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Abstract

Image segmentation is an important part of many biomedi-001
cal research and clinical pipelines. Because images within002
a dataset are often similar in appearance and composition,003
structures in one image can contain information that is use-004
ful for segmenting other images. However, existing image005
segmentation models segment each input image indepen-006
dently, limiting their ability to share this information.007

We present InterConv, a mechanism that enables seg-008
mentation models to interact and share information across009
a set of structurally related images. InterConv is a layer010
that can be inserted within any network to facilitate set in-011
teraction with intermediate sample features without chang-012
ing the fundamental network architecture, and therefore can013
be integrated into most existing segmentation models. We014
demonstrate the effectiveness of InterConv by applying it to015
two state-of-the-art image segmentation architectures: UN-016
ets and Vision Transformers, and tackle challenging tasks in017
both automatic and interactive biomedical image segmenta-018
tion. By learning to interact samples through aggregated set019
features, InterConv consistently improves per-sample seg-020
mentation performance, sometimes by up to 19%.021

1. Introduction022

Image segmentation is a core step in many biomedical im-023
age analysis pipelines. Machine learning-based models024
have been shown to be useful for segmenting images of a025
wide range of modalities, spanning across diverse biomed-026
ical domains, Typically, these models segment one image027
at a time. However, in many situations there are multiple028
images acquired using the same modality and of the same029
anatomy, resulting in similar structural compositions among030
samples. In some cases, the images have only minor dif-031
ferences, for example, longitudinal scans of the same sub-032
ject. In the same way that pixels can provide contextual in-033
formation about neighboring pixels, samples from a set of034
related images can potentially provide useful information035

Figure 1. InterConv helps models achieve substantially higher
segmentation accuracy, as seen on the cortex (red). From left to
right we show a close-up view of an input T2-FLAIR scan, with
corresponding ground truth segmentation map, prediction with our
proposed model, and the baseline prediction.

about each other. 036

We present a novel learning-based segmentation mecha- 037
nism, InterConv, that enables a model to share information 038
across the set by interacting a set of related input images and 039
making prediction for each of the sample. Our contributions 040
are: 041

• We introduce InterConv, a novel layer that is easily incor- 042
porated in most modern network designs to enable inter- 043
action among input images. 044

• We demonstrate the generalizability of InterConv by ap- 045
plying it to two different state-of-the-art segmentation ar- 046
chitecture paradigms: convolutional UNets and Vision 047
Transformers. 048

• We evaluate the effectiveness of InterConv in two seg- 049
mentation scenarios: (1) interactive segmentation of di- 050
verse biomedical image datasets, (2) automatic segmen- 051
tation of low-resolution MRI brain scans. We find that 052
InterConv improves segmentation accuracy in both sce- 053
narios. 054

2. Related Work 055

Medical Image Segmentation. Image segmentation is 056
widely-studied in many biomedical domains. Most of to- 057
day’s existing methods use a convolutional neural network 058
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Figure 2. Examples of biomedical image segmentation tasks with spatial consistency. The ground truth segmentation is overlayed in
blue [1, 45, 81, 107, 120].

to produce label maps for a single image [9, 23, 29, 48,059
51, 54, 98]. When well-designed, UNet-like convolutional060
architectures [52, 73, 105] continue to perform similarly061
to more recent and more complex architectures, based on062
transformers [16, 37, 114] or state-space [79, 112] models.063
All of these methods make predictions for a single input064
image, independent of other images in the test set. In con-065
trast, our work provides a mechanism to interact intermedi-066
ate sample features in all these networks, and improve seg-067
mentation accuracy on each of the samples.068

Multimodal Image Inputs. Some methods integrate in-069
formation from multiple modalities to improve biomedi-070
cal segmentation results [40, 57, 86]. These networks use071
a fixed number of input channels [17, 27, 28], which re-072
stricts the amount of input information the network can in-073
tegrate [18, 20, 50, 51, 54, 91, 118]. Importantly, the multi-074
modal inputs are related to a single sample and the networks075
make independent predictions on each sample. We propose076
a mechanism that is agnostic to the number of inputs in the077
set and produces a separate prediction for each set entry.078

Multiple Predictions. Some segmentation methods gen-079
erate multiple predictions for a given image and aggregate080
them, to improve accuracy or estimate uncertainty [51, 96,081
103, 108, 110]. Some stochasatic segmentation methods are082
designed to model the variability in multiple raters [6, 61,083
95, 96, 115]. While these methods produce, and sometimes084
interact among, multiple segmentations, they all operate on085
a single input image.086

Data-driven (non-parametric) Mechanisms. Data-driven087
(or non-parametric) methods yield improved performance088
with higher amount of data available at inference. Recent089
deep-learning methods have combined parametric neural090
networks with data-driven mechanisms, to draw on data091
available at inference. For example, in-context learning092
methods employ a neural network that adapts to new tasks093
based on a context, often provided as a flexible set of ex-094
ample input-output pairs [12, 21, 96, 111]. In InterConv we095

also propose a non-parametric mechanism for jointly seg- 096
menting a set of multiple samples, and to enable interaction 097
across the set. Moreover, InterConv can handle input sets of 098
variables sizes. 099

Interactive Segmentation. Medical researchers and clin- 100
icians often need to perform new segmentation tasks in- 101
volving new images, modalities, or labels that require them 102
to perform manual segmentation. Interactive segmentation 103
models reduce this burden by using sparse annotations, such 104
as clicks and scribbles, as an additional model input. Re- 105
cent foundation models for interactive segmentation yield 106
promising results on many medical image segmentation 107
tasks, but can perform poorly on tasks unseen during train- 108
ing, due to ambiguity in desired segmentation targets be- 109
cause of sparse annotations [60, 78, 113]. 110

We demonstrate that with InterConv such ambiguities 111
can be more easily resolved through set interaction where 112
annotations in one image can be transferred across the set 113
and help to segment other images. We find that this setting 114
improves segmentation accuracy and requires substantially 115
less total user effort than existing methods. 116

3. InterConv 117

Standard deep learning approaches to segmentation learn 118
a function y = gθ(x), with parameters θ, that outputs a 119
prediction y given a single input image x. 120

We propose InterConv, a mechanism that, when applied 121
to an existing network, enables it to model a function Y = 122
fθ(X ) that jointly predicts a set of outputs Y = {yi} given 123
a set X = {xi} of input samples xi, where each element yi 124
in the output set Y is the prediction corresponding to input 125
image xi. The input set X can be of flexible size. Input 126
samples interact through the InterConv Layer, so that infor- 127
mation from each sample can be shared and contribute to all 128
predictions of the input set. 129

InterConv Layer. The InterConv Layer enables sample in- 130
teraction across the input set by taking in a set of individual 131
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Figure 3. Illustration of InterConv Layer. InterConv Layer takes
a set of intermediate features {ui}Ki=1 as input, aggregates them to
produce the set context s, and fuses the set context representa-
tion with original sample features by concatenation and applying
a feed-forward layer (FFW).

sample features U from a given network layer, and produc-132
ing an updated set of features for each sample U ′ after set in-133
teraction. The InterConv Layer first summarizes interacted134
information in a set context feature s through the set ag-135
gregation step, and combines it with individual information136
through the feature fusion step.137

Set Aggregation. InterConv first takes a set of individ-138
ual image representations U = {ui}, where each ui is an139
intermediate feature representation that corresponds to in-140
put image xi and has size F × h × w, with height h and141
width w and F features. The set aggregation step computes142
set context s as a pixel-wise average across samples for each143
feature,144

s =
1

K

K∑
i=1

ui. (1)145

Feature Fusion. Given the set context s and image-146
specific feature ui, InterConv first applies a channel-wise147
concatenation:148

ci = Concat(ui; s), (2)149

then applies a shared convolution layer to each sample fea-150
ture ci in the set to integrate the interacted information with151
the individual sample features152

u′
i = Conv(ci). (3)153

The final output features u′
i are the same size as the output154

from the original network layer, enabling InterConv to be155
used after any existing intermediate layer (Fig. 3).156

Training. With InterConv, the network makes prediction157
on the entire set of images X , and its weights are optimized158

jointly on the whole set: 159

Lθ(D) = EK

[
EX ,Y⊂D

[
L
(
Ŷ,Y

)]]
(4) 160

= EK

[
EX ,Y⊂D

[
K∑
i=1

Lseg (ŷi, yi)

]]
(5) 161

where D is a dataset containing sets of image samples X 162
and targets Y with various set sizes K, and Ŷ is the collec- 163
tion of network predictions on X . L is the desired segmen- 164
tation loss over the input set, which is the sum of per-sample 165
segmentation loss Lseg . 166

Inference. Once trained, any network with the InterConv 167
layer added can perform joint prediction on input image sets 168
of any size. 169

4. Experiments 170

We assess the ability of InterConv to productively use in- 171
formation from multiple input images. To do so, we ex- 172
plore two common applications where it is challenging to 173
construct accurate segmentation maps from single input im- 174
ages: 1) interactive segmentation and 2) automatic segmen- 175
tation of the low-quality clinical-grade MRI scans that are 176
prevalent in clinical practice. 177

Baselines. We demonstrate the effectiveness of InterConv 178
integrating it into two of the most widely used image seg- 179
mentation frameworks: convolutional UNets and Vision 180
Transformers. Specifically, we apply InterConv to the fol- 181
lowing architectural designs: 182
• SimpleUNet, a UNet-like architecture for general image 183

segmentation with a single convolution block at each en- 184
coder and decoder step, 185

• nnUNet [51], a UNet-based biomedical image segmen- 186
tation network that automatically chooses some network 187
aspects depending on the dataset [51, 52], 188

• SwinUNet [14], a transformer-based state-of-the-art med- 189
ical image segmentation model, and 190

• ScribblePrompt-UNet [113], a UNet-based state-of-the- 191
art model for interactive segmentation. 192

Details about how we integrate InterConv into these archi- 193
tectures appear below. 194

Evaluation. We evaluate model predictions using Dice 195
Score [26] averaged across foreground classes. 196

4.1. Interactive Segmentation 197

We first evaluate InterConv in the setting of interactive seg- 198
mentation, focusing on segmentation tasks not seen during 199
training. 200

Setup. Given an input image xi and a collection of interac- 201
tions zi, we predict binary segmentation yi. With InterConv 202
layers, the model jointly segments a set of K images of sim- 203
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ilar anatomy {xi}Kk=1, given simulated prompts {zi}Kk=1,204
and produces a set of segmentation {ŷi}Kk=1 for each input.205

Interactions. Following recent methods [113], we con-206
sider interactive segmentation using scribbles and clicks.207
We simulate positive prompts from label area yi and neg-208
ative prompts from 1− yi, following the generation method209
of ScribblePrompt:210

• Line scribbles: We randomly sample end points from the211
label and background areas, create a line segment that212
joins the end points, and warps the line segment to make213
sure that all points on the deformed path falls into one of214
the label or background categories.215

• Random clicks: We randomly sample pixels that belong216
to the label or background area.217

Network Architectures. We follow the architecture of218
ScribblePrompt-UNet [113], a state-of-the-art interactive219
segmentation model with an efficient UNet-based architec-220
ture with 192 features at each convolution layer. We con-221
struct ScribblePrompt-InterConv by inserting a InterConv222
Layer with kernel size 3 at the end of each convolution layer223
of the baseline network. We proportionally downscale fea-224
ture sizes in ScribblePrompt-InterConv to 137, so that both225
networks possess a similar number of parameters (∼3.6M).226

Data. We use the datasets in MegaMedical [12, 96, 113]: 74227
diverse biomedical image datasets, including over 48,000228
images, 16 image types, and 602 labels.229

We partition the datasets into 65 training datasets and230
9 evaluation datasets using the same splits as [113]. Each231
evaluation dataset is partitioned into validation data, used232
for model selection, and test data, used for final evalua-233
tion. We report results on the test splits of the 9 evaluation234
datasets, unseen by the models during training [1, 2, 7, 36,235
67, 94, 107, 119, 120].236

We define a task as a combination of dataset, modality,237
axis, and label. For multi-label datasets we consider each la-238
bel as a separate binary segmentation task. For 3D datasets,239
we use the middle slice and slice with maximum label area240
to create 2D tasks.241

Set Grouping. We sample sets containing different images242
from the same segmentation task. This aligns with a realis-243
tic scenario, as users often need to segment several images244
from the same dataset.245

Training. Training Objective. We minimize Eq. 5 where246
Lseg is a combination of Soft Dice Loss [87] and Focal247
Loss [71] using the Adam optimizer [58].248

Prompt generation. We train all models with 2 prompt249
types: scribbles and clicks. For each prompt type we sample250
a random number of positive prompts ranging from 1 to 6,251
and a random number of negative prompts ranging from 0252
to 6.253

We train all models with fixed batch size of 8 sets,254

with set sizes K ∼ Cat[1, 8] at each iteration. Fol- 255
lowing the training procedure in ScribblePrompt, we train 256
both ScribblePrompt-UNet and ScribblePrompt-InterConv 257
for 20,000 epochs with 125 batches per each epoch. 258

Evaluation. For evaluation, we use the same prompt types 259
used during training. We evaluate model performance us- 260
ing Dice Score [26] on the 9 held-out datasets. We re- 261
port results averaged across 5 runs with different (ran- 262
dom) prompt initializations. At inference, we vary set size 263
K ∈ {1, 2, 4, 8} and the number of prompt interactions 264
npos, nneg ∈ {1, 2, 4, 8}. We filter out tasks with fewer 265
than 8 examples to make sure that scan images are distinct 266
within a set, and that evaluations are performed on the same 267
collection of test scans for each set size. 268

Results. Fig. 4 shows that for both scribbles and clicks, 269
with all prompt sizes, ScibblePrompt- outperforms the base- 270
line for set sizes greater than 1. These improvements are 271
significant with a pairwise t-test (p-value ¡ 7e-4). The im- 272
provement in Dice grows larger with larger set sizes. Fig. 273
5 provides illustrative examples highlighting this improve- 274
ment. More interactive segmentation visualizations can be 275
found in the Appendix. 276

Discussion. Sample communication is especially useful 277
in interactive segmentation because user-provided annota- 278
tions on one image from the same task can provide infor- 279
mation about the region being segmented on other images. 280
Fig. 5 show that the baseline predictions, which only con- 281
sider one sample at a time, are localized to the annotated 282
pixels. By considering four annotated samples at once, 283
ScribblePrompt-InterConv is able to gather more informa- 284
tion about the target segmentation map from the whole set 285
and propagate this information to each sample, achieving 286
higher dice scores across all four predictions. 287

That the InterConv improvement over the baseline in- 288
creases as the set size increases, demonstrates the value 289
of shared information among samples. InterConv also 290
achieves larger improvement with fewer prompts per im- 291
age, and when there is less information per prompt (clicks 292
as opposed to scribbles). In both situations, the less infor- 293
mation there is per image, the more useful the information 294
is from other images. 295

4.2. Automatic Segmentation: Clinical-quality 296
MRI Scans 297

In this experiment, we evaluate InterConv for automatic 298
segmentation of brain MRIs. MR images acquired in clini- 299
cal settings often exhibit lower resolution, more noise, and 300
lower tissue contrast than the research scans that are often 301
used to evaluate segmentation methods. We evaluate Inter- 302
Conv on the challenging task of segmenting clinical brain 303
MRI. 304

Data. OASIS-3: OASIS-3 is a collection of 1,378 partic- 305
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(a) Interactive segmentation on Pandental dataset with line scribble prompts. (b) Interactive segmentation on ACDC dataset with line scribble prompts.

Figure 4. ScribblePrompt-InterConv substantially improves interactive segmentation accuracy. We evaluate ScribblePrompt-UNet
and comparable-sized ScribblePrompt-InterConv on unseen data. Each plot shows shows mean per-sample Dice score improvement of
ScribblePrompt-InterConv over baseline on various set sizes and prompt sizes. Shaded regions show 95% CI from bootstrapping with
1,000 runs.

SimpleUNet SimpleUNet-InterConv (ours) SwinUNet SwinUNet-InterConv (ours) nnUNet nnUNet-InterConv (ours)

OASIS-3 T2⋆ 83.44 ± 3.26 83.65 ± 3.39 81.10 ± 2.88 81.78 ± 3.06 82.62 ± 2.86 83.50 ± 2.98

OASIS-3 T2w-tse 90.28 ± 1.88 90.71 ± 1.60 87.58 ± 2.40 88.02 ± 2.13 89.69 ± 1.98 89.90 ± 1.67

ADNI FLAIR 86.95 ± 2.33 87.95 ± 2.32 85.25 ± 2.45 85.40 ± 2.38 87.23 ± 2.29 88.48 ± 2.18

Table 1. Quantitative results: Dice performance on automatic segmentation. We show the best performance for each model architecture
along with standard deviation across test images.

ipants collected across several ongoing projects [66], con-306
taining 2,842 MR sessions with multiple modalities.307

We focus on T2⋆ and T2-TSE MRI modalities, which308
have higher noise, lower contrast, and sparser slices than309
research-quality T1 scans. Many subjects have multiple310
scan sessions acquired over time. For each session, we ex-311
tract T1w scans, as well as T2-TSE and T2⋆ scans, if they312
exist. We use segmentations obtained from the paired high-313
quality T1w image as ground truth, and use InterConv to314
predict segmentation maps from the (aligned) low-quality315
T2 scans. This enables us to assess the value of sharing in-316
formation in low-quality information, while having accurate317
ground truth targets.318

ADNI: We additionally use a collection of 5117 MR lon-319
gitudinal sessions gathered from 1061 participants in the320
ADNI dataset. For each session, we extract a high-quality321
T1w scan and T2-FLAIR scan. The FLAIR images are ac-322
quired with large slice separation (5 mm), and therefore ex-323
hibit low-resolution in the slice dimension. As above, we324
obtain segmentations on the T1w image, and use it as the325
ground truth label map for the aligned FLAIR scans.326

Processing. We first perform skull-stripping using Synth- 327
Strip [46]. Following standard practice in population anal- 328
yses, we rigidly align all scans to a common space using 329
SynthMorph [41–44]. Specifically, we first align all modal- 330
ities within a session to the T1 scan of that session. For each 331
subject, we then align the T1 scan of each session to the T1 332
scan of the first session. Finally, we align the T1 scan of the 333
first session to the Talairach space, and propagate all scans 334
to this space through the predicted transformations. 335

For both OASIS-3 and ADNI data, we use the middle 336
coronal slice from all registered volumes. We filter and 337
keep 20 anatomical regions that are commonly present in 338
all scans. We exclude scans with missing labels. Details 339
about class labels can be found in the Appendix. 340

We consider an input set to contain all scans from the 341
same subject. 342

Network Architectures. We evaluate two architectural 343
designs: UNet-based and Transformer-based. We train 344
both SimpleUNets and SimpleUNet-InterConvs with vary- 345
ing model sizes from ∼60K to ∼16M parameters, as well 346
as an nnUNet, which is automatically configured to have 347
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Figure 5. ScribblePrompt-InterConv significantly improves interactive segmentation quality with limited prompts. We run
ScribblePrompt-InterConv and baseline predictions on 8 input images from Pandental, each provided with 2 positive (green) and 2 negative
(red) line scribble prompts, and on 8 images from ACDC, providing each image with 8 positive (green) and 8 negative (red) random click
prompts. The input samples come from different subjects within the same task. In each subfigure, Top row shows input image with
provided prompts, along with ground truth segmentations, middle row shows ScribblePrompt-InterConv (ours) predictions, and bottom
row shows ScribblePrompt (baseline) predictions overlayed in blue.

∼20M parameters. We use the original SwinUNet design348
with ∼26M parameters as a baseline for Transformer-based349
models.350

We construct SimpleUNet-InterConv and nnUNet-351
InterConv by introducing a InterConv layer with kernel size352
3 at the end of each convolution layer of SimpleUNets and353
nnUNet respectively. We construct SwinUNet-InterConv354
by adding a InterConv layer with kernel size 1 (i.e., point-355
wise feed-forward function) at the end of each multi-head356
attention layer of SwinUNet. Details about baseline net-357
work sizes and their corresponding InterConv-integrated358
network sizes can be found in the Appendix.359

Training. OASIS: We train separate models for T2⋆ and T2-360
TSE. For both T2⋆ and T2wTSE, there are ∼1030 subjects361

with the desired modality, which we first split into ∼830 362
subjects with ∼1350 images for model training, and ∼100 363
held out test subjects with ∼190 images. Details about train, 364
validation and test data sizes can be found in the Appendix. 365

ADNI: With a total of 1061 subjects, we first split with 366
742 subjects for model training, and 213 subjects for per- 367
formance evaluation. 368

We train all models with batches of 8 sets at each it- 369
eration, with a combination of Soft Dice Loss and Cross- 370
entropy Loss: 371

Lseg(ŷ, y) = Ldice(ŷ, y) + LCCE(ŷ, y), (6) 372

We train each model configuration of SimpleUNet and Swi- 373
nUNet with 3 different weight initialization seeds and with 374
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Figure 6. nnUNet-InterConv achieves higher segmentation accuracy on subjects with more scans available. We show performance
improvement on nnUNet-InterConv over baseline nnUNet by averaging per-sample Dice improvement over subjects with a given number
of scans. Left figure shows Dice improvement on OASIS T2⋆ scans. Middle figure shows Dice improvement on OASIS T2-TSE scans.
Right figure shows Dice improvement on ADNI T2-FLAIR scans. Shaded regions show 95% CI from bootstrapping with 1,000 runs.

Figure 7. nnUNet-InterConv generates substantially better prediction in the brain cortex with set interaction mechanism. We
visualize predictions on 4 randomly selected scans from an input subject with 8 scan sessions. We interleave inputs and segmentation maps
with a close-up of the temporal lobe. Top row: input images, Second row: ground truth segmentation maps, Third row: nnuNet-InterConv
predictions, Fourth row: baseline nnUNet predictions.

an early-stopping criterion based on validation loss not de-375
creasing for 40,000 iterations. We initialize all nnUNet-376
structured models in the same way as the original nnUNet,377
and follow the original nnUNet training procedure to train378

the models for a fixed 1000 epochs with 250 iterations per 379
epoch. 380

Evaluation. We analyze model performance as the average 381
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Dice score across all test scan samples. For network con-382
figurations trained with multiple weight initializations, we383
average the predicted probabilities from each trained model384
before computing the Dice Score.385

Results. Table 1 shows that all InterConv-integrated archi-386
tectures improve segmentation accuracy over corresponding387
baselines. Fig. 6 shows that subjects with more scans avail-388
able on average achieve better segmentation quality com-389
pared to those with fewer scans, demonstrating that larger390
sets are more informative. Fig. 7 shows that nnUNet-391
InterConv provides substantially better segmentations, e.g.,392
of the cortex, than the baseline nnUNet. We analyze dice393
improvement and visualize results on the nnUNet frame-394
work since it consistently produces high segmentation ac-395
curacy and is a widely used baseline in the literature. Ad-396
ditional dice improvement analysis on other network archi-397
tectures can be found in the Appendix.398

Discussion. We emphasize that if the ground truth label399
maps are easily attainable from an individual image, we400
do not expect shared information to be helpful. To be able401
to even assess the value of shared information, we choose402
data where ground truth segmentation cannot be easily ob-403
tained from the scan itself, like the clinical-quality scans,404
and use the aligned research-quality scans to extract the405
ground truth maps.406

The results in this section emphasize this effect:407
while InterConv outperforms corresponding baselines in all408
datasets, its improvement in OASIS T2-TSE is minimal,409
where image quality is least affected. In contrast, for the410
substantially more degraded T2* and FLAIR modalities,411
InterConv achieves substantial improvement over the base-412
lines, by providing each image with additional shared infor-413
mation through set interaction.414

5. Conclusion415

We introduce InterConv, a mechanism that improves seg-416
mentation accuracy by enabling an existing segmentation417
model to benefit from jointly segmentating a set of related418
images. InterConv leverages intermediate features of each419
input sample to share information among the input set.420

We demonstrate the value of this interaction by show-421
ing that InterConv-integrated networks outperforms base-422
lines with the same architectural designs, in both automatic423
and interactive segmentation settings. For interactive seg-424
mentation, InterConv can reduce the total amount of labor425
required, since an annotation made on one image provides426
information that is useful for segmenting other images. For427
automatic segmentation, since existing segmentation mod-428
els already perform well when the structures in an image429
are clearly defined, we focus on domains where individual430
images are challenging to segment, such as clinical-quality431
scans. We find that in these common settings, InterConv432

leads to improved segmentation quality. 433
The proposed InterConv Layer is easy to add to existing 434

segmentation architectures and promises to help improve 435
image segmentation in a wide variety of practical settings. 436
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Barış, and N. Sinem Gezer. CHAOS - Combined (CT-MR)725
Healthy Abdominal Organ Segmentation Challenge Data,726
2019. 6727

[57] A. Emre Kavur, N. Sinem Gezer, Mustafa Barış, Sinem728
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InterConv: Set Interaction
for Improved Biomedical Image Segmentation

Supplementary Material

Label Class

0 Background
1 Left cerebral white matter
2 Left cerebral cortex
3 Left lateral ventricle
4 Left inferior lateral ventricle
5 Left thalamus
6 Left caudate
7 Left putamen
8 3rd Ventricle
9 Brain stem

10 Left hippocampus
11 Left ventral DC
12 Right cerebral white matter
13 Right cerebral cortex
14 Right lateral ventricle
15 Right inferior lateral ventricle
16 Right thalamus
17 Right caudate
18 Right putamen
19 Right hippocampus
20 Right ventral DC

Table 2. OASIS and ADNI class labels.

6. Automatic Segmentation1055

6.1. Data1056

We provide training, validation and test sample sizes in Ta-1057
ble 3. Each dataset is split into four subsets:1058

• Train: during training stage used by the model for gradi-1059
ent descent.1060

• Stopping-Val: during training stage used for early stop-1061
ping.1062

• Performance-Val: during performance evaluation stage1063
used for choosing the best model configuration.1064

• Test: used for reporting model performance.1065

Set size distribution in each of the data split is shown in1066
Fig. 8.1067

We perform the experiment in 2D since we thoroughly1068
evaluate many variants of our method and the baseline,1069
which would be prohibitive in 3D. After pre-processing,1070
each scan volume is of size: (160, 192, 224). We take1071
the 109th coronal slice. The resulting slices are of size1072
160× 192. We list the class labels in Table 2.1073

6.2. Model Configuration 1074

We apply InterConv to three architectural designs: Simple- 1075
UNet, nnUNet, and SwinUNet. 1076

SimpleUNets have 4 encoder layers with the same fea- 1077
ture size at each layer. We train baselines and SimpleUNet- 1078
InterConv with comparable number of parameters. We de- 1079
tail various network sizes and corresponding output feature 1080
sizes per layer in Table 4. 1081

We designed nnUNet-InterConv and SwinUNet- 1082
InterConv using the same network backbone, with both the 1083
same output feature size per layer as the original model, and 1084
with adjusted feature sizes to align InterConv-integrated 1085
models with baselines. We include detailed layer-wise 1086
feature configurations and their corresponding network 1087
sizes in Table 5 and 6. 1088

6.3. Additional Experiments 1089

Fig. 9 and 10 show that larger set size enables sharing of 1090
more informative accross the set for the SimpleUNet and 1091
SwinUNet architectures as well (along with the nnUNet 1092
shown in the main paper). Subjects with more scans avail- 1093
able on average achieve better segmentation quality com- 1094
pared to those with fewer scans. 1095

7. Interactive Segmentation 1096

7.1. Data 1097

Datasets. Building upon large data collection efforts like 1098
MegaMedical [12, 96, 113], we use a collection of 74 1099
biomedical image segmentation datasets. We divide the col- 1100
lection into 65 training datasets (Table 8) and 9 evaluation 1101
datasets (Table 7) following the same partitions as [113]. 1102
The evaluation datasets include a diverse array of biomed- 1103
ical domains including eyes [107], abdominal [67], car- 1104
diac [7, 94], bones [36], teeth [1], spine [119], cells [120], 1105
and lesions [2]. 1106

Each dataset was split into 60% training, 20% validation 1107
and 20% test as in [12, 96, 113], although not all splits were 1108
used. Each model was trained on the training splits of the 1109
training datasets. We report final results on the test split of 1110
the evaluation datasets. 1111

Tasks. As in [12, 96, 113], we define a 2D segmentation 1112
task as a combination of (sub)dataset, axis (for 3D modali- 1113
ties), and label. For datasets with sub-datasets (e.g., malig- 1114
nant vs. benign lesions), each cohort is considered a sepa- 1115
rate task. Each segmentation label in multi-label datasets 1116
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Subjects Images

Train 777 1332
Stopping-Val 50 82
Performance-Val 47 82
Test 102 187

(a) OASIS T2⋆

Subjects Images

Train 780 1381
Stopping-Val 49 81
Performance-Val 48 87
Test 99 188

(b) OASIS T2-TSE

Subjects Images

Train 636 3075
Stopping-Val 106 493
Performance-Val 106 504
Test 213 1045

(c) ADNI T2-FLAIR

Table 3. Sample Sizes for automatic segmentation experiments.

Figure 8. Set Size distribution within splits for OASIS and ADNI data. We show the various number of scans for train, validation and
test subjects, as well as the distribution in the test, stopping-val, performance-val and test splits.

is treated as a separate binary task. For multi-annotator1117
datasets, each annotator is considered a separate label. In1118
instance segmentation datasets, we train on one instance at1119
a time. For 3D modalities, we use the slice with the maxi-1120
mum label area (”maxslice”) for each subject.1121

Image Processing. We resize images to 1282 and rescale 1122
image intensities to [0,1]. 1123
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# ouput features per layer

Network Size (# of parameters) SimpleUNet-InterConv Baseline

60K 16 24
120K 23 34
240K 33 48
500K 49 70
1M 70 100
2M 100 142
4M 141 200
8M 200 284
16M 282 400

Table 4. Network sizes for SimpleUNet architectures.

Encoder Feature Dimensions Network Size

nnUNet [32, 64, 128, 256, 512, 512] 20.6M
nnUNet-InterConv [23, 46, 92, 184, 368, 368] 20.4M

[32, 64, 128, 256, 512, 512] 34.9M

Table 5. Network sizes for nnUNet architectures.

Figure 9. SimpleUNet-InterConv achieves higher segmentation accuracy on subjects with more scans available. We show perfor-
mance improvement on SimpleUNet-InterConv over baseline SimpleUNet by averaging per-sample Dice improvement over subjects with
a given number of scans. We evaluate with models with the best average test performance. Left figure shows Dice improvement on OASIS
T2⋆ scans. Middle figure shows Dice improvement on OASIS T2-TSE scans. Right figure shows Dice improvement on ADNI T2-FLAIR
scans. Shaded regions show 95% CI from bootstrapping with 1,000 runs.

7.2. Additional Experiments1124

We provide additional interactive segmentation visu-1125
alizations with random click prompts in Fig. 11.1126
ScribblePrompt-InterConv is able to leverage the informa-1127
tion across the input set to substantially improve the seg-1128
mentations compared to the baseline models, especially1129
when given few user interactions.1130

3



CVPR
#13795

CVPR
#13795

CVPR 2025 Submission #13795. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Embedding Dimension Network Size

SwinUNet 96 27.1M
SwinUNet-InterConv 84 26.8M

96 34.9M

Table 6. Network sizes for SwinUNet architectures.

Figure 10. SwinUNet-InterConv generally achieves higher segmentation accuracy on subjects with more scans available. We show
performance improvement on SwinUNet-InterConv over baseline SwinUNet by averaging per-sample Dice improvement over subjects
with a given number of scans. We evaluate with models with the best average test performance. Left figure shows Dice improvement on
OASIS T2⋆ scans. Middle figure shows Dice improvement on OASIS T2-TSE scans. Right figure shows Dice improvement on ADNI
T2-FLAIR scans. Shaded regions show 95% CI from bootstrapping with 1,000 runs.

(a) Segmentation visualization with 1 positive and 1 negative prompt (b) Segmentation visualization with 8 positive and 8 negative prompts

Figure 11. ScribblePrompt-InterConv significantly improves interactive segmentation quality with random click prompts. We run
ScribblePrompt-InterConv and baseline predictions on 4 input images from DRIVE, providing each image with 1 positive (green) and 1
negative (red) random click prompt, and on the same set of images with 8 positive (green) and 8 negative (red) random click prompts.
The input samples come from different subjects within the same task. In each subfigure, Top row shows input image with provided
prompts, along with ground truth segmentations, middle row shows ScribblePrompt-InterConv (ours) predictions, and bottom row shows
ScribblePrompt (baseline) predictions overlayed in blue.
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Dataset Name Description Scans Labels Modalities

ACDC [7] Left and right ventricular endocardium 99 3 cine-MRI
BTCV
Cervix [67]

Bladder, uterus, rectum, small bowel 30 4 CT

BUID [2] Breast tumors 647 2 Ultrasound
DRIVE [107] Blood vessels in retinal images 20 1 Optical camera
HipXRay [36] Ilium and femur 140 2 X-Ray
PanDental [1] Mandible and teeth 215 2 X-Ray
SCD [94] Sunnybrook Cardiac Multi-Dataset Collec-

tion
100 1 cine-MRI

SpineWeb [119] Vertebrae 15 1 T2-weighted
MRI

WBC [120] White blood cell cytoplasm and nucleus 400 2 Microscopy

Table 7. Evaluation datasets. For the relative size of datasets, we include the number of unique scans (subject and modality pairs) that
each dataset has. These datasets were unseen by the models during training. The validation splits of the datasets were used for model
selection. We report final results on the test splits of these datasets.
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Dataset Name Description Scans Modalities
AbdominalUS [109] Abdominal organ segmentation 1,543 Ultrasound
AMOS [53] Abdominal organ segmentation 240 CT, MRI
BBBC003 [74] Mouse embryos 15 Microscopy
BBBC038 [13] Nuclei instance segmentation 670 Microscopy
BrainDev [33, 34, 64,
101]

Adult and neonatal brain atlases 53 Multimodal MRI

BrainMetShare[35] Brain tumors 420 Multimodal MRI
BRATS [3, 4, 86] Brain tumors 6,096 Multimodal MRI
BTCV Abdomi-
nal [67]

13 abdominal organs 30 CT

BUSIS [116] Breast tumors 163 Ultrasound
CAMUS [68] Four-chamber and Apical two-chamber heart 500 Ultrasound
CDemris [55] Human left atrial wall 60 CMR
CHAOS [56, 57] Abdominal organs (liver, kidneys, spleen) 40 CT, T2-weighted MRI
CheXplanation [99] Chest X-Ray observations 170 X-Ray
CT2US [106] Liver segmentation in synthetic ultrasound 4,586 Ultrasound
CT-ORG[97] Abdominal organ segmentation (overlap with

LiTS)
140 CT

DDTI [90] Thyroid segmentation 472 Ultrasound
EOphtha [24] Eye microaneurysms and diabetic retinopathy 102 Optical camera
FeTA [89] Fetal brain structures 80 Fetal MRI
FetoPlac [5] Placenta vessel 6 Fetoscopic optical camera
FLARE [77] Abdominal organs (liver, kidney, spleen, pan-

creas)
361 CT

HaN-Seg [92] Head and neck organs at risk 84 CT, T1-weighted MRI
HMC-QU [25, 59] 4-chamber (A4C) and apical 2-chamber (A2C)

left wall
292 Ultrasound

I2CVB [69] Prostate (peripheral zone, central gland) 19 T2-weighted MRI
IDRID [93] Diabetic retinopathy 54 Optical camera
ISBI-EM [15] Neuronal structures in electron microscopy 30 Microscopy
ISIC [19] Demoscopic lesions 2,000 Dermatology
ISLES [39] Ischemic stroke lesion 180 Multimodal MRI
KiTS [38] Kidney and kidney tumor 210 CT
LGGFlair [11, 84] TCIA lower-grade glioma brain tumor 110 MRI
LiTS [8] Liver tumor 131 CT
LUNA [102] Lungs 888 CT
MCIC [32] Multi-site brain regions of schizophrenic patients 390 T1-weighted MRI
MMOTU [117] Ovarian tumors 1,140 Ultrasound
MSD [104] Large-scale collection of 10 medical segmentation

datasets
3,225 CT, Multimodal MRI

MuscleUS [83] Muscle segmentation (biceps and lower leg) 8,169 Ultrasound
NCI-ISBI [10] Prostate 30 T2-weighted MRI
NerveUS [88] Nerve segmentation 5,635 Ultrasound
OASIS [45, 81] Brain anatomy 414 T1-weighted MRI
OCTA500 [70] Retinal vascular 500 OCT/OCTA
PanNuke [30] Nuclei instance segmentation 7,901 Microscopy
PAXRay [100] 92 labels covering lungs, mediastinum, bones, and

sub-diaphram in Chest X-Ray
852 X-Ray

PROMISE12 [72] Prostate 37 T2-weighted MRI
PPMI [22, 82] Brain regions of Parkinson patients 1,130 T1-weighted MRI
QUBIQ [85] Collection of 4 multi-annotator datasets (brain,

kidney, pancreas and prostate)
209 T1-weighted MRI, Multi-

modal MRI, CT
ROSE [80] Retinal vessel 117 OCT/OCTA
SegTHOR [65] Thoracic organs (heart, trachea, esophagus) 40 CT
SegThy [62] Thyroid and neck segmentation 532 MRI, Ultrasound
ssTEM [31] Neuron membranes, mitochondria, synapses and

extracellular space
20 Microscopy

STARE [47] Blood vessels in retinal images (multi-annotator) 20 Optical camera
ToothSeg [49] Individual teeth 598 X-Ray
VerSe [75] Individual vertebrae 55 CT
WMH [63] White matter hyper-intensities 60 Multimodal MRI
WORD [76] Abdominal organ segmentation 120 CT

Table 8. Training datasets. We use the same set of 65 training datasets as [113]. For the relative size of datasets, we show the number of
unique scans (subject and modality pairs) that each dataset has. 6


	Introduction
	Related Work
	InterConv
	Experiments
	Interactive Segmentation
	Automatic Segmentation: Clinical-quality MRI Scans

	Conclusion
	Automatic Segmentation
	Data
	Model Configuration
	Additional Experiments

	Interactive Segmentation
	Data
	Additional Experiments


