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Abstract
Total correlation (TC) is a fundamental concept in information theory to mea-
sure the statistical dependency of multiple random variables. Recently, TC has
shown effectiveness as a regularizer in many machine learning tasks when minimiz-
ing/maximizing the correlation among random variables is required. However, to
obtain precise TC values is challenging, especially when the closed-form distribu-
tions of variables are unknown. In this paper, we introduced several sample-based
variational TC estimators. Specifically, we connect the TC with mutual information
(MI) and constructed two calculation paths to decompose TC into MI terms. In
our experiments, we estimated the true TC values with the proposed estimators in
different simulation scenarios and analyzed the properties of the TC estimators.

1 Introduction
Statistical dependency measures the correlation of random variables or factors in models, which is
often an important concern in various scientific domains including statistics [12, 15], robotics [16, 4],
bioinformatics [18, 24], and machine learning [7, 1, 14]. In recent deep learning studies, statisti-
cal dependency has increasingly served as learning objectives or regularizers for neural network
training, and has achieved improvement in terms of model robustness [25], generalizability [1],
interpretablity [7, 9], etc.

Among statistical dependency measurements, mutual information (MI) is commonly used in machine
learning. Given two random variables x,y, the mutual information is defined as:

I(x;y) = Ep(x,y)

[
log

p(x,y)

p(x)p(y)

]
. (1)

Recently, mutual information has shown significant improvement when applied as a training crite-
rion on learning tasks, such as conditional generation [7], domain adaptation [11], representation
learning [6], and fairness [23]. However, MI can only handle the statistical dependency between
two variables. When considering optimization of correlation among multiple variables, MI requires
computation of each variable pair, which leads to a quadratic increase in computation cost. To address
this problem, total correlation (TC) has been proposed by extending MI to multi-variable cases:

T C(X) = T C(x1,x2, . . . ,xn) = Ep(x1,x2,...,xn)

[
log

p(x1,x2, . . . ,xn)

p(x1)p(x2) . . . p(xn)

]
. (2)

TC has also proven effective to enhance machine learning models in many tasks, such as independent
component analysis [3], and disentangled representation learning [5, 19, 17]. However, TC suffers
from the same numerical problem as MI: the exact values of TC are difficult to calculate without the
closed-form distribution p(xi) and with only samples accessible. Previous works on disentangled
representation learning [5, 10] avoid the estimation problem by assuming that both the latent priors
and the inference posteriors follow multi-variate Gaussian distributions. Poole, et al. [22] proposed
an upper bound of TC by further introducing another variable y. With a strong assumption that given
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Figure 1: Two calculation paths of total correlation. Left (Tree-like calculation path): Divide the
current variables into two subgroups with similar sizes. Calculate the MI between the subgroups and
recursively calculate TC of both subgroups. dn/2e is the smallest number larger than n/2. Right
(Line-like calculation path): Calculate the MI between the current group of variables and the next
variable, and then add the the next variable into current group.

y, all xi|y are independent, p(X|y) =
∏n
i=1 p(xi|y), Poole, et al. [22] concluded that T C(X) =∑n

i=1 I(xi;y)− I(X;y). All the aforementioned methods require additional assumptions to the
distributions, which limits their application scenarios.

In this paper, we propose two TC estimation strategies based on mutual information variational
bounds. More specifically, we decompose TC into the summation of MI terms along two different
calculation paths: the tree-like path and the line-like path. Then the TC values are approximated by
applying MI estimation to each decomposed term. In our experiments, we test the performance of the
proposed TC estimators under multivariate Gaussian simulations.

2 Method
With the definition of total correlation (TC) and mutual information (MI) in (2) and (1), we find a
connection between TC and MI summarized in Theorem 2.1.

Theorem 2.1. Suppose A = {i1, i2, . . . , im} ⊆ {1, 2, . . . , n} is an index subset. Ā = {j : j /∈ A}
is the complementary set of A. Denote XA = (xi1 ,xi2 , . . . ,xim) as the selected variables from X
with the indexes A. Then we have T C(X) = T C(XA) + T C(XĀ) + I(XA;XĀ).

Corollary 2.1.1. Given a variable group X and another y, T C(X ∪ {y}) = T C(X) + I(X;y).

Corollary 2.1.2. Given X = (x1,x2, . . . ,xn), we have T C(X) =
∑n−1
i=1 I(X1:i;xi+1).

The Theorem 2.1 provides insight that the TC of a group of variables X can be decomposed into
the TC of two subgroups XA and XĀ and the MI between the two subgroups. Therefore, we can
recursively represent the TC with MI terms. More specifically, we propose two schemes with different
structures to calculate TC with different MI terms (as shown in Figure 1).

Let Xi:j = (xi,xi+1, . . . ,xj) denote a subset of variables with indexes from i to j. Based on
Theorem 2.1, we propose two recursive TC calculation schemes: (1) Line-like: T C(X1:i+1) =
T C(X1:i) + I(X1:i;xi+1); (2) Tree-like: T C(Xi:j) = T C(Xi:b(i+j)/2c) + T C(Xb(i+j)/2c+1:j) +
I(Xi:b(i+j)/2c;Xb(i+j)/2c+1:j), where btc indicates the largest integer smaller than t. The line-like
dynamic calculates the MI between a subgroup and a single variable, which leads to the representation
of TC as the summation in Corollary 2.1.2. The tree-like dynamic divides the variables into balanced
subgroups, so that the MI between two subgroups can be calculated with two variable parts in similar
dimensions. Since the tree-like estimation is hard to summarize in an equation, we describe it in
Algorithm 1. With the total correlation being decomposed into summation of MI terms, we can derive
total correlation estimators based on the previous mutual information variational bounds.

Algorithm 1 Tree-like TC estimation algorithm

Prerequisite: MI estimation method Î, samples {X(i)}Mi=1 = {(x(i)
1 ,x

(i)
2 , . . . ,x

(i)
n )}Mi=1

Function TCTree-estimate(Xi:j):
if j − i ≤ 0 then

return 0
else
m = b(i + j)/2c
return TCTree-estimate(Xi:m) + TCTree-estimate(Xm+1:j) + Î(Xi:m;Xm+1:j)

end if

2



0 5000 10000 15000 20000
Steps

0

2

4

6

8

10

12

14

To
ta

l C
or

re
la

tio
n

TC-MINE
Estimated TC
True TC

TC-NWJ TC-InfoNCE TC-CLUB

Figure 2: Simulation performance of TC Line-like estimators with different MI bounds.
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Figure 3: Simulation performance of TC Tree-like estimators with different MI bounds.

3 Experiments
We derive our TC estimators based on four MI bounds (MINE [2], NWJ [20], InfoNCE [21], and
CLUB [8]) as TC-MINE, TC-NWJ, TC-InfoNCE, and TC-CLUB. The detailed description and
implementation to the four MI estimators are shown in the Supplementary Material. Then we test
the TC estimators with both tree-like and line-like strategies on simulations. The simulation data
are drawn from four-dimensional Gaussian distributions (x1,x2,x3,x4) ∼ N (0,Σ), where Σ is a
covariance matrix with all diagonal elements equal to 1. With this Gaussian assumption, the true TC
value can be calculated as T C(x1,x2,x3,x4) = − 1

2 log Det(Σ), where Det(Σ) is the determinant
of Σ. Therefore, we can adjust the correlation coefficients in Σ to set the ground-truth TC values in
the range {2.0, 4.0, 6.0, 8.0, 10.0}. At each TC true value, we sample data batches 4000 times, with
batch size equal to 64, for the training of variational TC estimators.

In Figure 2, we report the performance of our TC estimators with different MI bounds at each training
steps. In each figure, the true TC value is shown as a step function with black line. The estimation
values are displayed among different steps with shadow blue curves. The dark blue curves shows the
local averages of estimated TC, with a bandwidth equal to 200. Under both a tree-like and line-like
path calculation, the TC-MINE, TC-NWJ and TC-InfoNCE remains a lower bound of the truth TC
values, based on the fact that MINE, NWJ, and InfoNCE are lower bound of mutual information.
CLUB is an MI upper bound, while the TC-CLUB also behaves as an upper bound of total correlation.

The upper bound method TC-CLUB achieves better performance with line-like calculation. This is
because that CLUB requires a variational approximation qθ(v|u) when estimating I(v;u). When we
use line-like calculation path, v = xi+1 is always a single variable, and u = X1:i is the concatenation
of (x1, . . . ,xi). The qθ(v|u) as a neural network can have better performance with output v in a
fixed low dimension. In contrast, the lower bound methods show better estimation with tree-like
calculation than line-like calculation. Because for all listed lower bound methods, the estimation
of I(v;u) is based on v and u equally. With the tree-like strategy, each time the MI estimators
are provided with samples in similar dimensions, which facilitates the learning of lower bound MI
estimators. The bias and variance of the TC estimators are shown in the Supplementary Material.

4 Discussion
We have derived the line-like and tree-like calculation strategies to decompose the total correlation
into summation of mutual information. By estimating mutual information terms with MI bounds,
we introduced several TC estimators. The tree-like and line-like calculation strategies can bring
advantages to TC estimation depending on different MI estimation processes. The proposed TC esti-
mators can be further applied as learning criterion on many deep learning tasks, such as disentangled
representation learning, ensemble learning, and model distillation.
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A Proofs

Proof of Theorem 2.1. Note that XA := (xi1 ,xi2 , . . . ,xim) and XÂ = X/XA. Denote XÂ =
(xj1 ,xj2 , . . . ,xjl). Then

T C(X) = Ep(X)

[
log

p(x1,x2, . . . ,xn)

p(x1)p(x2) . . . p(xn)

]
=Ep(X)

[
log

(
p(XA)

p(xi1)p(xi2) . . . p(xim)
·

p(XÂ)

p(xj1)p(xj2) . . . p(xjl)
· p(X)

p(XA)p(XÂ)

)]
=T C(XA) + T C(XÂ) + I(XA;XÂ)

Proof of Corollary 2.1.2. We denote Xi:j := (xi,xi+1, . . . ,xj−1,xj). Note that

T C(X1:n) =Ep(x1,x2,...,xn)

[
log

p(x1,x2, . . . ,xn)

p(x1)p(x2) . . . p(xn)

]
=Ep(x1,x2,...,xn)

[
log

(
p(x1,x2, . . . ,xn−1,xn)

p(x1,x2, . . . ,xn−1)p(xn)
· p(x1,x2, . . . ,xn−1)

p(x1)p(x2) . . . p(xn−1)

)]
=I(x1,x2, . . . ,xn−1;xn) + TC(X1:n−1)

=I(X1:n−1;xn) + T C(X1:n−1)

Similarly,

T C(X1:n) = I(X1:n−1;xn) + I(X1:n−2;xn−1) + T C(X1:n−2) =

n−1∑
i=1

I(X1:i;xi+1) (3)

B Experiment Results
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Figure 4: Bias, variance and MSE of line-like TC estimators
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Figure 5: Bias, variance and MSE of tree-like TC estimators
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C MI Estimators

The Mutual Information Neural Estimator (MINE) [2] is defined as

IMINE := Ep(x,y)[f(x,y)]− log(Ep(x)p(y)[e
f(x,y)]), (4)

where f(·, ·) is a value function (or, a critic) approximated by a neural network.

The NWJ [20] lower bound is based on the f -divergence representation of MI:

INWJ := Ep(x,y)[f(x,y)]− Ep(x)p(y)[e
f(x,y)−1]. (5)

The InfoNCE [21] lower bound is based on Noise Contrastive Estimation (NCE) [13]:

INCE := E

[
1

N

N∑
i=1

log
ef(xi,yi)

1
N

∑N
j=1 e

f(xi,yj)

]
, (6)

where the expectation is over N samples {xi,yi}Ni=1 drawn from the joint distribution p(x,y).

The MI contrastive log-ratio upper bound (CLUB) estimator [8] is based on a parameterized distribu-
tion qθ(y|x):

I(x;y) ≤ E[
1

N

N∑
i=1

[log p(xi|yi)−
1

N

N∑
j=1

log p(xj |yi)]]. (7)

All the MI lower bounds require learning of a value function f(x,y); the CLUB upper bound requires
learning of a network approximation qθ(y|x). To make fair comparison, we set the value function
and the neural approximation with one hidden layer and the same hidden units. For the multivariate
Gaussian setup, the number of hidden units is 20. On the top of hidden layer outputs, we add the
ReLU activation function. The learning rate for all estimators is set to 1× 10−4.
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