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ABSTRACT

In this paper, we aim to explore the potential of symmetries in improving the
understanding of continuous control tasks in the 3D environment, such as loco-
motion. The existing work in reinforcement learning on symmetry focuses on
pixel-level symmetries in 2D environments or is limited to value-based planning.
Instead, we considers continuous state and action spaces and continuous symme-
try groups, focusing on translational and rotational symmetries. We propose a
pipeline to use these symmetries in learning dynamics and control, with the goal
of exploiting the underlying symmetry structure to improve dynamics modeling
and model-based planning.

1 MOTIVATION

Symmetries have recently been explicitly included into some machine learning algorithms, such as
translational equivariance of convolution neural networks (CNNs) on image segmentation. Sym-
metries can provide regularities from the laws of physics, including physics-related tasks such as
modeling dynamics. However, it has not been widely explored in the context of control of dynami-
cal system, such as continuous control tasks in reinforcement learning.

In exiting work, van der Pol et al. (2020b); Mondal et al. (2020) initiate the study of symmetry in
deep reinforcement learning, after (Ravindran and Barto; Zinkevich and Balch, 2001). They focus on
pixel-level symmetries in the CartPole task or Atari games, such as left-right reflection or discrete
rotations. Nevertheless, such level of symmetry does not unveil the symmetry of the underlying
dynamical system. Zhao et al. (2022b) study discrete symmetry in model-based planning on 2D
discrete grid, which uses the symmetry of 2D grid (4 rotations and 2 reflections). However, it
is constrained to 2D grid and value-based planning, which cannot trivially extend to continuous
control case that needs sampling-based planning.

This motivates to further move ahead to continuous state and action spaces and continuous symme-
try groups and ask: can we make use of the symmetry structure of the 3D space to improve dynamics
modeling and model-based planning/control? In this work, we aim to exploit the underlying sym-
metry structure of those continuous control tasks, through the lens of symmetry. We focus on the
tasks in the 3D environment, which include locomotion and manipulation and simulate the needs of
our 3D physical world. We consider translational and rotational symmetries in the 3D space, which
are related to conservation of linear and angular momentum. To this end, we propose a pipeline to
use these symmetries in learning dynamics and control.

2 RELATED WORK

Symmetries widely exist in various domains and have been exploited in classic planning algorithms
and model checking (Fox and Long, 1999; 2002; Pochter et al., 2011; Domshlak et al.; Shleyfman
et al., 2015; Sievers et al., 2015; Sievers; Sievers et al., 2019; Fier et al., 2019). Zinkevich and Balch
(2001) show the invariance of value function for an MDP with symmetry. However, these algorithms
have a fundamental issue with the exploitation of symmetries, as they explicitly construct equiva-
lence classes of symmetric states, which are intractable (NP-hard) in maintaining symmetries in
trajectory rollout and forward search (Narayanamurthy and Ravindran, 2008) and incompatible with
differentiable pipelines for representation learning. To address this issue, recent work has explored
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Figure 1: A half cheetah is learning to walk on 2D surface in a 3D physical environment. Rotating the half
cheetah (along vertical z-axis), the dynamics is equivariant, and the optimal behaviors do not change.

state abstraction for symmetry, such as coarsest state abstraction that aggregates symmetric states
into equivalence classes, studied in MDP homomorphisms and bisimulation (Ravindran and Barto,
2004; Ferns et al., 2004; Li et al., 2006). However, these methods usually require perfect MDP
dynamics knowledge and do not scale well due to the complexity of constructing and maintaining
abstraction mappings (van der Pol et al., 2020a). Several recent studies have integrated symmetry
into RL based on MDP homomorphisms (Ravindran and Barto, 2004). van der Pol et al. (2020a) in-
tegrate symmetry by equivariant policy network, which avoids the difficulties in handling symmetry
in forward search. Earlier, Mondal et al. (2020) have separately applied similar idea earlier while
not using MDP homomorphisms. Park et al. (2022) learn equivariant transition models, but do not
consider planning. Zhao et al. (2022a) focus on permutation symmetry in object-oriented transition
models. The direct precedent is (Zhao et al., 2022b), which studies 2D discrete symmetry on 2D
grid with a value-based planning approach.

3 PROBLEM FORMULATION

3.1 GRAPH REPRESENTATION OF A DYNAMICAL SYSTEM

We consider a dynamical system that models a robot in a 3D physical world. One example is
locomotion, where a robot learns to move on a ground that provides support, with gravity directed
downwards. The robot is represented by connected links (bodies) and joints (actuators). Suppose
the system is modeled by a discrete-time Markov decision process (MDP) as s′ = f(s, a). As done
in Interaction Network (Battaglia et al., 2016) or Graph Network (Sanchez-Gonzalez et al., 2018),
we could represent the robot state s at each time step as a geometric graph G = (V, E).
This geometric graph lives in a 3D geometric space, allowing for rotation and translation transfor-
mations. The graph nodes vi ∈ V are links with features of positions, orientations, linear velocity,
and angular velocity. The edges eij ∈ E describe the joints between links, where actuation is pro-
vided as edge feature. As an example, we can rotate the half cheetah 45◦ along the vertical axis,
where all nodes and edges are rotated correspondingly, as shown in the figure.

The frame symmetry in 3D is the focus of our interest. It implies that even if we change the reference
frame by moving in different directions or locations, the robot does not need to relearn how to
walk or run. The frame symmetry represents the proper transformations of the entire 3D world,
represented as SE(3), the group of 3D continuous translations and rotations. However, the robot is
subject to external forces that may break symmetry, such as gravity, contact, and actuation forces.
Despite these forces, the SE(3) symmetry can still be maintained if they are included as inputs

3.2 SYMMETRY IN CONTINUOUS CONTROL

In this section, we outlines the symmetry under consideration in the continuous control tasks and
how we explore that. (Ravindran and Barto, 2004; Ravindran and Barto; Zinkevich and Balch, 2001)
explore symmetry in MDPs with no function approximation like neural networks. (van der Pol et al.,
2020a; Mondal et al., 2020) initiate the exploration of symmetry in model-free (deep) RL by using
equivariant policy networks. (Zhao et al., 2022b) study symmetry in value-based planning on 2D
grid. We extend it and focus on MDPs with continuous state and action spaces and sampling-based
control/planning algorithms.

Symmetry properties. The symmetry properties in MDPs are specified by equivariance of the
transition and reward functions, studied in Zinkevich and Balch (2001); Ravindran and Barto (2004);
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van der Pol et al. (2020a); Zhao et al. (2022b):

P̄ (s′ | s, a) = P̄ (g · s′ | g · s, g · a), ∀g ∈ G, ∀s, a, s′ (1)

R̄M (s, a) = R̄g·M (g · s, g · a), ∀g ∈ G, ∀s, a (2)

Note that how the group G acts on states and actions is called group representation, and is decided
by the space S or A. Zhao et al. (2022b) study path planning and take maps M as a part of input.
On high level, this takes into consideration all “symmetry breaking” factors, such as obstacles in
path planning that are represented by input occupancy maps M . In typical continuous control tasks,
such as locomotion and manipulation, the symmetry breaking factors include external forces, such
as gravity, contact (e.g., with ground), and actuation forces (from control motors).

4 FRAME EQUIVARIANCE IN DYNAMICS MODEL AND CONTROL

Our high-level objective is to investigate the advantages of symmetry structures in dynamic systems
for enhancing continuous control and planning. Additionally, we seek to minimize the complexity
of task-specific design for symmetry, reducing the barriers to implementing equivariant methods and
avoiding any unnecessary burdens.

Overview. When symmetry presents in the dynamical system, the optimal policy and value func-
tions are also equivariant (Ravindran and Barto, 2004; Ravindran and Barto; Zinkevich and Balch,
2001; van der Pol et al., 2020a). The existence of symmetry helps shrink the hypothesis spaces and
reduced generalization gap. In this section, we propose an approach to make use of symmetry in
sampling-based planning methods, such as model predictive control (MPC).

Our formulation is an extension to the prior work on symmetric planning (Zhao et al., 2022b),
which designs a principled approach to consider discrete symmetry. Specifically, they focus on path
planning in 2D discrete grids (Z2) with a discrete symmetry group (D4) consisting of rotations and
reflections for value-based planning. The key insight is that all functions defined on Z2 signals
(x : Z2 → Rd) are steerable by the D4 group. Since every step is equivariant, the entire value
iteration process VI(M) is equivariant:

g.VI(M) ≡ g.T ∞[V0] = T ∞[g.V0] ≡ VI(g.M), (3)

where M is the occupancy map and goal input Z2 → {0, 1}2. Additionally, equivariant mappings
between these Z2 signals can be represented as convolutions and other operations (e.g., +, ×, max),
which can be implemented using CNNs. Our work generalizes to 3D continuous space R3 and the
continuous symmetry group SE(3). The robot acts in continuous action space, which necessitates
the consideration of sampling-based method.

4.1 DYNAMICS MODEL WITH EQUIVARIANCE

To use frame equivariance in control, there are three key steps (Zhao et al., 2022b): (1) specify the
symmetry group G in the system, (2) learn a G-equivariant dynamics model P (s′ | s, a), and (3)
incorporate symmetry into continuous control. In the second step, using equivariant model induces
equivariant Bellman operator: T [V ] = maxa R(s, a) + γ

󰁓
s′ P (s′|s, a)V (s′). Albeit the previous

two steps are analogous to prior work, the third step is not trivial because of the nature of sampling-
based approaches. We explain it in the next subsection.

Since we use graph-based representation of the system, we make use of equivariant message passing
networks for implementing the dynamics network. Specifically, we use steerable E(3)-equivariant
message passing network (Brandstetter et al., 2022). Compared to using invariant scalar fea-
tures, steerable networks allow to use higher-order equivariant steerable features, enabling better
expressivity. We briefly explain how we use steerable message passing network and specify SO(3)-
representations for state and action features. We omit the details on hidden layers and more.

Group acting on geometric graphs. In order to understand how the group acts on the states and
actions represented by geometric graphs G, we discuss the group representations of SE(3) rotations
and translations. We focus on the representations of SO(3) rotations, ρ(g), g ∈ SO(3). We say
a vector h is steerable if there exists a matrix D that can transform h for group elements g by
D(g)h. In short, the representations of SO(3) can be decomposed into irreducible representations,
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or Wigner-D matrices D(l)(g) with dimensions (2l+1)×(2l+1). We say a vector h transformed by
l-th matrix as type-l steerable vector. A type-0 steerable feature is a scalar (trivial representation),
and a type-1 feature is steerable by 3× 3 rotation matrices (standard representation).

The graph nodes are links with features of positions (3D, type-1 feature), orientations (quaternion,
SO(3) acts by group composition), linear velocity (3D, type-1 feature), and angular velocity (also 3D
vector space, tangent space, type-1 feature). The edge features include actions, which are typically
scalars or type-0 features. We also include gravity direction g as a type-1 global feature, which is
also transformed correspondingly. We also include additional features, computed from quantities
like positions and velocities, similar to (Brandstetter et al., 2022).

4.2 CONTROL WITH SYMMETRY

In prior work (Zhao et al., 2022b), they developed Symmetric Value Iteration Network (SymVIN)
for path planning on 2D grid Z2. Intuitively, SymVIN relate maps under four discrete rotations
and two reflections, so if a map is rotated, it does not need to relearn the optimal plan or actions.
Analogously, we aim to develop a control method that considers the frame equivariance of 3D space.
One practical setup is locomotion on some terrain. The symmetry of locomotion task is that a robot
does not to learn how to walk when facing different directions and locations, while instead share
information between all directions and locations of SE(3).

Symmetry in MPC. Our goal is to exploit SE(3) frame symmetry of the underlying R3 space in the
planning algorithm. For sampling-based planning, symmetries enable two types of benefits.

1. Forward search. When sampling a trajectory (s1, a1, s2, a2, . . .) in the ground MDP, we equiv-
ariantly know the outcome of all trajectories under symmetries: {(g · s1, g ·a1, g · s2, g ·a2, . . .) |
g ∈ G}. This saves computation when the group is “large”. However, while this is important for
discrete case, it is negligible for continuous state space.

2. Value backup. Symmetries allow us to reuse knowledge between equivalent state, as V 󰂏(s) =
V 󰂏(g · s) and π(g · s) = g · π(s). Intuitively, facing different directions do not change how a
robot walks.

In continuous control, the second type of consideration is crucial. Since the optimal policy and value
functions are equivariant (or invariant), we constrain the function approximation to be only the set
of equivariant functions.

Planning with MPC. We use model predictive control as a sampling-based planning approach for
continuous actions. We use MPPI (Model Predictive Path Integral) control method (Williams et al.,
2015; 2016; 2017a;b), as also done in (Hansen et al., 2022). We sample N trajectories with horizon
H using the learned dynamics model with actions from a learned policy, and estimate the expectation
of total return Gτ . Importantly, if we rotate the entire trajectory τ by g · τ , we know the return is
invariant Gτ = Gg·τ since it is a scalar:

Gτ ≜ Eτ

󰀥
γHQθ (sH ,aH) +

H−1󰁛

t=0

γtRθ (st,at)

󰀦
(4)

= Eg·τ

󰀥
γHQθ (g · sH , g · aH) +

H−1󰁛

t=0

γtRθ (g · st, g · at)

󰀦
(5)

We can then update the action selection policy by using top-k trajectories, which is a Gaussian
distribution with learned mean and variance. To capture the symmetry here, we use equivariant
policy network and invariant value network in estimating values and optimal actions.

5 DISCUSSION

In this work, we provide a principled guideline to consider the continuous SE(3) frame symmetry
in sampling-based planning and control in 3D environments, which extends the prior work of path
planning with value-based planning on 2D grid with 2D discrete symmetry. As a working project,
we are still working on tuning results for equivariant dynamics and symmetric control methods.
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