
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SLIM : ONE-SHOT QUANTIZED SPARSE PLUS LOW-
RANK APPROXIMATION OF LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have revolutionized natural language under-
standing and generation tasks but suffer from high memory consumption and slow
inference times due to their large parameter sizes. Traditional model compression
techniques, such as quantization and pruning, mitigate these issues but often re-
quire retraining to maintain accuracy, which is computationally expensive. This
paper introduces SLIM , a novel approach for compressing LLMs using a one-shot
Quantized Sparse Plus Low-rank Approximation. SLIM eliminates the need for
costly retraining by combining a symmetric quantization method (SLIM-Quant)
with a saliency-based low-rank approximation. Our method reduces quantization
error while leveraging sparse representations compatible with accelerated hard-
ware architectures. Additionally, we propose a parameter-efficient fine-tuning
recipe that significantly reduces overhead compared to conventional quantization-
aware training. SLIM achieves up to a 5.4% improvement in model accuracy for
sparsity patterns like 2:4, and the fine-tuning step further enhances accuracy by up
to 5.8%, demonstrating state-of-the-art performance. This work provides a path-
way for efficiently deploying large models in memory-constrained environments
without compromising accuracy.1

1 INTRODUCTION

Large Language Models (LLMs) (Brown et al., 2020; Radford et al., 2019) are transformative for
natural language understanding and generation (Suzgun et al., 2022; Zhou et al., 2023); however,
their extensive parameter count leads to large memory footprints and longer inference times, making
them expensive to execute. Model compression methods, such as sparsity and quantization, have
shown promising results in reducing the inference costs of LLMs. However, these methods often
require an expensive retraining procedure on large amounts of data to restore the original model
accuracy (Sanh et al., 2020; Park et al., 2018), while facing numerical and optimization stability
challenges when dealing with quantized weights in quantization-aware-training (Gholami et al.,
2022).

To address these issues, one-shot pruning methods have emerged, eliminating the need for the re-
training and achieve high accuracy using only a small set of calibration data. Optimal Brain Damage
(OBD) (LeCun et al., 1989) pioneered the use of second-order information of the loss function for
model compression (Singh & Alistarh, 2020; Mozaffari et al., 2023), though at a high computational
cost. Subsequent methods like Optimal Brain Surgeon (OBS) (Hassibi et al., 1993) and modern ap-
proaches such as SparseGPT (Frantar & Alistarh, 2023) and WANDA (Sun et al., 2023) build on
these ideas, introducing computationally feasible alternatives for LLMs. While these methods per-
form well with unstructured sparsity, they struggle with semi-structured sparsity patterns like the
NVIDIA 2:4 sparsity pattern (Mishra et al., 2021), which are necessary for hardware-accelerated
inference.

To address these issues, one-shot pruning methods have emerged, eliminating the need for the re-
training and achieve high accuracy using only a small set of calibration data. Optimal Brain Damage
(OBD) (LeCun et al., 1989) pioneered the use of second-order information of the loss function for
model compression (Singh & Alistarh, 2020; Mozaffari et al., 2023), though at a high computational

1Code and data for SLIM is available at: https://anonymous.4open.science/r/slim

1

https://anonymous.4open.science/r/slim

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

cost. Subsequent methods like Optimal Brain Surgeon (OBS) (Hassibi et al., 1993) and modern ap-
proaches such as SparseGPT (Frantar & Alistarh, 2023) and WANDA (Sun et al., 2023) build on
these ideas, introducing computationally feasible alternatives for LLMs. While these methods per-
form well with unstructured sparsity, they struggle with semi-structured sparsity patterns like the
NVIDIA 2:4 sparsity pattern (Mishra et al., 2021), which are necessary for hardware-accelerated
inference.

While sparsity and quantization individually offer substantial reductions in model size and inference
cost, combining these techniques holds even greater potential for compressing large models (Frantar
& Alistarh, 2023). However, combining sparsity and quantization often exacerbates the accuracy
loss from each method, resulting in a substantial performance gap between compressed and original
models. This accuracy gap highlights the need for further innovations in compression techniques.
Recent work has aimed to reduce compression error by using learnable low-rank adapters to mini-
mize weight reconstruction error (Guo et al., 2023; Nikdan et al., 2024), followed by an expensive
fine-tuning step on hundreds of millions of tokens (Dettmers et al., 2023; Li et al., 2023). This pro-
longed fine-tuning is necessary because the low-rank adapters do not account for the saliency of the
weights at initialization (Dettmers et al., 2023; Guo et al., 2023).

To address these limitations, we propose a saliency-based one-shot low-rank approximation that
mitigates the accuracy loss caused by quantization and sparsity. Saliency-based methods require
weights to remain static during quantization and pruning, which renders approaches like OPTQ
and SparseGPT ineffective. To resolve this, we introduce a novel symmetric weight quantization
scheme that not only effectively reduces quantization error but is also compatible with saliency-
based methods. We complement our quantizer and low-rank adapters with an optional light-weight
fine-tuning recipe that can further boost the accuracy of the models using only 300,000 tokens.

Our method, SLIM , is a One-shot Quantized Sparse Plus Low-rank Approximation of LLMs. Key
contributions of SLIM are:

• SLIM-Quant: We propose a symmetric weight quantization scheme that minimizes the Frobenius
norm of quantization error without altering the weights, making it compatible with saliency-based
pruning and low-rank approximation methods. Unlike group quantization, SLIM-Quant uses a
single parameter for the entire weight matrix, reducing computational and memory overhead and
simplifying implementation.

• Saliency-based One-shot Low-rank Adapters: We introduce a one-shot low-rank adapter
method that minimizes accuracy loss by reconstructing weights based on their saliency, target-
ing weights with the highest impact on model output.

• Parameter-Efficient Fine-tuning: We propose a fine-tuning recipe for sparse, quantized models
that avoids the complexities of quantization-aware training while drastically reducing fine-tuning
time. For example, fine-tuning a 13B parameter model, which typically takes up to 36 days, is
reduced to just 14 hours on a single H100 GPU.

• Accuracy Gains: SLIM improves model accuracy by up to 5.4% (LLaMA-2-7B) over state-of-
the-art pruning and quantization methods (SparseGPT + Group OPTQ) for 2:4 sparsity. With our
parameter-efficient fine-tuning, the gap widens to 5.8% (LLaMA-2-13B).

2 PRELIMINARIES

Optimal Brain Surgeon. The primary objective in model compression is to minimize the output dis-
crepancy between the compressed and original models. Optimal Brain Surgeon (Hassibi et al., 1993)
simplifies this approach by minimizing the output difference at each network layer over a calibra-
tion dataset. Consider a single feed-forward layer with input X ∈ Rb×din , weight W ∈ Rdin×dout ,
and output Y ∈ Rb×dout , where b, din, and dout represent the batch size, input hidden dimension,
and output hidden dimension, respectively. Denoting the compressed matrices with a superscript C,
OBS aims to minimize Equation 1. This formulation allows OBS to focus on maintaining layer-wise
fidelity during compression, potentially leading to better overall model performance.

min
WC

|YC − Y|2 = min
WC

|X (W −WC)|2 (1)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Finetuning
[Optional]

SLIM-Quant
Saliency-Based

 Pruning

Saliency-Based
Low-Rank Adapter

Figure 1: Figure 1: SLIM weight compression pipeline. The process involves: (1) Quantizing
weights using the symmetric SLIM-Quant algorithm (generating quantized weight WQ and quan-
tization error EQ); (2) Sparsifying quantized weights through saliency-based pruning (generating
compressed weight WC with sparsity error ES); (3) Compensating for quantization and sparsity er-
rors via SLIM saliency-based low-rank approximation (generating left and right low-rank adapters
L and R). Optionally, adapters can undergo fine-tuning to further improve model accuracy while
keeping sparse quantized weights frozen.

Considering Equation 1, Wanda (Sun et al., 2023) proposes a saliency matrix S to evaluate the
importance of each parameter. This matrix is defined as S = xT ⊙W , where x ∈ Rdin×1 represents
the average absolute value of each input, ⊙ denotes element-wise multiplication, and |.| represents
the absolute value operator. SLIM adopts this same metric to assess the importance of different
weights and determine the sparsity patterns in the sparse weight representation.

Symmetric Quantization. Symmetric quantization, the simplest form of quantization, computes
MQ ∝ round(Mα), where MQ is the quantized matrix and α is the quantization parameter. This
method effectively accelerates matrix multiplications, as dequantization of the output requires only
a scalar multiplication.

AbsMax (Jacob et al., 2018), the most common symmetric quantization method, sets α to the maxi-
mum absolute value in the matrix. However, AbsMax is sensitive to outliers, which can significantly
alter α, thereby reducing quantization precision. For zero-centered bell-curved distributions typical
of LLM weights and inputs, AbsMax maps a large portion of weights to zero, resulting in high error
values.

Group quantization Alistarh et al. (2017); Gunho et al. (2022) addresses this issue by sharing the
quantization parameter among fewer elements in the weight matrix. This approach divides the
weight matrix into smaller subgroups, each quantized with its own scaling factor. While this al-
lows for more fine-grained representation of weight distributions and better captures local variations
in weight magnitudes, it introduces memory overheads and complicates dequantization methods.
Specifically, group quantization increases memory usage and computational complexity in exchange
for potentially improved quantization accuracy.

3 QUANTIZED SPARSE PLUS LOW-RANK APPROXIMATION OF LLMS

To effectively apply quantization, sparsity, and low-rank adapters to LLMs, SLIM introduces a novel
quantization scheme called SLIM-Quant . This method reduces quantization error and is followed
by pruning the quantized model using the importance metric proposed in Section 2. Subsequently,
SLIM adds low-rank adapters to minimize the saliency of the compression error introduced by
sparsity and quantization. Figure 1 illustrates this process. In the following subsections, we discuss
each step of this approach in detail.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.1 SLIM QUANTIZATION METHOD

SLIM focuses on symmetric weight quantization due to its low dequantization and memory over-
head and ease of implementation. Denoting the quantized matrices by Q superscript, Equation 2
shows the symmetric quantization formula for q-bit quantization, where α is the quantization pa-
rameter and clip(.) operator clips the input to values between [−1, 1].

WQ = round(clip(
W
α
))2q−1 (2)

The objective of quantization is to reduce the weight reconstruction error shown in Equation 3,
where the ∗ superscript shows the optimal value. But the objective function in Equation 3 is not
convex, and to our best knowledge, does not have a closed form solution.

α∗ = argmin
α

||WQ −W||2 = argmin
α

||round(clip(W
α
))2q−1 −W||2 (3)

To solve the mean squared error (MSE) problem in Equation 3, we propose a probabilistic refor-
mulation as shown in Equation 4, where Q(.) and Q−1(.) are the quantization and dequantization
functions respectively and f(.) is the probability distribution function (PDF) of the weight elements.

α∗ = argmin
α

||WQ −W||2 = argmin
α

∫ ∞

−∞
f(x)|Q−1(Q(x))− x|2dx (4)

By incorporating the quantization formula from Equation 2 into Equation 4, we can simplify the
integration into the sum of two terms based on the absolute value of the data: the quantization error
for absolute values less than α (Equation 5) and the clipping error for absolute values larger than α
(Equation 6). Here, fabs(.) represents the probability density function (PDF) of the absolute value
of the weights. Equation 7 presents the simplified version of Equation 4.

Equant(α) =

∫ α

0

fabs(x)|α× round(
x

α
)× 21−q − x|2dx (5)

Eclip(α) =

∫ ∞

α

fabs(x)|α− x|2dx (6)

α∗ = argmin
α

EQ(α) = argmin
α

Equant(α) + Eclip(α) (7)

Equation 7 can theoretically be solved by differentiating the objective function with respect to α,
assuming the probability density function (PDF) of the distribution is known. However, in prac-
tice, neural network weight distributions don’t follow standard distributions. We tested models like
Gaussian, Laplace, Pareto, q-Gaussian, and Weibull, but none fit the observed weight distributions,
highlighting their uniqueness.

To overcome the lack of a closed-form weight PDF, we use numerical integration over the weight
histogram to solve Equation 7. We implement a multi-grid approach to optimize efficiency, starting
with 10 uniform samples in the range (0,max(W)) and iteratively refining around the minimum
error to find the optimal α. The full method is detailed in Algorithm 1.

3.2 SLIM LOW-RANK ADAPTERS

The effects of quantization and pruning of a weight matrix can be modeled as additive noise, such
that WC = W + EQ + ES , where EQ = W − WQ and ES = WC − WQ are the quantization
and sparsity errors respectively. We aim to add low-rank adapters to the weights that cancel the
compression errors, i.e. W ≈ WC + LR, where L ∈ Rdin×r and R ∈ Rr×dout are the low-rank
adapters and r is the adapter rank.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 SLIM-Quant Algorithm
1: Input: Weight Magnitude PDF: fabs, High Resolution Step Size: ηhigh, Low Resolution Step

Size: ηlow Weight Matrix: W , Quantization Bitwidth: q
2: Output: Wquant

3: procedure ESTIMATEERROR(α)
4: Equant(α) =

∫ α

0
fabs(x)|α× round(xα)× 21−q − x|2dx

5: Eclip(α) =
∫∞
α

fabs(x)|α− x|2dx
6: return Equant + Eclip

7: E = EmptyDictionary()
8: for α in range(0, M , ηlow) do
9: E(α) = ESTIMATEERROR(α)

10: αlow = argminα E(α)
11: for α in range(αlow − ηlow, αlow + ηlow, ηhigh) do
12: E(α) = ESTIMATEERROR(α)

13: α∗ = argminα E(α)
14: Wquant = round(clip(Wα∗))× 2q−1

In a naive attempt, one can try to minimize the total error norm between W and WC . In this
approach, the magnitude of the error is the minimization objective, and the importance of different
weights are not taken into account. Similar to magnitude pruning, this approach results in low
accuracy in the model as discussed in Section 4.

We propose a new formulation to incorporate the weight saliency into the low-rank approximation,
and then utilize the proper saliency function to find the optimal adapters in practice. Assuming that
there exists an additive invertible saliency function F : Rdin×dout → Rdin×dout , solving Equation
8, in which we have used the additive property of F and the fact that F (W) = F (WC + (LR)).

L,R = argmax
L,R

||F (WC + LR)||2 = argmin
L,R

||F (W − (WC + LR))||2 (8)

By using the additive feature of the saliency function F (.), we can simplify Equation 8 to Equation
9. By solving the optimization problem in equation 9, we can obtain the optimal low-rank adapters.

L,R = argmin
L,R

||F (W −WC)− F (LR)||2 = argmin
L,R

||F (−(EQ + ES))− F (LR)||2 (9)

For solving the optimization problem in Equation 9, we replace F (.) with the saliency function
discussed in section 2, i.e. F (W) = xT ⊙ W , where x ∈ Rdin×1 represents the average absolute
value of inputs from a calibration set. For simplicity, we use matrix multiplications instead of
element-wise multiplication, resulting in Equation 10.

F (W) = diag(x)W (10)

Replacing Equation 10 in the objective function in Equation 9, one can obtain Equation 11, which
can be solved by a singular value decomposition and a matrix inversion on the left low-rank adapter,
as in Equation 12.

L,R = argmin
L,R

|| − diag(x)(EQ + ES)− diag(x)LR||2 (11)

diag(x)L,R = −SV D(diag(x)(EQ + ES)) (12)

Please note that the invertibility of the saliency function in Equation 10 is dependent on the invert-
ibility of diag(x), which in turn requires all values in x to be not equal to zero. But in practice, due
to the limited numerical range and the non-linearities such as ReLU in LLMs, diag(x) can become

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 2 SLIM Saliency-based Low-rank Adapter Computation
1: Input: Original Weight: W , Compressed Weight: WC Calibration Input: X
2: Output: L,R: Saliency-based Low-rank Adapters
3: EC = EQ + ES = WC −W // Compute compression Error
4: x̃ = mean(X) // Average over all the samples
5: x = x̃+min(|x̃|) // Shift all the values to avoid zeros in x
6: SC = diag(x)EC // Compute compression error saliency
7: L̃, R̃ = SV D(SC) // Low-rank approximation of compression error saliency
8: L = diag(1/x)L̃,R = R̃ // Converting saliency factors to weight factors

singular. To avoid such cases. This behavior will also lead to having the rows of the saliency ma-
trix to be set to zero, not distinguishing between the less and more important weights in a row. To
overcome these challenges, we have added the minimum absolute value available in x to all its ele-
ments. Algorithm 2 summarizes all the details of computing the saliency-based low-rank adapters in
SLIM . Please note that we have used the additive property of the saliency function to compute the
saliency of the errors separately, and optimize the low-rank adapters to minimize the error saliency.
The Wanda saliency holds the additive property, making it suitable for our work, while other meth-
ods that use the second-order information of the loss function cannot utilize saliency-based low-rank
adapters.

3.3 POST-COMPRESSION FINE-TUNING

Fine-tuning models after applying one-shot compression presents significant challenges, primarily
due to the limitations imposed by the integer representation of parameters in quantized weights.
Quantized weights have limited precision and restricted value ranges, making gradient-based up-
dates difficult and potentially leading to loss of information during fine-tuning. Moreover, the high
parameter count of large language models renders traditional fine-tuning extremely computationally
expensive and time-consuming, necessitating more parameter-efficient methods.

SLIM addresses these issues by introducing fine-tunable parameters in the form of low-rank
adapters. In its optional fine-tuning phase, SLIM freezes the sparse and quantized weights, al-
lowing only the tuning of these low-rank adapters. This parameter-efficient fine-tuning approach
enables rapid improvement in the compressed model’s accuracy using a short fine-tuning phase over
just thousands of tokens. By focusing the fine-tuning process on a small subset of parameters (the
adapters), SLIM significantly reduces the computational requirements while still allowing the model
to adapt to new data or tasks. This approach strikes a balance between maintaining the benefits of
compression and enabling post-compression adaptation.

3.4 TILED LOW-RANK ADAPTER QUANTIZATION

Pruning and quantizing the weights reduces the computation and memory footprint of the mod-
els significantly (∼8× reduction in memory size), but adding low-rank adapters in full precision
will result in an extra overhead. To reduce the adapter overheads, we compress the adapters using
quantization. The distribution of the elements in the factors have long tails, making even advanced
methods that don’t use group quantization such as SLIM-Quant impractical. On the other hand,
available group quantization methods use 1-dimensional tiles for quantization, which does not match
the layout used for tensor cores, hence making them not hardware-friendly.

To address these issues, we propose a tiled quantization scheme for the low-rank adapters, in which
256 elements of the adapter are quantized using the same quantization parameter, creating 16 × 16
tiles. The choice of 16× 16 blocks is made based on the input size of tensor cores in NVIDIA A100
and H100 GPUs, making it the tiling strategy more hardware friendly and allowing the warps in
the GPU to dequantize the data in for different tensor cores in parallel using only one quantization
parameter per tensor core. The quantization of each tile is done using the AbsMax algorithm.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4 EXPERIMENTAL RESULTS

Models, Datasets, and Evaluation. We evaluate SLIM on the OPT (Zhang et al., 2022) and
LLaMA-2 (Touvron et al., 2023) model families, both of which serve as standard baselines in model
compression studies (Frantar et al., 2022; Frantar & Alistarh, 2023; Sun et al., 2023). Model ac-
curacy is assessed on a range of zero-shot downstream tasks, including MMLU (Hendrycks et al.,
2020), Piqa (Bisk et al., 2020), Arc-Easy, Arc-Challenge (Clark et al., 2018), WinoGrande (Sak-
aguchi et al., 2021), and OpenBookQA (Mihaylov et al., 2018). For zero-shot evaluations, we
utilize the Language Model Evaluation Harness (Gao et al., 2024) framework. In line with prior
work (Sun et al., 2023; Frantar & Alistarh, 2023; Frantar et al., 2022), we also report the perplexity
of the models on a language modeling task on the WikiText2 (Merity et al., 2016) dataset, provided
in Appendix A.

Baselines. We compare SLIM against state-of-the-art one-shot pruning methods, including Wanda
(Sun et al., 2023), SparseGPT (Frantar & Alistarh, 2023), and Magnitude Pruning (Han et al., 2015),
as well as one-shot quantization techniques like OPTQ (Frantar et al., 2022) and AbsMax. Since
AWQ (Lin et al., 2024) relies on floating point activations, we have not included it in our experi-
ments, in which both weights and activations are quantized.

Similar to other leading one-shot pruning and quantization methods (Wanda, SparseGPT, OPTQ),
SLIM leverages calibration data to extract statistics and assess weight saliency. As Wanda,
SparseGPT, and OPTQ operate under identical conditions, we adopt their approach, using 128 se-
quences sampled from the C4 (Raffel et al., 2019) dataset. Additionally, for all fine-tuning experi-
ments, we utilize 300,000 tokens from the C4 dataset. SLIM uses Wanda for pruning the models,
and the Wanda saliency is further used for optimizing the low-rank adapters.

Sparse and Quantized. We evaluate model accuracy across structured and unstructured spar-
sity benchmarks for various pruning and quantization methods. Specifically, we pair OPTQ and
SparseGPT, which follow similar error recovery strategies, and combine Wanda with AbsMax and
SLIM-Quant , while using Magnitude Pruning with AbsMax. To demonstrate the effectiveness of
SLIM saliency-based low-rank adapters, we introduce low-rank adapters to Wanda, minimizing the
magnitude of the error (rather than the saliency) using SVD. This approach, referred to as the ”SVD
low-rank adapter or Wanda-SVD” in the tables, is similar to LQLoRA (Guo et al., 2023) with the
difference that LQLoRA does not prune the weights, nor uses SLIM-Quant for quantization, lead-
ing to significantly higher error rates. We do not apply one-shot low-rank adapters to SparseGPT or
OPTQ, as their weight update rules conflict with minimizing weight error. Additionally, for a more
thorough experiment setting, we have implemented group quantization for AbsMax, and have tested
it with different settings.

Table 1 presents the zero-shot task accuracy results for sparse and quantized versions of the OPT
and LLaMA-2 models. Among the tested methods, Magnitude Pruning combined with AbsMax
quantization yields the lowest accuracy, with AbsMax applied to Wanda showing similarly poor
performance. While applying SLIM-Quant to Wanda alleviates some of the accuracy loss, it still
falls short compared to SparseGPT and OPTQ. In contrast, SLIM achieves the highest accuracy
across all methods, with further improvements gained through a brief fine-tuning step (SLIM + FT).
Additionally, SLIMQ quantizes the low-rank adapters to 4 bits, reducing adapter overhead by 4×
while maintaining competitive accuracy. Notably, while Group AbsMax improves the accuracy of
models with low-rank adapters, it still underperforms compared to SLIM-Quant , which employs a
single quantization parameter per tensor for greater efficiency.

A similar trend is observed for unstructured sparsity, although the performance gap between dense
and sparse models is smaller across all methods. SLIM achieves a significant improvement in
average accuracy, boosting results by up to 5.4% (LLaMA-2-7B) for 2:4 sparsity compared to the
state-of-the-art SparseGPT and Group OPTQ. This gap further widens to 5.8% (LLaMA-2-13B)
when incorporating an additional parameter-efficient fine-tuning step.

Sparse Only. To isolate the effects of sparsity on model accuracy, we conduct a series of experi-
ments with quantization disabled. Our sparsity benchmarks include Magnitude Pruning, SparseGPT,
and Wanda, along with low-rank approximations using Wanda-SVD and SLIM . We evaluate both
50% unstructured sparsity and 2:4 structured sparsity patterns in our experiments.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Average zero-shot accuracy of LLaMA-2 and OPT models with pruning, 4-bit symmetric
weight quantization, and 8-bit symmetric input group quantization. Wanda-SVD uses SVD directly
on the compression error matrix, and Wanda-SVD + FT and SLIM + FT uses fine-tuning on low-
rank adapters for 300,000 tokens. SLIMQ quantizes the low-rank adapters after the compression
(and possibly fine-tuning) process.

Pruning Weight OPT LLaMA-2
Method Quantization 125M 350M 1.3B 2.7B 6.7B 13B 7B 13B

Dense - 35.9 37.1 43.4 45.5 48.3 48.7 56.6 60.8

50% 2:4

Magnitude AbsMax 32.0 31.8 34.2 32.5 35.3 30.8 31.2 32.1
SparseGPT Group-OPTQ 33.7 32.6 37.3 40.2 44.4 45.5 45.4 50.8
SparseGPT OPTQ 31.4 32.9 31.0 33.9 39.9 40.0 31.8 31.6
Wanda Group AbsMax 33.0 31.6 36.3 35.1 36.6 43.4 43.1 48.3
Wanda AbsMax 31.5 31.3 31.6 30.7 30.5 31.2 32.0 31.3
Wanda SLIM-Quant 31.8 32.1 34.7 34.3 38.4 32.8 30.8 30.7
Wanda-SVD Group AbsMax 33.9 34.0 38.9 39.9 44.2 45.5 50.5 54.5
Wanda-SVD SLIM-Quant 34.2 33.3 38.7 41.2 44.3 45.2 48.3 51.4
Wanda-SVD + FT SLIM-Quant 34.0 34.3 39.6 42.6 46.1 47.2 50.8 55.4
SLIM Group AbsMax 33.9 33.7 39.9 42.8 45.8 46.0 50.2 54.3
SLIM SLIM-Quant 34.3 33.5 40.0 42.8 46.1 46.1 50.8 54.8
SLIMQ SLIM-Quant 34.2 33.8 39.8 41.8 46.0 45.9 50.6 53.0
SLIM + FT SLIM-Quant 34.9 34.5 41.3 43.5 46.1 47.3 50.5 56.6
SLIMQ + FT SLIM-Quant 34.9 34.3 40.0 42.3 46.0 46.5 50.6 54.1

50%
Unstructured

Magnitude AbsMax 31.1 32.9 33.1 36.2 36.3 31.2 32.6 31.5
SparseGPT Group-OPTQ 35.1 35.1 38.9 43.2 47.1 47.3 50.1 55.4
SparseGPT OPTQ 31.4 34.5 31.2 37.1 43.2 44.1 31.7 32.0
Wanda Group AbsMax 34.2 33.3 39.1 40.7 44.9 46.2 51.7 55.8
Wanda AbsMax 31.5 32.9 31.0 32.9 30.5 31.1 32.7 31.1
Wanda SLIM-Quant 32.8 33.9 36.0 36.2 42.7 32.8 30.4 30.5
Wanda-SVD Group AbsMax 34.6 34.4 40.5 42.9 46.3 47.2 53.9 55.4
Wanda-SVD SLIM-Quant 34.6 34.4 40.3 43.3 46.7 45.2 51.2 55.4
Wanda-SVD + FT SLIM-Quant 35.3 34.8 41.8 43.8 47.0 47.9 53.0 57.3
SLIM Group AbsMax 35.0 35.0 41.5 43.6 47.2 47.9 54.0 57.6
SLIM SLIM-Quant 35.7 35.4 42.0 43.4 47.5 48.0 54.0 57.6
SLIMQ SLIM-Quant 34.8 35.0 41.4 34.3 47.1 47.4 53.8 57.1
SLIM + FT SLIM-Quant 35.7 35.8 42.3 44.3 47.3 48.4 53.2 57.0
SLIMQ + FT SLIM-Quant 35.3 35.6 41.9 43.8 47.6 48.1 53.7 57.6

Table 2 presents the accuracy results for the sparse models. As anticipated, Magnitude Pruning
yields the lowest accuracy. Wanda and SparseGPT achieve comparable results, though in the case
of semi-structured sparsity, their performance gap with the dense model is more pronounced. Intro-
ducing low-rank adapters improves model accuracy, with SLIM being particularly effective due to
its saliency-based approximation. Finally, a brief fine-tuning phase further enhances the accuracy of
the low-rank approximations.

Quantized Only. To assess the effects of SLIM-Quant and the low-rank compensation in SLIM ,
we disable sparsity in our experiments and evaluate various quantization schemes. Specifically, we
test AbsMax, OPTQ, and SLIM-Quant as the quantization methods. To improve model accuracy,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Average zero-shot accuracy of LLaMA-2 and OPT models with pruning. The quantization
is disabled in this experiment.

Pruning OPT LLaMA-2
Method 125M 350M 1.3B 2.7B 6.7B 13B 7B 13B

Dense 35.9 37.1 43.4 45.5 48.3 48.7 56.6 60.8

50% 2:4

Magnitude 32.6 31.8 35.4 33.9 36.4 30.7 31.2 32.0
SparseGPT 33.8 33.2 37.7 41.3 45.2 45.6 47.3 52.3
Wanda 34.0 32.5 38.3 40.5 43.2 44.1 46.1 49.7
Wanda-SVD 34.1 34.1 40.4 42.8 46.0 45.9 51.6 55.8
Wanda-SVD + FT 34.8 34.5 41.3 43.4 46.5 47.2 52.4 56.9
SLIM 34.5 32.9 40.7 43.1 46.4 46.3 51.4 56.1
SLIM + FT 35.1 34.9 41.5 43.8 46.5 47.3 51.6 56.4

50%
Unstructured

Magnitude 33.3 33.7 34.0 40.6 35.8 30.9 32.6 31.9
SparseGPT 35.5 35.1 39.6 43.5 47.4 47.8 53.3 57.3
Wanda 35.0 34.5 41.1 42.9 46.5 46.8 52.7 57.2
Wanda-SVD 35.3 35.2 41.9 44.1 47.5 47.8 54.9 58.5
Wanda-SVD + FT 35.74 35.7 42.7 44.6 47.8 48.4 54.9 58.7
SLIM 35.2 35.1 42.0 44.1 47.7 48.2 55.0 58.8
SLIM + FT 35.9 35.7 42.5 44.7 47.7 48.4 55.0 58.8

we add low-rank adapters to SLIM-Quant , minimizing either the error saliency (SLIM) or the
reconstruction error norm (SVD). Low-rank adapters cannot be applied to OPTQ due to its weight
update rules, which conflict with minimizing the weight reconstruction error.

Table 3 summarizes the results of our quantization experiments. As expected, AbsMax produces
the highest error among the quantization methods. While SLIM-Quant addresses some of the lim-
itations of AbsMax, it still struggles to fully recover from accuracy loss. OPTQ achieves higher
accuracy than both AbsMax and SLIM-Quant , but its inability to incorporate low-rank adapters
limits its effectiveness at lower bitwidths. Both the SVD and SLIM low-rank adapters enhance the
accuracy of SLIM-Quant , with SLIM outperforming SVD due to its saliency-based approximation.

Table 3: Average zero-shot accuracy of LLaMA-2 and OPT models with quantization. The sparsity
is disabled in this experiment.

Quantization Low-rank OPT LLaMA-2
Method Adapter 125M 350M 1.3B 2.7B 6.7B 13B 7B 13B

Dense - 35.9 37.1 43.4 45.5 48.3 48.7 56.6 60.8

AbsMax - 30.7 34.0 31.2 31.6 30.3 31.4 32.4 31.9
Group-OPTQ - 35.5 36.2 42.5 44.5 47.7 48.2 53.3 59.6
OPTQ - 31.4 36.0 31.5 37.3 43.3 45.1 31.2 31.5
SLIM-Quant - 32.0 36.5 36.2 40.0 30.3 37.8 31.0 30.5
SLIM-Quant SVD 35.5 35.9 42.4 44.9 47.8 48.2 55.8 60.5
SLIM-Quant SVD + FT 35.9 36.4 43.2 45.5 48.2 48.7 56.0 60.4
SLIM-Quant SLIM 35.6 36.5 42.7 45.4 48.3 48.4 56.0 60.2
SLIM-Quant SLIM + FT 35.7 36.5 43.2 45.6 48.3 48.9 55.8 60.4

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Fine-tuning Costs. Fine-tuning compressed models can help recover lost accuracy. However, fine-
tuning quantized weights presents challenges due to the discrete nature of the weights. The most
commonly used approach for addressing these challenges, and one that has shown promising results,
is the straight-through estimator (STE) (Bengio et al., 2013). In this method, during the backward
pass and optimization step, the weights are treated as continuous, allowing for effective fine-tuning
despite the quantization.

In addition to the challenges posed by discrete values during fine-tuning, the high parameter count
of the models leads to time-consuming computations and substantial memory costs. In our experi-
ments, we measured the time required to fine-tune the models under various conditions. For models
with low-rank adapters, the quantized weights are frozen, allowing only the low-rank adapters to be
fine-tuned. This approach results in a more parameter-efficient fine-tuning strategy, reducing both
memory and computational costs. When no low-rank adapter is employed, the straight-through es-
timator (STE) is used for fine-tuning the quantized weights. Table 4 summarizes the fine-tuning
results for 300,000 tokens from the C4 dataset, with a batch size of 64 and a sequence length of
1024 on a single H100 GPU. The fine-tuning costs for models without low-rank adapters range
from 12 hours for 125M parameter models to over 36 days for 13B parameter models. Due to
these high costs, we faced challenges completing the fine-tuning with our limited resources. In con-
trast, utilizing low-rank adapters and freezing the sparse quantized weights enables a much more
parameter-efficient fine-tuning method, making it feasible for us to report the accuracy results for
these cases in Table 1.

Table 4: The required time for fine-tuning the models with a single H100 GPU on 300,000 tokens
from the C4 dataset with a batch size of 64 and a sequence length of 1024.

Pruning Weight OPT LLaMA-2
Method Quantization 125M 350M 1.3B 2.7B 6.7B 13B 7B 13B

Magnitude AbsMax
SparseGPT OPTQ 12h 43h 164h 361h 866h 867h 842h 844h
Wanda AbsMax

Wanda-SVD SLIM-Quant 1.5h 3h 6h 8h 16h 18h 14h 14hSLIM + FT SLIM-Quant

Additional Experiments. In the appendix, we provide additional experiments for a comprehen-
sive evaluation. Compression Costs (Appendix F) examines the time required to compress models
of varying sizes using different methods. Inference Speedup (Appendix G) evaluates the per-
formance gains during inference, highlighting the efficiency improvements achieved by our ap-
proach. Rank Analysis (Appendix H) investigates the computational and memory costs of dif-
ferent ranks in low-rank adapter methods, along with their impact on model accuracy. Finally,
Effects of Calibration Sample Count (Appendix I) analyzes how varying the number of calibra-
tion samples affects accuracy in methods that require calibration. Finally, we have included addi-
tional experiments with other pruning quantization techniques in Appendix B.

5 CONCLUSION, LIMITATIONS, AND FUTURE WORK

In this paper, we introduced SLiM, a one-shot quantized sparse plus low-rank approximation method
for large language models, designed to balance memory efficiency and accuracy. By leveraging sym-
metric quantization, sparsity, and saliency-based low-rank adapters, SLiM achieves significant re-
ductions in both memory and computational costs while maintaining competitive performance. Our
method demonstrates improved accuracy, particularly for models with structured sparsity patterns
like 2:4 sparsity, compared to state-of-the-art approaches.

SLiM relies on current available libraries all of which lack support for advanced quantization
schemes like 2:4 mixed 8-bit and 4-bit group quantization. Additionally, low-rank adapters, while
effective, introduce overheads. Future work will focus on developing efficient kernels for 2:4 group
quantization and compressing low-rank adapters to further optimize memory and speed.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. Qsgd: Randomized
quantization for communication-efficient stochastic gradient descent. In Proceedings of NIPS,
volume 2017, 2017.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. QLoRA: Efficient Finetun-
ing of Quantized LLMs. arXiv preprint arXiv:2305.14314, 2023.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International Conference on Machine Learning, pp. 10323–10337. PMLR, 2023.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Optq: Accurate quantization
for generative pre-trained transformers. In The Eleventh International Conference on Learning
Representations, 2022.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lin-
tang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
for few-shot language model evaluation, 07 2024. URL https://zenodo.org/records/
12608602.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer. A
survey of quantization methods for efficient neural network inference. In Low-Power Computer
Vision, pp. 291–326. Chapman and Hall/CRC, 2022.

Park Gunho, Park Baeseong, Kwon Se Jung, Kim Byeongwook, Lee Youngjoo, and Lee Dongsoo.
nuqmm: Quantized matmul for efficient inference of large-scale generative language models.
arXiv preprint arXiv:2206.09557, 2022.

Han Guo, Philip Greengard, Eric P Xing, and Yoon Kim. LQ-LoRA: Low-rank Plus Quantized Ma-
trix Decomposition for Efficient Language Model Finetuning. arXiv preprint arXiv:2311.12023,
2023.

Jinyang Guo, Jianyu Wu, Zining Wang, Jiaheng Liu, Ge Yang, Yifu Ding, Ruihao Gong, Haotong
Qin, and Xianglong Liu. Compressing large language models by joint sparsification and quanti-
zation. In Forty-first International Conference on Machine Learning, 2024.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015.

Babak Hassibi, David Stork, and Gregory Wolff. Optimal brain surgeon: Extensions and perfor-
mance comparisons. Advances in neural information processing systems, 6, 1993.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

11

https://zenodo.org/records/12608602
https://zenodo.org/records/12608602

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,
Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for
efficient integer-arithmetic-only inference. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2704–2713, 2018.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information
processing systems, 2, 1989.

Yixiao Li, Yifan Yu, Qingru Zhang, Chen Liang, Pengcheng He, Weizhu Chen, and Tuo Zhao.
Losparse: Structured compression of large language models based on low-rank and sparse ap-
proximation. In International Conference on Machine Learning, pp. 20336–20350. PMLR, 2023.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
on-device llm compression and acceleration. Proceedings of Machine Learning and Systems, 6:
87–100, 2024.

I Loshchilov. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017.

Yuexiao Ma, Huixia Li, Xiawu Zheng, Feng Ling, Xuefeng Xiao, Rui Wang, Shilei Wen, Fei Chao,
and Rongrong Ji. Affinequant: Affine transformation quantization for large language models.
arXiv preprint arXiv:2403.12544, 2024.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko Stosic, Dusan Stosic, Ganesh Venkatesh,
Chong Yu, and Paulius Micikevicius. Accelerating sparse deep neural networks. arXiv preprint
arXiv:2104.08378, 2021.

Mohammad Mozaffari, Sikan Li, Zhao Zhang, and Maryam Mehri Dehnavi. MKOR: Momentum-
Enabled Kronecker-Factor-Based Optimizer Using Rank-1 Updates. In NeurIPS, 2023.

Mahdi Nikdan, Soroush Tabesh, and Dan Alistarh. Rosa: Accurate parameter-efficient fine-tuning
via robust adaptation. arXiv preprint arXiv:2401.04679, 2024.

NVIDIA Corporation. NVIDIA cuSPARSELt. https://docs.nvidia.com/cuda/
cusparselt/index.html, a.

NVIDIA Corporation. NVIDIA CUTLASS. https://github.com/NVIDIA/cutlass, b.

Eunhyeok Park, Sungjoo Yoo, and Peter Vajda. Value-aware quantization for training and inference
of neural networks. In Proceedings of the European Conference on Computer Vision (ECCV), pp.
580–595, 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. arXiv e-prints, 2019.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Victor Sanh, Thomas Wolf, and Alexander Rush. Movement pruning: Adaptive sparsity by fine-
tuning. Advances in neural information processing systems, 33:20378–20389, 2020.

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,
Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization for
large language models. arXiv preprint arXiv:2308.13137, 2023.

12

https://docs.nvidia.com/cuda/cusparselt/index.html
https://docs.nvidia.com/cuda/cusparselt/index.html
https://github.com/NVIDIA/cutlass

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Sidak Pal Singh and Dan Alistarh. Woodfisher: Efficient second-order approximation for neural
network compression. Advances in Neural Information Processing Systems, 33:18098–18109,
2020.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach
for large language models. arXiv preprint arXiv:2306.11695, 2023.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, , and Jason Wei. Challenging big-
bench tasks and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261,
2022.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Shibo Wang and Pankaj Kanwar. BFloat16: The secret to high performance on Cloud
TPUs. https://cloud.google.com/blog/products/ai-machine-learning/
bfloat16-the-secret-to-high-performance-on-cloud-tpus.

T Wolf. Huggingface’s transformers: State-of-the-art natural language processing. arXiv preprint
arXiv:1910.03771, 2019.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny
Zhou, and Le Hou. Instruction-following evaluation for large language models. arXiv preprint
arXiv:2311.07911, 2023.

13

https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Appendix

Table of Contents
A Language Modeling Experiments 14

B Additional Quantization Methods 14

C Memory Reduction Analysis 15

D Computation Reduction Analysis 16

E Fine-tuning Hyperparameters 17

F Compression Costs 17

G Inference Speedup 17

H Rank Analysis 19

I Effects of Calibration Sample Count 19

A LANGUAGE MODELING EXPERIMENTS

We have tested all the benchmarks discussed in Section 4 on a language modeling task on the Wiki-
Text2 (Merity et al., 2016) dataset. Table 5 summarizes the results for different pruning and quan-
tization approaches when using 4-bit weight and 8-bit group input quantization. Similar to Section
4, SLIM outperforms all the previous methods, including SparseGPT with Group OPTQ. Using
saliency based methods for low-rank adapters is also improving the perplexity of the models in
comparison to Wanda-SVD. Additionally, a short fine-tuning step can improve the perplexity of the
models significantly.

B ADDITIONAL QUANTIZATION METHODS

We have tested additional quantization and pruning methods such as Joint Sparsity and Quantiza-
tion (JSQ) (Guo et al., 2024), OmniQuant (Shao et al., 2023), AffineQuant (Ma et al., 2024), and
AWQ (Lin et al., 2024) and compared it against SLIM on WikiText2 (Merity et al., 2016) language
modeling task. Table ?? summarizes the perplexity results of all the methods. In all these experi-
ments (except for JSQ), the weight is pruned with Wanda and quantized to 4 bits. The inputs are
quantized to 8 bit as well. The optimal parameters for each model are used if the papers reported
them, otherwise, the default quantization parameters are used.

As shown in table 6, all the quantization and pruning methods resulted in higher errors compared to
SLIM (and even SparseGPT + OPTQ), as they were not co-designed with the pruning method. This
highlights the importance of co-designing pruning, quantization, and low-rank adapters to achieve
optimal performance.

Furthermore, methods like JSQ demonstrate strong performance in only one class of models but
struggle to generalize to others, such as the OPT models. Similarly, techniques like OmniQuant,
AffineQuant, and AWQ fail to effectively quantize the OPT-350M model, often resulting in NaN
(Not a Number) or extremely high perplexity values. Moreover, AffineQuant faces challenges quan-
tizing the sparse version of LLaMA-2-7B model due to the large recovery loss in the last two layers
of the models. All experiments were conducted on a single A100-40GB GPU; notably, AWQ en-
countered out-of-memory (OOM) issues when applied to the LLaMA-2-13B model, as indicated in
the table.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 5: Perplexity of LLaMA-2 and OPT models with pruning, 4-bit symmetric weight quantiza-
tion, and 8-bit symmetric input group quantization on WikiText2 dataset language modeling task.
Wanda-SVD uses SVD directly on the compression error matrix, and Wanda-SVD + FT and SLIM +
FT uses fine-tuning on low-rank adapters for 300,000 tokens.

Pruning Weight OPT LLaMA-2
Method Quantization 125M 350M 1.3B 2.7B 6.7B 13B 7B 13B

Dense - 27.7 22.0 14.6 12.5 10.9 10.1 5.1 4.6

50% 2:4

Magnitude AbsMax 6.2e3 9.1e2 2.1e3 1.5e3 436.3 4.1e4 9.1e4 1.1e5
SparseGPT Group-OPTQ 78.6 62.3 27.1 18.7 15.4 12.9 15.2 8.3
SparseGPT OPTQ 6.7e3 77.2 762.3 52.1 21.1 15.36 7.4 1.2e5
Wanda AbsMax 6.2e3 412.6 1.0e4 1.0e4 8.8e3 8.2e3 8.1e4 6.6e4
Wanda SLIM-Quant 308.4 145.7 1.3e3 441.5 65.2 2.3e3 5.2e5 7.6e4
Wanda-SVD SLIM-Quant 83.6 60.7 27.4 21.3 14.7 13.2 8.2 7.1
Wanda-SVD + FT SLIM-Quant 54.5 42.1 21.1 16.3 13.4 12.6 7.0 6.0
SLIM SLIM-Quant 58.1 51.7 20.0 15.8 12.8 12.1 7.6 6.6
SLIM + FT SLIM-Quant 41.5 36.3 17.6 14.7 12.4 12.1 6.4 5.8

50%
Unstructured

Magnitude AbsMax 3.1e3 127.3 7.1e3 1.1e3 772.3 2.3e4 9.9e4 2.0e5
SparseGPT Group-OPTQ 42.6 34.7 20.3 14.4 12.2 11.3 8.4 5.6
SparseGPT OPTQ 4.8e3 39.4 463.0 29.7 15.1 12.7 1.2e4 8.6e4
Wanda AbsMax 5.9e3 84.2 1.3e4 1.1e3 7.1e3 5.6e3 9.3e4 1.6e5
Wanda SLIM-Quant 136.9 57.9 460.9 176.0 56.5 623.3 2.9e5 7.1e4
Wanda-SVD SLIM-Quant 47.0 34.5 19.6 15.5 12.3 11.5 6.6 5.6
Wanda-SVD + FT SLIM-Quant 39.2 29.7 17.8 14.3 12.3 11.9 6.1 5.3
SLIM SLIM-Quant 39.7 32.0 16.7 13.7 11.5 10.8 6.2 5.4
SLIM + FT SLIM-Quant 34.0 28.3 15.9 13.4 11.5 11.5 5.8 5.2

It is noteworthy that none of the quantization methods we tested can be combined with saliency-
based low-rank adapter methods such as SLIM or Wanda-SVD. This is because these quantization
methods alter the values of the weights during the quantization process, which disrupts the saliency-
based optimization of low-rank adapters. This further emphasizes the importance of co-designing
pruning, quantization, and low-rank adapters to ensure compatibility and maintain optimal perfor-
mance.

C MEMORY REDUCTION ANALYSIS

SLIM prunes and quantizes the models and adds additional low-rank adapters to them. Addition-
ally, it supports quantization methods for the low-rank adapters to reduce their overheads. In the
following, we propose an analysis on the reduced memory when using SLIM and other pruning and
quantization methods.

Assuming the hidden dimension of a model is d and the low-rank adapter ratio used in the model is of
rank r < 1. Furthermore, by denoting the number of transformer blocks with n and the vocabulary
size of the model by V and by denoting the ratio of the up-projection and down-projection layers in
the model by a, we can get the memory reduction as the ratio of Compressed Model Size

Dense Model Size from equation
13.

Memory Reduction =
n(4d2 + 2d2a) + dV

n(4d2/2 + 4× 2d2r + 2d2a/2 + 2d(dr + dra)) + dV
(13)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 6: Perplexity of LLaMA-2 and OPT models with 2:4 and unstructured sparsity pruning, eval-
uated with various weight quantization schemes on the WikiText2 language modeling task. SLiM +
FT employs fine-tuning on low-rank adapters for 300,000 tokens.

Pruning OPT LLaMA-2
Method Quantization 125M 350M 1.3B 2.7B 6.7B 13B 7B 13B

Dense - 27.66 22.00 14.62 12.47 10.86 10.13 5.12 4.57

2:4 Sparsity
JSQ JSQ 3.21e3 1.97e4 71.97 2.87e3 23.76 596.60 11.35 8.25
Wanda OmniQuant 97.12 NaN 34.86 27.03 18.91 18.06 12.78 6.00
Wanda AWQ 83.02 7.30e5 27.88 21.60 17.93 16.72 12.79 OOM
Wanda AffineQuant 86.58 NaN 28.30 21.99 16.62 16.83 6.59e3 6.42e3
SLiM SLiM-Quant 58.10 51.70 20.00 15.80 12.80 12.10 7.60 6.60
SLiM + FT SLiM-Quant 41.50 36.30 17.60 14.70 12.40 12.10 6.40 5.80

Unstructured Sparsity
JSQ JSQ 3.07e3 2.99e4 24.91 250.99 15.44 2.30e5 6.66 5.69
Wanda OmniQuant 44.90 NaN 20.59 15.70 13.12 13.89 7.39 6.36
Wanda AWQ 39.23 3.41e5 17.97 14.16 11.89 12.34 7.28 OOM
Wanda AffineQuant 40.91 NaN 18.53 14.55 12.18 12.50 1.08e4 7.69e3
SLiM SLiM-Quant 39.70 32.00 16.70 13.70 11.50 10.80 6.20 5.40
SLiM + FT SLiM-Quant 34.00 28.30 15.90 13.40 11.50 11.50 5.80 5.20

Table 7 summarizes the memory reduction of different pruning and quantization methods. Please
note that when using low-rank adapters (in Wanda-SVD and SLIM), we assume a rank of r = 0.1.

Table 7: Memory reduction (×) of different compression methods across various OPT and
LLaMA models. In Quantized SLIM , the low-rank adapters are also quantized.(↓ is better.)

Compression OPT LLaMA-2
Method 125M 350M 1.3B 2.7B 6.7B 13B 7B 13B

SparseGPT + OPTQ 0.40 0.30 0.25 0.17 0.15 0.14 0.15 0.14
Wanda + AbsMax 0.40 0.30 0.25 0.17 0.15 0.14 0.15 0.14
Wanda-SVD + AbsMax 0.50 0.42 0.38 0.31 0.30 0.29 0.31 0.30
SLIM + SLIM -Quant 0.50 0.42 0.38 0.31 0.30 0.29 0.31 0.30
Quantized SLIM + SLIM -Quant 0.42 0.33 0.28 0.20 0.19 0.18 0.19 0.18

D COMPUTATION REDUCTION ANALYSIS

SLIM and other compression method reduce the number of floating point operations (FLOPs) at
the inference of models. Additionally, the low-rank adapters used in SLIM and Wanda SVD can
add additional computational overheads to the inference of the models. Following JSQ (Guo et al.,
2024), in this section, we provide an analysis on the FLOP reduction in the inference of different
methods. It is noteworthy that even though quantization can reduce the memory overhead of models,
since all the computations are done in floating point format, it does not lead to a reduction in the
computation of the inference.

Assuming the hidden dimension of a model is d and the low-rank adapter ratio used in the model is of
rank r < 1. Furthermore, by denoting the number of transformer blocks with n and the vocabulary
size of the model by V and by denoting the ratio of the up-projection and down-projection layers
in the model by a, we can get the memory reduction as the ratio of Dense Inference FLOP Count

Compressed Inference FLOP Count from
equation 14, where b is the batch size, and is canceled in the numerator and the denominator of the
equation.

FLOP Reduction =
n(4bd2 + 2bd2a) + bdV

n(4bd2/2 + 4× 2bd2r + 2bd2a/2 + 2b(d2r + d2ra)) + bdV
(14)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 8 summarizes the FLOP reduction of different compression methods. As it can be seen, the
overhead of adding the low-rank adapters (r = 0.1) in SLIM and Wanda-SVD is not significant.

Table 8: Compute (FLOP) reduction ratios (×) of different compression methods across various
OPT and LLaMA models. In Quantized SLIM , the low-rank adapters are also quantized. (↑ is
better.)

Compression OPT LLaMA-2
Method 125M 350M 1.3B 2.7B 6.7B 13B 7B 13B

SparseGPT + OPTQ 1.52 1.66 1.75 1.91 1.94 1.96 1.95 1.97
Wanda + AbsMax 1.52 1.66 1.75 1.91 1.94 1.96 1.95 1.97
Wanda-SVD + AbsMax 1.32 1.39 1.43 1.50 1.51 1.52 1.49 1.49
SLIM + SLIM -Quant 1.32 1.39 1.43 1.50 1.51 1.52 1.49 1.49
Quantized SLIM + SLIM -Quant 1.32 1.39 1.43 1.50 1.51 1.52 1.49 1.49

E FINE-TUNING HYPERPARAMETERS

For fine-tuning the models, we utilized the Hugging Face Trainer (Wolf, 2019). The ADAMW
(Loshchilov, 2017) optimizer was employed during the fine-tuning process, accompanied by linear
learning rate scheduling. The optimization and learning rate scheduling parameters were set to
their default values in the Hugging Face Trainer. To prevent numerical overflow and divergence,
we used BFloat-16 data types (Wang & Kanwar) available on NVIDIA H100 GPUs during fine-
tuning. The training was conducted with a local batch size of 1 and a gradient accumulation factor
of 64 to reduce memory overhead. Weight updates for the sparse and/or quantized weights, as well
as the corresponding biases, were disabled. Due to our limited resources, we did not tune any of
the hyperparameters aimed at improving fine-tuning speed or accuracy; tuning these parameters is
planned for future work.

F COMPRESSION COSTS

An important factor in model compression is the computational cost of the chosen method. In
terms of memory usage, all approaches can be adapted to store only a single layer of the model in
the GPU’s global memory at a time, allowing them to be compressed on a single GPU. However,
the computational costs vary depending on the complexity of the method. Techniques like Wanda,
which rely solely on matrix multiplication, are significantly faster than more complex methods like
SparseGPT, which computes the inverse Hessian matrix for each layer. Adding low-rank adapters
in Wanda-SVD and SLIM requires performing singular value decomposition (SVD) on different
matrices, resulting in a computational complexity similar to that of SparseGPT. Table 9 summarizes
the time required to compress various models using the methods discussed in this paper. Generally,
methods incorporating low-rank adapters (SLIM and Wanda-SVD) have higher complexity. How-
ever, SparseGPT’s compression time is comparable to methods with low-rank adapters, despite only
performing pruning and quantization. Notably, the saliency-based approach in SLIM does not add
significant overhead compared to Wanda-SVD.

G INFERENCE SPEEDUP

Many libraries, such as CUTLASS (NVIDIA Corporation, b) and cuSPARSELt (NVIDIA Corpo-
ration, a), have implemented sparse matrix-matrix multiplication (SpMM) kernels for 2:4 sparsity.
However, to the best of our knowledge, there is no open-source code base that supports group quanti-
zation for 2:4 SpMM. Implementing such a kernel is beyond the scope of this paper, and we propose
its development as part of future work. Similar to Wanda (Sun et al., 2023) and SparseGPT (Frantar
& Alistarh, 2023), we focus our results on layer-wise speedups achieved using the existing code
bases. Table 10 summarizes the time taken for dense, sparse, and low-rank multiplication in a lin-
ear layer, and reports the speedup achieved by SLIM across different layers in the LLaMA-2-13B
model.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 9: The required compresion time for different models and compression methods using a single
H100 GPU.

Pruning Weight OPT LLaMA-2
Method Quantization 125M 350M 1.3B 2.7B 6.7B 13B 7B 13B

Magnitude AbsMax 1s 1s 1s 1s 2s 4s 2s 4s
SparseGPT OPTQ 1m 2m 5m 11m 22m 41m 25m 46m
Wanda SLIM-Quant 0.5m 1m 3m 5m 8m 13m 8m 14m

Wanda-SVD SLIM-Quant 1m 2m 7m 13m 33m 60m 38m 67m
SLIM SLIM-Quant 1m 2m 7m 13m 34m 63m 39m 68m

Table 10: The inference time of feed forward layers in LLaMA-2-13B for different weight sizes.
The speedup is computed as Dense Time

Sparse Time+Low-rank Time , and the quantization is disabled in this case.

Matrix Dense Time Sparse Time Low-rank Time Speedup

Q,K, V,Oproj 0.96ms 0.44ms 0.22ms 1.46×
Upsample 2.33ms 1.45ms 0.39ms 1.27×
Downsample 2.19ms 1.22ms 0.37ms 1.37×

We additionally conduct an experiment with 8-bit weight quantization and add the low-rank adapters
with rank ratio of 0.1 to each feedforward layer of the model. Figure ?? summarizes the layer-wise
speedups achieved for different weight sizes used in LLaMA and OPT models. The baselines are
for dense models with float-16 data types and all these results are obtained on NVIDIA RTX-3060
GPUs. We use a batch size of 8 to mimic the use of LLMs at inference time, when different tokens
are generated.

0 2000 4000 6000 8000 10000 12000 14000 16000

Hidden Dimension

0.5

1.0

1.5

2.0

2.5

3.0

3.5

S
p

e
e
d
u
p

8-Bit Weight Quantization Layer-wise Speedup

Attention(AR=1)

Up-Projection(AR=4)

Down-Projection(AR=1/4)

Figure 2: 8-bit weight quantization speedup (×) for up-projection, down-projection, and attention
layers of different models. AR stands for the aspect ratio of the weight matrix, and is defined as dout

din

. ↑ indicates better performance.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

The results show that adding low-rank adapters do not hinder the speedup achieved by quantization,
except for some aspect ratios with the hidden dimensions less than 1024, which correspond to model
sizes of less than 125M parameters. In most practical cases with models with billions of parameters,
the quantization with the low-rank adapters leads to speedups.

Please note that this shows a lower bound on the speedup that SLiM can achieve, and adding 2:4
sparsity and reducing the quantization bitwidth to 4 bits will increase the achieved speedup even
further.

H RANK ANALYSIS

The key hyperparameter in low-rank approximation is the rank of the adapters. While increasing
the rank reduces approximation error, it also leads to higher computational and memory overhead.
Therefore, it is crucial to analyze the trade-off between the accuracy improvements and the overhead
introduced by the chosen approximation rank.

Assuming the rank of the low-rank adapter is rd, where r < 1 is a fixed factor and d is the dimension
of the weights in a square feed-forward layer, the low-rank adapters are represented as L,RT ∈
Rd×rd, resulting in a memory overhead of O(2rd2) for storing them. To compute XLR, where
X ∈ Rb×d is the input with a batch size of b, the computational complexity is O(2brd2). Given that
the original memory and computational complexity of the layer are O(d2) and O(bd2), respectively,
the overhead introduced by the low-rank adapters becomes negligible when r ≪ 1.

Figure H-a shows the average zero-shot accuracy of the OPT-6.7B and LLaMA-2-7B models for
various ranks. As expected, increasing the rank leads to improved model accuracy. Based on these
results, a rank of r = 0.1 provides a substantial boost in accuracy without introducing significant
overhead to inference.

0.05 0.10 0.15 0.20 0.25

Adapter Rank

5.0

7.5

10.0

12.5

15.0

17.5

20.0

L
L

a
M

A
-2

-7
B

P
e
rp

le
x
it

y

Adapter Rank Sensitivity Analysis

Wanda-SVD

SLiM

Dense

20 40 60 80 100 120

Number of Calibration Samples

5.0

7.5

10.0

12.5

15.0

17.5

20.0

L
L

a
M

A
-2

-7
B

P
e
rp

le
x
it

y

Calibration Data Sensitivity Analysis

Wanda-SVD

Group SparseGPT

SLiM

Dense

(a) (b)

Figure 3: Sensitivity analysis for the rank of the adapter (a) and the number of calibration samples
(b) for different one-shot compression methods. For Wanda-SVD and SLIM , we have used the
SLIM-Quant quantization method, and for the SparseGPT, we have used the Group quantization
version of OPTQ. The non-group version of OPTQ and Wanda without low-rank adapters lead to
divergence, and hence are not included in this figure.

I EFFECTS OF CALIBRATION SAMPLE COUNT

Similar to SparseGPT and Wanda, SLIM leverages a set of calibration data from the C4 dataset to as-
sess weight saliency for pruning and low-rank approximations. Figure H-b illustrates the perplexity
of LLaMA-2-7B using varying numbers of calibration samples. As shown, SLIM demonstrates low
sensitivity to the number of calibration samples, making it effective even in scenarios with limited
data.

19

	Introduction
	Preliminaries
	Quantized Sparse Plus Low-rank Approximation of LLMs
	SLiM Quantization Method
	SLiM Low-rank Adapters
	Post-compression Fine-tuning
	Tiled Low-rank Adapter Quantization

	Experimental Results
	Conclusion, Limitations, and Future Work
	Appendix
	 Appendix
	Language Modeling Experiments
	Additional Quantization Methods
	Memory Reduction Analysis
	Computation Reduction Analysis
	Fine-tuning Hyperparameters
	Compression Costs
	Inference Speedup
	Rank Analysis
	Effects of Calibration Sample Count

