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Abstract

Deep-learning models have performed excellently in various fields because of advances in
computing power and the large-scale datasets used to train large models. However, they
have an inherent risk that even a small change in the input can result in a significantly
different output of the trained model. Therefore, it is crucial to evaluate the robustness of
deep-learning models before we trust the models’ decisions. In this paper, we evaluate the
adversarial robustness of convolutional neural networks (CNNs), vision transformers (ViTs),
and CNNs + ViTs, which are typical structures commonly used in computer vision, based
on four new model-sensitivity metrics that we propose. These metrics were evaluated for
random noise and gradient-based adversarial perturbations. For a fair comparison, models
with similar capacities were used in each model group, and the experiment was conducted
separately using ImageNet-1K and ImageNet-21K as the pretraining data. The experimental
results showed that ViTs were more robust than CNNs for gradient-based adversarial attacks,
and our quantitative and qualitative analysis of these results brings to light the cause of the
difference.

1 Introduction

Convolutional neural networks (CNNs) have been actively used in a variety of vision tasks, such as classifica-
tion (He et al,[2016; Krizhevsky et al.,|2012; |Simonyan & Zisserman), [2015)), object detection (Girshick et al.)
2014; [Liu et al.l [2016; |Redmon et al.,|2016), segmentation (Chen et al.; 2018; Ronneberger et al., 2015), and
image generation (Choi et all [2018} |Radford et al., |2016; [Zhu et al., |2017)). In recent years, many studies
have adopted transformers (Devlin et al., 2019; Vaswani et al.l |2017)) in the vision domain; this architecture
has previously proven highly effective in natural language processing (NLP). Transformer-based models,
represented by vision transformer (ViT), show that using large-scale datasets such as ImageNet-21K (Deng
et al., 2009) or JFT-300M (Hinton et all|2015) rather than ImageNet-1K, which is commonly used for CNN
pretraining, results in significant performance improvement. These results indicate that using large-scale
datasets is effective in the vision domain as well as in NLP (Dosovitskiy et al., [2021} |Steiner et al., 2022)).
Because of these characteristics, ViTs perform better than CNNs in image classification, object detection,
and segmentation task (Steiner et al., [2022; |Liu et al.l |2021; |Ryoo et al.l 2021} [Touvron et al.l 2021]).

As the scope of using deep neural networks has increased, researchers have attempted to identify the inherent
characteristics of deep learning models. For example, CNNs focus more on texture than shape because of
their convolution operation (Geirhos et al.,|2019; [Hermann et al., |2020; Mummadi et al.,2021; Naseer et al.,
2021). In contrast, ViTs are known to focus more on shape than texture because they can learn global
interactions through the self-attention mechanism (Naseer et al., 2021). Therefore, ViTs can recognize
objects as human beings do rather than like CNNs (Naseer et al., [2021)). Various studies have evaluated the
robustness by identifying the characteristics of deep-learning models applied in various fields (Naseer et al.,
2021; |Augustin et al. 2020; |Bhojanapalli et al.l 2021; [Hendrycks et al.,|2021; [Su et al., 2018)). For example,
Bhojanapalli et al.| (2021]) compared the out-of-context performance of CNNs and ViTs on the ImageNet-R
dataset, which contains synthesized natural noise from real-world data, and the ImageNet-C dataset, which
contains arbitrary corruptions. When pretraining with ImageNet-1K, ViTs performed worse than CNNs, but
when pretraining with large amounts of data, such as ImageNet-21K or JFT-300M, the performance of ViTs
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and CNNs performed similarly. Evaluating the robustness of the deep learning models requires verifying
not only against natural noise, as in Bhojanapalli et al. (2021), but also against adversarial perturbations
(Szegedy et al 2014]), which are generated by an adversary. Adversarial examples have a significant impact
on the reliability of deep-learning models because they result in misclassification through perturbations that
are difficult for humans to recognize (Szegedy et al. 2014). Counsidering this importance, many studies
have been conducted on the adversarial robustness of CNNs (Szegedy et al.| 2014; |Goodfellow et al.l |2015;
Kurakin et al., |2017; Madry et al.l 2018]). In contrast, although some studies have been conducted recently
on evaluating the adversarial robustness of ViTs (Bhojanapalli et al., [2021; [Benz et al.l 2021; Mahmood
et al., 2021; |Shao et al.l |2022)), few works have systematically compared and analyzed why the adversarial
robustness of CNNs differs from that of ViTs.

In this paper, we aim to determine whether there are any differences in adversarial robustness between CNNs,
ViTs, and CNNs + ViTs(hybrids) and to comprehend why these differences occur. We first evaluate the
adversarial robustness of the three types of models through adversarial perturbations generated by gradient-
based adversarial attacks such as the fast gradient sign method (FGSM; |Goodfellow et al| (2015)) and
projected gradient descent (PGD;|Madry et al.| (2018)). To compare the difference in adversarial robustness
among the models, we use the infidelity to measure the completeness of an explanation (Yeh et al., 2019).
Yeh et al.|(2019) assumed that a model with a lower Hessian upper bound might lead to a better infidelity
score, meaning that a model with a low infidelity score could have small and smooth gradients with respect
to the perturbed input. In addition, we propose four novel metrics based on the max-sensitivity proposed by
Yeh et al.| (2019)) to comprehend this assumption. Our proposed metrics evaluate the sensitivity using inputs
comprising (1) the model prediction class, (2) the cross entropy (CE) loss, (3) the derivative of the CE loss,
and (4) the model logits. We compare the sensitivities of the models using random noise and adversarial
perturbations. We experiment with three perspectives to show the differences in model sensitivity; the model
capacity, perturbation radius, and the results using pretrained datasets. Our quantitative and qualitative
analyses intuitively show which types of models are more sensitive and what causes the difference.

2 Related Work

2.1 Vision Transformers

ViT (Dosovitskiy et al., |2021)) was proposed to apply the transformer, typically used in NLP (Devlin et al.
2019; [Vaswani et al., |2017)), to the image processing domain. In contrast to a CNN, which receives an entire
image as its input and learns the local information of the image through a convolution operation, a ViT
receives an input image divided into patches. Because these patches pass through a multi-head attention
(MHA) layer, the ViT can learn global information better than a CNN. As the input patches go through
the transformer block of an MHA layer, the distance of the attention score between the heads increases, and
the MHA layer learns different representations. Here, the attention distance has a similar role to that of
the receptive field in a CNN (Dosovitskiy et al., 2021). Furthermore, in contrast to a CNN, which performs
the classification through representations of the input image, a ViT classifies an image through additional
tokens called class tokens in addition to the input patches.

2.2 Adversarial Robustness of Image Classification Models
2.2.1 Adversarial Attack

An adversarial example is generated by intentionally combining an original input with a perturbation created
by an adversary to cause the model to make a mistake (Szegedy et al.,|2014). Adversarial perturbations are
very difficult for humans to recognize because their magnitude is bounded by a very small value (Szegedy
et al., [2014). Because of this characteristic, understanding the robustness of deep-learning models to adver-
sarial attacks is essential for their reliable use in computer vision. The FGSM, a typical adversarial attack,
is created by Eq. below:

Tadv = T + GSign(me(aa z, y))7 (1)
where € denotes the perturbation budget, L is the loss function, and 6 represents the model parameters.
FGSM is an efficient attack method because it calculates the perturbation in a single step (Goodfellow et al.,
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2015). PGD, which generates an adversarial example through Eq. , creates adversarial perturbation
according to the same concept as the FGSM, but it is known to be a more powerful attack:

AR H(xt + asign(V,L(6,x,y))), (2)

where ¢t denotes the iteration step, « is the perturbation budget at each step, and ]| denotes the max-norm
ball. PGD is calculated in multi-steps when generating a perturbation and has a higher attack success rate
than FGSM because it begins the calculation at a random starting point inside the max-norm ball (Madry
et al., 2018). In this study, we used the FGSM and PGD to evaluate the adversarial robustness of the image
classification models.

2.2.2 Adversarial Robustness of Vision Transformers

Recently, studies have been conducted to identify and understand the inherent risks of ViTs by evaluating
their adversarial robustness (Bhojanapalli et al., [2021; [Benz et al.| [2021; [Mahmood et all 2021} |Shao et al.,
2022). |Shao et al.|(2022)) showed that ViTs are more robust to adversarial attacks than CNNs. Furthermore,
Benz et al.| (2021)), Mahmood et al.| (2021)), and [Shao et al.| (2022)) evaluated the transferability of adversarial
examples between models, showing that ViTs were more robust than CNNs. However, these studies compared
the adversarial robustness of models pretrained with different datasets. This comparison is unfair because
the performance difference based on the size of the pretraining dataset is more enormous in ViTs than in
CNNs (Dosovitskiy et al., 2021)). Hence, we evaluated the image classification models pretrained with the
same dataset and independently compared the pretraining dataset-based results.

Bhojanapalli et al.| (2021]) compared the robustness of ViTs and CNNs based on their capacities and pretrain-
ing datasets. Moreover, because of the architectural characteristics of ViTs, they analyzed the robustness by
comparing the encoding blocks, analyzing the self-attention, and evaluating the correlation of representations
between layers. However, they failed to show the difference between the two models depending on the size
of the adversarial perturbations. In this paper, we compare the results of each model to understand the
models’ characteristics through quantitative and qualitative analyses with respect to the sensitivity of the
various perspectives.

3 Robustness Evaluation of Adversarial Attack

3.1 Image Classification Models

In this section, we evaluate the adversarial robustness of CNNs, ViTs, and hybrids. Table [I] shows the
number of parameters for each model used in our experiments and the datasets used to pretrain the models.
For the ViTs, we use the architecture first proposed by Dosovitskiy et al.| (2021) and follow their method
of denoting the models. For example, “ViT-L/16” means that input patches of size 16 x 16 were used in
ViTs of a “large” size. We use four model sizes: tiny (Ti), small (S), base (B), and large (L), in order of
size. [Dosovitskiy et al.| (2021)) also proposed a hybrid-type model architecture to train a ViT with extracted
features using ResNetV2 as the backbone. To obtain various insights, we also evaluate the adversarial
robustness of the hybrid model architecture. The hybrids are denoted differently depending on the number
of layers in ResNet. For example, when ResNetV2-50 was used as the backbone in ViT-B/16, the model was
denoted as “ViT-R50+B/16.”

According to [Dosovitskiy et al.| (2021)), ViT performance heavily depends heavily on regularization. Steiner,
et al.| (2022)) experimentally compared various regularization methods and proposed a training method that
performed best. In this paper, we use ViTs and hybrids pretrained with ImageNet-1K and ImageNet-21K, as
used in |Steiner et al.[(2022]), for a fair comparison. The CNNs use big transfer (BiT), proposed by Kolesnikov
et al.| (2020). BiT has an architecture modified to use ResNetV2 robustly in more diverse situations. In this
paper, we use the same pretraining dataset for a fair comparison with the ViTs and configure the models
to have as similar a number of parameters as possible. The BiT is also represented according to the model
architecture. For example, “ResNetV2-50x3” refers to a case where the number of hidden layers is 50, and
the ratio of widening the channel of the hidden layer is 3.
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Table 1: Model architectures used in our experiments.

Method \ #Param. \ Datasets

CNN
ResNetV2-50x1 24M ImageNet-1K, ImageNet-21K
ResNetV2-101x1 43M ImageNet-1K, ImageNet-21K
ResNetV2-50x3 212M ImageNet-1K, ImageNet-21K
ResNetV2-101x3 382M ImageNet-1K, ImageNet-21K

ViT
ViT-Ti/16 6M ImageNet-1K, ImageNet-21K
ViT-S/16 22M ImageNet-1K, ImageNet-21K
ViT-S/32 23M ImageNet-1K, ImageNet-21K
ViT-B/16 86M ImageNet-1K, ImageNet-21K
ViT-B/32 88M ImageNet-1K, ImageNet-21K
ViT-L/16 303M ImageNet-1K, ImageNet-21K
ViT-L/32 306M ImageNet-21K

Hybrid
ViT-R+Ti/16 6M ImageNet-1K, ImageNet-21K
ViT-R26+S/32 36M ImageNet-1K, ImageNet-21K
ViT-R50+B/16 98M ImageNet-21K
ViT-R50+L/32 328M ImageNet-1K, ImageNet-21K

3.2 Robustness Evaluation Metrics

We evaluate the adversarial robustness of CNNs, ViTs, and hybrids through FGSM and PGD, which are
attack methods using first-order adversaries. We use the infidelity proposed by |Yeh et al.| (2019) to evaluate
the adversarial robustness quantitatively. Additionally, based on the max-sensitivity (Yeh et al. 2019),
we propose DiffPred-SENS, Loss-SENS, LossGrad-SENS, and Logit-SENS. We also analyze the adversarial
robustness quantitatively by measuring and comparing how sensitively the models react to random noises
and adversarial perturbations.

3.2.1 Infidelity

Infidelity shows how well the attribution—calculated through the explanation function for the perturbation
I, defined as the difference between a particular baseline xy and the input—matches the output change of
the model for perturbation. Infidelity indicates the accuracy of the explanation function by reflecting its
completeness, an axiom of the explanation function (Yeh et al.,[2019;[Sundararajan et al.,|2017). For example,
the smaller the infidelity, the better the attribution that the explanation function generated represents
an important region that influences the model’s output. In addition, Yeh et al.| (2019) indicated that
the infidelity score could be optimized through adversarial training. Therefore, it can be assumed that a
model with a low infidelity score has small and smooth gradients for perturbations added in input. In our
experiments, we use the vanilla gradient (Simonyan et al., 2014) as an explanation function for the infidelity.
The vanilla gradient ® refers to the derivative of the input image for f.(x), the model’s confidence. Here,
the calculated value for each pixel indicates the size and direction of the attribution for the target class:

_ 0fela)
=" )
INFD(®, f,2) = E1pu [(170(f,7) = (f(2) = f(x = 1))’], (4)

3.2.2 Proposed Metrics

DiffPred-SENS. DiffPred-SENS, which measures the change in model prediction when a small amount of
noise is added to the input, counts the cases where the model prediction for the noisy input differs from



Under review as submission to TMLR

that based on the original image. A large DiffPred-SENS value means that the model makes a classification
prediction different from the prediction based on the original input, even with a small amount of noise, and
thus is vulnerable to noise:

Nioise

DiffPred-SENS(f, v, x) = 1(argmax f(x + d;) # arg max f(z)), (5)

Nnoise :
=1

where 1 represents the indicator function.

Loss-SENS. If two different classifiers misclassify the same noisy image, the robustness of the model can be
judged to be different when the loss is different. We propose Loss-SENS to determine this quantitatively. If
the Loss-SENS value is large, the model is vulnerable to perturbation because the size of the loss increases
even with a small amount of noise:

Loss-SENS(L, f,7.,) = max |£(f,z +8.y) ~ £(f.2.9)] (6)
el

LossGrad-SENS. LossGrad-SENS measures the gradient change of the input to the model’s loss. LossGrad-
SENS is the value of the I3 norm of the difference between the gradient of the loss concerning normal input
and that of the loss for noisy input. Thus, a model with a small LossGrad-SENS value is robust to input
noise. This metric indicates the change ratio to visualize the difference of the logit vector, which has a
different scale for each model:

[V L(f, x4 6,y) — VL L(f, z,y)l
LossGrad-SENS(V..L, f,7v,x,y) = max .
( Ly l16]1<~ IV L(f, 2, )]

(7)

Logit-SENS. The proposed Logit-SENS determines the change in the model’s logit vector for inputs with
a small amount of noise. A large Logit-SENS means that the model is sensitive to even a small amount of
noise. Conversely, if the value is small, it is a robust model with a small difference in the result, even if noise

is added to the input:
: 1f(x+6) — f(=@)ll
Logit-SENS(f, x,v) = max , 8
BCSENSU 27 = e s )
where f, §, and v denote the target model, the noise added to the input, and the radius, respectively. For
the same reasons as LossGrad-SENS, Logit-SENS also represents the rate of change.

4 Experiments

4.1 Experimental Settings

In our experiments, five epsilon values were used to generate random noise and adversarial perturbations:
0.001, 0.003, 0.01, 0.03, and 0.1. In the PGD case, the adversarial examples were generated by setting
the number of iterations ¢ to 40 times and « to 2/255. The attacks were conducted under a white-box
attack model in which the attacker knows all the information about the target model (Carlini et al., [2019)
and a black-box attack in which the model parameters are inaccessible (Papernot et al., 2017). In other
words, in the white-box attack scenario, the adversarial robustness of the model was evaluated through the
adversarial example generated by calculating Eq. and Eq. through the model parameters. In the
black-box attack scenario, unlike the white-box attack scenario, because the attacker does not have access to
information about the target model, the robustness of the target model was evaluated with the adversarial
example generated through a substitute model, in which the parameters were accessible. This is possible
because the adversarial example can be transferred between the models (Szegedy et al.l |2014; |Goodfellow
et al., 2015; [Papernot et al) [2016)). In our evaluations for the black-box attack, the transfer attack was
performed, assuming that the attacker could access the information of the remaining models after excluding
the target model. We used the PyTorch adversarial attack library torchattacks (Kim), [2020).

We fine-tuned the models on CIFAR-10 and CIFAR-100 via models pretrained on ImageNet-1K and
ImageNet-21K, as shown in Table[I] All the models in Table 2] were fine-tuned in the same environments.
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Table 2: Benchmark performance. Columns ilk and i21k (ImageNet-1K and ImageNet-21K) report the top-1
accuracy (%) after fine-tuning.

ImageNet-1K CIFAR-10 CIFAR-100

Method ilk ilk & i21k itk i21k ilk i21k

Acc(%) Ace(%) Ace(%) Ace(%) Acc(%)  Ace(%)

CNN
ResNetV2-50x1 76.86 79.2 97.63 97.87 86.04 88.97
ResNetV2-101x1 77.99 81.28 96.9 98.8 83.03 91.12
ResNetV2-50x3 79.13 82.77 98.02 98.91 86.69 91.53
ResNetV2-101x3 79.59 83.56 97.51 99.09 84.93 92.65
ViT
ViT-Ti/16 69.69 78.04 96.61 98.22 82.95 88.13
ViT-S/16 78.38 83.64 98.15 98.96 87.52 92.15
ViT-S/32 68.72 79.52 96.79 98.45 84.24 90.74
ViT-B/16 78.1 86.06 99.28 99.29 94.02 94.02
ViT-B/32 72.04 83.49 97.59 99.09 85.59 93.28
ViT-L/16 74.6 85.46 98.79 99.5 90.5 94.92
ViT-L/32 - 81.07 - 98.95 - 92.56
Hybrid

ViT-R+Ti/16 66.98 75.12 95.73 97.37 78.39 85.48
ViT-R26+S/32 78.18 83.77 97.14 98.8 82.85 91.82
ViT-R504+B/16 - 84.92 - 99.03 - 91.07
ViT-R50+L/32 73.52 86.13 97.37 99.23 79.69 92.85

Fine-tuning was done with a stochastic gradient descent optimizer using a momentum of 0.9 and a learning
rate of 0.003. We also used a cosine annealing scheduler. The models were fine-tuned for 10,000 training
steps with a batch size of 128. We resized the input of CIFAR-10 and CIFAR-100 to 224 x 224 via bilinear
interpolation to match the image size on which the model was pretrained. The pretrained models were
loaded from timm, a PyTorch image model library (Wightman) [2019)).

In this study, we evaluated the adversarial robustness of the pretrained models using CIFAR-10, CIFAR-
100, and the ImageNet-1K datasets. The datasets used for the evaluation were constructed by sampling the
same number of images for each class from the test set of each dataset. Specifically, we extracted 1,000,
5,000, and 5,000 images from CIFAR-10, CIFAR-~100, and ImageNet-1K, respectively, for evaluation. For
example, in the case of CIFAR-10, which has ten target classes, we extracted 100 images for each class. In
the experiment, the extracted evaluation images were used to compare the defensive performances against
the adversarial attacks compared to the top-1 accuracy of the clean images.

4.2 Adversarial Robustness of CNNs, ViTs, and Hybrids

This section shows the adversarial robustness of CNNs, ViTs, and hybrids against white- and black-box
attacks. In addition, the results are visualized according to the evaluation and pretraining datasets for a fair
comparison.

4.2.1 White-Box Attack

Figure [1] shows the white-box attack results using the FGSM attack. For benign images, all three types of
models performed similarly on all types of datasets. However, for adversarial examples, ViTs and hybrids
generally had better classification performance than CNNs. Even if epsilon, the size of the perturbation,
was changed, the adversarial robustness of CNNs was generally lower than that of other structures. It can
be seen that ViTs and hybrids had larger performance differences according to their capacity than CNNs.
CNNs showed vulnerable results when pretrained on ImageNet-1K but significantly improved robustness
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Figure 1: Top-1 accuracy (%) of all models on the adversarial examples generated by FGSM attacks. The
x-axis in the graph represents the clean accuracy of a subset of the dataset and the accuracy by epsilon
size. From the left, the columns correspond to CIFAR-10, CIFAR-100, and ImageNet-1K as the evaluation
datasets. The rows correspond to ImageNet -1K and ImageNet-21K as the pretraining datasets.
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Figure 2: Top-1 accuracy (%) of all models on the adversarial examples generated by PGD attacks. The
x-axis in the graph represents the clean accuracy of a subset of the dataset and the accuracy according to
epsilon size. From the left, the columns correspond to CIFAR-10, CIFAR-100, and ImageNet-1K as the
evaluation datasets. The rows correspond to ImageNet-1K and ImageNet-21K as the pretraining datasets.
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Figure 3: Comparison of the models’ loss and accuracy in adversarial examples at epsilon = 0.01, 0.03, and
0.1. The dotted lines in the graphs refer to the top-1 accuracy (%), and the solid lines refer to the loss. From
the left, the columns correspond to CIFAR-10, CIFAR-100, and ImageNet-1K as the evaluation datasets.
The rows correspond to ImageNet-1K and ImageNet-21K as the pretraining datasets.

when pretrained on ImageNet-21K. Even when the epsilon was large, CNNs performed better than ViTs
and hybrids. The PGD attack results in Figure [2] show similar results. However, none of the three types of
models showed no a significant difference from the FGSM results.

We compared the loss of each model for the adversarial examples to derive more meaningful results because
the defensive performance of the models converged to zero when the epsilon was 0.01 or greater. For this
reason, model loss and accuracy were compared using epsilon values of 0.01, 0.03, and 0.1. Even when all the
compared models misclassified the adversarial examples, if a particular model had a specific type of structure
in which the loss was smaller than the other models, the model was more robust for the adversarial examples.
Figure [3| shows the accuracy (dashed line) and the mean loss (solid line) for the adversarial examples of the
models. As seen in the figure, at epsilon = 0.03, most of the models’ accuracies converged to zero. However,
CNNs had a larger loss than the other models. When ImageNet-1K was used as the pretraining dataset,
hybrids had the lowest loss, followed by ViTs and CNNs.

4.2.2 Black-Box Attack

To examine the transferability of adversarial examples between the models, we evaluated their defensive
performance against adversarial examples generated from different models with epsilon = 0.1. Therefore,
the models’ losses and accuracies were compared for epsilon values of 0.01, 0.03, and 0.1. Figure [ shows
heatmaps that visualize the defensive performance of the models against the transfer attacks. The number in
each cell represents the classification accuracy when the adversarial examples generated in the corresponding
model on the x-axis were input in the corresponding model on the y-axis. The diagonal elements represent
the defensive performance against the white-box attacks because the model that generated the adversarial
examples and the model that evaluated it was the same.

When compared based on the evaluation datasets, the models evaluated on CIFAR-10 and CIFAR-100 showed
a significant difference in robustness against black-box attacks of each model type. ViTs had low defensive
performance against the adversarial examples generated by other ViTs, but their defensive performance was
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Figure 4: Top-1 accuracy (%) of the models on the adversarial examples generated between the models. The
y-axis of the heatmap refers to the target models that evaluated the adversarial examples. The x-axis of the
heatmap refers to the source models that generated the adversarial examples. From the left, the columns
correspond to CIFAR-10, CIFAR-100, and ImageNet-1K as the evaluation datasets. The rows correspond
to ImageNet-1K and ImageNet-21K as the pretraining datasets.

high against those generated from hybrids and CNNs. Furthermore, as the model capacity increased, their
robustness also increased, and the same trend was confirmed when the input patch size was large. As with
the experimental results for the white-box attacks, we found that ViTs exhibited higher robustness, even
when the models were pretrained using ImageNet-21K. In contrast, the robustness of hybrids to adversarial
examples generated in ViTs and CNNs improved more when ImageNet-21K was used as the pretraining data
than when ImageNet-1K was used. However, the CNNs all had low defensive performance against not only
the adversarial examples generated from the same CNN-type models but also those generated from other
models. To summarize, CNNs were more vulnerable to transfer attacks than ViTs.

5 The Quantitative and Qualitative Analysis

5.1 Analysis Using Infidelity

Figure 5| shows the infidelity of the models according to the pretraining and evaluation datasets. In this
figure, CNNs showed greater infidelity than other models in almost all cases. On the other hand, ViTs had
lower infidelity scores than CNNs, while hybrids had the lowest infidelity scores. From the model capacity
perspective, CNNs had greater infidelity in complex models, while ViTs and hybrids showed lower infidelity.
According to [Yeh et al| (2019), these results suggest that ViTs have smaller and smoother gradients than
CNNs. It can also be understood that hybrids, which are ViTs using features extracted by CNNs, enhance
this characteristic.
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Figure 5: Infidelity caused by random noise using the vanilla gradient as the attribution method. The x-axis
corresponds to CIFAR-10, CIFAR-100, and ImageNet-1K as the evaluation datasets. The rows correspond
to ImageNet-1K and ImageNet-21K as the pretraining datasets.
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Figure 6: Visualization of the adversarial examples and the attributions generated by the vanilla gradient.
The rows show the results of ViT, hybrid, and CNN results from top to bottom. The columns contain the
input images, adversarial examples, perturbations, and saliency maps created by the vanilla gradient in order
from left to right.

Figure [f] visualizes adversarial examples, the perturbations, and the saliency maps for the images from
CIFAR-10 and ImageNet-1K for a qualitative comparison between the three types of the model. The qual-
itative analysis is based on the differences in infidelity scores between the models shown in Figure 5} The
adversarial examples are not distinguished from the input images. There is also no pattern to be found in
the perturbations. However, the saliency maps generated by the vanilla gradients have a specific pattern.
The ViT saliency maps focus on the objects in the input images. Moreover, the characteristics of the model
that learned the inputs are reflected at the patch level. Similar to ViTs, the saliency maps of the hybrids
also focus on the objects. However, they do not indicate the boundaries between patches. In the case of

10



Under review as submission to TMLR

CNNs, the attributions in the saliency maps are distributed, and the boundaries between the objects and
the backgrounds are unclear.
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Figure 7: Comparison of proposed sensitivities on CIFAR-10. The rows correspond to ImageNet-1K
and ImageNet-21K as the pretraining datasets. The columns correspond to DiffPred-SENS, Loss-SENS,
LossGrad-SENS, and Logit-SENS as the evaluation metrics.

5.2 Sensitivity Difference Between CNNs, ViTs, and Hybrids

The proposed sensitivities to random noise using the CIFAR-10 dataset are shown in Figure[7] In the case
of DiffPred-SENS (a), which counts the cases showing different prediction results for normal and perturbed
images, there was little difference between the three model groups for epsilon values up to 0.01. However,
when epsilon was 0.1, the CNN DiffPred-SENS values were larger than the other models when pretrained
using ImageNet-1K, but the CNNs had lower values than the hybrids when the models were pretrained using
ImageNet-21K. In Loss-SENS (b), which measures the sensitivity of the model’s loss, the sensitivity of the
CNNs became very large when the epsilon was greater than 0.03. In LossGrad-SENS (c), unlike the other
metrics, the CNNs had smaller values than the other models with a small epsilon but recorded very high
values for epsilon values of 0.01 and higher. In Logit-SENS (d), regardless of the pretraining dataset type,
the trend was the same as with DiffPred-SENS when ImageNet-1K was used as the pretraining data. This
means that the robustness of the CNNs dropped rapidly as the magnitude of the noise increased. Overall,
when using ImageNet-21K, the model’s sensitivity tended to be lowered, which was even more significant in
the CNNs.

Figure [8 shows the measurements of the models’ sensitivity to adversarial perturbation using the proposed
metrics on CIFAR-10. For inference, the adversarial perturbation generated through the PGD attack was
used. For a fair comparison, ViT-S/32, ViT+R26-S/32, and ResNetV2-50x1 were selected for the networks
because of their similar model capacity. In DiffPred-SENS; it can be seen that different classes were predicted
for normal data and adversarial examples by all model types when the epsilon and attack steps were large.
However, the CNN-based model was vulnerable to adversarial perturbation, as the figure shows a yellow
area for lower epsilons and attack steps. For the other metrics, the slope of the graph can be interpreted
from an optimization point of view. If the slope is steep at a low attack step and stable afterward, the
model is a vulnerable model that can be fooled with a small attack iteration. From this point of view, it can
be seen that the CNN-based model, which shows a very steep slope at the first attack step in all metrics,
is vulnerable to adversarial attacks. In particular, the CNN had a larger Loss-SENS value than the other
model structures as the attack step was repeated, meaning that the CNN loss increased as the magnitude
of the adversarial perturbation increased. After all, interpretation is difficult for strong attacks because the
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Figure 8: Proposed sensitivities to adversarial perturbation on the CIFAR-10 dataset. The rows represent
the results of ViT, hybrid, and CNN results from top to bottom. The columns are the DiffPred-SENS,
Loss-SENS, LossGrad-SENS, and Logit-SENS from left to right.

classification accuracy of all the models converged to zero, but in terms of loss, it can be seen that the CNN
was more vulnerable than the other structures.

Figure [J] presents the loss landscape of the input space. We measured the model loss for the input space
using two directions of sampled random noise from a normal distribution. The x- and y-axes in Figure [J]
represent the values for scaling the two noise images. The two noise images scaled by the values of the x- and
y-axes are added to the original image to become the final image for measuring the model’s robustness. The
z-axis is the loss value of the model when the corresponding image is input to the model. In other words,
in the case of the center, the loss of the model is very low because it is the same as the original image, but
the loss increases severely toward the edges as noise is added. Like Figure ViT-S/32, ViT4+R26-S/32, and
ResNetV2-50x1 were selected for the networks for a fair comparison because the models had similar numbers
of parameters. As can be seen in the figure, the CNN-based model performed poorly even with less noise
than the ViT- and hybrid-based models. In other words, the CNN had a steep loss slope before and after
a small change in the input. In addition, the increase in the loss was much larger than that of the other
models. This result indicates that CNNs have an input space that is structurally very sensitive to noise.
Even when the pretraining dataset was different, the same tendency was shown, although all models were
more robust when pretraining with ImageNet-21K than with ImageNet-1K.

6 Conclusion

In this study, the adversarial robustness of CNNs, ViTs, and hybrids structures widely used in the computer-
vision domain was measured and analyzed. For a fair comparison, structures of a similar size were used in
each model category, and adversarial robustness was evaluated using both white- and black-box attacks.
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Figure 9: Visualization of the loss landscape in the input space. The rows correspond to ImageNet-1K and
ImageNet-21K as pretraining datasets. The columns represent the results of ViT, Hybrid, and CNN from
left to right.

The results showed that CNNs were generally vulnerable to adversarial attacks. To analyze these results,
we proposed four new metrics to measure the model’s sensitivity and analyzed the models using infidelity
and the proposed metrics. Through the proposed metrics, our experiments showed that the output of CNNs
changes significantly compared to other models for the perturbed input. In addition, they have more sensitive
the loss landscape in the input space. As a result, we found that CNNs are more sensitive to random noise
and adversarial perturbation than other structures. It is hoped that the experiments conducted in this study
will be the basis for further understanding and trusting the models.
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