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PlacidDreamer: Advancing Harmony in Text-to-3D Generation
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ABSTRACT
Recently, text-to-3D generation has attracted significant attention,
resulting in notable performance enhancements. Previous meth-
ods utilize end-to-end 3D generation models for initializing 3D
Gaussians, and multi-view diffusion models to enforce multi-view
consistency. Moreover, they employ text-to-image diffusion mod-
els to refine details with score distillation algorithms. However,
these methods exhibit two limitations. Firstly, they encounter con-
flicts in generation directions since different models aim to produce
diverse 3D assets. Secondly, the issue of over-saturation in score
distillation has not been thoroughly investigated and solved. To
address these limitations, we propose PlacidDreamer, a text-to-3D
framework that harmonizes initialization, multi-view generation,
and text-conditioned generation with a single multi-view diffusion
model, while simultaneously employing a novel score distillation
algorithm to achieve balanced saturation. To unify the generation
direction, we introduce the Latent-Plane module, a training-friendly
plug-in extension that enables multi-view diffusion models to pro-
vide fast geometry reconstruction for initialization and enhanced
multi-view images to personalize the text-to-image diffusion model.
To address the over-saturation problem, we propose to view score
distillation as a multi-objective optimization problem and introduce
the Balanced Score Distillation algorithm, which offers a Pareto
Optimal solution that achieves both rich details and balanced satu-
ration. Extensive experiments validate the outstanding capabilities
of our PlacidDreamer. The code will be available on GitHub.

CCS CONCEPTS
• Computing methodologies→ Computer vision problems.

KEYWORDS
3D Generation, text-to-3D, score distillation

1 INTRODUCTION
The task of generating 3D assets from text, known as text-to-3D,
has garnered significant attention for its potential to simplify 3D
creation, a process once requiring specialized knowledge. Due to
the relative scarcity and lower quality of 3D data compared with 2D
data, one promising approach is to adapt pre-trained 2D models for
3D generation. An optimization-based approach leveraging score
distillation algorithms, which distill generative capability from pre-
trained 2D diffusion models to guide subsequent 3D generations,
has emerged as a dominant approach in this field.
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Since the introduction of the first score distillation algorithm,
Score Distillation Sampling (SDS) [37], subsequent works have sig-
nificantly advanced this optimization-based approach, enhancing
both generation quality and speed. One significant factor influenc-
ing generation quality is the multi-face problem. To address this
problem, Magic123 [38], DreamCraft3D [47], Consistent123 [27],
and EfficientDreamer [61] incorporate multi-view diffusion models
to enhance multi-view consistency. More recently, the introduction
of 3D Gaussian Splatting [22] has further optimized the pipeline
with convenient initialization, faster rendering, and training speed.
LucidDreamer [25], GaussianDreamer [58], and GSGEN [6] propose
to leverage end-to-end 3D generation models [20, 35] to provide a
robust 3D Gaussian initialization, thereby enhancing overall quality.

Despite significant progress in the aforementioned methods,
there are still two main limitations that require attention:

– Conflicting Optimization Directions. The integration of mul-
tiple generative models within a single pipeline can lead to con-
tradictory optimization directions. For instance, the score distil-
lation guidance derived from multi-view diffusion models may
be at odds with that from text-to-image diffusion models [38],
necessitating the development of specialized balancing strategies
[27] or additional refinement [47] for optimal performance. More-
over, employing distinct generative models for supervision across
different stages [6, 58] can cause the generative model in later
stages to ignore the outputs of its predecessors and independently
generate new results based on its intrinsic data interpretations.

– Over-Saturation in Score Distillation. The problem of over-
saturation within score distillation algorithms remains insuffi-
ciently explored and unresolved. This issue manifests as a dis-
crepancy in color distribution between the 3D content created
through score distillation techniques and the 2D images gener-
ated by diffusion inference processes. Although certain method-
ologies yield results with more appropriate levels of saturation,
they impose a significant computational load. Examples include
LoRA finetuning [53], adversarial training [5], or supervision in
multiple spaces with iterative sampling [62]. Thus, a comprehen-
sive understanding of the over-saturation problem and a fast yet
effective score distillation algorithm is needed.

To overcome these challenges, we propose PlacidDreamer, a
framework that harmonizes initialization, multi-view generation,
and text-conditioned generation with a single multi-view diffusion
model, while simultaneously employing a novel score distillation
algorithm to achieve balanced saturation. More specifically, to ad-
dress the first limitation, we newly devised a Latent-Plane module.
This module enhances the multi-view diffusion model by enabling
fast geometry reconstruction and improving its capabilities in gen-
erating multi-view images. The reconstructed geometry is then
utilized to initialize 3D Gaussian points, and the improved multi-
view images are used to personalize the text-to-image diffusion
model with directional prompts. This coordinated approach aligns
the generation directions within the pipeline with the outcomes
from the multi-view diffusion model, promoting convergence and

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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A golden retriever with a blue bowtie. A bright red fire hydrant.

A leather-bound book with gold details. A pirate flag with skull and crossbones.

A shiny emerald green beetle. An ivory candlestick holder.

A worn-out leather briefcase. An intricate ceramic vase with peonies painted on it.

A wet, vibrant beach ball. A blooming potted orchid with purple flowers.

Figure 1: 3D generations of PlacidDreamer. More results are provided in the Supplementary Material.

significantly enhancing the quality of the generated content. Addi-
tionally, the Latent-Plane module is designed to be training-efficient
and is adaptable to a variety of multi-view diffusion models, ac-
commodating different viewpoint configurations. To address the
second limitation, we delve into the causes of over-saturation. We
decompose the score distillation equation into two primary compo-
nents: classifier guidance and smoothing guidance. Prior algorithms
have suffered from an imbalance where classifier guidance over-
whelmingly dominates smoothing guidance, leading to prevalent
over-saturation. Our analysis reveals that in over 30% of instances,
the optimization directions of these two guidances form obtuse
angles, resulting in negative optimization along certain directions
with a fixed Classifier-Free Guidance (CFG) parameter, making it
challenging to maintain control over balance after multiple opti-
mization steps. To rectify this imbalance, we propose to treat score
distillation as a multi-objective optimization problem and introduce

a Balanced Score Distillation (BSD) algorithm. This algorithm incor-
porates a multi-objective optimization solution, Multiple-Gradient
Descent Algorithm (MGDA), which dynamically adjusts the opti-
mization directions to converge at Pareto Optimal points, where the
generated results exhibit both rich details and balanced saturation.

We evaluate PlacidDreamer both qualitatively and quantitatively
to demonstrate its effectiveness. Extensive experiments indicate
the superiority of our method over previous methods. Quantita-
tive evaluations conducted on the T3Bench [10] benchmark reveal
that PlacidDreamer consistently outperforms baseline methods
by a margin of at least ten points in both generation quality and
alignment metrics. Furthermore, we conduct ablation studies to
respectively evaluate the contribution of each proposed module to
the overall quality. To further highlight the BSD algorithm’s effec-
tiveness, we replaced the score distillation algorithms in various
open-source text-to-3D frameworks with BSD, while keeping other
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components constant. Results show that BSD consistently enhances
these frameworks’ performance.

Our contributions can be summarized as follows:

• We introduce PlacidDreamer, a novel framework designed
for high-fidelity text-to-3D generation. PlacidDreamer ad-
vances a more harmonious generation process through two
novel approaches: the Latent-Plane module, which enhances
multi-view diffusion models, and the Balanced Score Distil-
lation algorithm, which optimizes detail richness and satura-
tion control.

• We identify the causes of the over-saturation problem in
score distillation algorithms and propose to view score dis-
tillation as a multi-objective optimization problem, with the
goal of optimizing towards Pareto Optimal points to stabilize
the outcomes of generation.

• Extensive experiments, including both quantitative metrics
and qualitative assessments, demonstrate that PlacidDreamer
significantly outperforms existing state-of-the-art methods.

2 RELATEDWORKS
Text-to-3D Generation. DreamFields [18] initially employs a pre-
trained model, CLIP [40], to guide the optimization of NeRF [34].
Trying to leverage the generative nature of the diffusion model,
Dreamfusion [37] introduces SDS, a loss associated with a score
function derived from distilling 2D diffusion models. Subsequent
works significantly improve SDS-based methods, including those
using multi-view consistent models [24, 30, 44, 61], enhancing
pipeline structures [4, 26, 32, 33, 43, 54, 58], introducing extra
generation priors [2, 15, 17, 19, 48, 56, 60], or exploring timestep
scheduling [16]. Recently, some fast-forward reconstruction models
[13, 28, 30, 31, 50] have emerged for faster 3D generation.
Score Distillation. Given the heavy reliance on score distillation
methods in these studies, addressing associated issues with SDS is
crucial. While many works [11, 21, 48, 51, 52, 59] focus on address-
ing over-smoothing, fewer tackle over-saturation problems. Pro-
lificDreamer [53] introduces VSD, leveraging LoRA finetuning for
3D distribution modeling, which can also alleviate over-saturation.
IT3D [5] handles over-saturation by training a discriminator distin-
guishing 3D assets from text-to-2D images. Additionally, HiFA [62]
presents an iterative score distillation process for a more accurate
sampling direction. It’s worth noting that these methods introduce
a significant computational burden, slowing down overall speed.

3 PRELIMINARIES
3.1 Diffusion Models
For discrete-time diffusion models [9, 12, 36, 45], given a data dis-
tribution 𝑞(x) = 𝑞0 (x0), we construct a forward process with a
series of distributions 𝑞𝑡 (x𝑡 ) = N(𝛼𝑡x0, (1 − 𝛼2𝑡 )I) with decreasing
{𝛼𝑡 |𝑡 ∈ [0,𝑇 ], 𝑡 ∈ Z}, where 𝛼0 = 1 and 𝛼𝑇 ≈ 0. In the generation
process, we start from x𝑇 ∼ N(0, I) and generate a sample of the
previous timestep iteratively with a denoising network 𝜖𝜙 (x𝑡 , 𝑡)
trained by minimizing the prediction of added noise, which is given
by

Ex0∼𝑞0 (x0 ),𝑡,𝜖∼N(0,I)𝑤 (𝑡)∥𝜖𝜙 (𝛼𝑡x0 + 𝜎𝑡𝜖, 𝑡) − 𝜖 ∥22, (1)

where 𝑤 (𝑡) is to balance losses between different timesteps, 𝑡 is

uniformly selected from 0 to 𝑇 , and 𝜎𝑡 =
√︃
1 − 𝛼2𝑡 .

3.2 Score Distillation Sampling (SDS)
Score distillation is an optimization-based generation method that
distills knowledge from pre-trained 2D diffusion models to guide
other generations, The first score distillation method, SDS [37] is
denoted as

∇𝜃LSDS (𝜙, x = 𝑔(𝜃 )) ≜ E𝑡,𝜖 [𝜔 (𝑡) (𝜖𝜙 (x𝑡 ;𝑦, 𝑡) − 𝜖) 𝜕x
𝜕𝜃

], (2)

where x𝑡 = 𝛼𝑡x + 𝜎𝑡𝜖 and other symbols are defined the same as in
Equation (1). Intuitively, this loss perturbs x with a random amount
of noise corresponding to the timestep t, and estimates an update
direction that follows the score function of the diffusion model to
move to a higher density region.

3.3 Multiple-Gradient Descent Algorithm
MGDA is a gradient-based algorithm used to solve multi-objective
optimization problems. Multi-objective optimization refers to the
task of finding a Pareto Optimal solution under multiple optimiza-
tion criteria, where optimizing one objective does not deteriorate
the solution of another objective during the optimization process.
In the context of solving multi-objective optimization tasks, MGDA
determines a descent direction that is common to all criteria. For
instance, when applied to a binary-objective optimization prob-
lem optimizing L1 (𝑥) and L2 (𝑥), MGDA will identify the direc-
tion orthogonal to ∇𝑥L1 (𝑥) − ∇𝑥L2 (𝑥). The algorithm has been
demonstrated to converge to a Pareto Optimal point, where there is
no available optimization that can improve one objective without
worsening another. Further elaboration on MGDA can be found in
the work of Désidéri [8].

4 METHODS
4.1 Pipeline
Given a text prompt, we initially generate a reference image using
Stable Diffusion [41] or MVDream [44]. Unlike previous methods
that transform text-to-3D generation into single-view reconstruc-
tion, we do not aim to precisely reconstruct the reference object.
After background removal, the reference image is fed into the multi-
view diffusion model to generate multi-view images. To optimize
the initialization of 3D Gaussian points [22] and ensure its compat-
ibility with the multi-view images, we introduce Latent-Plane. This
module, as detailed in Section 4.2, seamlessly integrates into the
latent layers of any multi-view diffusion model, enabling fast re-
construction of a volume density field and enhancement of the gen-
erated images within 40 seconds. Moreover, it is training-friendly
(only requiring 4 × A6000 GPUs for 18 hours), as it directly lever-
ages 3D spatial knowledge from pre-trained multi-view diffusion
model. Subsequently, the volume density field is used to initialize
the 3D Gaussian points on the object surface, while the generated
multi-view images are used to fine-tune Stable Diffusion with LoRA
[14] technique. During this fine-tuning process, directional prompts
such as "left view" are incorporated into the original text, enhancing
the diffusion model’s awareness of 3D space. Finally, we supervise
the splatted images using the BSD guidance from the fine-tuned
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Text prompt: 
 A ceramic teapot with floral patterns.

LBSD

3D Gaussians 
Initialization

Coarse NeRF + Multi-View Images

Personalization

Splatting

Latent-Plane

σ

Volume Rendering

Diffusion

Feature Maps

Feature Planes

Multi-View
Diffusion Model

Multi-View FeaturesPlane Projection

Self-Attention

Self-Attn

Sigma Feature

M
LP

Multi-View Colors

Volume Density

Augmented

Feature Planes

Diffusion

Feature Maps

Latent-
Plane

Reference
Image

Multi-View 
Diffusion Model

+ View  Prompt

Fine-tuned LSDS LBSD

≥30% Case

(a) Pipeline of PlacidDreamer (b) Decomposing Score Distillation

(c) Integration of Latent-Plane

LCSD

Over-S
aturation Balance Over-Sm

oothing

δCG

δSG

Figure 2: (a) The pipeline of PlacidDreamer. (b) Score distillation can be decomposed into two directions: classifier guidance 𝛿CG
and smoothing guidance 𝛿SG. CSD [59] only utilizes classifier guidance. In more than 30% of cases, the angle between these two
guidance vectors is obtuse. In such scenarios, using a fixed CFG parameter in SDS may result in negative optimization in the
𝛿SG direction, leading to over-saturation. However, BSD algorithm ensures that each optimization step is non-negative in both
directions. (c) The integration of the Latent-Plane module with multi-view diffusion models.

diffusion model. As elaborated in Section 4.3, we decompose score
distillation and reveal a conflict between optimization directs, lead-
ing to color discrepancies. We suggest treating score distillation as
a multi-objective optimization problem and we introduce the BSD
algorithm, achieving rich details and reasonable colors.

4.2 Latent Plane
The proposed method, Latent-Plane, serves as a plug-in module
compatible with various multi-view diffusion models. These dif-
fusion models typically take an input image 𝐼𝜋0 of an object from
a specific viewpoint 𝜋0 and generate corresponding images 𝐼𝜋𝑖
from other viewpoints 𝜋𝑖 , 𝑖 = 1, 2, . . . , 𝑁 . Inspired by ConsisNet
[57], which reinforces feature patches by utilizing coordinate rela-
tionships derived from back-projection, we hypothesize that pre-
trained features within multi-view diffusion models possess suffi-
cient knowledge of the 3D space to conduct direct reconstruction.
Leveraging this idea, we treat latent feature maps akin to the fea-
ture plane in the Tri-Plane [3] model, allowing us to reconstruct a
volume density field. Furthermore, the reconstruction results can
be utilized to enhance the latent feature map through volume ren-
dering, thereby improving the accuracy of multi-view predictions.

4.2.1 Multi-View Feature Gathering. Most multi-view diffusion
models currently utilize the Unet [42] architecture for their denois-
ers. To illustrate our strategy of selecting the appropriate latent
layer for inserting the Latent-Plane module, we consider the Unet
architecture as an exemplar. Within the Unet architecture, assum-
ing there are 𝐿 decoder blocks generating 𝐿 feature maps denoted
as F𝑗 ∈ R𝐻×𝑊 ×𝐷 with 𝑗 indexing these maps and 𝐷 representing
the feature dimension. We choose the feature map with the highest

resolution and the smallest index, denoted as F𝑘 , as it encompasses
the deepest and most intricate features extracted by the model,
containing comprehensive geometric information.

At each timestep 𝑡 , during the reverse diffusion process, we
obtain 𝑁 feature maps F(𝑖 )

𝑘
, 𝑖 = 1, 2, . . . , 𝑁 from 𝑁 viewpoints. For

every point x in the 3D space, we project it onto each feature map
F(𝑖 )
𝑘

and derive its corresponding feature f (𝑖 )
𝑘

(x) through tri-linear
interpolation, denote as,

f (𝑖 ) (x) = Interp_2D(Proj(x, F(𝑖 )
𝑘

), F(𝑖 )
𝑘

), (3)

where Interp_2D represents the 2D interpolation function, and Proj
denotes the function for projecting 3D spatial points onto 2D planes.
We then apply an additional linear layer to extract low-dimensional
features from the extracted features. To better represent the features
of spatial point x, we concatenate each feature with its respective
camera embeddings e(𝑖 )cam and coordinate embeddings epos (x).

e(𝑖 ) (x) = Concat[Linear(f (𝑖 ) (x)), e(𝑖 )cam, epos (x)] . (4)

4.2.2 Plane-Based NeRF. So far, x has 𝑁 features gathered from
𝑁 viewpoints, serving as 𝑁 tokens, which will be mutually en-
hanced through the Attention layers. To obtain the volume density
𝜎 (x) for the spatial point, before feeding into the attention layer,
we additionally add a token 𝜏𝜎 corresponding to obtaining sigma.
𝜏𝜎 is obtained by concatenating a trainable embedding e𝜎 with
embeddings of timestep 𝑡 , followed by a linear layer.

𝜏𝜎 = Linear(Concat[e𝜎 , e𝑡 ]), (5)

𝜏 (x) = Concat[𝜏𝜎 , e(1) (x), e(2) (x), . . . , e(𝑁 ) (x)], (6)
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𝜏 ′ (x) = MultiHeadSelfAttn(𝜏 (x)), (7)

where MultiHeadSelfAttn denotes the Multi-Head Self Attention
layers. After the multi-view augmentation, there are a total of N+1
tokens in 𝜏 ′ (x). For the sigma token 𝜏 ′𝜎 (x), we use an MLP to obtain
its volume density value 𝜎 (x). For the multi-view enhanced fea-
ture tokens 𝜏 ′ (x), we conduct volume rendering to gather features
enhanced on the object surface.

𝜎 (x) = MLP(𝜏 ′𝜎 (x)) . (8)

F′(𝑖 )
𝑘

= Volume_Rendering(𝜎 (x), 𝜏 ′(𝑖 ) (x)) (9)

We directly add the feature map to the original feature map. The
enhanced feature map continues to function in the decoder of the
diffusion model, ultimately producing the model’s predicted noise
𝜖 , which is then integrated into diffusion training and inference.

4.2.3 Training. The training comprises two stages. In the first
stage, we independently train the volume density generation mod-
ule, enabling the selection of arbitrary camera viewpoints, rather
than being constrained to predefined fixed camera viewpoints. Sub-
sequently, we can calculate the depth of each spatial point relative
to the selected camera. Following volume rendering, we supervise
the generated occupancy map M(𝑖 ) and depth maps D(𝑖 ) , which
are denoted as

L𝜎 = LBCE (M(𝑖 ) ,M(𝑖 )
gt ) + 𝜆(1 − 𝜌 (D(𝑖 ) ,D(𝑖 )

gt )), (10)

where, LBCE denotes the Binary Cross Entropy loss, 𝜌 represents
the Pearson correlation coefficient, and 𝜆 controls the balance be-
tween the two losses. For training the feature map augmentation,
we use the standard diffusion loss described in Equation (1).

4.3 Balanced Score Distillation
In this chapter, our exploration of score distillation is conducted
through 2D generation experiments, where we directly optimize the
pixel values of a 2D image. The use of 2D experiments allows the ex-
clusion of various factors unrelated to score distillation algorithms,
such as camera viewpoints and 3D representation selection, thereby
highlighting the effectiveness of score distillation methods. Further-
more, the outcomes of 2D experiments can effectively represent
the effects observed in 3D experiments [11, 53]. Our focus on the
experimental results is specifically directed toward the richness of
details and color saturation at two distinct time points: the optimal
state of image quality (referred to as the convergence state) and the
period of sustained training after reaching the convergence state
(referred to as the over-trained state). In 3D generation, the lack
of an early-stop mechanism frequently results in the widespread
occurrence of over-training.

4.3.1 Decomposing Score Distillation. We adopt a modeling ap-
proach different from SDS [37] to obtain our decomposition. Score
distillation is an optimization-based generation method aimed at
distilling knowledge from pre-trained 2D diffusion models to guide
other generations. In order to utilize 2D diffusion models for guid-
ance, it is necessary to establish a connection between the 2D image
distribution 𝑝0 modeled by diffusion models and the 3D representa-
tion distribution 𝑞. We make the assumption that the probability

density distribution 𝑞(𝜃 |𝑦) for the parameters 𝜃 of the 3D repre-
sentation, conditioned on the text prompt 𝑦, is proportional to
the product of the conditional probability densities of its rendered
images x𝜋0 under various viewpoint 𝜋s, denoted as,

𝑞(𝜃 |𝑦) ∝
∏
𝜋

𝑝0 (x𝜋0 (𝜃 ) |𝑦). (11)

We adopt the average negative logarithm of the probability,

LSD = − 1
𝑁

log𝑞(𝜃 |𝑦), (12)

as the loss for neural network training, where 𝑁 is the number
of 𝜋s. Consequently, as the loss decreases, we obtain a sample as
described in the text prompt. We can get the gradient on 𝜃 as,

∇𝜃LSD = −E𝜋 [∇𝜃 log𝑝0 (x𝜋0 (𝜃 ) |𝑦)] . (13)

However, 𝑝0 represents the unknown distribution of general 2D
images, and high-density regions of 𝑝0 are sparsely populated [46].
Given that current diffusion models are designed to model the score
function of the distribution 𝑝𝑡 of noisy images with noise of level
𝑡 , we instead leverage it to generate an optimized gradient for the
noisy images x𝑡 that is obtained by adding noise of level 𝑡 to x𝜋0 .
Subsequently, this gradient can be back-propagated to the image
x𝜋0 and further transmitted to the 3D parameters 𝜃 , denoted as,

∇𝜃LSD = −E𝜋,𝑡 [∇x𝑡 log 𝑝𝑡 (x𝑡 (𝜃 ) |𝑦)
𝜕x𝑡
𝜕x𝜋0

𝜕x𝜋0
𝜕𝜃

] . (14)

Please note that we observe a distinction between our formula and
Equation (2) from SDS [37], particularly in the absence of the final
term −𝜖 in our formulation. The first term ∇x𝑡 log𝑝0 (x𝑡 (𝜃 ) |𝑦) is
a 2D score function modeled by diffusion models. In 2D diffusion
generation, the score function of conditional distribution can be
decomposed into the classifier guidance and the score function of
an unconditional distribution:

∇x𝑡 log 𝑝𝑡 (x𝑡 |𝑦) = ∇x𝑡 log 𝑝𝑡 (𝑦 |x𝑡 ) + ∇x𝑡 log 𝑝𝑡 (x𝑡 ). (15)

So, we naturally decompose the score distillation process into two
functional terms.

𝛿CG = −∇x𝑡 log𝑝𝑡 (𝑦 |x𝑡 ) = (𝜖 (x𝑡 , 𝑡, 𝑦) − 𝜖 (x𝑡 , 𝑡, ∅))/𝜎𝑡 (16)

𝛿SG = −∇x𝑡 log 𝑝𝑡 (x𝑡 ) = 𝜖 (x𝑡 , 𝑡, ∅)/𝜎𝑡 (17)

−∇x𝑡 log𝑝𝑡 (x𝑡 |𝑦) = 𝑢 · 𝛿CG + 𝑣 · 𝛿SG), (18)

where 𝑢 and 𝑣 control the ratio between the two terms. The first
term is the classifier guidance term (𝛿CG). When only utilizing clas-
sifier guidance, referred to as CSD [59], images exhibit fine details
but suffer from artifacts and over-saturation, as shown in the upper
right corner of Figure 2. Therefore, the introduction of the second
term aims to alleviate the artifacts caused by 𝛿CG and guide x0 to-
wards the higher density region in the distribution of 2D images. As
depicted in Figure 2, starting from LCSD, as 𝑢/𝑣 decreases, the opti-
mization directions move towards the "balance" area, the generation
results become smoother. Hence, we refer to it as smoothing guid-
ance (𝛿SG). However, when 𝛿CG starts to dominate the proportion,
the image tends to become overly smoothed.
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Figure 3: 2D generation results of score distillation algorithms, annotated with computational costs. "Forward" represents
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truth. BSD converges at the Pareto Optimal points, ensuring that its results maintain balanced saturation during over-training.

4.3.2 Balanced Score Distillation. Based on our analysis, the pa-
rameters of CFG (𝑢/𝑣) in score distillation algorithms play a critical
role in regulating the balance between the two guidance terms
during each optimization step. However, we have observed that
their effectiveness becomes highly unstable after numerous op-
timization steps, particularly highlighted by the failure of most
score distillation methods to preserve image properties during the
over-training phase. We conduct experiments of previous score
distillation algorithms including SDS [37], VSD [53], ISM [25], CSD
[59], SSD [48]. We find that most of them exhibit over-saturation
during over-trained steps, as depicted in Figure 3.

To address this issue, we investigated the distribution charac-
teristics of 𝛿CG and 𝛿SG. We observed that over 30% of the steps in
the iterative optimization process exhibit a negative dot product
between 𝛿CG and 𝛿SG, indicating obtuse angles between their op-
timization directions in the high-dimensional space, as shown in
Figure 2. In such instances, simply combining the two directions
based on a fixed ratio may lead to the final optimization direction
projecting negatively onto one of the term’s optimization direc-
tions. Consequently, the control of balance becomes ineffective due
to the presence of negative optimization, ultimately resulting in
over-saturation or over-smoothing.

Therefore, we propose to consider score distillation as a multi-
objective optimization task, where the optimization objectives are
L1 = −𝜆 log(𝑝𝑡 (𝑦 |x𝑡 )) and L2 = − log(𝑝𝑡 (x𝑡 )), with 𝜆 represent-
ing the hyper-parameter that controls the ratio of two guidance
terms. The solution of multi-objective optimization tasks will find
the Pareto optimal point, where no action can improve one ob-
jective without deteriorating another. If generation reaches the

Pareto Optimal points, it will stabilize at this optimal point, and the
generated content will exhibit rich details while maintaining bal-
anced saturation. In this scenario, the hyper-parameter 𝜆 genuinely
controls the final inclination towards both optimization directions,
rather than attempting to control the balance at each step.

We propose the Balanced Score Distillation, which employs
MGDA [8]. Suppose the optimization combination of ∇x𝑡L1 and
∇x𝑡L2 is

∇x𝑡 log𝑝𝑡 (x𝑡 |𝑐) = 𝛼∇x𝑡L1 + (1 − 𝛼)∇x𝑡L2 . (19)

Following Désidéri [8], 𝛼 is the solution of

min
𝛼,1−𝛼≥0

{𝛼∇xtL1 + (1 − 𝛼)∇xtL22
2

}
. (20)

For binary situation like in Equation (20), we have closed form
solution for 𝛼 , which is 𝛼 = min(max(0, 𝛼), 1), where

𝛼 =
(∇x𝑡L2 − ∇x𝑡L1)𝑇∇x𝑡L2

∥∇x𝑡L2 − ∇x𝑡L1∥22
. (21)

Thus, the final formula for BSD is:

∇𝜃LSD = E𝜋,𝑡 [𝜔 (𝑡) (𝛼𝜆𝛿CG + (1 − 𝛼)𝛿SG)
𝜕x𝜋0
𝜕𝜃

], (22)

𝛼 = min

[
max

[
0,

(𝛿SG − 𝜆𝛿CG)𝑇 𝛿SG
∥𝛿SG − 𝜆𝛿CG∥22

]
, 1

]
. (23)

As illustrated in Figure 3, images generated by the BSD algorithm
approximate the saturation of 2D images, showcasing smooth color
transitions and detailed contours. In states of over-training, BSD
maintains a harmonized saturation level, unlike other methods that
suffer from loss of details due to over-saturation. A comparable
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representations are provided in the Supplementary Material.

method to BSD is VSD [53], which exhibits fewer instances of over-
saturation and finer details compared to other baseline methods.
However, as annotated in the figure, VSD requires significantly
longer computational time and higher GPU utilization than BSD.

4.3.3 Relationship with Previous Methods. We provide an analysis
of the relationship between our decomposition and score distillation
algorithm with previous works in the Supplementary Material.

5 EXPERIMENTS

Table 1: Results of quantitative comparison with baselines
and ablation studies. The values in parentheses represent the
direct scores given by the ImageReward [55] model.

Quality Alignment Average
DreamFusion 24.9 (-1.255) 24.0 24.4
Magic3D 38.7 (-0.565) 35.3 37.0

LatentNeRF 34.2 (-0.790) 32.0 33.1
Fantasia3D 29.2 (-1.040) 23.5 26.4

SJC 26.3 (-1.185) 23.0 24.7
ProlificDreamer 51.1 (+0.055) 47.8 49.4

PlacidDreamer (Ours) 62.4 (+0.620) 59.8 61.1
w/o Latent-Plane 56.5 (+0.325) 54.6 55.6
w/o Initialization 57.3 (+0.365) 56.1 56.7

w/o Personalization 61.8 (+0.590) 59.5 60.7
w/o BSD 60.2 (+0.510) 57.4 58.8

5.1 Implementation Details
The Latent Plane model has 𝑁 = 8 viewpoints. Given the resolution
limitation of feature map F(2) to 32 × 32, it becomes imperative to
regard the pixel space as continuous, ensuring accurate calculation
of boundary correspondence. Even a minor difference of 0.5 pixels
along the boundary could lead to notable errors. For all the MLP
described in Section 4, we use a single linear layer for computing
efficiency. We train the Latent-Plane module with Zero-1-to-3 [29]

for 18 hours on 4 × Nvidia RTX A6000 GPUs with a batch size of
32 and loss scale 𝜆 = 0.05 with Objaverse Dataset [7] rendered by
SyncDreamer [30], filtered by RichDreamer [39] and LGM [49]. For
more details, please refer to the Supplementary Materials.

5.2 Comparing with Baselines.
Quantitative comparison. T3Bench [10] serves as a benchmark
for text-to-3D generation, standardizing camera poses for rendering
images and utilizing pre-trained models [1, 23, 40, 55] to ensure a
fair evaluation. The primary 3D representation employed in this
benchmark is a texturedmesh, which aids in the convergence of gen-
erated 3D samples, forming seamless surfaces. However, extracting
meshes from 3D Gaussian representations poses challenges. Conse-
quently, we employ 3D Gaussian splatting to generate RGB images
directly. This choice challenges our generation’s quality by not
eliminating noise in direct RGB image generation.

As PlacidDreamer focuses on the generation of individual objects,
our evaluations are confined to the single-object part of T3Bench.
Considering DreamFusion [37], Magic3D [26], Fantasia3D [4], Pro-
lificDreamer [53], Latent-NeRF [33], and SJC [51] as baseline meth-
ods, all of which were tested by T3Bench authors, He et al. [10].
The outcomes reveal that PlacidDreamer significantly outperforms
the baseline methods in both generative quality and accuracy corre-
sponding to the provided text. Our average quality score surpasses
the next-highest ProlificDreamer by 11 points. Since this score is a
linear transformation of the ImageReward [55] score, we annotate
the original ImageReward scores, providing a clearer perspective
on the superiority of our generative quality.
Qualitative comparison.We also conduct qualitative comparisons
on several baseline methods which also builds on 3DGaussian Splat-
ting [22], including DreamGaussian [50], GaussianDreamer [58],
GSGEN [6], and LucidDreamer [25]. In Figure 4, we present the
results of different methods generating the same prompts. Dream-
Gaussian can generate a textured mesh in several minutes, thus, its
generation quality is lower comparedwith othermethods. Gaussian-
Dreamer and GSGEN leverages end-to-end 3D generation model
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Figure 5: Results of ablation studies. In the first line, we evaluate PlacidDreamer by removing each component individually.
In the second line, we investigate the impact of different 𝜆 values, validating that BSD enables stable control of the balance
between color saturation and detail level.

[20, 35] for initialization with multi-view consistency. However,
their final results still have multi-face problems, because the 3D
model and Stable Diffusion [41] generate towards different direc-
tions. LucidDreamer’s generations feature bright colors according
to the ISM algorithm and exhibit good geometric structure. How-
ever, with Latent-Plane enhancing texture and the BSD algorithm,
PlacidDreamer achieves superior textures and richer details.

5.3 Ablation Studies.
We perform ablation studies, as illustrated in Figure 5, and carry
out quantitative evaluations using T3Bench, as detailed in Table 1.
Latent-Plane. The "Latent-Plane" module in the pipeline serves the
functions of initializing 3D Gaussian points and personalizing the
diffusion model. We investigate the effects of removing both func-
tionalities (w/o Latent-Plane), removing only initialization (w/o
Initialization), and removing only fine-tuning (w/o Personaliza-
tion) on the experimental results. Firstly, we remove the Latent-
Plane module (w/o Latent-Plane), utilizing the Point-e [35] model
as the initialization model for 3D Gaussian points, following Lucid-
Dreamer. Point-e struggles to comprehend the complex prompts
and fails to generate a complete shape for the dog. Additionally,
due to the color deviation introduced by Stable Diffusion during
generation, the color of the dog’s tie is inaccurate. Subsequently, we
only remove the initialization function of the Latent-Plane, retain-
ing the fine-tuning part (w/o Initialization). It can be observed that
the Janus problem in the dog’s head is resolved. Through extensive
experimentation, we find that under the probabilistic supervision
of score distillation, 3D Gaussian points do not undergo significant
changes in position, making them highly sensitive to initialization.
Next, we solely remove the fine-tuning part, keeping the initial-
ization part intact (w/o Personalization). This results in a more
complete structure for the dog’s bodies, but issues arise with the
multi-face problem and tie color.
BSD. We replace BSD with SDS [37] and observe severe over-
saturation and some blue artifacts. Compared with BSD, SDS makes

3D Gaussian points harder to converge. To further investigate BSD,
we conduct ablation experiments on 𝜆 to validate its effectiveness
in controlling the ratio of 𝛿CG and 𝛿SG. It can be observed that
when 𝜆 = 5, the dog’s color is over-saturated. As 𝜆 increases to the
range of 15-25, over-saturation alleviates without significant loss of
details. Only when 𝜆 reaches the value of 35 does the loss of details
become apparent. However, at this point, the dog’s features are still
recognizable. It is worth noting that in the SDS algorithm, CFG can
only be set to a large value to get recognizable outcomes.

These results prove that each proposed component significantly
contributes to the overall effectiveness of the framework.

5.4 Experiments on BSD
BSD is a general score distillation method independent of the choice
of NeRF, camera perspectives, diffusion models, etc. To test its
distillation ability, we integrate BSD into various 3D generation
pipelines, ensuring a fair evaluation of score distillation capabilities.
This included exclusively substituting alternative score distillation
algorithms, without introducing additional modifications to the
pipeline. Our results demonstrate that BSD enhances the output
of each pipeline. Further details and results are provided in the
Supplementary Material.

6 CONCLUSION
We have focused on resolving conflicts in current text-to-3D ap-
proaches, including conflicts within a single model’s guidance and
conflicts arising from guidance provided by different models. To
address these conflicts, we introduced a novel framework Placid-
Dreamer with the newly designed Latent-Plane module and the
Balanced Score Distillation algorithm to achieve mutual optimiza-
tion. As a result, we have achieved a more harmonious and balanced
text-to-3D generation process, leading to high-fidelity 3D outcomes.
We hope our work will inspire further investigations into more har-
monious methodologies for 3D generation.
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