
Parameter-efficient Tuning of Pretrained
Visual-Language Models in Multitask Robot Learning

Marcel Mittenbuehler1, Ahmed Hendawy1,2, Carlo D’Eramo2,3, Georgia Chalvatzaki1,2
1Technische Universität Darmstadt, Germany

2Hessian.AI, Germany 3University of Würzburg, Germany
marcel.mittenbuehler@stud.tu-darmstadt.de

Abstract: Multimodal pretrained visual-language models (pVLMs) showcased
excellence across several applications, like visual question-answering. Their re-
cent use for policy learning manifested promising avenues for augmenting robotic
capabilities in the real world. This paper delves into the problem of parameter-
efficient tuning of pVLMs for adapting them to robotic manipulation tasks with
low-resource data. We showcase how Low-Rank Adapters (LoRA) can be injected
into behavioral cloning temporal transformers to fuse language, multi-view images,
and proprioception for multitask robot learning, even for long-horizon tasks. Pre-
liminary results indicate our approach vastly outperforms baseline architectures
and tuning methods, paving the way toward parameter-efficient adaptation of pre-
trained large multimodal transformers for robot learning with only a handful of
demonstrations.

1 Introduction

Multimodal pretrained models, e.g., pretrained visual-language models (pVLM) like Visual-
BERT [17], CLIP [25], PALM-e [8], demonstrated state-of-the-art performance in various application
domains [1, 18, 36, 16]. A large host of research works is also dedicated to investigating the zero-
or few-shot performance of such pretrained models in new tasks [37, 21, 30] or even their efficient
adaptation in light of low-resource task-specific data [38, 10, 39, 33, 40]. It was in the last couple of
years that robotics research has also explored the application of pVLMs in robotic policy learning,
mainly through large-scale training and finetuning of large models to a suite of robotic navigation [28,
13, 31] and manipulation tasks [31, 23, 14, 29], showcasing encouraging results [2, 3, 5].
Multimodal information alleviates the need for complicated engineered goal specifications in robotic
tasks [35, 6], and, additionally, they offer an excellent opportunity for intuitive interaction with
humans, e.g., through natural language and images [4, 9]. Further, multimodal information is very
beneficial for learning robot policies, thanks also to the capacity of the Transformers architecture [34],
as it allows the effective combination of symbolic and geometric information for computing robot
control actions. Notable efforts in the robot learning community have been oriented toward the
collection of large-scale datasets for training robotic pVLMs of billion parameters, demonstrating
the ability of such models to adapt to new domains [8, 5]. Yet, a question emerges naturally when
it comes to million or even billion parameter robotic pVLMs; how can we build on top of those
pretrained models to quickly adapt to new, unseen tasks with a limited amount of data, and without
requiring necessarily massive compute power?
To this end, this paper presents preliminary evidence on the efficacy of parameter-efficient adapta-
tion of pVLMs [11, 24] into robotic domains and tasks, given a small number of demonstrations.
Particularly, we showcase how we can exploit Low-Rank Adapters (LoRA) [12] in CLIP frozen
visual and text encoders within a behavioral cloning temporal transformer architecture [19, 27] for
multitask robot policy learning, using natural language goal specifications, multi-view images, and
proprioceptive information, to learn continuous robot actions for a variety of manipulation tasks.
Our preliminary results suggest that, with a low-data setting and given an expressive pretrained frozen
model, we can significantly outperform both dedicated architectures trained from scratch [19] by on
average 15% higher success rates, even finetuned versions of our proposed models (without adapters)
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Figure 1: Schematic overview of our model. In the first stage, it encodes inputs for multiple timesteps
into tokens. These are then passed to the temporal transformer, which passes the last token to the
GMM policy head that outputs a GMM. The CLIP model is frozen during training, and the image
encoder is shared between two image streams with different adapters.

by 21% higher success rates. Our results show a promising avenue for parameter-efficient adaptation
of pretrained large multimodal transformers for robot learning, which can be adapted only with a
handful of demonstrations, paving the way for more democratized usage of such methods in robotics.

2 Approach

The architecture for our approach is similar to the ResNet-T in [19] architecture. It consists of a
task embedding by a pre-trained language transformer, two image encoders for two separate camera
streams, and an extra modality encoder to pass in joint positions. The output tokens of multiple
timesteps are passed to a temporal transformer, whose last output token is processed by the Gaussian
mixture model (GMM) policy head to output a distribution of possible actions. The architecture is
shown in Figure 1.

We use a multimodal model for the text and image encoders to utilize the rich embedding information
of a pre-trained transformer network. Finetuning two image encoders and one text model can be
problematic, considering the small number of examples commonly available in robotics and the
strong correlations between temporal proximate observations. Instead, we propose to insert adapters
into the pre-trained model, with separate adapters for each image stream. The advantage of adapters
is two-fold: first, they require fewer parameters to tune and should, therefore, be more resilient with
few demonstrations available; second, they allow us to reuse one transformer model for both image
streams, lowering the memory requirements during training. Moreover, this approach is scalable to
more camera streams on the robot without much overhead.
Adapters are small, trainable models inserted at different points – depending on the adapter type – of
a transformer head that allows parameter-efficient tuning of a large pre-trained transformer model.
For example, a bottleneck adapter [11] is inserted in parallel with the feed-forward layer. This work
instead explores the application of low-rank adaptation (LoRA) [12], which modifies the attention
weight matrices in the attention layer as shown in Figure 2. Let d be the latent dimension, W ∈ Rd×d

one of the weight matrices, x its input, and h its output, then LoRA introduces two other matrices
A ∈ Rr×d and B ∈ Rd×r with lower rank r such that r ≤ d. The low-rank approximation is
performed by creating an auxiliary term δW = BA with the new output as h = Wx+ δWx. If δW
is zero, the output is that of the pre-trained model. During training, changing the parameters of A and
B results in an adjustment of the model. As r ≪ d is usually chosen, this is more parameter-efficient
than updating the whole matrix. Compared to other adapter strategies, the advantage is its speed
during inference as LoRA can be integrated into the weight matrices of the model. Therefore, we
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Figure 2: Transformer architecture with LoRA adapters applied to the attention weight matrices.

can benefit from a lower memory footprint on the backward pass during training whilst having a fast
model for inference. The latter part is particularly important for achieving real-time control. Other
adapters such as [20, 11, 24] likely also achieve good training performance; however, they usually
introduce additional overhead.
We choose CLIP [25] for the pre-trained multimodal model, as the image and text encoders are

trained to output tokens into one combined embedding. Moreover, it demonstrated generalization
capabilities in zero-shot and transfer-learning experiments, making it a good fit for our purposes.
Other models, such as [26, 17, 8], may also be considered.

3 Evaluation

We evaluate our approach on the main Libero benchmark suites [19] containing ten tasks each
(excluding Libero 90) in a multitask setup (see Appendix A for details). Each model is trained for
ten epochs and evaluated after each epoch in simulation, measuring the success rate. Below, we
report the highest success rate of an agent during these ten epochs for three random seeds. For better
comparability, all models use the same training hyperparameters. Baseline model parameters remain
unchanged, and our model utilizes the same parameters as the ResNet-T baseline. All parameters are
listed in Appendix C.
The evaluation is split into two parts: First, we compare our approach with the top-performing
baseline models in Libero; Then, we perform ablations by replacing the adapters in the CLIP model
with finetuning and training from scratch to gain insights into the performance differences.

3.1 Experimental Setup

Libero [19] is a task suite of language-conditioned manipulation tasks with sparse rewards and human
demonstrations for behavioral cloning [32]. It is intended as a benchmark for continual learning in
robotics by providing multiple tasks that a robot should learn. More precisely, it has four task suites
consisting of ten tasks and one containing 90 for pretraining. Moreover, it includes baseline models
tested on the datasets in continual and multi-task settings. Evaluation is performed in simulation with
randomized initial parameters. The dataset is explained with additional details in Appendix A.

3.2 Baseline Comparison

Libero provides baseline models to evaluate performance on the datasets. We chose to compare
against their most performant models, the ResNet-T and ViLT-T. The main difference to our model is
that a ResNet or a ViLT [15] encodes the images. A pre-trained Bert model [7] initially embeds the
text that is then transformed by a trainable linear layer. Moreover, the temporal transformer of the
ViLT-T has a twice as large embedding as our and the ResNet-T model; however, we did not want to
change the baseline model parameters for a fair comparison.
Peak success rates, shown in Table 1, show that our CLIP-T (Adapter) model outperforms the
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Table 1: Peak success rate achieved by the models within 10 training epochs.

Model LIBERO-Long LIBERO-Spatial LIBERO-Object LIBERO-Goal

ResNet-T 0.36± 0.02 0.77± 0.02 0.81± 0.07 0.73± 0.04
ViLT-T 0.34± 0.01 0.69± 0.03 0.80± 0.03 0.74± 0.05
CLIP-T (Finetuning) 0.24± 0.06 0.61± 0.09 0.81± 0.04 0.76± 0.04
CLIP-T (Scratch) 0.23± 0.10 0.58± 0.07 0.83± 0.01 0.75± 0.05
CLIP-T (Adapter, ours) 0.63 ± 0.02 0.87 ± 0.01 0.90 ± 0.02 0.85 ± 0.02

Table 2: Success rates for different LoRA ranks

Rank r LIBERO-Long LIBERO-Spatial LIBERO-Object LIBERO-Goal

1 0.52± 0.03 0.85± 0.03 0.92± 0.04 0.84± 0.03
2 0.59± 0.04 0.81± 0.04 0.94 ± 0.03 0.85 ± 0.05
4 0.59± 0.02 0.85± 0.07 0.93± 0.02 0.85 ± 0.02
8 0.63 ± 0.02 0.87 ± 0.01 0.90± 0.02 0.85 ± 0.02

baselines on all datasets with a 14.2% higher success rate on average than the ResNet-T and 16.9%
higher than the ViLT-T. The results on Libero-Long show a much larger difference in success rate
than the other models. The task suite consists of ten long-horizon tasks and is the most difficult to
learn; nevertheless, the adapter strategy performed almost twice as well as the other models. As the
temporal transformer and output GMM remain similar to the baselines, this strongly suggests that the
model benefits from the pre-trained encoding of the CLIP model using adapters.

3.3 Ablation Study

A common strategy to adjust pre-trained models to a new task is fine-tuning all parameters. However, a
challenge in robotics is that datasets are comparatively small, as humans must perform demonstrations.
Moreover, the observations in the camera feed are highly correlated in time. Thus, training a model
efficiently on a limited number of samples is critical.
To better understand the effect of this, we replaced our adapters by fine-tuning and scratch-training
the CLIP model. As before, the peak success rate in Table 1 shows that adapters outperform training
the full model. Moreover, fine-tuning performs very similarly to scratch training, indicating that
overfitting of the model may happen, resulting in sub-optimal embeddings. We assume that the lower
number of parameters in the adapter model helps to stabilize the training process. We also tested
the effect of the rank r of the LoRA adapters. For this, we kept all parameters as in Appendix C,
but varied r and set α = r as suggested in [12]. The results are shown in Table 2 with the best
results highlighted. A rank r = 8 performed best on three out of the four benchmarks. Only on
LIBERO-Object, it performed worse than adapters with fewer parameters.

4 Conclusion and Discussion

This paper presented the application of adapters in large pre-trained multi-modal transformer models
to achieve parameter-efficient adaptation in the encoding stage of a model. Less tunable parameters
result in memory-efficient training; more importantly, it may stabilize training on small or highly
correlated datasets, which is common in robot learning with behavioral cloning. Our approach
outperformed the baseline models on the Libero benchmark, although we only adjusted the encoding
stage of the model. This indicates that the model benefited from the pre-trained encodings. Moreover,
the adapters outperformed fine-tuning and training from scratch, with similar results in the case of
fine-tuning and scratch training, suggesting that overfitting happens when parameters are not frozen.
A lower learning rate or more training epochs may change the results; however, this raises the
question of how efficiently a model should be trainable. Adapters demonstrated good performance
and efficient learning. Moreover, more examples could help the large models converge at the cost of
lower efficiency.
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A Libero Dataset

Libero introduced multiple datasets to test the ability of an agent in various regards. For a full
overview, we recommend reading [19]; however, we will give a brief introduction into the datasets
here.

A.1 LIBERO-Spatial

Libero Spatial tests the ability of an agent to generalize one kind of task to different start. Each task
consists of picking up a bowl and placing it on a plate; however, the location specifier of the bowl
differs. The tasks are of the following structure

• Pick up the black bowl from table center and place it on the plate.
• Pick up the black bowl next to the cookie box and place it on the plate.
• Pick up the black bowl <spatial specifier> and place it on the plate.

A.2 LIBERO-Object

Similar to Libero Spatial, this benchmark expects the agent to perform the same action. Instead of
the location specifier differing, the object that should be moved is always different. This allows to
test the performance of the vision encoder of a model. The tasks include

• Pick up the alphabet soup and place it in the basket.
• Pick up the cream cheese and place it in the basket.
• Pick up the <object> and place it in the basket.

A.3 LIBERO-Goal

In Libero Goal, the expected goal state in the simulation environment varies. Intuitively, this
benchmark requires the agent to learn a range of different tasks. To give some examples

• Put the wine bottle on top of the cabinet.
• Open the top drawer and put the bowl inside.
• Turn on the stove.
• ...

A.4 LIBERO-Long

Finally, Libero Long provides a benchmark to test the long horizon capabilities of a model. The tasks
mainly consist of two tasks that have similar complexity such as the previous benchmarks. Moreover,
the order in which the tasks is executed matters; for example, when the agent is expected to place
something in a drawer and then close it. This benchmark includes tasks like

• Turn on the stove and put the moka pot on it.
• Put the black bowl in the bottom drawer of the cabinet and close it.
• Put the yellow and white mug in the microwave and close it.
• ...
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B Performance Metrics

Training of the models was performed on Nvidia RTX 3080 GPUs with 10GB VRAM. The latter
dictated the batch size for all models as otherwise the scratch training would not have fit into memory.
The training times of the models are listed in Table 3 with the number of trainable parameters in Table
4. One argument for the use of LoRA was the possibility of merging the adapters into the pVLM to
achieve better performance. Therefore, we also report the inference runtimes in Table 5 with LoRA
not merged. In case of a merged LoRA, inference time is the same as for the CLIP-T (Finetuning).

Table 3: Average training time for one epoch with batch size 8

Model LIBERO-Long LIBERO-Spatial LIBERO-Object LIBERO-Goal

ResNet-T (20± 5)min (8± 3)min (11± 4)min (9± 4)min
ViLT-T (31± 4)min (14± 6)min (18± 5)min (14± 4)min
CLIP-T (Finetuning) (114± 10)min (50± 6)min (63± 9)min (55± 6)min
CLIP-T (Scratch) (113± 10)min (54± 9)min (63± 7)min (55± 7)min
CLIP-T (LoRA, r = 8) (93± 10)min (41± 6)min (48± 6)min (43± 5)min

Table 4: Number of trainable parameters for each model

Model Trainable Parameters

ResNet-T 5.38× 106

ViLT-T 7.92× 106

CLIP-T (Finetuning) 154× 106

CLIP-T (Scratch) 154× 106

CLIP-T (Adapter, r = 8) 3.69× 106

CLIP-T (Adapter, r = 4) 3.29× 106

CLIP-T (Adapter, r = 2) 3.10× 106

CLIP-T (Adapter, r = 1) 3.00× 106

Table 5: Average inference time for one sample

Model Time in ms

ResNet-T 5.4± 0.4
ViLT-T 7± 1
CLIP-T (Finetuning) 25± 1
CLIP-T (Scratch) 24± 2
CLIP-T (Adapter, r = 8) 31± 1
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C Hyperparameters

All our experiments used the same training hyperparameters with a learning rate of 1× 10−4, a batch
size of 8, and using the AdamW optimizer [22]. The model parameters for the ResNet-T are given in
Table 6, for the ViLT-T in Table 7, and for our approach in Table 8.

Table 6: Model parameters for the ResNet-T model

Parameter Value

extra_info_hidden_size 128
img_embed_size 64
transformer_num_layers 4
transformer_num_heads 6
transformer_head_output_size 64
transformer_mlp_hidden_size 256
transformer_dropout 0.1
transformer_max_seq_len 10

Table 7: Model parameters for the ViLT-T model

Parameter Value

extra_info_hidden_size 128
img_embed_size 128
spatial_transformer_num_layers 7
spatial_transformer_num_heads 8
spatial_transformer_head_output_size 120
spatial_transformer_mlp_hidden_size 256
spatial_transformer_dropout 0.1
spatial_down_sample_embed_size 64
temporal_transformer_num_layers 4
temporal_transformer_num_heads 6
temporal_transformer_head_output_size 64
temporal_transformer_mlp_hidden_size 256
temporal_transformer_dropout 0.1
temporal_transformer_max_seq_len 10

Table 8: Model parameters for the CLIP-T model (ours)

Parameter Value

extra_info_hidden_size 128
img_embed_size 64
transformer_num_layers 4
transformer_num_heads 6
transformer_head_output_size 64
transformer_mlp_hidden_size 256
transformer_dropout 0.1
transformer_max_seq_len 10
lora_r 8
lora_alpha 8
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