which aligns naturally with the uniform distri-
bution. Second, in the part segmentation task, each point
must be assigned a label beforehand. A uniform distribution
enables a straightforward division of noise samples accord-

4

Point Cloud Dataset Distillation

ing to the category ratio, ensuring a balanced representation
across different parts. See Figure 2 for an intuitive example.

4.3. Distillation Tasks

To comprehensively validate the effectiveness of DD3D,
we conduct experiments on both the basic shape classifica-
tion task and the challenging part segmentation task. Shape
classification aims to assign each point cloud a label, empha-
sizing global information, while part segmentation predicts
the label of each point, which is more fine-grained.

Shape Classification. The distillation objective of the shape
classification task is defined as:

Lshape =

K∑
k=1

D(∇Lcls(fθ ◦ r ◦ g(ϵ, k), Y S
k),

∇Lcls(fθ ◦ r(BT
k)), Y T

k)),

(13)

where K is the total classes of shapes, BT
k and Y T

k are a
batch of real training data and labels.

Part Segmentation. In the part segmentation task, each
shape is divided into multiple parts. For example, an air-
plane can be divided into its fuselage, wings, engines, and
tail. Assigning these fine-grained labels before distillation
helps stabilize the training process. Therefore, DD3D first
partitions the noise into different segments based on its
value. Then, the partitioned noise is fed into the generator
and rotator to produce synthetic data. To effectively capture
fine-grained details, DD3D aligns the gradients of each seg-
ment individually, rather than simply matching the gradients
of the entire shape. This improves the preservation of local
geometric features while maintaining overall structural co-
herence. A conceptual illustration is provided in Figure 2.
The distillation of part segmentation task is formulated as:

Lpart =

K∑
k=1

∑
p∈k

D(∇Lseg(fθ ◦ r ◦ (g (ϵ, k)⊙MS
p), V

S
p),

∇Lseg(fθ ◦ r(BT
k ⊙MT

p), V T
p)),

(14)
where p ∈ k indicates parts belonging to a shape, V T

p , V S
p

represents the real and synthetic part labels, and MS
p ,M

T
p

are the part-specific mask to extract gradients corresponding
to each part. See Algorithm 1 for detailed descriptions.

4.4. Discussion

DD3D has demonstrated strong potential in capturing both
global shape structures and local details in object-level point
clouds. Visualizations in Section 4 further illustrate its ef-
fectiveness. However, applying DD3D to scene-level tasks,
such as object detection, remains challenging. This lim-
itation can be attributed to two key factors: First, scene-
level tasks often involve a significant imbalance between

Algorithm 1 DD3D for part segmentation

Input: Training dataset T
Ouput: Model f , Rotator r, Generator g
repeat

for k = 1, · · · ,K do
Sample a batch BT

k , V T
k ∼ T

Sample noise ϵ ∼ U(0, 1)
Generate V S

k ,MS
k by partitioning noise ϵ

Generate point clouds BS
k = g(ϵ, k)

for p ∈ k do
Apply mask MS

p ,M
T
p on BS

k , B
T
k

Compute ∇LS
seg and ∇LT

seg

end for
end for
Update g with Lpart

repeat
Update f, r with LS

seg

until inner-loop end
until outer-loop end

foreground and background points. Second, the detection
task requires learning continuous bounding box coordinates,
which cannot be predefined like segmentation labels, adding
another layer of complexity.

5. Experiments
We benchmark our method on two fundamental tasks of
point cloud analysis: shape classification (Section 5.1) and
part segmentation (Section 5.2), followed by a series of
analyses, including generalization (Section 5.3), ablation
(Section 5.4), and visualization (Section 5.5).

Datasets. We employ three datasets of different scales
for the shape classification task: (i) ScanObjectNN
(OBJ BG) (Uy et al., 2019) is the smallest dataset but con-
sists of real-world data, which is challenging to distillate.
(ii) ModelNet40 (Wu et al., 2015) is a larger synthetic
dataset generated from CAD models. (iii) MVPNet (Yu
et al., 2023) is the largest dataset, containing 87K point
clouds scanned from real-world videos. We use its sub-
set MVPNet100, which includes data from the 100 most
populous categories, to alleviate the influence of long-tail
distribution, similar to the CAFIR-100 dataset. For the part
segmentation task, we follow Qi et al. (2017a) and choose
ShapeNet-part (Yi et al., 2016) dataset for evaluation. All
the datasets use the standard data splits, and their detailed
statistic information can be found in Appendix C.

Data Preparation and Metrics. Each cloud contains 1,024
points and is normalized into a unit sphere. We consider
two settings: Aligned and Rotated. In the Aligned setting,
both training and test point clouds have the same orienta-

5

Point Cloud Dataset Distillation

Table 1: Shape classification results of different methods, mean accuracy (%) ± standard deviation. Bold indicates the best
performance, and ”-” means out-of-memory during distillation. CPC: Number of Clouds Per Class.

Dataset CPC
Coreset-based Distillation-based Full

DatasetRandom Herding K-Center GM DM TM DD3D

ScanObjectNN
(Aligned)

1 22.00±2.56 16.29±1.37 18.18±1.04 26.34±2.07 25.90±1.34 26.42±2.08 30.62±1.75
66.9610 32.63±1.51 31.94±3.31 33.46±1.46 39.87±3.00 37.61±2.78 36.44±2.74 43.77±2.63

50 54.15±1.77 51.70±1.87 54.22±1.30 57.52±2.03 56.91±1.17 - 61.96±1.44

ScanObjectNN
(Rotated)

1 14.90±2.10 18.10±1.55 19.91±2.16 14.64±3.04 18.74±2.44 19.29±3.90 23.59±2.17
54.8410 20.50±1.26 20.20±2.19 22.05±1.76 20.55±3.99 20.26±4.31 19.20±4.52 25.84±3.11

50 42.98±1.84 43.39±1.34 44.29±2.07 47.74±1.82 48.11±2.30 - 50.26±1.42

ModelNet40
(Aligned)

1 40.53±0.36 43.41±0.81 43.90±1.51 53.38±0.86 53.21±0.58 52.37±0.99 53.82±0.28
88.0510 71.89±0.29 74.63±0.48 73.13±0.78 75.45±0.82 74.45±0.47 75.39±1.32 76.31±0.49

50 82.37±0.45 82.75±0.49 82.73±0.28 81.74±0.55 83.02±1.16 - 83.91±0.23

ModelNet40
(Rotated)

1 34.65±0.71 30.03±1.42 30.05±0.50 41.32±1.96 41.71±1.65 37.36±2.98 42.36±0.83
80.4510 58.87±0.65 56.03±0.62 57.69±0.97 55.69±1.63 55.45±1.80 56.21±1.14 58.14±1.36

50 70.13±0.64 70.02±0.71 69.68±0.59 68.92±0.73 69.31±0.79 - 71.27±0.32

MVPNet100
1 5.21±0.27 8.14±0.22 8.41±0.35 10.52±0.83 11.73±0.49 10.74±0.57 13.68±0.48

55.6310 15.99±0.30 22.11±0.21 20.54±0.21 25.68±0.77 25.71±0.69 - 31.14±1.31
50 30.14±0.27 35.87±0.24 35.48±0.44 37.41±0.57 36.83±0.20 - 40.61±0.38

Note: All methods with rotated data are trained with the point cloud rotator. Ablations can be seen in Table 4.

Table 2: Part Segmentation results (%) on ShapeNet dataset.

Ratio Method OA Instance IoU Class IoU

CPC=1
Coreset 61.24 48.21 31.61
GM 65.56 50.98 33.96
DD3D 73.06 60.27 37.73

CPC=10
Coreset 77.78 65.03 48.19
GM 78.32 65.79 49.88
DD3D 80.37 66.70 50.59

100% Full 90.04 77.38 65.63

tion, while in the Rotated setting, both training and test
data are rotated randomly. For the rotated data, we project
them along the direction of maximum variance during pre-
processing. Note that the point clouds in MVPNet only
have 180◦ views, so we do not randomly rotate them. The
details of pre-processing can be found in Appendix C. We
report the Overall Accuracy (OA, %) of each method in the
shape classification task and the average class intersection
of union (IoU, %) in the part segmentation task.

Baselines. To demonstrate the effectiveness of our method,
we choose two types of baselines: (1) Coreset-based meth-
ods, including Random, Herding (Welling, 2009) and K-
Center (Sener & Savarese, 2018). (2) Distillation-based
methods, including Gradient Matching (GM) (Zhao et al.,
2021), Distribution Matching (DM) (Zhao & Bilen, 2023),
and Trajectory Matching (TM) (Cazenavette et al., 2022).
We choose GM as the distillation objection for DD3D as it

makes a trade-off between time and memory consumption.
See Appendix D for the detailed hyperparameters.

Backbones. We provide a lightweight PointNet as the back-
bone, which abandons the transformation network because
previous literature (Yu et al., 2024b) pointed out that com-
plex network architecture may lead to degraded distillation
performance. In the evaluation stage, we adopt various ad-
vanced backbones to evaluate the generalization ability of
distilled datasets, including PointNet++ (Qi et al., 2017b),
DGCNN (Wang et al., 2019), Point Transformer (Guo et al.,
2021a), PointMLP (Ma et al., 2022), and PointNext (Qian
et al., 2022). Results can be found in Table 3.

Experimental Setup. For each method, we perform the dis-
tillation process twice, evaluate each synthetic point cloud
dataset five times (10 results in total), and report the mean
and standard deviation. Baselines are all initialized with
original data, while DD3D is trained from scratch. For the
shape classification task, we consider three different distilla-
tion ratios with 1, 10, and 50 synthetic point clouds per class
(CPC). For the part segmentation task, we choose CPC=1
and CPC=10 due to the limitation of GPU memory.

5.1. Shape Classification

The results of different methods on the shape classification
task are shown in Table 1, from which we have the follow-
ing observations. Firstly, the results of distillation-based
methods consistently outperform coreset-based methods,
demonstrating the effectiveness of DD. However, as the
amount of synthetic data increases, the performance of the

6

Point Cloud Dataset Distillation

Table 3: Cross-architecture results (%) with CPC=50.

Dataset Method PointNet++ DGCNN PCT PointMLP PointNeXt

ScanObjectNN
DM 56.02 51.47 52.72 51.33 51.82
GM 55.38 52.98 53.28 51.33 52.81
DD3D 57.14 53.36 54.04 52.50 53.36

ModelNet40
DM 74.35 74.84 76.92 72.49 71.48
GM 76.54 73.38 77.31 74.11 72.00
DD3D 77.71 75.36 79.21 75.36 73.99

MVPNet100
DM 33.20 31.26 33.92 32.58 31.17
GM 31.35 29.88 31.43 31.79 30.82
DD3D 34.19 32.94 35.82 33.08 32.75

Table 4: Ablation studies of the point cloud rotator.

ModelNet40 (CPC=50) Random GM DM DD3D

PointNet 14.75 9.47 10.16 17.91
PointNet + PCA 60.77 53.55 55.57 62.72
PointNet + Rotator 70.13 68.92 69.31 71.27

Full Dataset 80.45

coreset increases rapidly. Secondly, DD3D achieves state-
of-the-art performance on all five datasets, demonstrating its
superiority over traditional DD methods. Notably, DD3D
obtains more improvements over baselines as the number
of CPCs increases, possibly because the generator provides
more diverse data. Thirdly, the results on the rotated data
are weaker than those on the aligned data. Although we
project the rotated data to the canonical orientation, i.e.,
direction with maximum variance, these point clouds still
have slightly different orientations, while the aligned data is
manually registered, which is strictly towards the direction
of gravity and therefore has better performance.

5.2. Part Segmentation
Table 2 presents the results of the part segmentation task on
the ShapeNet dataset. Unlike classification, part segmen-
tation requires learning both global shape structures and
fine-grained part details, making it a more challenging task
for DD. Since some traditional DD methods struggle with
segmentation, we only compare DD3D against random core-
set selection and GM. The results show that GM is slightly
better than coreset selection as it is initialized by the real
data. On the other hand, DD3D consistently outperforms
both methods across all metrics by a large margin, demon-
strating its effectiveness in learning the fine-grained features
of point clouds. As expected, DD3D’s performance does not
yet reach the full dataset baseline. Nevertheless, it achieves
90% of the performance of the entire dataset using only 1%
of the data, demonstrating its potential in 3D distillation.

5.3. Cross-architecture Generalization.
We evaluate whether DD3D can benefit different point cloud
models. Specifically, we use PointNet as the distillation
method and utilize five advanced point cloud models as eval-
uation methods, trained on the synthetic data from scratch.

Table 5: DD3D under different resolutions.

CPC=50
Resolution

256 512 1024 Avg.

ScanObjectNN 61.27 60.59 61.96 61.27
ModelNet40 83.03 83.59 83.91 83.51
MVPNet100 39.88 40.13 40.61 40.21

0 50 100 150 200
Iteration

110

120

130

140

M
at

ch
in

g
Lo

ss

ScanObjectNN

256
512
1024

0 100 200 300 400
Iteration

60

70

80

90

M
at

ch
in

g
Lo

ss

ModelNet40

256
512
1024

Figure 3: Matching losses of different resolutions.

Notably, we use synthetic data with CPC=50 to alleviate
the randomness. The results are shown in Table 3, from
which we can see that DD3D consistently outperforms DM
and GM across different datasets and evaluation methods,
proving that the synthetic data distilled by DD3D has better
generalizability. This may be attributed to the generator that
provides various point clouds in each epoch by sampling
different noises, which plays a role like data augmentation.
However, we can also observe that the results of evaluation
methods are not as good as PointNet, emphasizing that the
synthetic data is still biased by the distillation model.

5.4. Ablation Studies
Point Cloud Rotator. We first verify the effectiveness of
the proposed point cloud rotator on the rotated ModelNet40
dataset. Specifically, we consider three different models: (1)
PointNet, which is rotation-sensitive; (2) PointNet + PCA,
which is rotation-invariant but sign-variant; (3) PointNet
+ Rotator, which is rotation- and sign-invariant. It can be
observed from Table 4 that the performance of all methods
drops rapidly when the data is randomly rotated. On the
other hand, leveraging PCA to transform the point clouds
into a canonical orientation can significantly improve the
distillation performance. However, the results are still far
from the model with the point cloud rotator, which reflects
that sign ambiguity will seriously prevent the distillation
model from learning meaningful synthetic data. Finally, it
can be observed that the proposed rotator can help point
cloud models to rotation-invariant representations, thus ben-
efiting the learning of synthetic data.

Point-wise Generator. Next, we explore the performance
of DD3D under different resolutions to verify the effective-
ness and efficiency of the proposed generator. Typically, the
shape classification task needs 1,024 points for training and

7

Point Cloud Dataset Distillation

Raw Images DD3D GM

Figure 4: Visualizations of different methods. Top: ModelNet (Airplane). Bottom: ShapeNet (Guitar, Laptop, and Pistol).

(a) Airplane (b) Earphone (c) Cap

(d) Car (e) Guitar (f) Pistol

Figure 5: Geometric details of points generated by DD3D.

evaluation. In this experiment, we randomly sample 256
and 512 points from real data to supervise the distillation
of DD3D. Once trained, we leverage DD3D to generate
1,024 points for evaluation. It is visible from Figure 3 that
training on high-resolution point clouds can accelerate the
convergence of DD3D but the final matching losses are
similar. Moreover, Table 5 shows that different resolutions
have similar performance. In some cases, low-resolution
data also outperforms high-resolution point clouds, e.g.,
ScanObjectNN. This discovery shows that DD3D can not
only achieve stable results but also significantly reduce com-
putational costs and GPU memory overhead.

5.5. Visualization

We visualize the real and synthetic point clouds in Figure 4
for a more intuitive comparison. The results of DD3D and
GM are placed in the last two columns. It can be observed
that the point clouds generated by GM tend to condense to
some clusters, while some isolated points are left as noise.
On the contrary, the point clouds generated by DD3D are
coherent and encode the global geometric shapes. Moreover,

1 5 10
Clouds Per Classes

0

10

20

30

Ti
m

es
 (

s)
 P

er
 It

er
at

io
n DD3D

DD

(a) Time

1 5 10
Clouds Per Class

0.0

0.3

0.6

0.9

1.2

Bu
dg

et
 (

G
B)

DD3D
DD

(b) Budget

256 512 1024
Number of Points

0

3

6

9

12
Time (s)
Space (GB)

(c) Resolution

Figure 6: Time and space overhead between DD and DD3D.

in ShapeNet, the point clouds of GM are squeezed, making
its shape inconsistent with the real dataset, while the results
of DD3D are more realistic and encode the spatial relation-
ship between parts. Additionally, Figure 5 illustrates that
DD3D not only preserves geometric details but also gener-
ates informative samples, further validating its effectiveness
in 3D dataset distillation.

5.6. Time and Space Overhead

We compare the overhead between DD and DD3D from
multiple views. Firstly, Figure 6(a) shows that the time
overhead of DD3D is slightly higher than DD due to the
generation of synthetic data. Then, we can observe from
Figure 6(b) that the memory budget of DD grows faster
than DD3D as the value of CPC increases. DD3D can save
the budget of synthetic data by sharing the generator be-
tween different classes, and its memory is nearly 4x smaller
than DD when CPC=10. Figure 6(c) illustrates the changes
in time and space overhead of DD3D at different resolu-
tions. We can see that training with low-resolution point
clouds significantly reduces overhead, which is important
for resource-constrained scenarios, such as edge computing.

6. Conclusion
This paper introduces DD3D for 3D point cloud distillation,
which matches the rotation-invariant data distribution be-

8

Point Cloud Dataset Distillation

tween real and synthetic data by transforming point clouds
into a canonical orientation. Once trained, DD3D can syn-
thesize point clouds at arbitrary resolutions, reducing mem-
ory budget and improving scalability. Extensive experi-
ments on both classification and segmentation tasks validate
the superiority of DD3D over traditional DD methods. A
promising direction is to initialize DD3D with real data to
improve its performance.

Acknowledgment
This project is supported by the National Research Foun-
dation, Singapore, under its Medium Sized Center for Ad-
vanced Robotics Technology Innovation.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. In particular, it aims to accelerate
the training of deep neural networks and reduce memory
overhead. There are many potential societal consequences
of our work, none of which we feel must be specifically
highlighted here.

References
Cazenavette, G., Wang, T., Torralba, A., Efros, A. A., and

Zhu, J. Dataset distillation by matching training trajecto-
ries. In CVPR, pp. 10708–10717. IEEE, 2022.

Cazenavette, G., Wang, T., Torralba, A., Efros, A. A., and
Zhu, J. Generalizing dataset distillation via deep genera-
tive prior. In CVPR, pp. 3739–3748. IEEE, 2023.

Chang, A. X., Funkhouser, T. A., Guibas, L. J., Hanrahan, P.,
Huang, Q., Li, Z., Savarese, S., Savva, M., Song, S., Su,
H., Xiao, J., Yi, L., and Yu, F. Shapenet: An information-
rich 3d model repository. CoRR, abs/1512.03012, 2015.

Chen, Y., Liu, S., and Wang, X. Learning continuous image
representation with local implicit image function. In
CVPR, pp. 8628–8638. Computer Vision Foundation /
IEEE, 2021.

Deitke, M., Liu, R., Wallingford, M., Ngo, H., Michel, O.,
Kusupati, A., Fan, A., Laforte, C., Voleti, V., Gadre, S. Y.,
VanderBilt, E., Kembhavi, A., Vondrick, C., Gkioxari, G.,
Ehsani, K., Schmidt, L., and Farhadi, A. Objaverse-xl: A
universe of 10m+ 3d objects. In NeurIPS, 2023.

Deng, C., Litany, O., Duan, Y., Poulenard, A., Tagliasac-
chi, A., and Guibas, L. J. Vector neurons: A general
framework for so(3)-equivariant networks. In ICCV, pp.
12180–12189. IEEE, 2021.

Deng, Z. and Russakovsky, O. Remember the past: Dis-
tilling datasets into addressable memories for neural net-
works. In NeurIPS, 2022.

Du, J., Jiang, Y., Tan, V. Y. F., Zhou, J. T., and Li, H.
Minimizing the accumulated trajectory error to improve
dataset distillation. In CVPR, pp. 3749–3758. IEEE,
2023.

Geng, J., Chen, Z., Wang, Y., Woisetschlaeger, H., Schimm-
ler, S., Mayer, R., Zhao, Z., and Rong, C. A survey on
dataset distillation: Approaches, applications and future
directions. In IJCAI, pp. 6610–6618. ijcai.org, 2023.

Guo, M., Cai, J., Liu, Z., Mu, T., Martin, R. R., and Hu, S.
PCT: point cloud transformer. Comput. Vis. Media, 7(2):
187–199, 2021a.

Guo, Y., Wang, H., Hu, Q., Liu, H., Liu, L., and Bennamoun,
M. Deep learning for 3d point clouds: A survey. IEEE
Trans. Pattern Anal. Mach. Intell., 43(12):4338–4364,
2021b.

Guo, Z., Wang, K., Cazenavette, G., Li, H., Zhang, K., and
You, Y. Towards lossless dataset distillation via difficulty-
aligned trajectory matching. In ICLR. OpenReview.net,
2024.

Huang, Z., Johnson, J., Debnath, S., Rehg, J. M., and Wu, C.
Pointinfinity: Resolution-invariant point diffusion models.
In CVPR, 2024.

Jin, W., Zhao, L., Zhang, S., Liu, Y., Tang, J., and Shah, N.
Graph condensation for graph neural networks. In ICLR.
OpenReview.net, 2022.

Kim, J., Kim, J., Oh, S. J., Yun, S., Song, H., Jeong, J., Ha,
J., and Song, H. O. Dataset condensation via efficient
synthetic-data parameterization. In ICML, volume 162 of
Proceedings of Machine Learning Research, pp. 11102–
11118. PMLR, 2022.

Kim, S., Park, J., and Han, B. Rotation-invariant local-
to-global representation learning for 3d point cloud. In
NeurIPS, 2020.

Lei, S. and Tao, D. A comprehensive survey of dataset
distillation. IEEE Trans. Pattern Anal. Mach. Intell., 46
(1):17–32, 2024.

Li, F., Fujiwara, K., Okura, F., and Matsushita, Y. A closer
look at rotation-invariant deep point cloud analysis. In
ICCV, pp. 16198–16207. IEEE, 2021.

Li, X., Li, R., Chen, G., Fu, C., Cohen-Or, D., and Heng,
P. A rotation-invariant framework for deep point cloud
analysis. IEEE Trans. Vis. Comput. Graph., 28(12):4503–
4514, 2022.

9

Point Cloud Dataset Distillation

Li, Y., Bu, R., Sun, M., Wu, W., Di, X., and Chen, B.
Pointcnn: Convolution on x-transformed points. In
NeurIPS, pp. 828–838, 2018.

Liu, S., Wang, K., Yang, X., Ye, J., and Wang, X. Dataset
distillation via factorization. In NeurIPS, 2022.

Liu, Y., Bo, D., and Shi, C. Graph distillation with eigenba-
sis matching. In ICML, 2024.

Loo, N., Hasani, R. M., Amini, A., and Rus, D. Efficient
dataset distillation using random feature approximation.
In NeurIPS, 2022.

Ma, X., Qin, C., You, H., Ran, H., and Fu, Y. Rethinking
network design and local geometry in point cloud: A sim-
ple residual MLP framework. In ICLR. OpenReview.net,
2022.

Melnyk, P., Robinson, A., Felsberg, M., and Wadenbäck, M.
Tetrasphere: A neural descriptor for o(3)-invariant point
cloud analysis. In CVPR, pp. 5620–5630. IEEE, 2024.

Nguyen, T., Chen, Z., and Lee, J. Dataset meta-learning
from kernel ridge-regression. In ICLR. OpenReview.net,
2021.

Park, J. J., Florence, P. R., Straub, J., Newcombe, R. A.,
and Lovegrove, S. Deepsdf: Learning continuous signed
distance functions for shape representation. In CVPR, pp.
165–174. Computer Vision Foundation / IEEE, 2019.

Poulenard, A., Rakotosaona, M., Ponty, Y., and Ovsjanikov,
M. Effective rotation-invariant point CNN with spherical
harmonics kernels. In 3DV, pp. 47–56. IEEE, 2019.

Qi, C. R., Su, H., Mo, K., and Guibas, L. J. Pointnet: Deep
learning on point sets for 3d classification and segmen-
tation. In CVPR, pp. 77–85. IEEE Computer Society,
2017a.

Qi, C. R., Yi, L., Su, H., and Guibas, L. J. Pointnet++: Deep
hierarchical feature learning on point sets in a metric
space. In NIPS, pp. 5099–5108, 2017b.

Qian, G., Li, Y., Peng, H., Mai, J., Hammoud, H., Elhoseiny,
M., and Ghanem, B. Pointnext: Revisiting pointnet++
with improved training and scaling strategies. In NeurIPS,
2022.

Qiu, S., Anwar, S., and Barnes, N. Dense-resolution network
for point cloud classification and segmentation. In WACV,
pp. 3812–3821. IEEE, 2021.

Sachdeva, N. and McAuley, J. J. Data distillation: A survey.
CoRR, abs/2301.04272, 2023.

Sener, O. and Savarese, S. Active learning for convolutional
neural networks: A core-set approach. In ICLR, 2018.

Shin, D., Shin, S., and Moon, I. Frequency domain-based
dataset distillation. In NeurIPS, 2023.

Singh, R., Shukla, A., and Turaga, P. K. Polynomial implicit
neural representations for large diverse datasets. In CVPR,
pp. 2041–2051. IEEE, 2023.

Sitzmann, V., Martel, J. N. P., Bergman, A. W., Lindell,
D. B., and Wetzstein, G. Implicit neural representations
with periodic activation functions. In NeurIPS, 2020.

Thomas, N., Smidt, T. E., Kearnes, S., Yang, L., Li,
L., Kohlhoff, K., and Riley, P. Tensor field networks:
Rotation- and translation-equivariant neural networks for
3d point clouds. CoRR, abs/1802.08219, 2018.

Uy, M. A., Pham, Q., Hua, B., Nguyen, D. T., and Yeung, S.
Revisiting point cloud classification: A new benchmark
dataset and classification model on real-world data. In
ICCV, pp. 1588–1597. IEEE, 2019.

Wang, K., Zhao, B., Peng, X., Zhu, Z., Yang, S., Wang,
S., Huang, G., Bilen, H., Wang, X., and You, Y. CAFE:
learning to condense dataset by aligning features. In
CVPR, pp. 12186–12195. IEEE, 2022.

Wang, K., Gu, J., Zhou, D., Zhu, Z., Jiang, W., and You,
Y. Dim: Distilling dataset into generative model. CoRR,
abs/2303.04707, 2023.

Wang, T., Zhu, J., Torralba, A., and Efros, A. A. Dataset
distillation. CoRR, abs/1811.10959, 2018.

Wang, Y., Sun, Y., Liu, Z., Sarma, S. E., Bronstein, M. M.,
and Solomon, J. M. Dynamic graph CNN for learning on
point clouds. ACM Trans. Graph., 38(5):146:1–146:12,
2019.

Wang, Z., Xu, Y., Lu, C., and Li, Y.-L. Dancing with images:
Video distillation via static-dynamic disentanglement. In
CVPR, 2024.

Welling, M. Herding dynamical weights to learn. In ICML,
volume 382, pp. 1121–1128, 2009.

Wu, W., Qi, Z., and Li, F. Pointconv: Deep convolutional
networks on 3d point clouds. In CVPR, pp. 9621–9630.
Computer Vision Foundation / IEEE, 2019.

Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X.,
and Xiao, J. 3d shapenets: A deep representation for
volumetric shapes. In CVPR, pp. 1912–1920, 2015.

Xiao, Z., Lin, H., Li, R., Geng, L., Chao, H., and Ding,
S. Endowing deep 3d models with rotation invariance
based on principal component analysis. In ICME, pp. 1–6.
IEEE, 2020.

10

Point Cloud Dataset Distillation

Xu, J., Tang, X., Zhu, Y., Sun, J., and Pu, S. Sgmnet:
Learning rotation-invariant point cloud representations
via sorted gram matrix. In ICCV, pp. 10448–10457. IEEE,
2021.

Yi, L., Kim, V. G., Ceylan, D., Shen, I., Yan, M., Su, H.,
Lu, C., Huang, Q., Sheffer, A., and Guibas, L. J. A scal-
able active framework for region annotation in 3d shape
collections. ACM Trans. Graph., 35(6):210:1–210:12,
2016.

Yu, H., Hou, J., Qin, Z., Saleh, M., Shugurov, I., Wang,
K., Busam, B., and Ilic, S. RIGA: rotation-invariant
and globally-aware descriptors for point cloud registra-
tion. IEEE Trans. Pattern Anal. Mach. Intell., 46(5):
3796–3812, 2024a.

Yu, R., Wei, X., Tombari, F., and Sun, J. Deep positional
and relational feature learning for rotation-invariant point
cloud analysis. In ECCV, volume 12355, pp. 217–233.
Springer, 2020.

Yu, R., Liu, S., and Wang, X. Dataset distillation: A compre-
hensive review. IEEE Trans. Pattern Anal. Mach. Intell.,
46(1):150–170, 2024b.

Yu, X., Xu, M., Zhang, Y., Liu, H., Ye, C., Wu, Y., Yan,
Z., Zhu, C., Xiong, Z., Liang, T., Chen, G., Cui, S., and
Han, X. Mvimgnet: A large-scale dataset of multi-view
images. In CVPR, pp. 9150–9161. IEEE, 2023.

Zhang, D. J., Wang, H., Xue, C., Yan, R., Zhang, W., Bai,
S., and Shou, M. Z. Dataset condensation via generative
model. CoRR, abs/2309.07698, 2023.

Zhang, H., Su, S., Zhu, Y., Sun, J., and Zhang, Y. GSDD:
generative space dataset distillation for image super-
resolution. In AAAI, pp. 7069–7077. AAAI Press, 2024a.

Zhang, Z., Yang, L., and Xiang, Z. Risurconv: Rotation
invariant surface attention-augmented convolutions for
3d point cloud classification and segmentation. In ECCV
(28), volume 15086 of Lecture Notes in Computer Sci-
ence, pp. 93–109. Springer, 2024b.

Zhao, B. and Bilen, H. Dataset condensation with differen-
tiable siamese augmentation. In ICML, volume 139 of
Proceedings of Machine Learning Research, pp. 12674–
12685. PMLR, 2021.

Zhao, B. and Bilen, H. Synthesizing informative training
samples with GAN. CoRR, abs/2204.07513, 2022.

Zhao, B. and Bilen, H. Dataset condensation with distribu-
tion matching. In WACV, pp. 6503–6512. IEEE, 2023.

Zhao, B., Mopuri, K. R., and Bilen, H. Dataset condensation
with gradient matching. In ICLR. OpenReview.net, 2021.

Zhao, C., Yang, J., Xiong, X., Zhu, A., Cao, Z., and Li, X.
Rotation invariant point cloud classification: Where local
geometry meets global topology. CoRR, abs/1911.00195,
2019.

Zhou, Y., Nezhadarya, E., and Ba, J. Dataset distillation
using neural feature regression. In NeurIPS, 2022.

11

Point Cloud Dataset Distillation

A. Proof of Theorems
Theorem A.1. Assume the classifier is a linear layer W and Lcls can be simplified to the mean-squared error ∥XW − Y ∥2F .
The objective of gradient matching is equal to variance preserving:

min
S

LGM = min
S

D
(
∇WLS

cls,∇WLT
cls

)
⇒ min

S

∥∥X⊤
S XS −X⊤

T XT
∥∥2
F
, (15)

where D is a distance metric and ∇W is the gradient with respect to W .

Proof. The gradient of ∥XW − Y ∥2F is denoted as ∇ = X⊤(XW − Y). We can then match the gradients between the
real and synthetic data:

||∇S −∇T ||2F = ||X⊤
S (XSW − YS)−X⊤

T (XT W − YT)||2F (16)

≤ ||W ||2F ||X⊤
S XS −X⊤

T XT ||2F︸ ︷︷ ︸
Variance

+ ||X⊤
S YS −X⊤

T YT ||2F︸ ︷︷ ︸
Mean

. (17)

We can see that the first term is to preserve the variance of real data, and the second term aligns the average representations of
samples belonging to the same class. These two terms can be combined if we set X̃S = XS−X⊤

S YS and X̃T = XT −X⊤
T YT

for each class. Then we only need to match the variance between X̃S and X̃T .

Theorem A.2. Assume XT follows a d-dimensional multivariate Gaussian distribution N (µ,Σ). Let X ′
T be the rotated

representations of XT such that:

λmax

(
E
[
X ′

T
⊤
X ′

T

])
≤ λmax

(
E
[
XT

⊤XT

])
⇒ σmax (E [X ′

T]) ≤ σmax (E [XT]) , (18)

where λmax and σmax are the maximum eigenvalues and singular values, respectively.

Proof. Firstly, the largest eigenvalue of the covariance matrix XT
⊤XT is equal to the largest singular value of XT .

Therefore, we only prove the first inequality.

Secondly, as X⊤X =
∑n

i=1 x
⊤
i xi, for XT ∼ N (µ,Σ), we have:

E
[
X⊤

T XT
]
= E

[
n∑

i=1

x⊤
i xi

]
=

n∑
i=1

E
[
x⊤
i xi

]
= n

(
µ⊤µ+Σ

)
, (19)

E
[
X ′

T
⊤
X ′

T

]
= E

[
n∑

i=1

R⊤
i x

⊤
i xiRi

]
=

n∑
i=1

E
[
R⊤

i x
⊤
i xiRi

]
=

n∑
i=1

R⊤
i E
[
x⊤
i xi

]
Ri. (20)

Thirdly, we have:

λmax

(
E
[
X⊤

T XT
])

= nλmax

(
µ⊤µ+Σ

)
, (21)

λmax

(
E
[
X ′

T
⊤
X ′

T

])
= λmax

(
n∑

i=1

R⊤
i E
[
x⊤
i xi

]
Ri

)
≤

n∑
i=1

λmax

(
R⊤

i E
[
x⊤
i xi

]
Ri

)
(22)

=

n∑
i=1

λmax

(
R⊤

i µ
⊤µRi +R⊤

i ΣRi

)
≤ λmax

(
E
[
X⊤

T XT
])

. (23)

The above inequality shows that the largest eigenvalue of E
[
X⊤

T XT
]

is the upper bound of E
[
X ′

T
⊤
X ′

T

]
. The equality

holds if and only if the random rotation matrices are commutative, which is infeasible in practice.

B. Implementation Details of DD3D
Here, we explain some details of DD3D, consisting of two important components: a point cloud rotator and a point-wise
generator. Both components are built based on the SIREN (Sitzmann et al., 2020) model, which stacks multiple fully
connected layers with sin(·) activation to capture the high-frequency information. The PyTorch code is shown in Algorithm 2,
where some details are highlighted.

12

Point Cloud Dataset Distillation

Algorithm 2 PyTorch code of DD3D

1 import torch
2 import torch.nn as nn
3 import SIREN
4
5 class Rotator(nn.Module):
6 def __init__(self, hidden_dim, w0):
7 super().__init__()
8
9 # w0 is to adjust the frequency of sine function

10 self.sign_encoder = SIREN(1, hidden_dim, w0=w0)
11 self.sign_decoder = SIREN(hidden_dim, 1, w0=1.)
12
13 def forward(self, x):
14 x = x.unsqueeze(-1) # x: [B, N, 3, 1]
15
16 feat = self.sign_encoder(x).mean(dim=1, keepdim=True) # [B, N, 3, 1] -> [B, 1, 3, d]
17 feat = self.sign_decoder(feat) # [B, 1, 3, d] -> [B, 1, 3, 1]
18 sign = torch.sign(feat) # sign-equivariant
19
20 x = x * sign # [B, N, 3, 1] * [B, 1, 3, 1] -> [B, N, 3, 1]
21 return x.squeeze(-1)
22
23
24 class ConditionalGenerator(nn.Module):
25 def __init__(self, genetator, num_classes, cpc, condition_dim, num_layers):
26 super().__init__()
27
28 self.genetator = genetator
29 self.lookup = nn.Embedding(num_classes * cpc, condition_dim) # class index as condition
30 self.num_layers = num_layers
31
32 self.layers = nn.ModuleList([])
33
34 for _ in range(self.num_layers - 1):
35 self.layers.append(nn.Sequential(nn.Linear(condition_dim, condition_dim), nn.ReLU()))
36
37 def forward(self, noise, class_indices):
38
39 # noise [B, N, 1]
40 # class_inices [B, C]
41
42 mod = self.lookup(class_indices)
43 mods = [mod]
44
45 for layer in self.layers:
46 mod = layer(mod)
47 mods.append(mod)
48
49 return self.genetator(noise, tuple(mods))

C. Details of Datasets
The detailed statistical information of the datasets used in this paper is shown in Table 6. We list the sources of the datasets
and their licenses in the following.

• ScanObjectNN: https://github.com/feiran-l/rotation-invariant-pointcloud-analysis

• ModelNet40: http://modelnet.cs.princeton.edu/ModelNet40.zip

• MVPNet: https://github.com/GAP-LAB-CUHK-SZ/MVImgNet

• ShapeNet: https://github.com/feiran-l/rotation-invariant-pointcloud-analysis

D. Hyperparameters
The hyperparameters of baselines and DD3D are listed in Tables 7 and 8, respectively.

13

https://github.com/feiran-l/rotation-invariant-pointcloud-analysis
http://modelnet.cs.princeton.edu/ModelNet40.zip
https://github.com/GAP-LAB-CUHK-SZ/MVImgNet
https://github.com/feiran-l/rotation-invariant-pointcloud-analysis

Point Cloud Dataset Distillation

Table 6: Details of datasets

ScanObjectNN ModelNet40 MVPNet ShapeNet

Shape Classes 15 40 100 16
Part Classes - - - 50
Training Samples 2,322 9,843 62,494 14,007
Validation Samples 580 2,468 15,670 2,874
Resolution 1,024 1,024 1,024 2,048

Table 7: Hyperparameters used for Data Synthesis.

ScanObjectNN ModelNet40 MVPNet100 ShapeNet

Optimizer Adam Adam Adam Adam
Initial LR 0.001 0.001 0.001 0.001
Batch Size 32 32 64 32
Iterations 200 400 600 200
Weight Decay 0.0005 0.0005 0.0005 0.0005
Augmentation Scale, Jitter, Rotate Scale, Jitter, Rotate Scale, Jitter, Rotate Scale, Jitter, Rotate

Scheduler
StepLR

(Decay 0.1 / 100 iter)
StepLR

(Decay 0.1 / 100 iter)
StepLR

(Decay 0.5 / 200 iter) -

Table 8: Hyperparameters used for Validation.

ScanObjectNN ModelNet40 MVPNet100 ShapeNet

Optimizer Adam Adam Adam Adam
Initial LR 0.001 0.001 0.001 0.001
Batch Size 8 8 32 8
Epochs 200 200 200 200
Weight Decay 0.0005 0.0005 0.0005 0.0005
Augmentation Scale, Jitter, Rotate Scale, Jitter, Rotate Scale, Jitter, Rotate Scale, Jitter, Rotate

Scheduler
StepLR

(Decay 0.1 / 100 epoch)
StepLR

(Decay 0.1 / 100 epoch) CosineAnnealingLR -

14

