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ABSTRACT

Multi-Agent Reinforcement Learning (MARL) has seen significant progress in
recent years, enabling multiple agents to coordinate and optimize their actions
in complex environments. However, integrating effective communication proto-
cols into MARL frameworks remains a challenge, as it introduces issues such as
increased state space dimensionality, lack of stationarity, and the need for inter-
pretability. Inspired by human communication, which relies on prior knowledge,
contextual awareness, and efficient information exchange, we propose a novel
framework for incorporating human-like communication strategies to enhance the
learning process. Motivated by recent advancements in natural language pro-
cessing (NLP), multi-modal AI and object detection, we use text-to-mask models
and human feedback to learn compact and informative communication strategies
that facilitate coordination among agents to improve the overall performance. We
demonstrate the efficiency of our approach on various multi-agent tasks and pro-
vide insights into emergent communication behaviors observed during training.

1 INTRODUCTION

Multi-Agent Reinforcement Learning (MARL) is a widely studied subject, where multiple agents
interact with a shared environment, learning to optimize their return. While typically, each agent
operates according to its own experience (i.e., decentralized joint-policy), many potential real-life
applications allow the agents to communicate. By enabling agents to exchange critical information
relevant to their shared task, communication can potentially enhance overall performance and co-
ordination. However, integrating communication into multi-agent learning-frameworks introduces
unique challenges; the communication increases the dimensionality of the state-space, and learning
how to both control and communicate results in an increased non-stationarity. Previous research
in the field can be divided to methods that utilize various aspects of centralized learning (Foerster
et al., 2016; Sukhbaatar et al., 2016; Lowe et al., 2017; Jaques et al., 2019), use reward shaping to
encourage communication (Jaques et al., 2019; Eccles et al., 2019), or harness special architectures
to model the communication (Jiang & Lu, 2018; Lin et al., 2021; Lo et al., 2023). While these
approaches benefit the learning process and show good empirical performance, the experiments are
usually done in simple environments, in which either the optimal control or the optimal communica-
tion policies are relatively simple. In complex settings, current methods still perform suboptimally,
or require an infeasible amount of interactions with the environment.

We aim to address complex problems. To better grasp the difference between a complex and a
simple environment, consider the following examples. A navigation task in which one agent, the
‘navigator’, has to find a path to a control panel, which is always at the same location, from an
arbitrary starting point, then press on either the blue button or the red button. Another agent, the
‘dispatcher’, knows on which button, red or blue, should the ‘navigator’ press. This is a simple task,
for two reasons: (1) The information to communicate is stationary and (2) the communication affects
only a single decision, when choosing on which button to press. With or without communication,
the ‘navigator’ has to learn how to navigate to the control panel. If the location of the control panel
is initiated randomly and the ‘dispatcher’ knows it, there is an added layer of complexity, since
the entire navigation becomes communication-dependent. When dealing with a complex task, it
is accepted to decouple the control-policy from the communication-policy; in the context of the
example, the varying location of the control panel translates to a complex control task but a simple
communication task, as the location of the control panel and the correct button stays fixed. If the

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

location of the control panel may change during an episode, the communication task would become
even more challenging. We formulate a proper definition for such problems and provide further
insights at Section 3.

When considering communication, it could be beneficial assimilating to human beings, as human
communication is used daily to solve complex tasks. But while human-like communication proto-
cols addressed for humans, it is not clear whether artificial agents that use RL would actually benefit
from them. Nevertheless, the interpretability of such protocols may allow additional benefits, such
as teaming up with humans or learning from them. This concept has been previously studied (Lazari-
dou et al., 2016; Havrylov & Titov, 2017; Karten et al., 2023), although in most cases, the main focus
revolves around the emergence of language in rather simple control tasks, or involves a complex,
task-specific learning schemes. Moreover, it has been shown that a true human-like communication
is less likely to emerge naturally (Kottur et al., 2017). Another approach would be to learn from hu-
mans how to communicate, via behavioral cloning (BC) or RL from human feedback (RLHF), but
in the face of a complex task it requires a vast amount of human-feedback which is hard to collect.

Drawing inspiration from human communication, which relies on prior knowledge, contextual un-
derstanding, and efficient information exchange, there exists an opportunity to enhance multi-agent
learning by incorporating human-like communication strategies. The aim here is to learn what is
important to communicate, not to mimic human communication. With advancements in natural lan-
guage processing (NLP), multimodal AI, and object detection a wide set of tools is now available,
and we propose using them for leveraging human knowledge to mitigate the challenges induced by
communication. We propose a framework for a simple and efficient injection of human knowledge,
which can greatly improve the performance by having a good-enough strategy to begin with, and
reducing the inherent non-stationarity.

Our contributions:

• We propose a comprehensive framework for incorporating human-like communication
strategies to enhance multi-agent learning, making it possible to solve complex tasks.

• We demonstrate the effectiveness of our framework on two complex multi-agent tasks and
provide insights into the emergent communication behaviors observed during training.

• We publish our code and environments for further research in the field.

2 RELATED WORK

The non-stationary nature of cooperative MARL problems is both challenging and interesting,
thus gained some attention recently. Many existing approaches embrace the centralized-learning
paradigm, which enables better performance. In Foerster et al. (2016), the authors present a method
for learning across agents by propagating gradients through a communication channel. The paper
Sukhbaatar et al. (2016) introduce a multi-agent communication model that uses a continuous vector
to transmit messages between agents. Lowe et al. (2017) utilize the policies of the other agents when
choosing an action. Jaques et al. (2019) propose a reward shaping for promoting causal influence
on other agents, which requires knowing all agents’ policies. Decentralized learning has also been
explored in recent research, here the focus is on the communication protocols. In Lin et al. (2021),
the agents use autoencoders to learn an encoding for their observation, while the encoding is com-
municated to the other agents. Lo et al. (2023) utilize similar concepts for encoding the joint state
of all agents. Eccles et al. (2019) utilize reward shaping for motivating the agents both to change
their behavior upon receiving different messages, and to send more diverse messages to represent
different experiences. While using centralized critic, Jiang & Lu (2018) propose an attention-based
communication model that allows agents to selectively attend to incoming messages, effectively fil-
tering out irrelevant information. Finally, Das et al. (2019) using targeted communication, to address
specific messages to specific agents.

Interpretability and the emergence of natural language has also been studied in the MARL setting.
Lazaridou et al. (2016) propose a method for communication using a discrete set of symbols, which
can be converted to natural language by matching emergent symbols with corresponding human
labels. Although this paper mainly focuses on referential games, which are rather simple in terms
of control. Havrylov & Titov (2017) use a sequence of symbols for encoding complex information,
such as pictures, and use grounding to make the resulted encoder more similar to a natural language,
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which induce similarities but not necessarily preserve the meaning of words. Karten et al. (2023)
propose a three-phase learning, where agents first learn an emergent communication protocol, then,
uninformative messages are pruned, and the final phase involves teaming up with human players.
On the other hand, Kottur et al. (2017) show that emergent language of artificial agents is less likely
to assimilate natural language without additional constraints.

Our work is built upon these previous approaches; by learning across agents (Foerster et al., 2016),
use communication as a mapping of the observation (Lin et al., 2021), filter out irrelevant informa-
tion (Jiang & Lu, 2018), and shaping the reward (Eccles et al., 2019; Jaques et al., 2019). In addition,
our work introduces a novel framework that combines human-knowledge with RL and could be ap-
plied jointly with (almost) any other method for our setting, to enhance its performance and increase
its interpretability.

3 BACKGROUND AND PROBLEM SETTING

Decentralized Partially Observable Markov Decision Process (DEC-POMDP), as introduced in
Bernstein et al. (2002), describes a framework in which multiple agents need to apply a decen-
tralized policy, based on each agent’s observation independently. Here, the reward function and the
transition kernel operate over the joint policy of all agents, and the partial observability may extend
to the centralized setting (i.e., a decentralized POMDP is a DEC-POMDP). A popular framework to
deal with the challenges arising from the decentralized approach is using a communication channel,
where agents share information regarding their observations and future actions to result with a better
overall policy.

Formally, consider a standard DEC-POMDP:
(
I,S, {Ai}i∈I , P,R, {Ωi}i∈I , {Oi}

)
, where I is the

set of agents, S is the state space, Ai is the action space of agent i ∈ I, P is the global transition
dynamics, R is the global reward function, Ωi, Oi are (respectively) the observation-space and the
conditional observation probabilities of agent i ∈ I. Additionally, Let n = |I| be the number of
agent in the environment. Where a few formulations exist, adding communication to this setting
can be reduced to an equivalent DEC-POMDP with increased observation-spaces (due to the com-
munication signals) and additional action-spaces (for the communication-policy). In our setting,
communication is allowed under the following condition: at time-step t where an agent observes ot
(the current observation) and Cit−1, i = 1, . . . , n, the received communication (from all agents), it
needs to choose both at, the action for the environment, andCt the communication signal that would
be available for the other agents at the next time-step t + 1. That means that Ct could only depend
on information the agent has at time-step t, hence the receiver obtains the information in delay of a
single time-step.

While communication may help improve the joint policy by coordinating the agents actions and
allow mitigating the partial observability that originates from the decentralized setting, it poses a
major challenge – the decision-making problem of which messages should be communicated, and
how to use them. Many prior works utilize a discrete communication channel, which is similar to the
communication form of human beings, and can be used to decipher the message transaction. How-
ever, without additional constraints, communication may greatly differ from human-communication
(Kottur et al., 2017), making it hard to interpret, even if it performs well in the given task. Similarly
to Kilinc & Montana (2018), we view the communication as a mapping from one agent’s observa-
tion to the transmitted message, this allows the agent to choose when to send a message, while the
message itself is a continuous vector. In this case, the actual messages are expected to be relatively
stationary and lossless, in terms of information contained within the original observation. In this
setting, ignoring the time delay of each message, all agents would potentially have a joint obser-
vation. More formally, each agent i observes its own observation at time t o(i)t and the broadcast
communication channel ct, where ct is a concatenation of {ϕj(ojt−1)}Kj=1), where ϕj is a mapping
from the observation space to some vector field.

Importantly, even without explicit communication, agents could learn a well-coordinated behavior
through implicit communication. Directed by this phenomenon, we formulate our testing environ-
ments (Section 5) to minimize implicit communication. We found that extreme partial observability
mitigate such behavior, in particular, omitting any direct connection between the reward and the
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decentralized observation. For example, switching the observations of two agents, so each one ob-
serves the other’s position instead of its own (but controls its own movements).

4 FRAMEWORK

In this section, we present our proposed framework. Section 4.1 describes how we define and im-
plement a simple but efficient text-to-mask model, which we use to link between humans and agents
and define our communication protocol. At Section 4.2 we describe the model’s dedicated archi-
tecture that allows a convenient collection and utilization of human knowledge. Then, Section 4.3
explains how we obtain a human-strategy, and how the model is trained end-to-end.

4.1 HUMAN-LIKE COMMUNICATION STRATEGIES

When facing a new task, humans often communicate with each other quite effectively. This happens
thanks to an already existing form of communication protocol (i.e., language), an agreed termi-
nology, and prior knowledge of the task, that allows the players to communicate well. Generally,
humans have an object-oriented perception, and a task’s terminology usually refer to a textual de-
scription of objects and their states. This allows to focus on a few relevant objects when communi-
cating information, to avoid misunderstanding. While Humans determine the relevancy of an object
from the task’s description, prior-knowledge and previous biases, artificial agents can not directly
interpret it, and it is unclear how to generally embed them. Similarly to humans, artificial agents can
benefit from more focused communication (i.e., less uninformative features), but learning a ‘human’
communication-policy from demonstrations or including feedback in the learning process (RLHF)
is likely to be unrealistic; the dimensions of MARL problems are relatively high, which would re-
quire either collecting a very large dataset of demonstrations or requesting human feedback over
huge amount of simulations. We propose a hybrid approach, that combines the ability of humans
to identify relevant objects with the ability of artificial agents to process the information with high
dimensions.

To ground the observations, we rely on a task-dependent component, text-to-mask, which maps
between a textual description of an object to a mask m ∈ {0, 1} in the same dimensions of the
(decentralized) observation-space. Potentially, the text-to-mask model may use both the textual
description and the current observation to calculate the mask, for example, in case of image obser-
vations, a mask can be a segmentation of the desired object. In the general vector case, it is natural
to view the observation as a collection of feature-sets, each one corresponding with a textual term
that represent an object. Formally, we define a text-to-mask model F : T × O → {0, 1}|O|, where
T is the textual input space, O is the observation space of each agent, and {0, 1}|O| is a binary
mask space with the same dimensionality as O. While most environments have a description of the
features (e.g., angle, velocity, position, etc.) that could be used for constructing T , complex settings
may require a tailored set of terms. For image observations, it is possible to use existing pretrained
object detection models to extract the mask and additional features. In our implementation, we use a
set of terms, each corresponding with a fixed set of elements of the observation space, which defines
a mask, (i.e., F : T → {0, 1}|O|). Learning from demonstrations can be fairly simple, as this model
only need to construct a mask for the current observation and textual input, which does not involve
control.

4.2 MODEL ARCHITECTURE

In this section, we elaborate our model architecture and how it allows both high expressiveness and
efficient injection of human knowledge. As many other works, we used a decoupled action-space,
one for the control-policy πcontθ and another for the communication-policy πcommϕ (parametrized
by θ, ϕ respectively), where each agent implements both policies. While πcont is defined over the
original action-spaceAi, πcomm in our setting correspond with choosing any subset of Ti, which we
parametrize with |Ti| i.i.d. Bernoulli random variables, each one indicates whether a term τ ∈ Ti
is included in the chosen subset. This subset is mapped to a mask m via the text-to-mask model,
and a dedicated encoder Gψ (parametrized by ψ) computes the transmitted communication as fol-
lows: Ci = Gψ(m ⊙ o), where ⊙ stands for element-wise multiplication and o ∈ Ωi is the current
observation of the agent. Ci ∈ C is the transmitted communication of agent i, and contains informa-
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tion about the agent’s observation (to be received in the following time-step). Since all agents send
their own communication, the policies πcont, πcomm are exposed to the current observation o and
an additional vector of concatenated incoming communication signals from all agents C1:n ∈ Cn,
where C1:n = (C1, . . . , Cn). As depicted in Fig. 1a, the number of encoder instances depends
on the number of policy networks, and in most cases can be reduced to two; πcont, πcomm. This
means that the actual communication bandwidth is doubled, although it allows the incorporation of
differential communication (Foerster et al., 2016).

(a) Inference architecture of the com-
munication policy. The masked obser-
vation is passed through the encoder
networks of the communication-
policy and control policy, then
communicated.

(b) Training architecture
of the communication pol-
icy. The mask corre-
sponding with the chosen
action is returned, instead
of the communication sig-
nal.

Figure 1

We incorporate a similar idea to
DIAL (Foerster et al., 2016) to propa-
gate policy gradients from the loss of
the receiving agent to the encoder of
the transmitting agent. It is likely to
aid the policies to extract information
from the other agents’ observations,
while we can enforce any architec-
ture on the encoder to adapt to many
types of communication protocols. C
can be discrete, or continuous with
a small dimension, the only require-
ment is that the encoder would be dif-
ferentiable to allow gradient propaga-
tion. Propagating gradients through
communication requires a change of architecture during training and inference. For πcomm, its
inference architecture is presented in Fig. 1a, but for training purposes, we use the architecture de-
scribed in Fig. 1b, as we would want to train the encoder with the receiving agent. When training,
πcomm outputs the mask from the text-to-mask model, then it is stored along with the observation in
the buffer of the receiving agent. During the training process, each policy holds an encoder (Fig. 2)
which is can be trained naturally, using any policy gradient method; since we store its inputs, we
can propagate gradients through the encoder. Then at inference, we switch architecture for trans-
mitting encoded messages only. Note that the encoder operates on the masked observations of each
agent separately (during training and inference), to allow decentralized execution. The high-level
interconnections between the agents and policies at consecutive time-steps are presented in Fig. 3.
Additionally, since we consider actor-critic architectures, we use a centralized critic as we found it to
be helpful in many MARL settings (Lowe et al., 2017), which is utilized solely during the training.
Note that we could use similar architecture to fine-tune the text-to-mask model as well, although in
this work we consider only fixed text-to-mask models.

Figure 2: Training architecture
of all policies. The masked obser-
vation of the transmitting agents
passed independently through the
encoder, which is adjusted ac-
cording to the policy gradient.
This applies for both the commu-
nication and the control policies.

This architecture has a few advantages, which we shortly discuss
here. Firstly, the expressiveness is unharmed, since each agent po-
tentially obtains the information encapsulated in the other agents’
observations (with a single time-step delay) and maps it to an ac-
tion. Second, in terms of knowledge injection, the object-oriented
view of the communication-policy is abstract enough to engineer
a rule-based policy, or to realistically collect demonstrations from
humans. These are what we call human-strategies, since their pur-
pose is to determine the information to communicate rather than
compute the actual communication signal, and are fairly abstract
and interpretable to humans. Another desired outcome of this ar-
chitecture is an enhanced interpretability: even though the com-
munication signals can potentially be real-valued vectors with not
much of a human-meaning, each one of them corresponds with a
set of textual terms, which reveals the subject of the message, but
not the actual content. We further discuss it in Section 7.

4.3 TRAINING

The main difficulty that accompanies by the introduction of communication directly comes from
the inconsistency of the communication-policy along the training phase; it both changes between
iterations, and initially random. One approach to mitigate this inconsistency is to “cancel” the
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Figure 3: Interconnections between agents/policies across time-steps. The dashed lines represent the depen-
dency on the previous observation of all agents, which holds only during the training process. Here Ĉ denotes
the output of the communication-policy, whether it is a mask, or the actual signal, depends on the phase; train-
ing or inference.

communication policy, and always use a mask m = 1, although as evidenced in Section 5, in some
cases this approach would fail. We propose using the human-strategies; if we have a rule-based
strategy we can easily generate human demonstrations for each observation we encounter, if we
only have a finite set of demonstrations available, we subsample from it to obtain a batch of human
demonstrations. We utilize this batch when computing the algorithm loss by adding a BC loss
constraint to the overall loss of πcomm:

LBC(ϕ) = E
[
− log

(
πcommϕ (aHS |o, C1:n)

)]
(1)

where aHS is the human demonstration. The overall loss becomes Lcomm(ϕ) = L(ϕ) +
βLBC(ϕ), where β is a hyperparameter that determines proximity to the human strategy,
and L depends on the training algorithm. For πcomm we penalize the immediate reward
by α(number of objects to communicate), where α is a hyperparameter that prevents over-
communication. Although our framework can potentially be combined with any RL algorithm,
Proximal Policy Optimization (PPO) (Schulman et al., 2017) is particularly well-suited for this task
as it prevents the policies from deviating too drastically during training, helping to cope with the
non-stationarity introduced by the decoupled nature of the communication and control policies.
Furthermore, all the agents instances share parameters, so we always have two policies to train:
πcomm, πcont. We train them sequentially and batch by batch; each batch of trajectories is only
stored in the rollout-buffer of one of the policies, then, after the policy is updated we sample another
batch for the other policy. This way, the sampled trajectories remain “on policy”, which result in a
better policy-gradient estimation. The sequential training comes on the expense of unused samples,
although we found it crucial for convergence.

5 EXPERIMENTS

Our framework was tested on two simulated environments we created, that involve control and
communication with extreme partial observability, in both of them, and the optimal policy relies
mainly (but not only) on the communication. We compare our method against a few baselines,
with varying communication. First, pure decentralized policy (‘no comm’) to show the added value
of communication. Second, ‘human-strategy’, by simply applying the rule-based human-strategy.
Finally, we compare against a ‘dense comm’ setting, in which the observations are unmasked when
communicated. The dense setting can be seen as a variant of DIAL, with different underlying RL
algorithm and parametrization. Our proposed method, ‘hybrid’, utilizes both RL and the human-
strategy to learn the communication policy. In the following section, we describe each environment
and present the results. We base our RL implementation on RLLib (Liang et al., 2018), our code files
are available at https://github.com/commstrategies/human like communication strategies, including
the following simulators and the entire architecture implementation.
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5.1 ONE-DIMENSIONAL COORDINATE

Figure 4: Snapshot from the game with
two agents. The agent is the blue circle,
shared and private goals are represented
by green and blue squares respectively,
and the red X’s represent the mark of each
agent.

Coordinate is a simple game. As depicted in Fig. 4 each
agent has its own 1-dimensional grid world of size k (in our
experiments k = 6) that contains a single goal, which is
either shared or private. At each time-step, the agents can
choose to do nothing, move one step left or right (moving
towards the edge results in staying put), ‘claim goal’, or
‘mark’ their location. Claiming a goal is possible when the
agent and the goal are in the same location, by using the
‘claim goal’ action. A shared goal requires all other agents
to mark the location of this goal in their grid-world. After a
goal is claimed, it disappears. Each agent could only mark
a single location at a given time, marking a new spot makes
the previous mark disappear. The game ends when all the goals are claimed or the episode length
has reached a predefined limit.

The reward is shared across agents, although in practice we define it individually, then use its mean
as the shared reward signal. The individual reward for any state and action is always r = −2 unless:

1. Private goal claimed: the agent who claimed the goal receives r = 10 (for a single turn).
2. Shared goal claimed: the agent who claimed the goal receives r = 100 (for a single turn).
3. Agent that already claimed a goal receives r = 0 when doing nothing, or r = −5 otherwise.

To maximize the cumulative reward, the agents should cooperate, to help each other claiming the
shared-goal, while also collecting any private-goals available.

The observation-space includes the following sets of features and corresponding textual representa-
tion:

agent The location of the agent on its own grid, a one-hot k-dimensional vector.

goal One-hot k-dimensional array that represents the private goal location. If the goal is of
shared type, it becomes 0.

shared goal One-hot k-dimensional array that represents the shared goal location. If the goal is of
private type, it becomes 0.

mark One-hot k-dimensional array that represents the mark location. If the agent has not
marked yet, it becomes 0.

achieved Boolean, true if the goal is already claimed, else false.

Figure 5: Results in the Coordinate do-
main. Our method (‘hybrid’) learns faster
than the other baselines. With no com-
munication (‘no comm’), the agents fail to
learn a meaningful policy.

In our experiments, we use two agents. The definition of
the observation-space provides a natural text-to-mask map-
ping. Here we use the following rule-based policy as our
human-strategy: each player always communicates its own
position, the position of the shared-goal if the agent’s goal
is of shared type, and the ‘achieved’ indicator if the goal (of
any type) already achieved. In addition, we send the mark
location is the mark is showing somewhere. We collected
a set of 1000 demonstrations following this rule-based pol-
icy as our human-strategy input, and sample from it when
computing the BC loss term. For this experiment, we use a
control-policy with memory (incorporates recurrent neural
network), and a memoryless communication policy.

We present the results in Fig. 5, we measure the mean cu-
mulative reward over 5 random seeds. Our method along
with the ‘dense comm’ and the ‘human-strategy’ eventually learn an optimal behavior, although our
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proposed method seems to converge faster, supporting the hybrid architecture. Without communi-
cation, the ‘no comm’ method can not behave optimally due to the absence of critical information.

5.2 COORDINATE IMAGES

Figure 6: Snapshot from the Coordinate Images sim-
ulation where n = 2, k = 4. The board-photos
are framed in white, and the forehead-photos are color
framed. The board-photos currently chosen by a player
are marked. In this example, we observe that player
2 sends the features corresponding with the word ‘ele-
phant’. For visualization purposes, we highlight the
objects that are communicated. Only photos that have
been viewed at times 0, . . . , t are highlighted, this in-
cludes the other player’s forehead photo.

We visualize this task as a board game, each
player (out of n total players) has a random
photo on their forehead; in it, one or more ob-
jects from a known set of objects (e.g., car, dog,
etc.) is showing. While each player can not
see the photo on their own forehead, they can
observe the photos of the other agents. Addi-
tionally, on the board there are k down-faced
photos, which are enumerated, and each player
has a unique coin to mark one of the k pho-
tos at a time. At each turn, all players have to
decide which photo they want to mark for the
next turn, then mark their locations altogether
and discretely observe the photo they marked.
Initially, at the first turn, the coins are in the
players’ hands, not marking any photo. Dur-
ing the game, it is possible that more than one
player would mark the same photo. The goal
is that at the same time, all players will mark a
photo that shows at least one object that appears
in the photo on their forehead, where no other
player is marking it. While this task appears
simple for human players that communicate, it
is almost unsolvable without communication.

Specifically, in our environment the photos and their tags (set of objects) derived from Lin et al.
(2014), which is mainly used for object detection, where we chose photos that are tagged with
one or more of the following 10 tags: ‘car’, ‘airplane’, ‘bird’, ‘cat’, ‘dog’, ‘horse’, ‘sheep’, ‘cow’,
‘elephant’, ‘cake’. We process the dataset to construct a set of 9, 742 photos that attributed only with
these tags.

All the photos in the game are selected randomly at the beginning of each episode, assuring that a
solution exists: after the forehead-photos are chosen, n photos with matching objects are randomly
selected as board photos, then the remaining k−n (we require n < k) photos are sampled from with-
out constraints. After selected, each photo is passed through a pretrained YOLOv8 model (Jocher
et al., 2023) to extract a vector v ∈ {0, 1}10 that indicates which objects appear in the photo. Each
observation of a single agent is composed of the following:

1. One-hot vector that indicates which player is observing (e.g., for two players, (1, 0)T rep-
resents player 1, and (0, 1)T represents player 2).

2. Vectors that represent each photo, except for the forehead photo of the agent who observes:
n− 1 + k vectors, each v ∈ {0, 1}10.

3. A matrix W ∈ {0, 1}n×k that indicates which photo each agent is currently marking.

4. A vector u ∈ {0, 1}k that indicates which board-photos has been previously marked by the
observing player.

These components are flattened and concatenated to construct a vectorized observation. In addition,
it provides an optional centralized observation, that includes the vector representation of all the
photos in the current game, along with player markings and previously viewed photos of each player.
We utilize this centralized observation during the training to train the critic only.

While the agents observe the vector representations as predicted by YOLO, the environment utilizes
the true tags, from the dataset, for the reward and dynamics computation. It is important since
YOLO makes mistakes, which are approximately 10% false positives and 8% false negatives. These
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mistakes amplify the partial observability, forcing the agents to compensate for YOLO. The reward
is shared, and defined by the number of agents that hold the following conditions: (1) they do
not co-mark a photo with another agent, and (2) they mark a photo that shares an object of their
forehead-photo. Let this number be µt, then the global reward is defined by

R(µt) =

{
5 if µt = n
µt

n − 1 otherwise

Figure 7: Results in the Coordinate Im-
ages domain. Surprisingly, the ‘dense
comm’ setting performs poorly, similarly
to the ‘no comm’ setting. The methods
that mask the communication (‘hybrid’,
‘human-strategy’) manage to learn a suc-
cessful behavior. As expected, ‘no comm’
shows that without communication, the
task become unfeasible.

Note that µt = n corresponds with reaching the goal. Upon
reaching the goal, the current episode ends and a new one
starts. The text-to-mask model is trivial here, for a given
term representing an object of the possible 10, its corre-
sponding mask should only pass the fixed features corre-
sponding with the specific object, which are the same row
in each vectorized photo. The environment is depicted in
Fig. 6. In the experiment, we use n = 2, k = 5 and force
each episode to end after 25 time-steps.

Both policies (control, communication) in this experiment
are memoryless and depend on the current observation and
incoming communication only. The human-strategy we use
in this experiment is to communicate all the objects that
show in the other players’ foreheads at each time-step. We
repeat the experiment for 2 random seeds, and present the
results in Fig. 7. Similarly to Fig. 5, the ‘hybrid’ approach
outperforms the other methods, while except for the pure
‘human-strategy’ setting, the baselines fail to converge at
all and perform similarly to a random policy. It is expected
for the ‘no comm’ baseline to perform poorly, although the ‘dense comm’ method should be able to
perform well, which is not the case here.

6 INTERPRETABILITY AND EMERGENT BEHAVIOR

Our framework and model are designed for convenient transfer of human-knowledge to artificial
agents (Section 4.1). However, for interpretability, we need to transfer knowledge in the other
direction – from artificial agent to humans. As discussed earlier, while the resulted communication
is not directly grounded to natural language, the context is – what the agents are talking about,
instead of what are they saying. The context along with the agents’ behavior can provide a wider
understanding on their policy and what are they actually communicating.

In Fig. 8, we present a sample trajectory from the resulted ‘hybrid’ method, in the Coordinate sim-
ulation (Section 5.1). For every time-step, we show the state and the objects each agent chose to
transmit. Here, One agent has a private-goal, and the other have a shared-goal. Initially, the agent at
the top communicates its own position and the position of the shared-goal, while the other (bottom)
agent only communicates its own position. Over the next time-steps, the top agent moves towards
the shared-goal, then waits for the other agent. The bottom agent marks and claims its private-goal,
then moves on to mark the position of the top agent’s shared-goal. During this period, agents only
communicate their position. Once marked, the bottom agent communicates the mark’s position, and
the ‘achieved’ status, then, the shared-goal is claimed and the simulation ends.

Analyzing the agents’ behavior, we can learn a few things: (1) Since the shared-goal position is
communicated once at the beginning, while the bottom agent knew exactly where to mark, we can
deduce that the policy indeed utilize its memory. (2) After the bottom agent marks the shared-goal
position, it immediately communicates both the mark’s location and his ‘achieved’ status. This can
be attributed to the bottom agent rushing the top agent to claim his goal – “I already claimed mine,
go ahead and claim it”. (3) The agents communicate their location at all times, except the bottom
agent, once marked the shared-goal. This information can be used to determine which goal to claim
first, and once an agent finished their task, their location is irrelevant anymore.

Although it is a rather simple environment, this form of communication provides a specific context
for a human “side-listener” that observes the agents’ behavior, and could be used in environments
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Figure 8: Sample trajectory from Coordinate (Section 5.1), it shows the transmitted communication at each
time-step. The communication provides a glimpse to the agents’ decision-making mechanism, by analyzing
the information exchange, and the following decisions of each agent.

that are much more complex. Moreover, the main component that enables this interpretability is the
text-to-mask model, which is easier to obtain for human inputs, such as images, due to the wide
availability of pretrained models.

7 DISCUSSION AND FUTURE WORK

Communication can potentially improve the performance in any MARL task, but in practice it is
very hard to learn effective communication protocols, especially in dynamic settings that involve
partial observability, where efficient communication is critical. However, there is no free lunch, and
to learn efficient communication we turn to the masters – humans. Our abstraction of the object-
oriented perception derived an architecture that with a minimal engineering effort could be adapted
to many domains, extracting and utilizing human knowledge to enable effective communication.
Moreover, as we demonstrate in Section 6, we are able to observe the context of a conversation,
which helps to interpret and even communicate with the agents.

We believe that hybrid approaches, such as ours, that incorporate human-knowledge in RL pave the
path for practical applications in many domains that are perceived to be hard for artificial agents.
One major issue that arises when involving humans in the training is the data-collection process.
Especially in RL, collecting human demonstrations is not trivial and in many cases impractical. On
the other hand, smart architectures and framework that consider this issue may be utilized, such as
in this work.

Further research could be done in several directions. First, we use a simple text-to-mask model,
which could be replaced with a more sophisticated LLM-based model, in light of the recent devel-
opments in this field. Second, more complex textual descriptions may require an impractical action-
space for the communication policy, this could again be addressed with an LLM. Third, the concept
of policies that mask other policies observations could be extended to the communication times (i.e.,
policies that determine at what times to communicate if at all), or applied in a single-agent setting,
where the observation-space is large or contains many distractions. Finally, our framework allows
humans to intervene during the training or even through the inference by communicating various
observations over the communication channel, although it is possible, it is outside our scope.

REFERENCES

Daniel S Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. The complexity of
decentralized control of markov decision processes. Mathematics of operations research, 27(4):
819–840, 2002.
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