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ABSTRACT

Large Neighborhood Search (LNS) is a widely used method for solving large-scale
Mixed Integer Linear Programming (MILP) problems. The effectiveness of LNS
crucially depends on the choice of the search neighborhood. However, existing
strategies either rely on expert knowledge or computationally expensive Machine
Learning (ML) approaches, both of which struggle to scale effectively for large
problems. To address this, we propose LLM-LNS, a novel Large Language Model
(LLM)-driven LNS framework for large-scale MILP problems. Our approach in-
troduces a dual-layer self-evolutionary LLM agent to automate neighborhood se-
lection, discovering effective strategies with scant small-scale training data that
generalize well to large-scale MILPs. The inner layer evolves heuristic strate-
gies to ensure convergence, while the outer layer evolves evolutionary prompt
strategies to maintain diversity. Experimental results demonstrate that the pro-
posed dual-layer agent outperforms state-of-the-art agents such as FunSearch and
EOH. Furthermore, the full LLM-LNS framework surpasses manually designed
LNS algorithms like ACP, ML-based LNS methods like CL-LNS, and large-scale
solvers such as Gurobi and SCIP. It also achieves superior performance compared
to advanced ML-based MILP optimization frameworks like GNN&GBDT and
Light-MILPopt, further validating the effectiveness of our approach.

1 INTRODUCTION

Mixed Integer Linear Programming (MILP) is a versatile and widely used mathematical framework
for solving complex optimization problems across various domains, including transportation man-
agement (Klanšek, 2015), bin packing (Fleszar, 2022), and production planning (Adrio et al., 2023).
MILPs are challenging to solve efficiently due to their NP-hard nature (Kim et al., 2021) and the
exponential growth of the search space as problem size increases (Vázquez et al., 2018). To address
these challenges, researchers have developed two primary approaches (Zhang et al., 2023): exact
algorithms, such as branch-and-bound, and heuristic-based approximation methods.

While exact algorithms like branch-and-bound (Boyd & Mattingley, 2007; Morrison et al., 2016)
are effective for small to medium-sized problems, they struggle with the computational demands
of larger instances. This has led to the rise of heuristic methods, particularly Large Neighbor-
hood Search (LNS) (Ahuja et al., 2002; Mara et al., 2022), which iteratively improves solutions by
destroying and repairing parts of the current solution, allowing for exploration of large neighbor-
hoods without full re-optimization (Song et al., 2020; Ye et al., 2023a). However, LNS performance
depends heavily on neighborhood selection, which is often hand-crafted and requires significant
domain expertise. Designing these operators can be labor-intensive and prone to cold-start issues,
where limited prior knowledge is available to guide the search (Zhang et al., 2023).

In recent years, machine learning (ML) techniques, including reinforcement learning (Wu et al.,
2021; Song et al., 2020) and imitation learning (Sonnerat et al., 2021; Nair et al., 2020), have been
applied to automate the design of neighborhood selection strategies. These methods aim to learn
heuristic strategies from training datasets, reducing reliance on expert knowledge and allowing the
algorithms to adapt to new, homogeneous instances. However, ML-based LNS approaches come
with their own challenges. For reinforcement learning, slow convergence is a common issue (Beggs,
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2005), particularly in large-scale MILP problems, due to the vast search space and the need for
extensive exploration before identifying effective strategies. On the other hand, imitation learning
requires large amounts of high-quality, labeled data, which can be computationally expensive to
generate using expert algorithms (Huang et al., 2023b). As a result, both hand-crafted and ML-
based methods struggle to efficiently solve large-scale MILP problems.

The rise of Large Language Models (LLMs) offers a promising solution to these challenges. Un-
like traditional hand-crafted methods, LLMs come pretrained with vast general knowledge, allow-
ing them to reason about complex tasks and learn problem structures with minimal training data,
thus avoiding cold-start issues. Additionally, LLMs can adapt to new problems through interac-
tive reasoning, reducing the need for extensive exploration and addressing the slow convergence of
reinforcement learning. Furthermore, LLMs can dynamically generate heuristic strategies without
relying on large labeled datasets, which significantly reduces the computational overhead typically
associated with imitation learning (Yang et al., 2024; Lange et al., 2024). While LLMs have shown
potential in generating strategies for combinatorial optimization problems(Ye et al., 2024; Elhenawy
et al., 2024), they often lack the problem-specific refinement needed to produce efficient heuristics
without additional guidance (Plaat et al., 2024). Approaches like FunSearch (Romera-Paredes et al.,
2024) and Evolution of Heuristic (EOH) (Liu et al., 2024) combine LLMs with evolutionary algo-
rithms (Simon, 2013), but rely on fixed strategies, limiting solution diversity and leading to poor
convergence due to insufficient directionality. This underscores the need for a more adaptive frame-
work to fully harness LLMs for large-scale MILP problems.

In this paper, we propose LLM-LNS, a novel Large Language Model-driven Large Neighborhood
Search framework designed specifically for solving large-scale MILP problems, which can discover
effective neighborhood selection strategies for LNS with scant small-scale training data that gener-
alize well to large-scale MILPs. Our key innovations are as follows:

• Dual-layer Self-evolutionary LLM Agent: We propose a novel LLM agent with a dual-
layer self-evolutionary mechanism for automatically generating heuristic strategies. The
inner layer evolves both thoughts and code representations of heuristic strategies, ensur-
ing convergence, while the outer layer evolves evolutionary prompt strategies to maintain
diversity, preventing the search process from getting trapped in local optima.

• Differential Memory for Directional Evolution: We introduce differential evolution in
the agent to guide both crossover and variation. By feeding the fitness values of parent
strategies back into the LLM, we leverage its memory to learn how to evolve from less
effective to more effective strategies. This feedback mechanism enables the LLM to act as
an optimizer, identifying promising directions and leading to more efficient improvements.

• Application to Neighborhood Selection in LNS: We apply the proposed dual-layer LLM
agent to the neighborhood selection strategy generation in LNS. By utilizing only a small
amount of training data from small-scale problems, the LLM agent can discover new neigh-
borhood selection strategies that generalize well to large-scale MILP problems.

• Comprehensive Experimental Validation: We validate the effectiveness of our proposed
LLM-LNS at two levels. First, we test its agent’s performance on heuristic generation tasks
of combinatorial optimization problems, demonstrating its superiority over state-of-the-art
methods such as FunSearch (Romera-Paredes et al., 2024) and EOH (Liu et al., 2024).
Second, we evaluate its performance on large-scale MILP problems, where it outperforms
traditional LNS methods (e.g., ACP (Ye et al., 2023a)), ML-based LNS methods (e.g., CL-
LNS (Huang et al., 2023b)), and leading solvers like Gurobi (Gurobi Optimization, LLC,
2023) and SCIP (Maher et al., 2016). Furthermore, our proposed LLM-LNS surpasses
modern ML-based optimization frameworks for large-scale MILP, such as GNN&GBDT
(Ye et al., 2023c) and Light-MILPopt (Ye et al., 2023b). These results confirm the effec-
tiveness of our proposed LLM-LNS in solving large-scale optimization problems.

2 RELATED WORK

2.1 MIXED INTEGER LINEAR PROGRAMMING

Mixed Integer Linear Programming (MILP) problems represent a class of combinatorial optimiza-
tion problems characterized by a linear objective function subject to a set of linear constraints, where
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some or all decision variables are restricted to integer values. An MILP can be defined as follows:

min
x

cTx, subject to Ax ≤ b, l ≤ x ≤ u, xi ∈ Z, i ∈ I, (1)

where x represents the decision variables, with n ∈ Z denoting the dimensionality of the integer
variables and l, u, c ∈ Rn corresponding to the lower bounds, upper bounds, and coefficients of the
decision variables, respectively. The matrix A ∈ Rm×n and the vector b ∈ Rm define the linear
constraints of the problem. The set I ⊆ {1, 2, . . . , n} denotes the indices of variables that are
constrained to integer values. A feasible solution to the MILP problem satisfies all constraints, and
the optimal solution minimizes the objective function value. (Artigues et al., 2015; Pisaruk, 2019)

2.2 LARGE NEIGHBORHOOD SEARCH

Large Neighborhood Search (LNS) is a widely used heuristic for solving MILP problems. It itera-
tively improves solutions by exploring predefined neighborhoods around a current solution. How-
ever, the effectiveness of LNS heavily relies on the neighborhood selection strategy, as poor choices
can lead to stagnation in local optima.

Several approaches have been proposed to address this challenge. One common method is random-
LNS (Song et al., 2020), which randomly partitions integer variables into disjoint subsets and op-
timizes one subset in each iteration while fixing the others. However, random-LNS uses a fixed
neighborhood size and overlooks correlations between decision variables, limiting its performance.
To overcome these drawbacks, the Adaptive Constraint Partitioning (ACP) framework (Ye et al.,
2023a) introduces a dynamic strategy that adjusts the neighborhood size, optimizing all decision
variables associated with randomly selected constraints in each iteration. This ensures that highly
correlated variables are optimized together, improving performance. Similar strategies have been
explored in other works (Huang et al., 2023a; Han et al., 2023), but they still rely on manually
designed heuristics, requiring expert knowledge and lacking adaptability to new problem instances.

To address this limitation, machine learning methods have been applied to automate neighborhood
selection. Reinforcement learning (RL) approaches define reward functions based on solution im-
provements, allowing models to learn promising neighborhoods through interaction with the prob-
lem (Wu et al., 2021; Song et al., 2020; Nair et al., 2020). Imitation learning, on the other hand, uses
large amount of large-scale sampling (Huang et al., 2023b; Zhou et al., 2023) or expert algorithms
(Sonnerat et al., 2021) to guide the selection process. While these techniques reduce reliance on
handcrafted strategies, RL struggles with convergence in large-scale MILP problems, and imitation
learning requires extensive sampling, making it computationally expensive. This highlights the need
for more efficient, automatically designed neighborhood selection strategies.

2.3 LARGE LANGUAGE MODEL FOR HEURISTIC STRATEGY DESIGN

Table 1: Comparison of Features Between Fun-
Search, EOH, and LLM-LNS.

FunSearch EOH LLM-LNS
Heuristic Evolution ✓ ✓ ✓
Thought Evolution × ✓ ✓

Evolutionary Prompt
Strategy Evolution × × ✓

Directional Evolution × × ✓

The rise of Large Language Models (LLMs)
has opened new possibilities for generating
heuristic strategies to solve combinatorial op-
timization problems (Yang et al., 2024; Lange
et al., 2024). LLMs excel at generating high-
level ideas and reasoning over complex tasks,
but they often lack problem-specific knowl-
edge, limiting their ability to create effective
heuristics without additional guidance (Plaat et al., 2024). To overcome these limitations, recent
works have integrated LLMs with evolutionary algorithms (EA) to iteratively refine heuristics.

FunSearch (Romera-Paredes et al., 2024) is a notable attempt that combines LLMs with evolution-
ary frameworks. FunSearch uses LLMs to generate functions, which are then evolved through an
evolutionary search process. This approach has demonstrated success in outperforming hand-crafted
algorithms on specific optimization problems. However, FunSearch is computationally expensive,
often requiring millions of LLM queries to identify effective heuristic functions, which limits its
practicality in many real-world applications. A more recent approach, Evolution of Heuristic (EOH)
(Liu et al., 2024), builds on the strengths of LLMs and evolutionary computation while addressing
some of FunSearch’s limitations. EOH introduces a novel evolutionary paradigm where heuristics,
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Dual-layer Self-evolution LLM Agent

min  c1x1 + ... +  cnxn

s.t. a11x1 + ... + a1n xn ≤ b1

am 1x1 + ... + am nxn ≤ bm

...

Small-scale Training Dataset

l ≤ x ≤ u, 𝑥𝑖 ∈ ℤ,
𝑖 ∈ 𝕀 = {1, 2, … , 𝑛}

min  c1x1 + ... +  cnxn
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...
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l ≤ x ≤ u, 𝑥𝑖 ∈ ℤ,
𝑖 ∈ 𝕀 = {1, 2, … , 𝑛}

. 
x .
r

Large
Neighborhood

Search

Neighborhood
Selection

                 

Adaptive Large Neighborhood Search

Initial Solution Search Adaptive RadioVariable Scoring

Inner Layer: Heuristic Strategy Evolution

Population of Heuristic Strategy

Code Thought Fitness

Outer Layer: Evolutionary Prompt Strategy Evolution

Population of Crossover  Strategy

Crossover 
Prompt Strategy

Fitness

Population of Variation Strategy

Variation 
Prompt Strategy

Fitness

Evolutionary Prompt

Evolutionary Prompt

Parents Selection

Fitness Value

Heuristic strategy

Parents Selection

Fitness Value

Differential Memory for Directional Evolution

Differential 
Evolution Memory

Large Language 
Model

Evolution of Heuristic Strategy

Differential 
Evolution Memory

Large Language 
Model

Evolution of Prompt Strategy

New Heuristic Strategy

Code Thought

New Heuristic Strategy

Crossover 
Prompt Strategy

Variation 
Prompt Strategy

MILP Dataset

Prompt Strategy 
Initialization

Initial Hand-craft 
Prompt Strategy

Heuristic Strategy Initialization

Initial ization 
Prompt Strategy

Problem
Structure

Large Language 
Model

Figure 1: An overview of the proposed LLM-LNS framework. The framework consists of a dual-
layer self-evolutionary LLM agent for solving large-scale MILP problems. In the outer layer, evolu-
tionary prompt strategies are generated and passed to the inner layer, where heuristic strategies are
evolved. A differential memory mechanism uses fitness feedback to refine these strategies across
iterations. The refined strategies are fed into the Adaptive Large Neighborhood Search process,
which iteratively improves solutions with the support of solvers like Gurobi.

represented as natural language ”thoughts,” are translated into executable code by LLMs. These
thoughts and their corresponding code are evolved within an EA framework, enabling the efficient
generation of high-performance heuristics.

As shown in Table 1, while FunSearch and EOH have advanced the integration of LLMs with evo-
lutionary algorithms, they still have limitations. Both use fixed, manually designed evolutionary
strategies that limit solution diversity and often lead to premature convergence. Additionally, they
lack directional mechanisms to guide the search, reducing adaptability and improvement over itera-
tions. These challenges highlight the need for more adaptive frameworks to fully harness LLMs in
large-scale optimization tasks.

3 METHOD

In this section, we introduce LLM-LNS, a Large Language Model-driven Large Neighborhood
Search framework designed to solve large-scale MILP problems. As shown in Figure 1, the frame-
work is composed of two main components: a Dual-layer Self-evolutionary LLM Agent and a
Adaptive Large Neighborhood Search process.

3.1 DUAL-LAYER SELF-EVOLUTIONARY LLM AGENT

The Dual-layer Self-evolutionary LLM Agent is the core component of our framework, responsi-
ble for generating and evolving heuristic and prompt strategies. The Dual-layer Self-evolutionary
Structure consists of an Inner Layer that evolves heuristic strategies to accelerate convergence,
and an Outer Layer that evolves evolutionary prompt strategies to enhance diversity in heuristic
generation. Another key innovation is the incorporation of Differential Memory for Directional
Evolution, which accelerates convergence by learning the direction of improvement from less ef-
fective strategy to better ones. Together, these innovations ensure a balance between exploration and
exploitation, significantly improving the efficiency and preventing stagnation in local optima.

3.1.1 DUAL-LAYER SELF-EVOLUTIONARY STRUCTURE

The Dual-layer Self-evolutionary Structure is the core component of the LLM-LNS framework.
It is designed to evolve both evolutionary prompt strategies and heuristic strategies in a synergistic
manner, leveraging LLMs for automated heuristic design and refinement. This dual-layered structure
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Initialization of  Evolutionary Prompt Strategy
• Cross1：Create a completely new algorithm.
• Cross2：Create a new algorithm inspired by the given ones.
• Variation1：Modify the given algorithm.
• Variation2：Change the parameters of the given algorithm.

Initialization of  Heuristic Strategy
• Capacity ratio with penalty
• 𝑠𝑐𝑜𝑟𝑒𝑠[𝑏𝑖𝑛𝑠 > 𝑖𝑡𝑒𝑚] = (𝑏𝑖𝑛𝑠−𝑖𝑡𝑒𝑚)

𝑏𝑖𝑛𝑠
× 1

𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑏𝑖𝑛+0.5

Evolution of  Heuristic Strategy
• Added power and proximity penalties
• 𝑠𝑐𝑜𝑟𝑒𝑠[𝑏𝑖𝑛𝑠 > 𝑖𝑡𝑒𝑚] = (𝑏𝑖𝑛𝑠−𝑖𝑡𝑒𝑚)

𝑏𝑖𝑛𝑠+1𝑒−5
− (𝑏𝑖𝑛𝑠/10)2

𝑚𝑎𝑥(𝑏𝑖𝑛𝑠
10 )2

− (1 − 𝑏𝑖𝑛𝑠−𝑖𝑡𝑒𝑚
𝑚𝑎𝑥(𝑏𝑖𝑛𝑠)

)

Evolution of  Heuristic Strategy
• Added randomness for exploration
• 𝑠𝑐𝑜𝑟𝑒𝑠[𝑏𝑖𝑛𝑠 > 𝑖𝑡𝑒𝑚] = (𝑏𝑖𝑛𝑠−𝑖𝑡𝑒𝑚)

𝑏𝑖𝑛𝑠+1𝑒−5
− (𝑏𝑖𝑛𝑠/10)2

𝑚𝑎𝑥(𝑏𝑖𝑛𝑠
10 )2

−

(1 − 𝑏𝑖𝑛𝑠−𝑖𝑡𝑒𝑚
𝑚𝑎𝑥(𝑏𝑖𝑛𝑠)

) + 𝑟𝑎𝑛𝑑𝑜𝑚𝑛𝑒𝑠𝑠 × 0.1

Evolution of  Heuristic Strategy
• Randomized adjustment for diversity
• 𝑠𝑐𝑜𝑟𝑒𝑠[𝑏𝑖𝑛𝑠 > 𝑖𝑡𝑒𝑚] = (𝑏𝑖𝑛𝑠−𝑖𝑡𝑒𝑚)

𝑏𝑖𝑛𝑠+1𝑒−5
− (𝑏𝑖𝑛𝑠/10)2

𝑚𝑎𝑥(𝑏𝑖𝑛𝑠
10 )2

− (1 − 𝑏𝑖𝑛𝑠−𝑖𝑡𝑒𝑚
𝑚𝑎𝑥(𝑏𝑖𝑛𝑠)

) + random adjustment

Evolution of  Heuristic Strategy
• Hybrid optimization with genetic algorithm + tabu search
• 𝑠𝑐𝑜𝑟𝑒𝑠[𝑏𝑖𝑛𝑠 > 𝑖𝑡𝑒𝑚] = (𝑏𝑖𝑛𝑠−𝑖𝑡𝑒𝑚)

𝑏𝑖𝑛𝑠+1𝑒−5
− ℎ𝑖𝑠𝑡𝑜𝑟𝑦 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 −

(𝑏𝑖𝑛𝑠/15)2

𝑚𝑎𝑥((𝑏𝑖𝑛𝑠/15)2)
+ 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 − (1 − 𝑏𝑖𝑛𝑠−𝑖𝑡𝑒𝑚

𝑚𝑎𝑥(𝑏𝑖𝑛𝑠)+1𝑒−5
)

Evolution of  Evolutionary Prompt Strategy
• Cross5：Develop a novel heuristic by synthesizing methodologies to reduce the objective function.
• Cross6：Create a heuristic using unique elements and adaptive learning for minimization.
• Variation5：Adjust score function parameters to optimize exploration strategies.
• Variation6：Investigate and redesign heuristics using unconventional techniques for better optimization.

Management of  Evolutionary Prompt Strategy
• Cross1：Create a completely new algorithm.
• Cross3：Design an advanced algorithm with complexity reduction.
• Variation2：Change the parameters of the given algorithm.
• Variation4：Add stochastic elements and adaptive learning.

Evolution of  Evolutionary Prompt Strategy
• Cross3：Design an advanced algorithm with complexity reduction.
• Cross4：Suggest a new heuristic for better efficiency.
• Variation3：Reconfigure core principles for a new heuristic.
• Variation4：Add stochastic elements and adaptive learning.

Evolution of  Heuristic Strategy
• Swarm intelligence + simulated annealing

• 𝑠𝑐𝑜𝑟𝑒𝑠[𝑏𝑖𝑛𝑠 > 𝑖𝑡𝑒𝑚] = (𝑏𝑖𝑛𝑠−𝑖𝑡𝑒𝑚)
𝑏𝑖𝑛𝑠+1𝑒−5

× 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 − (𝑏𝑖𝑛𝑠/12)2

𝑚𝑎𝑥((𝑏𝑖𝑛𝑠/12)2)
−

(1 − 𝑏𝑖𝑛𝑠−𝑖𝑡𝑒𝑚
𝑚𝑎𝑥(𝑏𝑖𝑛𝑠)

) + (𝑔𝑙𝑜𝑏𝑎𝑙 𝑏𝑒𝑠𝑡 − 𝑠𝑐𝑜𝑟𝑒𝑠) × 0.1 + 𝑟𝑎𝑛𝑑𝑜𝑚 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡

Figure 2: Evolution of Dual-layer Self-evolutionary LLM Agent for online bin packing. We out-
line the key thoughts and the corresponding code snippets of the best heuristics produced in some
generations during the evolution of heuristic strategies. Additionally, we highlight the evolution of
evolutionary prompt strategies, which dynamically adapt the prompt strategies to guide the LLM in
generating more effective and diverse heuristics. Both strategies contribute to the overall improve-
ment in performance and convergence throughout the evolutionary process.

mimics the heuristic development process of human experts, ensuring a balance between exploration
and exploitation throughout the search process.

Inner Layer: Heuristic Strategy Evolution. The Inner Layer focuses on evolving heuristic strate-
gies, which consist of both natural thought and corresponding code implementations, with an em-
phasis on convergence. Key aspects of Inner Layer, as illustrated in Figure 1 and Figure 2, include:

• Initialization of Heuristic Strategies: The initial set of heuristics is generated by feeding
the structural information from small-scale training problems, along with an initialization
prompt strategy, into the LLM. This produces the first generation of heuristic strategies.
For example, at generation 1, a basic heuristic is initialized with a fitness value of 0.9595,
based on a capacity ratio with penalty calculation, and is expressed both in natural language
thought and executable code.

• Evolution of Heuristic Strategies: In each generation, new heuristic strategies are evolved
by selecting parent strategies from the current heuristic population. Strategies with higher
fitness values are more likely to be selected as parents. These parents are then combined
with evolutionary strategies, selected from the Outer Layer’s population of prompt strate-
gies (e.g., crossover or variation prompts), to guide the LLM in generating new offspring
strategies. For instance, at generation 5, randomness is introduced for exploration, achiev-
ing a fitness value of 0.9916. By generation 8, the evolution process incorporates hybrid
optimization techniques, such as genetic algorithms combined with tabu search, resulting
in a fitness value of 0.9934. This iterative process enables the LLM to continually refine
strategies and explore new solution spaces.

• Evaluation and Final Selection: After new heuristic strategies are generated, they are eval-
uated by integrating them into the Adaptive Large Neighborhood Search process, where
each heuristic is applied to solve small-scale instances from the training dataset. The per-
formance of each strategy is measured by its objective function value, which serves as its
fitness score. After multiple iterations of evolution and evaluation, the best-performing
heuristic strategies are identified based on their fitness. By generation 20, advanced tech-
niques like swarm intelligence and simulated annealing are incorporated, and the final best
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strategy—achieving a fitness value of 0.9942—is selected for output. This iterative evalu-
ation ensures that the framework converges to the most effective heuristic.

Outer Layer: Evolutionary Prompt Strategy Evolution. The Outer Layer focuses on evolving
evolutionary prompt strategies, which guide the LLM in generating new heuristic strategies. The
emphasis in this layer is on exploration to maintain diversity and prevent premature convergence
in the heuristic strategy population. The key stages of Outer Layer, as illustrated in Figure 1 and
Figure 2, include:

• Initialization of Prompt Strategies: The initial set of evolutionary prompt strategies is hand-
crafted and designed to perform basic crossover and variation operations, instructing the
LLM on how to combine or modify existing heuristic strategies in the inner layer. For ex-
ample, at generation 1, basic prompt strategies like Cross1 and Cross2 are set, which help
the LLM generate new heuristic strategies by recombining or tweaking existing ones.

• Evolution of Prompt Strategies: As the evolution progresses, more complex prompt strate-
gies are introduced to address stagnation in the heuristic population. Specifically, if the top-
l individuals in the heuristic population remain unchanged for t consecutive generations,
we infer that the evolution may have converged to a local optimum. This triggers the evolu-
tion of new prompt strategies. As shown in Figure 2, signs of stagnation were observed in
both the 10th and 15th generations. In response, new prompt strategies were generated to
overcome the local optimality issue. At generation 10, prompts such as Cross3 and Cross4
were designed to enhance efficiency and reduce algorithmic complexity. By generation
15, even more advanced strategies like Variation5 and Variation6 were introduced, incor-
porating stochastic elements and adaptive learning to increase diversity and explore new
heuristic possibilities. This systematic evolution of prompt strategies helps ensure that the
heuristic population continues to evolve and does not get trapped in local optima.

• Evaluation and Management of Prompt Strategies: To ensure the efficiency and effective-
ness of the prompt strategy population, each prompt strategy is evaluated based on the
performance of the heuristic strategies it generates. Specifically, for each prompt strategy,
the top-k performing heuristic strategies it produces are tracked, and the average fitness
score of these heuristics is used as the fitness score for the prompt strategy itself. This
fitness-based evaluation allows us to manage the prompt population and control its size.
As the number of prompt strategies increases over generations, underperforming strate-
gies are pruned to prevent excessive growth and focus on the most effective strategies. For
example, by generation 18, several underperforming prompt strategies (e.g., the four worst-
performing strategies) are removed, as shown in Figure 2. This pruning process ensures that
only the most effective prompt strategies continue to evolve, maintaining both diversity and
efficiency in the evolutionary process. For parameter details, see Appendix A.

The synergy between the Inner Layer and Outer Layer drives rapid evolution of effective heuris-
tics and novel evolutionary prompt strategies, as shown in Figure 2. Early generations focus on
basic principles, but with the introduction of advanced prompt strategies, such as complexity reduc-
tion and adaptive learning, the system quickly adapts to overcome local optima. Notably, the sharp
performance improvements between generations 5 to 15 demonstrate the framework’s ability to au-
tonomously discover and refine creative strategies, leading to continuous enhancements in heuristic
performance. This dual-layered approach ensures efficient exploration and exploitation, enabling
the LLM-LNS framework to tackle large-scale problems with minimal human intervention.

3.1.2 DIFFERENTIAL MEMORY FOR DIRECTIONAL EVOLUTION

In our Dual-layer Self-evolutionary LLM Agent, both heuristic strategies and evolutionary prompt
strategies evolve through a process that incorporates differential memory. Traditional evolution-
ary methods often treat the generation of new strategies as independent of the performance history
of previous strategies, but our approach introduces a more sophisticated mechanism—Differential
Memory for Directional Evolution—which leverages the LLM not only as a generator but also as an
optimizer that learns from the evolutionary history of the strategies.

In this process, the LLM is provided with the fitness values of parent strategies and the relationship
between higher- and lower-performing strategies. These fitness scores are fed back into the LLM,
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Algorithm 1 Adaptive Large Neighborhood Search (ALNS)
Require: Initial solution x0, initial neighborhood size k, time limit T , threshold ϵ, iteration limit p, minimum

and maximum neighborhood sizes kmin, kmax, decision variable count n, adjustment rate u% (percentage)
1: Initialize solution x← x0, set time t← 0
2: while t < T do
3: Compute variable scores using LLM agent
4: Select top-k variables to form neighborhood
5: Solve subproblem using solver within neighborhood
6: Update solution x if improved
7: if time spent in neighborhood exceeds limit then
8: k ← max(kmin, k − ⌈u% · n⌉) ▷ Reduce search radius by u% of n
9: else if improvement in objective < ϵ for p consecutive iterations then

10: k ← min(kmax, k + ⌈u% · n⌉) ▷ Expand search radius by u% of n
11: end if
12: Update time t
13: end while
14: return x

allowing it to learn from past generations and evolve strategies that are more likely to improve over
time. By understanding the directional improvement from less effective to more effective strategies,
the LLM can guide both crossover and variation operations toward generating more promising so-
lutions. This feedback loop ensures that the LLM continuously adapts as it learns from the evolving
population, enabling it to act as an active optimizer.

Rather than simply combining or mutating existing strategies, the LLM uses the differential memory
to identify trends and patterns in the evolution of strategies. Given a meta-prompt that describes the
optimization task, along with fitness values from previously evaluated strategies, the LLM generates
new candidate strategies that are more likely to follow the observed direction of improvement. This
directional evolution mechanism allows the LLM to explore the search space more effectively, fo-
cusing on areas that have shown promise in earlier generations. Once new candidate strategies are
generated, they are evaluated and assigned fitness scores, which are then fed back into the LLM.
This iterative process ensures that the LLM becomes increasingly proficient at generating and refin-
ing strategies over successive generations. By utilizing differential memory, the LLM can efficiently
explore and exploit the solution space, accelerating the convergence towards optimal solutions while
avoiding stagnation. The LLM thus serves as both a generator and an optimizer, continuously learn-
ing how to evolve strategies that lead to more efficient and targeted improvements.

3.2 ADAPTIVE LARGE NEIGHBORHOOD SEARCH

As discussed in Sec.2.2, LNS is a popular heuristic for solving large-scale MILP problems, iter-
atively improving solutions by exploring neighborhoods around a current solution. However, its
effectiveness depends on selecting appropriate neighborhoods; poor choices can lead to stagnation
in local optima. To address this, we propose an Adaptive Large Neighborhood Search (ALNS) that
leverages the Dual-layer Self-evolutionary LLM Agent for variable scoring and adaptive neighbor-
hood selection, dynamically adjusting the search radius.

As shown in Figure 1, the LLM agent optimizes neighborhood selection by ranking decision vari-
ables based on their impact on the objective function. The agent is provided with comprehensive
problem information, including the problem formulation, initial solution, and current state. Us-
ing this information, the LLM scores each decision variable based on its potential to improve the
objective value. In each iteration, a subset of high-scoring variables is selected to define the neigh-
borhood for further exploration. The neighborhood size is controlled by an adaptive radius, which
adjusts dynamically based on search progress. If consecutive iterations show little improvement
(below a given threshold ϵ), the radius is increased to explore a broader search space. Conversely, if
the search within a neighborhood takes excessive time, the radius is reduced to focus on a smaller,
more manageable subset of variables. For parameter details, see Appendix A.

A key innovation of our approach is the LLM agent’s ability to generalize neighborhood selection
strategies. Initially trained on small-scale MILP problems, the agent learns effective strategies for
selecting promising decision variables. Through this training, the LLM refines its understanding of
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Table 2: Online Bin Packing Heuristic Comparison. This table compares the performance of
various bin packing heuristics based on the fraction of excess bins (lower values indicate better
performance) across different Weibull distribution instances.

1k C100 5k C100 10k C100 1k C500 5k C500 10k C500 Avg
First Fit 5.32% 4.40% 4.44% 4.97% 4.27% 4.28% 4.61%
Best Fit 4.87% 4.08% 4.09% 4.50% 3.91% 3.95% 4.23%

FunSearch 3.78% 0.80% 0.33% 6.75% 1.47% 0.74% 2.31%
EOH 4.48% 0.88% 0.83% 4.32% 1.06% 0.97% 2.09%
Ours 3.58% 0.85% 0.41% 3.67% 0.82% 0.42% 1.63%

how different variable selections influence solution quality and runtime. Once trained, the LLM can
generalize these strategies to larger, more complex problems. This transfer of knowledge allows
the LLM to navigate the vast search space of large-scale MILPs, making adaptive decisions that
balance exploration and exploitation. By leveraging the LLM’s ability to generalize from small-
scale problems, the method ensures that neighborhood selection is both adaptive and intelligent,
focusing computational resources on the most promising regions of the solution space.

This adaptive mechanism significantly improves the efficiency of LNS, enabling faster convergence
to high-quality solutions for large-scale MILP problems. The pseudocode in Algorithm 1 outlines
the ALNS process, where the LLM agent continuously uses its understanding of the search space,
balancing exploration and exploitation through adaptive control of neighborhood size.

4 EXPERIMENT

To validate the effectiveness of the proposed LLM-LNS framework, we conduct two sets of experi-
ments. First, we evaluate our proposed Dual-layer Self-evolutionary LLM Agent on heuristic gener-
ation tasks for combinatorial optimization problems, comparing it against methods like FunSearch
(Romera-Paredes et al., 2024) and EOH (Liu et al., 2024). Second, we assess the full LLM-LNS
framework on large-scale MILP problems, where it is compared against traditional LNS methods
(e.g., ACP (Ye et al., 2023a)), ML-based LNS approaches (e.g., CL-LNS (Huang et al., 2023b)), the
SOTA solvers like Gurobi (Gurobi Optimization, LLC, 2023) and SCIP (Maher et al., 2016), and
modern ML optimization frameworks such as GNN&GBDT (Ye et al., 2023c) and Light-MILPopt
(Ye et al., 2023b). More experimental results and details are provided in the Appendix A B C D.

4.1 HEURISTIC GENERATION FOR COMBINATORIAL OPTIMIZATION PROBLEMS

In this section, we evaluate the performance of the Dual-layer Self-evolutionary LLM Agent in gen-
erating heuristic strategies for well-known combinatorial optimization problems. We focus on two
widely studied problems: Online Bin Packing (Seiden, 2002) and the Traveling Salesman Prob-
lem (TSP) (Hoffman et al., 2013). Our method is compared against several hand-crafted heuristics,
state-of-the-art machine learning methods, and other automatically designed heuristics.

4.1.1 ONLINE BIN PACKING

The objective of the Online Bin Packing problem is to allocate a collection of items into the fewest
possible bins of fixed capacity. We follow the experimental setup from Romera-Paredes et al. (2024),
using Weibull distribution instances with varying numbers of items (1k to 10k) and bin capacities
(100 and 500). The performance of each method is measured by the fraction of excess bins used,
where lower values indicate better performance. We compare our method against several baselines,
including hand-crafted heuristics First Fit (Tang et al., 2016) and Best Fit (Shor, 1991), which are
widely used in practice, as well as automatically generated heuristics FunSearch (Romera-Paredes
et al., 2024) and EOH (Liu et al., 2024), which represent state-of-the-art approaches.

As shown in Table 2, our method consistently achieves the best performance across different prob-
lem sizes and capacities, with an average excess bin fraction of 1.63%, outperforming both hand-
crafted heuristics and automatically generated methods. In particular, our approach excels on the 10k
items, capacity 500 instance, achieving a fraction of excess bins of 0.42%, outperforming FunSearch
(0.74%) and EOH (0.97%). This result highlights the strong scalability and generalization ability of
our method, making it particularly effective in handling large-scale, high-capacity scenarios.
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Table 3: Traveling Salesman Problems Heuristic Performance Evaluation. This table provides a
comparison of the relative distance to the best-known solutions for different routing heuristics (lower
values indicate better performance) on a subset of TSPLib benchmark instances.

rd100 pr124 bier127 kroA150 u159 kroB200 Avg
NI 19.91% 15.50% 23.21% 18.17% 23.59% 24.10% 20.75%
FI 9.38% 4.43% 8.04% 8.54% 11.15% 7.54% 8.18%

Or-Tools 0.01% 0.55% 0.66% 0.02% 1.75% 2.57% 0.93%
AM 3.41% 3.68% 5.91% 3.78% 7.55% 7.11% 5.24%

POMO 0.01% 0.60% 13.72% 0.70% 0.95% 1.58% 2.93%
LEHD 0.01% 1.11% 4.76% 1.40% 1.13% 0.64% 1.51%
EOH 0.01% 0.00% 0.42% 0.29% -0.01% 0.26% 0.16%
Ours 0.01% 0.00% 0.01% 0.00% -0.01% 0.44% 0.08%

4.1.2 TRAVELING SALESMAN PROBLEM

The Traveling Salesman Problem (TSP) is a classic combinatorial optimization problem where the
goal is to find the shortest route that visits all given locations exactly once. We evaluate our method
on a subset of TSPLib benchmark instances (Reinelt, 1991), with performance measured by the
relative distance to the best-known solutions (lower values indicate better performance). We com-
pare our method against two types of baselines: hand-crafted heuristics and AI-generated heuristics.
The hand-crafted heuristics include Nearest Insertion (NI) and Farthest Insertion (FI) (Rosenkrantz
et al., 1977), two widely used constructive heuristics. We also include Google OR-Tools (Perron
& Furnon), a popular solver, using its default settings and the recommended local search option.
Beyond EOH (Liu et al., 2024), we compare against the Attention Model (AM) (Kool et al., 2018),
POMO (Kwon et al., 2020), and LEHD (Luo et al., 2023), all of which are ML-based methods.

As shown in Table 3, our method achieves the best average performance with a 0.08% gap to the
best-known solutions, outperforming both hand-crafted heuristics and neural network-based meth-
ods. Notably, on the bier127 instance, our method achieves a relative distance of just 0.01% to
the best-known solution, significantly outperforming EOH (0.42%) and other baselines, including
LEHD (4.76%) and AM (5.91%). This substantial improvement highlights the effectiveness of our
approach in solving challenging instances of the TSP.

It is important to note that both the Online Bin Packing and TSP problems use the same GPT-4o-mini
LLM, with identical settings: 20 iterations and a population size of 20 for Online Bin Packing, and
10 for the TSP problem. Despite these identical settings, our method consistently outperforms EOH
in both problems, showcasing the superior efficiency of the dual-layer self-evolutionary mechanism
in exploring the solution space. This mechanism allows our method to dynamically adapt and refine
solutions, resulting in better overall performance with the same computational resources. These
results underscore the robustness and scalability of our approach, offering a promising direction for
solving large-scale combinatorial optimization problems using LLMs.

4.2 PERFORMANCE OF LLM-LNS ON LARGE-SCALE MILP PROBLEMS

Table 4: The size of one real-world case study in
the internet domain and four widely used NP-hard
benchmark MILPs.

Problem Scale Number of
Variables

Number of
Constraints

SC
(Minimize)

SC1 200000 200000
SC2 2000000 2000000

MVC
(Minimize)

MVC1 100000 300000
MVC2 1000000 3000000

MIS
(Maximize)

MIS1 100000 300000
MIS2 1000000 3000000

MIKS
(Maximize)

MIKS1 200000 200000
MIKS2 2000000 2000000

To validate the effectiveness of the proposed
LLM-LNS framework for large-scale MILP
problems, we evaluate its performance on four
widely-used benchmark datasets: Set Covering
(SC) (Caprara et al., 2000), Minimum Vertex
Cover (MVC) (Dinur & Safra, 2005), Maxi-
mum Independent Set (MIS) (Tarjan & Tro-
janowski, 1977), and Mixed Integer Knapsack
Set (MIKS) (Atamtürk, 2003). Initially, LLM-
LNS is trained on smalle-scale problems with
tens of thousands of variables and constraints
and then tested on large-scale instances (Table
4) to assess its scalability and generalization.

We compare LLM-LNS with several state-of-
the-art baselines, including heuristic LNS methods like Random-LNS (Song et al., 2020), Adap-
tive Constraint Propagation (ACP) (Ye et al., 2023a), and the learning-based CL-LNS framework
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Table 5: Comparison of objective values on large-scale MILP instances across different meth-
ods. For each instance, the best-performing objective value is highlighted in bold. The - symbol
indicates that the method was unable to generate samples for any instance within 30,000 seconds,
while * indicates that the GNN&GBDT framework could not solve the MILP problem.

SC1 SC2 MVC1 MVC2 MIS1 MIS2 MIKS1 MIKS2

Random-LNS 16140.6 169417.5 27031.4 276467.5 22892.9 223748.6 36011.0 351964.2
ACP 17672.1 182359.4 26877.2 274013.3 23058.0 226498.2 34190.8 332235.6

CL-LNS - - 31285.0 - 15000.0 - - -
Gurobi 17934.5 320240.4 28151.3 283555.8 21789.0 216591.3 32960.0 329642.4
SCIP 25191.2 385708.4 31275.4 491042.9 18649.9 9104.3 29974.7 168289.9

GNN&GBDT 16728.8 252797.2 27107.9 271777.2 22795.7 227006.4 * *
Light-MILPOPT 16108.1 160015.5 26950.7 269571.5 22966.5 230432.9 36125.5 362265.1
LLM-LNS(Ours) 15802.7 158878.9 26725.3 268033.7 23169.3 231636.9 36479.8 363749.5

(Huang et al., 2023b). Additionally, we include traditional solvers like Gurobi (Gurobi Optimiza-
tion, LLC, 2023) and SCIP (Maher et al., 2016), as well as modern ML-based frameworks such as
GNN&GBDT (Ye et al., 2023c) and Light-MILPopt (Ye et al., 2023b). To ensure a fair comparison,
Gurobi is used as the sub-solver in the neighborhood search step across all methods. For LLM-LNS,
the neighborhood selection strategy is trained over 20 iterations on smaller problems before being
applied to larger instances. Detailed results and discussions are provided in the Appendix D.

The experimental results, summarized in Table 5, show that LLM-LNS consistently outperforms
traditional LNS-based heuristics and learning-based methods. Unlike hand-crafted LNS strategies,
which are typically static and less effective as problem complexity increases, LLM-LNS dynami-
cally adapts through its dual-layer self-evolutionary mechanism, enabling more efficient exploration
of the solution space. Even compared to state-of-the-art learning-based LNS methods like CL-LNS,
LLM-LNS demonstrates superior performance. Although CL-LNS represents one of the most ad-
vanced learning-based approaches, it often fails to complete sampling within an acceptable time for
large-scale instances, and even when results are obtained, the solution quality is significantly lower.
This highlights the challenges faced by existing LNS-based methods when dealing with large and
complex MILP problems, while underscoring the robustness and adaptability of LLM-LNS.

In addition, LLM-LNS shows a clear advantage over traditional solvers like Gurobi and SCIP, as
well as learning-based methods such as GNN&GBDT and Light-MILPopt. While traditional solvers
perform competitively on smaller instances, their performance degrades significantly as the problem
size increases. Similarly, learning-based methods struggle with large-scale MILPs, finding it difficult
to efficiently explore the exponentially growing solution space. In contrast, LLM-LNS consistently
delivers superior results across both small and large-scale problems, offering a scalable and efficient
solution. These findings suggest that LLM-LNS not only bridges the gap between traditional and
learning-based methods, but also opens new avenues for scalable optimization in large-scale MILPs.

Overall, the experimental results demonstrate the effectiveness of our proposed innovations. In the
first set of experiments, we validate the capability of the Dual-layer Self-evolutionary LLM Agent
to autonomously generate competitive heuristic strategies for combinatorial optimization problems,
consistently outperforming state-of-the-art methods such as FunSearch and EOH. This confirms the
agent’s ability to balance exploration and exploitation, as guided by the Differential Memory for
Directional Evolution. In the second set, we apply the LLM-LNS framework to large-scale MILP
problems, where it not only surpasses traditional LNS methods and advanced solvers like Gurobi
and SCIP, but also demonstrates superior scalability compared to modern ML-based frameworks.
These results highlight the success of applying our LLM agent to neighborhood selection in LNS,
showcasing its generalization to complex, large-scale problems with minimal training data.

5 CONCLUSION

In this paper, we propose LLM-LNS, a Large Language Model-driven LNS framework for solving
large-scale MILP problems, utilizing a dual-layer self-evolutionary LLM agent to automate heuristic
strategy generation. Experiments show that LLM-LNS consistently outperforms traditional solvers,
learning-based methods, and state-of-the-art LNS frameworks. Future work will explore new agent
architectures and broader optimization problems, aiming to further enhance the integration of LLMs
with optimization techniques. The code of LLM-LNS will be open-sourced after the paper review.
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APPENDIX

This Appendix contains four sections, each addressing a specific aspect of the experimental setup
and results. Below is a brief overview of each section:

• Parameter Settings (Appendix A): This section provides detailed descriptions of the key
parameters used in our experiments, including the number of top-performing heuristic
strategies to evaluate, the threshold for stagnation detection, and the criteria for evolu-
tionary convergence. Specific parameter values for different combinatorial optimization
problems, such as Bin Packing (BP), Maximum Vertex Covering (MVC), and Mixed Inte-
ger Knapsack Set (MIKS), are also outlined.

• Evolutionary Process of LLM-LNS (Appendix B): This section focuses on the evolution-
ary process of the proposed Dual-layer Self-Evolutionary LLM Agent. It explains how the
inner and outer layers of the model co-evolve to generate and refine heuristic strategies
across several combinatorial optimization problems. Subsections include detailed com-
parisons between the Evolution of Heuristic (EoH) method and the proposed dual-layer
approach for problems like Bin Packing and Traveling Salesman Problem (TSP).

• Convergence Analysis of LLM-LNS (Appendix C): This section presents an analysis of
the convergence behavior of the LLM-LNS method compared to the EoH approach. It high-
lights the superior convergence rates and solution quality achieved by LLM-LNS in both
the Online Bin Packing and Traveling Salesman Problem. Graphs and figures demonstrate
the evolutionary progress and show how LLM-LNS outperforms EoH in terms of stability
and final objective scores.

• Supplementary Experiments for LLM-LNS on Large-Scale MILP Problems (Ap-
pendix D): This section includes additional experiments where LLM-LNS is applied to
large-scale Mixed Integer Linear Programming (MILP) problems. It evaluates the perfor-
mance of LLM-LNS using different subsolvers, such as SCIP, and compares the results
with various traditional and learning-based methods. The section also includes a detailed
analysis of the consistency and stability of each method, as well as error bar comparisons
to assess the reliability of the solutions.

These appendices provide a comprehensive overview of the experimental setup, evolutionary pro-
cess, convergence analysis, and supplementary experiments, offering a deeper understanding of the
performance and robustness of the LLM-LNS method in solving complex combinatorial optimiza-
tion problems.

A EXPERIMENTAL SETTINGS

In this section, we detail the parameter settings used in our experiments for both the Dual-layer Self-
evolutionary LLM Agent and the Adaptive Large Neighborhood Search (ALNS). We also provide
an overview of the standard MILP problem instances used in this study.

A.1 DUAL-LAYER SELF-EVOLUTIONARY LLM AGENT PARAMETERS

The following key parameters were used for the evolutionary process of the LLM agent:

• k: Represents the number of top-performing heuristic strategies used to evaluate each
prompt strategy. For each prompt strategy, the top-k heuristics it generates are tracked,
and their average fitness score is used as the fitness score for the prompt strategy. In our
experiments, k is set to half of the population size. Specifically:

– For Bin Packing (BP) and Traveling Salesman Problem (TSP), the population sizes
are 20 and 10, respectively, so k is set to 10 and 5.

– For the four MILP problems—Maximum Vertex Covering (MVC), Set Covering
(SC), Independent Set (IS), and Mixed Integer Knapsack Set (MIKS)—the popu-
lation size is 4, so k is set to 2.

• l: Denotes the number of top individuals in the heuristic population that are monitored for
stagnation. If the top-l individuals remain unchanged for t generations, we infer that the
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evolution has potentially converged to a local optimum, triggering the introduction of new
prompt strategies. In all our experiments, l is set to 4.

• t: The number of consecutive generations during which the top-l individuals must remain
unchanged before stagnation is detected. In all our experiments, t is set to 3.

A.2 ADAPTIVE LARGE NEIGHBORHOOD SEARCH (ALNS) PARAMETERS

For ALNS, we use the following parameters:

• Neighborhood size k: Set to half of the decision variable count n. This represents the
number of decision variables selected to form the search neighborhood in each iteration.

• Time limit T : The maximum allowed runtime for solving the problem.

• Threshold ϵ: Represents the minimum improvement in the objective function to continue
exploring the current neighborhood. We set ϵ = 1e-3.

• Iteration limit p: The number of consecutive iterations with improvements below the
threshold ϵ before expanding the neighborhood size. We set p = 3.

• Minimum and maximum neighborhood sizes kmin, kmax: These are set to kmin = 0 and
kmax = n (the total number of decision variables in the problem).

• Adjustment rate u%: Specifies the percentage of decision variables n by which the
neighborhood size is adjusted during expansion or reduction. In our experiments, we set
u% = 10.

A.3 MILP PROBLEM OVERVIEW

We use a set of standard problem instances based on four canonical MILP problems: Maximum
Independent Set (MIS), Minimum Vertex Covering (MVC), Set Covering (SC), and Mixed Integer
Knapsack Set (MIKS). Below are the formal definitions of these problems.

Maximum Independent Set problem (MIS): The Maximum Independent Set problem has applica-
tions in network design, where one might need to select the largest subset of mutually non-interacting
entities, such as devices in a wireless network to avoid interference. Another common application
is in social network analysis, where independent sets can represent groups of users who do not have
direct connections, useful for targeting non-overlapping communities.

Consider an undirected graph G = (V, E), where a subset of nodes S ⊆ V is called an independent
set if no edge e ∈ E exists between any pair of nodes in S. The MIS problem seeks to find an
independent set of maximum cardinality. The binary decision variable xv indicates whether node
v ∈ V is part of the independent set (xv = 1) or not (xv = 0). The problem can be formulated as:

max
∑
v∈V

xv

s.t. xu + xv ≤ 1, ∀(u, v) ∈ E ,
xv ∈ {0, 1}, ∀v ∈ V.

(2)

Minimum Vertex Covering problem (MVC): The Minimum Vertex Covering problem is widely
used in resource allocation, where one needs to ensure that every interaction (edge) between pairs
of objects (nodes) is covered by a resource. For example, in network security, this problem can be
used to efficiently place security agents or sensors such that all communication links are monitored.

Given an undirected graph G = (V, E), a subset of nodes S ⊆ V is called a covering set if for any
edge e ∈ E , at least one of its endpoints is included in S. The MVC problem aims to find a covering
set of minimum cardinality. The binary decision variable xv indicates whether node v ∈ V is part
of the covering set (xv = 1) or not (xv = 0). The problem is formulated as:
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min
∑
v∈V

xv

s.t. xu + xv ≥ 1, ∀(u, v) ∈ E ,
xv ∈ {0, 1}, ∀v ∈ V.

(3)

Set Covering problem (SC): The Set Covering problem is fundamental in facility location, where
one must select the minimum number of locations (subsets) to serve all customers (elements of the
universal set). It is also used in airline crew scheduling, where the goal is to assign the minimum
number of crews to cover all flights.

Given a finite universal set U = {1, 2, . . . , n} and a collection of m subsets S1, . . . , Sm of U ,
each subset Si is associated with a cost ci. The SC problem involves selecting a combination of
these subsets such that every element in U is covered by at least one of the selected subsets, while
minimizing the total cost. The binary decision variable xi indicates whether subset Si is selected
(xi = 1) or not (xi = 0). The problem is formulated as:

min

m∑
i=1

cixi

s.t.
m∑
i=1

xi · 1{j∈Si} ≥ 1, ∀j ∈ U ,

xi ∈ {0, 1}, ∀i ∈ {1, . . . ,m}.

(4)

Mixed Integer Knapsack Set problem (MIKS): The Mixed Integer Knapsack Set problem is com-
monly used in logistics, resource allocation, and portfolio selection problems. It models situations
where some resources can be allocated fractionally while others must be fully included or excluded.
For example, in supply chain management, some goods can be shipped partially, while others must
be shipped as a whole.

The MIKS problem is a generalization of the knapsack problem that involves both continuous and
binary decision variables. Given N sets and M items, each item must be covered by at least one
of the sets. The objective is to minimize the total cost of the selected sets, where some sets can
be partially selected. Let xi represent the decision variable for set i, where xi = 1 indicates full
selection, and 0 ≤ xi ≤ 1 allows partial selection. The problem is formulated as:

min

N∑
i=1

cixi

s.t.
∑

i:j∈Si

xi ≥ 1, ∀j ∈ {1, 2, . . . ,M},

0 ≤ xi ≤ 1, ∀i ∈ {1, 2, . . . , N},
xi ∈ {0, 1} or [0, 1], ∀i ∈ {1, 2, . . . , N}.

(5)

B EVOLUTIONARY PROCESS OF LLM-LNS

B.1 EVOLUTIONARY PROCESS OVERVIEW

In this appendix, we provide a detailed breakdown of the experimental results and the evolution of
heuristic strategies generated by our proposed Dual-layer Self-Evolutionary LLM Agent. The fol-
lowing sections offer a comprehensive analysis of how the inner and outer layers of the LLM agent
collaborate to generate and refine heuristic strategies across various combinatorial optimization
problems, including Online Bin Packing (bp online), the Traveling Salesman Problem (TSP),
and large-scale MILP instances such as Maximum Vertex Covering (MVC), Set Covering (SC),
Independent Set (IS), and Mixed Integer Knapsack Set (MIKS).
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• Inner and Outer Layer Prompt Initialization and Evolution: As shown in Sec. B.2,
our approach leverages a dual-layer architecture, where the inner layer evolves heuristic
strategies by modifying solution components, while the outer layer evolves the prompt
structure guiding the inner layer, balancing exploration and exploitation. The inner layer
prompts iteratively generate heuristics by scoring decision variables based on their contri-
butions to the objective function and constraints, with randomness included to avoid local
optima. This enables the LLM to reason about the problem structure and generate high-
quality strategies, even without extensive domain expertise. The outer layer maintains
diversity by evolving prompt structures to prevent premature convergence on suboptimal
solutions. Both layers adapt based on past performance, allowing the LLM to refine its
strategy generation over time.

• Heuristic Improvement Through Dual-layer Self-evolutionary LLM Agent: As shown
in Sec. B.3, we demonstrates the progression of heuristic strategies, starting from initial
random strategies and gradually evolving into more effective ones through the dual-layer
self-evolutionary process. The initial strategies are simple and focus on ranking decision
variables based on their contributions to the objective function and constraints. Over time,
the LLM agent introduces additional complexity, such as incorporating randomness and
penalizing larger deviations from the current solution, improving the robustness of the gen-
erated heuristics. The progression of the population is guided by the outer layer, which
adjusts the structure and focus of prompts to encourage exploration and avoid premature
convergence. The inner layer then refines specific solution components in response to the
prompts, iteratively improving the performance of the heuristic strategies. As seen from the
evolution of objective scores, the dual-layer system enables the generation of increasingly
effective heuristics, balancing exploration with exploitation to achieve superior results in
various problem instances.

• Heuristic Strategies for Bin Packing Online: EoH vs. Dual-Layer Self-Evolution LLM
Agent: As shown in Sec. B.4, both the Evolution of Heuristic (EoH) method and our
Dual-layer Self-Evolution LLM Agent utilize LLM-based evolutionary processes to gen-
erate heuristic strategies for the Bin Packing Online problem. The strategy generated by
EoH approach, while leveraging LLM to evolve heuristics, focuses primarily on a hybrid
scoring system that combines utilization ratios, dynamic adjustments, and an exponentially
decaying factor. This method is effective but tends to rely on a more static set of features
and parameters, which limits its adaptability across diverse problem instances. In con-
trast, our Dual-layer Self-Evolution LLM Agent incorporates a more dynamic and adaptive
strategy. By combining nonlinear capacity scaling, relative size assessment, and historical
penalties for overutilized bins, our approach allows for greater flexibility and adaptabil-
ity. Specifically, the generated heuristics dynamically adjust based on remaining capacity,
item size, and previous bin usage, thereby balancing local search with global optimiza-
tion. This adaptability enables our agent to discover and refine more efficient strategies
that minimize the number of bins used. The results clearly demonstrate that while both
methods use LLM-based evolution, our dual-layer approach consistently outperforms the
EoH method in terms of solution quality and computational efficiency. The dual-layer sys-
tem’s ability to evolve both the heuristic strategies and the prompt structures ensures that it
can fine-tune solutions more effectively, leading to superior bin utilization and fewer bins
required overall. This highlights the strength of our approach in generating more robust
and context-aware heuristics.

• Heuristic Strategies for Traveling Salesman Problem (TSP): EoH vs. Dual-Layer Self-
Evolution LLM Agent: Similar to the Bin Packing Online problem, both the Evolution of
Heuristic (EoH) method and our Dual-layer Self-Evolution LLM Agent use LLM-based
evolutionary processes to generate heuristic strategies for the Traveling Salesman Problem
(TSP). As shown in Sec. B.5, the strategy generated by EoH method employs a random-
ized approach that adjusts the edge distance matrix by increasing the distances of a random
proportion of edges, while rewarding a smaller subset of unused edges. This method en-
courages exploration but tends to apply uniform adjustments without fully accounting for
the global structure of the solution. In contrast, strategy generated by our Dual-layer Self-
Evolution LLM Agent introduces a more sophisticated edge distance adjustment mech-
anism. It dynamically explores alternative routes by incorporating an inverse frequency
factor, which penalizes frequently used edges and rewards less frequently used ones. This
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adaptive mechanism gradually resets excessively amplified distances, promoting diversi-
fication and improving the exploration of the solution space. Furthermore, it balances
exploitation by focusing on refining the most promising routes based on past tours, lead-
ing to faster convergence towards a global optimum. The results clearly demonstrate that
while both methods are effective in exploring new routes, the dual-layer approach consis-
tently outperforms the EoH method in terms of solution quality and convergence speed.
By incorporating a more nuanced edge adjustment process and dynamically adapting to
the problem context, the Dual-layer Self-Evolution LLM Agent achieves superior results
in minimizing the total distance, making it a more robust and efficient solution for the TSP.

• Evolutionary Path of the Dual-Layer Self-Evolution LLM Agent: As illustrated in Sec.
B.6, we trace the evolutionary process of the LLM agent in solving Maximum Vertex Cover
(MVC) problem, detailing how heuristic strategies evolve step by step through the inner
and outer layers, gradually converging to optimized solutions. Initially, the agent gener-
ates simple heuristics that focus on ranking decision variables based on their impact on
the objective function and constraint violation, incorporating randomness to encourage
exploration. These early strategies serve as a foundation for further refinement. As the
process evolves, the outer layer refines the prompt instructions, guiding the inner layer to
develop more sophisticated heuristics. The LLM begins to incorporate additional factors,
such as the absolute difference from the initial solution and a more nuanced treatment of
constraints. This results in improved exploration of the solution space, as well as better
handling of both the objective function and constraints. In the later stages, the agent in-
tegrates more advanced techniques, such as hybrid methods combining genetic algorithms
with local search, to enhance convergence speed and solution quality. The final heuristics
represent a co-evolutionary approach that balances exploration and exploitation, leading
to significantly optimized solutions. The evolution of prompts, from the initial simplistic
forms to highly specialized instructions, demonstrates the power of the dual-layer architec-
ture in improving both the heuristic strategies and the problem-solving process itself.

• Evolutionary Result of the Dual-Layer Self-Evolution LLM Agent: Finally, we present
the results achieved by the LLM agent after the completion of the entire evolutionary pro-
cess across three challenging combinatorial optimization problems: Set Covering (SC),
Maximum Independent Set (MIS), and Mixed Integer Knapsack Set (MIKS). As detailed
in Sec. B.7, the final heuristics generated by the Dual-layer Self-Evolution LLM Agent
are compared with those produced by traditional methods and state-of-the-art approaches,
demonstrating significant improvements in solution quality and computational efficiency.
For the Set Covering problem (SC), the LLM agent’s final heuristic achieves a superior
balance between minimizing the number of selected sets and satisfying the constraints. By
dynamically adjusting penalties and incorporating random exploration, the agent efficiently
navigates the solution space, outperforming traditional methods in both the objective score
and constraint satisfaction. In the Maximum Independent Set (MIS) problem, the LLM
agent leverages simulated annealing principles combined with adaptive scoring of decision
variables. This approach not only ensures thorough exploration but also accelerates conver-
gence towards high-quality solutions. The agent’s ability to balance objective contributions
with constraint violations leads to a considerable reduction in the total error, as reflected in
the final objective score. Lastly, for the Mixed Integer Knapsack Set (MIKS) problem, the
LLM agent adopts a hybrid strategy that integrates genetic algorithms and simulated an-
nealing. This allows for a more diversified search process, strategically selecting decision
variables based on their contributions to the objective function and constraint interactions.
The agent’s solution demonstrates a significant improvement over existing methods, par-
ticularly in how it dynamically adapts to varying problem constraints while maintaining
computational efficiency.

In summary, the proposed Dual-layer Self-Evolutionary LLM Agent exhibits significant advantages
in generating and refining heuristic strategies across a wide range of combinatorial optimization
problems. By leveraging the complementary roles of the inner and outer layers, the system is able to
balance exploration and exploitation effectively, allowing for the discovery of high-quality, context-
aware heuristic strategies. The adaptability of the dual-layer approach, particularly its ability to
evolve both the problem-solving heuristics and the prompt structures that guide them, leads to su-
perior performance in terms of both solution quality and computational efficiency. Across different
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problem domains, from online bin packing to large-scale MILP problems, the LLM agent consis-
tently outperforms traditional methods and state-of-the-art approaches, demonstrating its robustness,
scalability, and evolutionary refinement capabilities.

B.2 INNER AND OUTER LAYER PROMPT INITIALIZATION AND EVOLUTION

Prompt for Generating Initial Heuristic Strategies
Given an initial feasible solution and a current solution to a Mixed-Integer Linear Programming (MILP) problem, with vari-
ables’ lower bound, upper bound and coefficient in objective function. We want to improve the current solution using Large
Neighborhood Search (LNS).

The task can be solved step-by-step by starting from the current solution and iteratively selecting a subset of decision variables
to relax and re-optimize. In each step, most decision variables are fixed to their values in the current solution, and only a small
subset is allowed to change. You need to score all the decision variables based on the information I give you, and I will choose
the decision variables with high scores as neighborhood selection. To avoid getting stuck in local optima, the choice of the sub-
set can incorporate a degree of randomness.

First, describe your new algorithm and main steps in one sentence. The description must be inside a brace. Next, imple-
ment it in Python as a function named select neighborhood. This function should accept 5 input(s): ’initial solution’, ’cur-
rent solution’, ’lower bound’, ’upper bound’, ’objective coefficient’. The function should return 1 output(s): ’neighbor score’.
’initial solution’, ’current solution’, ’lower bound’, ’upper bound’ and ’objective coefficient’ are numpy arrays. ’neighbor score’
is also a numpy array that you need to create manually. The i-th element of the arrays corresponds to the i-th decision vari-
able. All are Numpy arrays. I don’t give you ’neighbor score’ so that you need to create it manually. The length of the ’neigh-
bor score’ array is the same as the length of the other arrays.

Do not give additional explanations.

(Cross) Initial Prompt for Heuristic Strategies Evolution
Given an initial feasible solution and a current solution to a Mixed-
Integer Linear Programming (MILP) problem, with variables’
lower bound, upper bound and coefficient in objective function.
We want to improve the current solution using Large Neighborhood
Search (LNS).

The task can be solved step-by-step by starting from the current so-
lution and iteratively selecting a subset of decision variables to relax
and re-optimize. In each step, most decision variables are fixed to
their values in the current solution, and only a small subset is al-
lowed to change. You need to score all the decision variables based
on the information I give you, and I will choose the decision vari-
ables with high scores as neighborhood selection. To avoid getting
stuck in local optima, the choice of the subset can incorporate a de-
gree of randomness.

I have 5 existing algorithm’s thought, objective function value with
their codes as follows: No.1 algorithm’s thought, objective function
value, and the corresponding code are: ...
No.2 algorithm’s thought, objective function value, and the corre-
sponding code are: ...
...
No.5 algorithm’s thought, objective function value, and the corre-
sponding code are: ...

Please help me create a new algorithm that has a totally different
form from the given ones.

First, describe your new algorithm and main steps in one sen-
tence. The description must be inside a brace. Next, implement
it in Python as a function named select neighborhood. This func-
tion should accept 5 input(s): ’initial solution’, ’current solution’,
’lower bound’, ’upper bound’, ’objective coefficient’. The func-
tion should return 1 output(s): ’neighbor score’. ’initial solution’,
’current solution’, ’lower bound’, ’upper bound’ and ’objec-
tive coefficient’ are numpy arrays. ’neighbor score’ is also a numpy
array that you need to create manually. The i-th element of the ar-
rays corresponds to the i-th decision variable. All are Numpy arrays.
I don’t give you ’neighbor score’ so that you need to create it man-
ually. The length of the ’neighbor score’ array is the same as the
length of the other arrays.

Do not give additional explanations.

(Cross) Initial Prompt Strategies

1. Please help me create a new algorithm that
has a totally different form from the given
ones.

2. Please help me create a new algorithm that
has a totally different form from the given
ones but can be motivated from them.

(Cross) Prompt for Prompt Strategies Evo-
lution
We are working on solving a minimization
problem. Our objective is to leverage the capa-
bilities of the Language Model (LLM) to gen-
erate heuristic algorithms that can efficiently
tackle this problem. We have already devel-
oped a set of initial prompts and observed the
corresponding outputs. However, to improve
the effectiveness of these algorithms, we need
your assistance in carefully analyzing the ex-
isting prompts and their results. Based on this
analysis, we ask you to generate new prompts
that will help us achieve better outcomes in
solving the minimization problem.

I have 5 existing prompts with objective func-
tion value as follows:
No.1 prompt’s tasks assigned to LLM, and
objective function value are: ...
No.2 prompt’s tasks assigned to LLM, and
objective function value are: ...
...
No.5 prompt’s tasks assigned to LLM, and
objective function value are: ...

Please help me create a new prompt that has a
totally different form from the given ones but
can be motivated from them.

Please describe your new prompt and main
steps in one sentence. Do not give additional
explanations.
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B.3 HEURISTIC IMPROVEMENT THROUGH DUAL-LAYER SELF-EVOLUTIONARY LLM
AGENT

Heuristic 1 (Obj Score: 5375.52145)
Rank decision variables based on their penalty contribution and the dif-
ference from current solution, incorporating randomness in scoring.

import numpy as np
def select_neighborhood(n, m, k, site, value,

constraint, initial_solution,
current_solution, objective_coefficient):

neighbor_score = np.zeros(n)
variable_difference = np.zeros(n)
for i in range(m):

lhs = sum(value[i][j] * current_solution[
site[i][j]] for j in range(k[i]))

penalty = max(0, lhs - constraint[i])
for j in range(k[i]):

var_index = site[i][j]
difference = current_solution[

var_index] - initial_solution[
var_index]

neighbor_score[var_index] += penalty *
difference

neighbor_score += objective_coefficient * np.
random.rand(n)

return neighbor_score

Heuristic 2 (Obj Score: 5383.05876)
Rank decision variables based on their objective contribution and impact
on current solution deviation, with randomness included in the scoring
process.

import numpy as np
def select_neighborhood(n, m, k, site, value,

constraint, initial_solution,
current_solution, objective_coefficient):

neighbor_score = np.zeros(n)
variable_contribution = np.zeros(n)
for i in range(m):

lhs = sum(value[i][j] * current_solution[
site[i][j]] for j in range(k[i]))

deviation = lhs - constraint[i]
for j in range(k[i]):

var_index = site[i][j]
contribution = value[i][j] * (

initial_solution[var_index] -
current_solution[var_index])

neighbor_score[var_index] +=
contribution

neighbor_score += objective_coefficient + np.
random.rand(n)

return neighbor_score

Heuristic 3 (Obj Score: 5384.8486)
This modified algorithm ranks decision variables based on their contri-
bution to the total current solution’s objective function value and their
degree of constraint satisfaction.

import numpy as np
def select_neighborhood(n, m, k, site, value,

constraint, initial_solution,
current_solution, objective_coefficient):

neighbor_score = np.zeros(n)
for i in range(m):

lhs = sum(value[i][j] * current_solution[
site[i][j]] for j in range(k[i]))

for j in range(k[i]):
if lhs > constraint[i]:

neighbor_score[site[i][j]] +=
objective_coefficient[site[i
][j]] * (lhs - constraint[i])

else:
neighbor_score[site[i][j]] +=

objective_coefficient[site[i
][j]] * (constraint[i] - lhs)

neighbor_score += np.random.rand(n) * 0.1
return neighbor_score

Heuristic 4 (Obj Score: 5384.95417)
Rank decision variables by their contribution to the objective function
and difference from initial values, while also weighing their frequency of
use in the constraints.

import numpy as np
def select_neighborhood(n, m, k, site, value,

constraint, initial_solution,
current_solution, objective_coefficient):

score = np.zeros(n)
frequency = np.zeros(n)
for i in range(m):

lhs = sum(value[i][j] * current_solution[
site[i][j]] for j in range(k[i]))

deviation = lhs - constraint[i]
for j in range(k[i]):

var_index = site[i][j]
contribution = value[i][j] * np.abs(

initial_solution[var_index] -
current_solution[var_index])

score[var_index] += contribution
frequency[var_index] += 1

neighbor_score = score / (frequency + 1e-5) +
objective_coefficient + np.random.rand(n)

return neighbor_score

Prompt Designed by LLM
Develop an algorithm that combines the strengths of existing heuristics
while introducing random perturbations to enhance exploration and mini-
mize the objective function more effectively.

Heuristic (Obj Score: 5374.19865)
Rank decision variables based on their contribution to the objective function and incorporate the absolute difference from the initial solution while
adding a degree of randomness to the scores.

import numpy as np

def select_neighborhood(n, m, k, site, value, constraint, initial_solution, current_solution,
objective_coefficient):

neighbor_score = np.zeros(n)
for i in range(m):

lhs = sum(value[i][j] * current_solution[site[i][j]] for j in range(k[i]))
for j in range(k[i]):

var_index = site[i][j]
difference = np.abs(current_solution[var_index] - initial_solution[var_index])
neighbor_score[var_index] += (constraint[i] - lhs) * difference

neighbor_score += objective_coefficient * np.random.rand(n)
return neighbor_score
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B.4 HEURISTIC STRATEGIES FOR BIN PACKING ONLINE: EOH VS. DUAL-LAYER
SELF-EVOLUTION LLM AGENT

Heuristic Designed by EoH

Description
The heuristic incorporates a weighted average of the utilization ratio, dynamic adjustment, and an ex-
ponentially decaying factor, with different parameter settings to minimize the number of used bins.

Code

import numpy as np
def heuristic(item, bins):

diff = bins-item # remaining capacity
exp = np.exp(diff) # exponent term
sqrt = np.sqrt(diff) # square root term
ulti = 1-diff/bins # utilization term
comb = ulti * sqrt # combination of utilization and square root
adjust = np.where(diff > (item * 3), comb + 0.8, comb + 0.3)

# hybrid adjustment term to penalize large bins
hybrid_exp = bins / ((exp + 0.7) *exp)

# hybrid score based on exponent term
scores = hybrid_exp + adjust

# sum of hybrid score and adjustment
return scores

Heuristic Designed by Dual-layer Self-evolution LLM Agent

Description
The new algorithm employs a hybrid optimization strategy that combines nonlinear penalties for histor-
ical usage, adaptive capacity scaling, and a relative size assessment, facilitating a balance between local
and global search for optimal bin assignment.

Code

import numpy as np
def score(item, bins):

feasible_bins = bins[bins > item]
scores = np.zeros_like(bins)
if len(feasible_bins) == 0:

return scores
# Nonlinear capacity scaling that enhances the desire for larger

spaces
remaining_capacity = feasible_bins - item
capacity_scaling = np.log1p(remaining_capacity) * (

remaining_capacity / np.max(remaining_capacity))
# Relative size assessment: quadratic term comparing item size with

bin capacities
relative_size_effect = (item ** 2 / feasible_bins) * 50 # Scale to

moderate impact
# Nonlinear penalty based on historical usage counts to deter

overutilization
historical_count = np.arange(len(feasible_bins)) + 1 # Simulating

historical usage
penalty_factor = np.power(1.5, historical_count) # Exponential

penalty for higher usage
# Combining scores: enhanced capacity scaling, moderated size

assessment, and historical penalties
scores[bins > item] = capacity_scaling - relative_size_effect -

penalty_factor
return scores
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B.5 HEURISTIC STRATEGIES FOR TRAVELING SALESMAN PROBLEM: EOH VS.
DUAL-LAYER SELF-EVOLUTION LLM AGENT

Heuristic Designed by EoH

Description
This algorithm uses a randomized approach to update the edge distance matrix by randomly selecting
a proportion of edges to increase their distances while uniformly rewarding a smaller proportion of
unused edges to encourage exploration.

Code
import numpy as np
def update_edge_distance(edge_distance, local_opt_tour, edge_n_used):

N = edge_distance.shape[0]
updated_edge_distance = edge_distance.copy()
# Parameters for randomization
increase_factor = 2.0
decrease_factor = 0.9
random_selection_ratio = 0.3 # percentage of edges to randomly adjust
# Identify all edges used in the local optimal tour
used_edges = set()
for i in range(len(local_opt_tour)):

start = local_opt_tour[i]
end = local_opt_tour[(i + 1) % len(local_opt_tour)]
used_edges.add((min(start, end), max(start, end)))

# Randomly select a proportion of edges to increase distance
all_edges = [(i, j) for i in range(N) for j in range(N) if i != j]
np.random.shuffle(all_edges)
num_edges_to_increase = int(len(all_edges) * random_selection_ratio)
for edge in all_edges[:num_edges_to_increase]:

start, end = edge
# If the edge is used in the local optimal tour, apply a higher increase
if (min(start, end), max(start, end)) in used_edges:

updated_edge_distance[start, end] *= increase_factor
updated_edge_distance[end, start] *= increase_factor

else:
updated_edge_distance[start, end] *= decrease_factor
updated_edge_distance[end, start] *= decrease_factor

return updated_edge_distance

Heuristic Designed by Dual-layer Self-evolution LLM Agent

Description
The new algorithm refines the edge distance adjustment mechanism by incorporating an acceptance
heuristic that dynamically explores alternative routes while gradually resetting excessively amplified
distances, thus promoting diversification and improved convergence towards a global optimum.

Code
import numpy as np
def update_edge_distance(edge_distance, local_opt_tour, edge_n_used):

# Create a copy of the edge distance matrix for updates
updated_edge_distance = np.copy(edge_distance)
# Extract the number of nodes
num_nodes = edge_distance.shape[0]
# Calculate the inverse frequency factor for each edge
inverse_frequency_factor = np.max(edge_n_used) - edge_n_used + 1
# Update the edge distance based on the local optimal tour
for i in range(len(local_opt_tour)):

# Get the current and next node in the local optimal tour
current_node = local_opt_tour[i]
next_node = local_opt_tour[(i + 1) % len(local_opt_tour)]
# Apply the inverse frequency factor to decrease the edge weight
updated_edge_distance[current_node, next_node] *= inverse_frequency_factor[

current_node, next_node]
updated_edge_distance[next_node, current_node] *= inverse_frequency_factor[

next_node, current_node]
return updated_edge_distance

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

B.6 EVOLUTIONARY PATH OF THE DUAL-LAYER SELF-EVOLUTION LLM AGENT

Heuristic (Obj Score: 5400.48176)
The algorithm ranks decision variables based on their impact on the objective function and how
they relate to the violated constraints, incorporating a degree of randomness.

Code

import numpy as np
def select_neighborhood(n, m, k, site, value, constraint,

initial_solution, current_solution, objective_coefficient):
neighbor_score = np.zeros(n)
violated_constraints = 0
for i in range(m):

lhs = sum(value[i][j] * current_solution[site[i][j]] for
j in range(k[i]))

if lhs > constraint[i]:
violated_constraints += 1
for j in range(k[i]):

neighbor_score[site[i][j]] +=
objective_coefficient[site[i][j]]

if violated_constraints > 0:
neighbor_score /= violated_constraints

randomness = np.random.rand(n) * 0.1
neighbor_score += randomness
return neighbor_score

Initial Prompts

• (Cross) Please help me create a new
algorithm that has a totally different
form from the given ones.

• (Cross) Please help me create a new
algorithm that has a totally different
form from the given ones but can be
motivated from them.

• (Variation) Please assist me in creating
a new algorithm that has a different
form but can be a modified version of
the algorithm provided.

• (Variation) Please identify the main
algorithm parameters and assist me in
creating a new algorithm that has a
different parameter settings of the score
function provided.

Heuristic (Obj Score: 5374.19865)
Rank decision variables based on their contribution to the objective function and incorporate
the absolute difference from the initial solution while adding a degree of randomness to the
scores.

Code

import numpy as np
def select_neighborhood(n, m, k, site, value, constraint,

initial_solution, current_solution, objective_coefficient):
neighbor_score = np.zeros(n)
for i in range(m):

lhs = sum(value[i][j] * current_solution[site[i][j]] for
j in range(k[i]))

for j in range(k[i]):
var_index = site[i][j]
difference = np.abs(current_solution[var_index] -

initial_solution[var_index])
neighbor_score[var_index] += (constraint[i] - lhs) *

difference
neighbor_score += objective_coefficient * np.random.rand(n)
return neighbor_score

Current Prompts

• (Cross) Develop a modified heuristic
algorithm that utilizes a hybrid
approach, combining elements of
simulated annealing and genetic
algorithms, to optimize the given
minimization problem.

• (Cross) Design a modified heuristic
algorithm for the minimization problem
by incorporating elements of simulated
annealing with a unique cooling
schedule.

• (Variation) Please identify the main
algorithm parameters and assist me in
creating a new algorithm that has a
different parameter settings of the score
function provided.

• (Variation) Develop an algorithm that
combines the strengths of existing
heuristics while introducing random
perturbations to enhance exploration
and minimize the objective function
more effectively.

Heuristic (Obj Score: 5373.34904)
Develop a co-evolutionary heuristic approach that integrates genetic algorithms with local
search techniques to enhance convergence speed and minimize the objective function for the
specified problem.

Code

import numpy as np
def select_neighborhood(n, m, k, site, value, constraint,

initial_solution, current_solution, objective_coefficient):
neighbor_score = np.zeros(n)
for i in range(m):

lhs = sum(value[i][j] * current_solution[site[i][j]] for
j in range(k[i]))

for j in range(k[i]):
var_index = site[i][j]
difference = np.abs(current_solution[var_index] -

initial_solution[var_index])
neighbor_score[var_index] += (constraint[i] - lhs) *

difference
random_adjustment = np.random.rand(n)
adaptive_mutation_rate = np.clip(np.abs(objective_coefficient

), 0.1, 1.0)
neighbor_score += adaptive_mutation_rate * random_adjustment
return neighbor_score

Final Prompts

• (Cross) Develop a hybrid heuristic
algorithm for the minimization problem
that combines genetic algorithms with
tabu search to enhance local search
capabilities while maintaining diversity
in the solution population.

• (Cross) Develop a co-evolutionary
heuristic approach that integrates
genetic algorithms with local search
techniques to enhance convergence
speed and minimize the objective
function for the specified problem.

• (Variation) Design a novel optimization
strategy that integrates genetic
algorithms with dynamic programming
principles to enhance the search for
optimal solutions, focusing on adaptive
mutation rates to effectively minimize
the objective function value.

• (Variation) Design a novel optimization
framework that integrates particle
swarm optimization with genetic
algorithms, focusing on adaptive
mutation strategies to enhance
convergence speed and minimize the
objective function value.
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B.7 EVOLUTIONARY RESULT OF THE DUAL-LAYER SELF-EVOLUTION LLM AGENT

B.7.1 EVOLUTIONARY RESULT OF SET COVERING PROBLEM

Heuristic (Obj Score: 3339.39339)
This algorithm computes scores based on the penalty incurred by each variable when deviating from the current solution and evaluates the impact on con-
straint satisfaction.

Code

import numpy as np
def select_neighborhood(n, m, k, site, value, constraint, initial_solution, current_solution,

objective_coefficient):
neighbor_score = np.zeros(n)
for i in range(m):

lhs_value = sum(value[i][j] * current_solution[site[i][j]] for j in range(k[i]))
for j in range(k[i]):

variable_index = site[i][j]
if lhs_value >= constraint[i]:

penalty = lhs_value - constraint[i]
contribution = penalty * value[i][j]
neighbor_score[variable_index] += contribution

else:
contribution = value[i][j]
neighbor_score[variable_index] -= contribution

costs = np.abs(current_solution - initial_solution) * (objective_coefficient + 1e-5)
with np.errstate(divide=’ignore’, invalid=’ignore’):

neighbor_score = np.divide(neighbor_score, costs, where=costs != 0)
neighbor_score -= np.min(neighbor_score)
neighbor_score /= np.max(neighbor_score) if np.max(neighbor_score) != 0 else 1
rand_factor = np.random.rand(n) * 0.1
neighbor_score += rand_factor
return neighbor_score

Final Prompts

• (Cross) Please help me create a new algorithm that has a totally different form from the given ones.

• (Cross) Please help me create a new algorithm that has a totally different form from the given ones but can be motivated from them.

• (Variation) Please assist me in creating a new algorithm that has a different form but can be a modified version of the algorithm provided.

• (Variation) Please identify the main algorithm parameters and assist me in creating a new algorithm that has a different parameter settings of the score
function provided.

B.7.2 EVOLUTIONARY RESULT OF MAXIMUM INDEPENDENT SET PROBLEM

Heuristic (Obj Score: -4634.0636)
This new heuristic approach combines the principles of simulated annealing with the adaptive scoring of decision variables based on their contributions to
violated constraints while incorporating randomness to enhance exploration of the solution space.

Code

import numpy as np
def select_neighborhood(n, m, k, site, value, constraint, initial_solution, current_solution,

objective_coefficient):
neighbor_score = np.zeros(n)
current_objective_value = np.dot(current_solution, objective_coefficient)
variable_contributions = np.zeros(n)
for i in range(m):

lhs_value = sum(value[i][j] * current_solution[site[i][j]] for j in range(k[i]))
if lhs_value > constraint[i]:

for j in range(k[i]):
var_index = site[i][j]
variable_contributions[var_index] += (value[i][j] * (current_solution[var_index] == 1))

for index in range(n):
improvement = objective_coefficient[index] - variable_contributions[index]
neighbor_score[index] = improvement + (current_solution[index] * 0.5)

temperature = np.random.uniform(0.1, 1.0)
randomness = np.random.uniform(-temperature, temperature, size=n)
neighbor_score += randomness
return neighbor_score

Final Prompts

• (Cross) Develop a novel hybrid algorithm that combines local search and simulated annealing techniques to explore the solution space and minimize the
objective function more effectively.

• (Cross) Design a novel optimization algorithm inspired by the existing methods, focusing on adaptive parameter tuning to enhance convergence toward
better solutions.

• (Variation) Design a novel heuristic approach inspired by the principles of simulated annealing to optimize the following problem parameters.

• (Variation) Please identify the main algorithm parameters and assist me in creating a new algorithm that has a different parameter settings of the score
function provided.
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B.7.3 EVOLUTIONARY RESULT OF MIXED INTEGER KNAPSACK SET PROBLEM

Heuristic (Obj Score: -3612.99096)
This novel algorithm enhances diversity in the solution search process by strategically selecting decision variables based on both their objective contribu-
tions and constraint interactions, while incorporating a degree of random exploration.

Code

import numpy as np
def select_neighborhood(n, m, k, site, value, constraint, initial_solution, current_solution,

objective_coefficient):
neighbor_score = np.zeros(n)
contribution_scores = objective_coefficient * current_solution
neighbor_score += contribution_scores
for i in range(m):

lhs_value = sum(value[i][j] * current_solution[site[i][j]] for j in range(k[i]))
if lhs_value > constraint[i]:

for j in range(k[i]):
var_index = site[i][j]
penalty = (lhs_value - constraint[i]) / max(1, np.sum(value[i]))
neighbor_score[var_index] -= penalty * value[i][j] * np.random.uniform(0.8, 1.2)

local_search_factor = (initial_solution - current_solution) ** 2
neighbor_score += local_search_factor
randomness = np.random.rand(n) * 0.1
neighbor_score += randomness
if np.max(neighbor_score) > 0:

neighbor_score /= np.max(neighbor_score)
return neighbor_score

Final Prompts

• (Cross) Design a hybrid heuristic algorithm that combines elements of genetic algorithms and simulated annealing to explore the solution space
efficiently.

• (Cross) Develop a multi-phase heuristic optimization strategy that integrates particle swarm optimization with tabu search to dynamically adapt search
parameters and enhance convergence rates.

• (Variation) Develop an algorithm that incorporates a novel optimization strategy, diverging from previous approaches, to enhance the objective function’s
outcome by exploring alternative parameter tuning techniques.

• (Variation) Please identify the main algorithm parameters and assist me in creating a new algorithm that has a different parameter settings of the score
function provided.

C CONVERGENCE ANALYSIS OF LLM-LNS

C.1 EVOLUTIONARY PROGRESS IN COMBINATORIAL OPTIMISATION PROBLEM

Across both two combinatorial optimization problems Online Bin Packing and Traveling Salesman
Problem, LLM-LNS consistently shows superior convergence and final solution quality compared
to EOH.

In the Online Bin Packing problem shown in Figure 3, LLM-LNS shows better convergence behavior
from the early stages. As the generations progress, LLM-LNS steadily improves and consistently
outperforms EOH. The reduced variance in later generations highlights the stability of the LLM-LNS
approach, which efficiently balances exploration and exploitation. Its dual-layer structure allows it to
thoroughly explore the solution space, avoiding premature convergence and reaching a higher overall
objective score. In contrast, EOH exhibits larger fluctuations and fails to achieve the same level
of performance, indicating its limitations in maintaining robust progress during the evolutionary
process.

In the Traveling Salesman Problem shown in Figure 4, although LLM-LNS starts with a less fa-
vorable initial population compared to EOH, it quickly demonstrates its advantage. Initially, EOH
performs better, but it stagnates after the first 8 generations, showing little improvement afterward.
Meanwhile, LLM-LNS continues to refine its solutions and steadily decreases the objective score.
This indicates that the dual-layer structure of LLM-LNS effectively prevents it from getting trapped
in local optima, maintaining a high level of exploration even in later generations. By the end of the
evolutionary process, LLM-LNS surpasses EOH, achieving better overall results.

In both problems, LLM-LNS’s ability to maintain diversity early in the process, combined with its
strong convergence in later stages, gives it a clear advantage over EOH. The dual-layer evolution-
ary strategy ensures that LLM-LNS avoids stagnation, allowing for continuous improvement and
ultimately leading to superior performance in solving combinatorial optimization problems.
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Figure 3: Evolutionary Progress of Heuristic
Strategies in Online Bin Packing

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Number of generations

310

311

312

313

314

315

316

317

Pe
rfo

rm
an

ce
 (o

bj
ec

tiv
e)

EOH
LLM-LNS

Figure 4: Evolutionary Progress of Heuristic
Strategies in Traveling Salesman Problem
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Figure 5: Convergence of Training and Testing Scores in 100-Generation of Online Bin Packing
Problem.

C.2 CONVERGENCE ANALYSIS OF GENERATIONS

In the Online Bin Packing Problem, we conducted 100 generations of iterative training using the
proposed dual-layer strategy. Figure 5 shows the convergence trends for both the training and testing
scores over these 100 generations. The results provide interesting insights into the behavior of our
model during the evolutionary process, particularly in terms of how the training and testing losses
evolve differently.

The training loss demonstrates a clear and consistent downward trend throughout the generations.
Initially, the training score starts relatively high, but quickly drops within the first few generations.
This rapid initial improvement indicates that the evolutionary algorithm is highly effective at opti-
mizing the objective function within the training set. As the generations progress, the training score
continues to decrease, eventually converging to a very low value. This steady decline suggests that
the model is successfully adapting to the problem, continually refining its population and reducing
the training objective. The absence of significant fluctuations in later generations implies that the
model has reached a stable state, effectively minimizing the training loss with little variance.

On the other hand, the testing loss follows a somewhat different pattern. Initially, we observe a
sharp decline in the testing score, which mirrors the behavior of the training score. However, after
this initial drop, the testing score does not continue to improve as steadily as the training score.
Instead, it stabilizes around a certain value and begins to exhibit small fluctuations. This behavior
suggests that while the model is able to generalize to a degree, it encounters more variability in
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Table 6: Comparison of objective values on large-scale MILP instances across different methods
using SCIP as optimizer. For each instance, the best-performing objective value is highlighted in
bold. The - symbol indicates that the method was unable to generate samples for any instance
within 30,000 seconds, while * indicates that the GNN&GBDT framework could not solve the
MILP problem.

SC1 SC2 MVC1 MVC2 MIS1 MIS2 MIKS1 MIKS2

Random-LNS 16164.2 171655.6 27049.6 277255.3 22892.9 222076.8 691.7 6870.1
ACP 17743.4 192791.2 27432.9 281862.4 23058.0 216008.8 29879.2 7913.5

CL-LNS - - 31285.0 - 15000.0 - - -
Gurobi 17934.5 320240.4 28151.3 283555.8 21789.0 216591.3 32960.0 329642.4
SCIP 25191.2 385708.4 31275.4 491042.9 18649.9 9104.3 29974.7 168289.9

GNN&GBDT 16728.8 261174.0 27107.9 271777.2 22795.7 227006.4 * *
Light-MILPOPT 16147.2 166756.0 26956.8 269771.3 22963.6 230278.1 36125.5 357483.8
LLM-LNS(Ours) 15950.2 161732.8 26763.4 268825.5 23137.19 230682.8 36147.7 350468.7

the testing data compared to the training data. These fluctuations could be attributed to the inherent
complexity or diversity of the unseen test instances, which the model has not been directly optimized
for.

This phenomenon is reminiscent of the behavior observed during neural network training, where the
training loss continues to decrease as the model becomes more specialized in fitting the training data,
while the testing loss reaches a plateau and may exhibit some fluctuations. In this case, the testing
loss reflects the model’s ability to generalize beyond the training set. The fact that the testing score
does not continue to decrease beyond a certain point suggests that the model may have reached its
limit in terms of generalization, possibly due to overfitting to the training data. However, the steady
fluctuations in the testing score indicate that the model remains adaptable and does not suffer from
severe overfitting, as there is no significant increase in the testing loss.

Overall, the divergence between the training and testing scores in later generations highlights the
trade-off between optimization and generalization. While the dual-layer evolutionary strategy is
highly effective at optimizing the training set, it must also balance the need for generalization to
unseen data. The oscillation of the testing score around a stable value suggests that the model is
reasonably robust but may benefit from additional techniques to further enhance its generalization
performance, such as regularization or early stopping strategies in future iterations.

In summary, the convergence analysis of the 100-generation experiment reveals that while the train-
ing loss continues to decrease, the testing loss stabilizes with slight fluctuations. This behavior
is indicative of a model that has successfully optimized for the training data while maintaining a
reasonable level of generalization, akin to patterns observed in neural network training processes.

D SUPPLEMENTARY EXPERIMENTS FOR LLM-LNS ON LARGE-SCALE
MILP PROBLEMS

D.1 PERFORMANCE OF LLM-LNS USING SCIP AS THE SUBSOLVER

In this supplementary set of experiments, we further evaluate the performance of LLM-LNS by in-
corporating SCIP as the subsolver for large-scale MILP problems. The results, summarized in Table
6, provide a comprehensive comparison across various methods using SCIP, offering deeper insights
into the robustness and adaptability of LLM-LNS when faced with different solver strategies.

As seen in the results, LLM-LNS continues to demonstrate superior performance across most in-
stances, consistently outperforming traditional LNS-based methods, learning-based frameworks
such as GNN&GBDT, and even advanced solvers like Gurobi and SCIP. The highlighted bold values
indicate that LLM-LNS achieves the best objective values in the majority of cases, reinforcing its
scalability and effectiveness in large-scale MILP problems.

However, an interesting observation arises in the MIKS instances, where Light-MILPopt outper-
forms LLM-LNS. This can be attributed to the unique challenges posed by MIKS in large-scale
settings. Specifically, MIKS requires significantly more resources for neighborhood searches as
the problem size increases, compared to smaller-scale instances. SCIP, as an optimizer, employs a
different strategy for solving MIKS, which likely influences the performance of LLM-LNS when
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Table 7: Comparison of standard deviation values on large-scale MILP instances across different
methods using Gurobi as optimizer.

SC1 SC2 MVC1 MVC2 MIS1 MIS2 MIKS1 MIKS2

Random-LNS 37.5 258.1 88.4 243.0 72.1 243.0 98.2 584.0
ACP 38.4 1039.3 71.6 403.5 60.3 928.8 118.2 649.2

CL-LNS - - 617.7 - 277.5 - - -
Gurobi 28.8 143.4 77.2 287.3 48.8 147.5 69.0 225.7
SCIP 13823.6 298211.7 107.3 262.0 57.5 85.8 73.2 242313.7

GNN&GBDT 360.1 3800.4 93.8 950.4 119.3 4738.8 * *
Light-MILPOPT 1.0 145.7 79.4 209.4 52.1 133.1 41.7 272.5
LLM-LNS(Ours) 17.7 144.2 79.7 198.1 55.2 147.6 70.2 170.4

Table 8: Comparison of standard deviation values on large-scale MILP instances across different
methods using SCIP as optimizer.

SC1 SC2 MVC1 MVC2 MIS1 MIS2 MIKS1 MIKS2

Random-LNS 18.8 250.3 79.0 234.8 72.1 401.7 18.1 36.2
ACP 30.8 6338.3 77.2 217.6 60.3 946.4 1829.7 943.8

CL-LNS - - 617.7 - 277.5 - - -
Gurobi 28.8 143.4 77.2 287.3 48.8 147.5 69.0 225.7
SCIP 13823.6 298211.7 107.3 262.0 57.5 85.8 73.2 242313.7

GNN&GBDT 51.4 5587.6 91.4 474.0 80.0 660.4 * *
Light-MILPOPT 37.7 693.4 77.3 216.9 51.6 151.7 80.0 1045.8
LLM-LNS(Ours) 20.4 169.5 82.6 188.7 54.3 75.9 68.7 1197.5

scaling to larger instances. In smaller-scale problems, LLM-LNS may have learned more aggressive
strategies that are effective in those scenarios, but these strategies may lead to timeout issues in larger
instances due to the increased computational complexity and extended iteration times required for
SCIP. As a result, the overall improvement in performance is limited in these larger MIKS problems.

Despite these challenges, LLM-LNS still exhibits competitive performance in MIKS, managing to
outperform many other methods, including Gurobi and traditional LNS strategies. The occasional
time-out or reduced efficiency in MIKS does not overshadow the fact that LLM-LNS remains a
robust and scalable solution across a wide range of large-scale MILP problems.

In conclusion, these supplementary experiments highlight the adaptability and robustness of LLM-
LNS when using different subsolvers, including SCIP. Although challenges remain in specific prob-
lem instances like MIKS, LLM-LNS consistently delivers superior performance across most prob-
lem types, demonstrating its ability to generalize across solvers and problem scales. The results rein-
force the notion that LLM-LNS effectively bridges the gap between traditional solvers and learning-
based methods, offering a scalable solution for large-scale combinatorial optimization problems.

D.2 COMPARISON OF STANDARD DEVIATION VALUES

The comparison of standard deviation (SD) values across different methods using both Gurobi and
SCIP as sub-optimizers reveals several key insights into the stability of various approaches when
solving large-scale MILP problems. Standard deviation reflects the consistency of the solutions;
lower values indicate that the method is more stable and produces less variation in different runs.

As shown in Table 7, for the experiments using Gurobi, LLM-LNS consistently demonstrates low
standard deviation values across most instances, indicating that it not only achieves superior objec-
tive values but does so with high stability. For example, in SC1, MVC2, and MIKS2, LLM-LNS
has SD values of 17.7, 198.1, and 170.4, respectively, which are comparable to or lower than other
methods. Light-MILPopt also shows excellent stability in SC1 and MIKS1, with SD values of 1.0
and 41.7, respectively, although its performance fluctuates more in other instances. In contrast,
Random-LNS and ACP exhibit higher variability, especially in SC2 and MIKS2, where ACP’s SD
reaches as high as 1039.3 and 649.2, respectively, suggesting a lack of robustness in these instances.
Gurobi itself also shows moderate consistency, while methods like CL-LNS fail to generate results
for certain instances, indicating poor scalability for large problems.

As shown in Table 8, when SCIP is used as the optimizer, the trends remain somewhat similar. LLM-
LNS continues to show stable performance, particularly in SC1 and MVC2, with SD values of 20.4
and 188.7, respectively. However, SCIP itself exhibits extremely high variability in some instances,
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Table 9: Comparison of error bar on large-scale MILP instances across different methods using
Gurobi as optimizer.

SC1 SC2 MVC1 MVC2 MIS1 MIS2 MIKS1 MIKS2

Random-LNS 65.4 318.3 142.1 350.8 104.4 333.6 158.9 808.8
ACP 56.8 1787.2 120.6 574.8 83.6 1233.0 173.7 742.7

CL-LNS - - 892.6 - 406.3 - - -
Gurobi 39.7 252.7 119.6 349.0 64.7 183.1 103.8 319.7
SCIP 25238.2 533457.2 165.2 402.1 96.9 103.6 94.6 433463.8

GNN&GBDT 511.3 5504.8 148.7 1522.6 160.1 7887.9 * *
Light-MILPOPT 1.4 206.4 121.6 289.8 78.8 216.6 63.3 420.1
LLM-LNS(Ours) 27.9 187.9 125.4 289.8 82.2 199.3 111.7 259.2

Table 10: Comparison of error bar on large-scale MILP instances across different methods using
SCIP as optimizer.

SC1 SC2 MVC1 MVC2 MIS1 MIS2 MIKS1 MIKS2

Random-LNS 33.2 362.1 123.3 368.2 104.4 531.3 26.1 51.5
ACP 46.1 10845.3 106.0 324.1 83.6 1371.4 3253.2 1055.6

CL-LNS - - 892.6 - 406.3 - - -
Gurobi 39.7 252.7 119.6 349.0 64.7 183.1 103.8 319.7
SCIP 25238.2 533457.2 165.2 402.1 96.9 103.6 94.6 433463.8

GNN&GBDT 72.6 7349.2 147.2 678.8 100.4 1076.6 * *
Light-MILPOPT 66.6 1223.3 118.5 305.6 79.1 239.4 124.2 1473.9
LLM-LNS(Ours) 31.7 231.2 131.9 266.7 68.9 94.7 105.9 1868.3

particularly in SC2 and MIKS2, with SD values exceeding 298,000 and 242,000, respectively, which
suggests that SCIP struggles with certain large-scale MILPs. This instability in SCIP could be due to
its aggressive strategies or solver configurations being less suited to these specific problem instances.
Light-MILPopt again demonstrates relatively stable performance in most instances, although its SD
increases significantly in some cases, such as MIKS2. GNN&GBDT and ACP also show consid-
erable fluctuations, with ACP having an SD of 6338.3 in SC2, further highlighting its instability in
large-scale settings.

In summary, LLM-LNS not only consistently outperforms other methods in terms of objective values
but also maintains strong stability across a wide range of instances, particularly when compared to
methods like Random-LNS, ACP, and SCIP. This robustness makes LLM-LNS a strong candidate
for solving large-scale MILP problems effectively and consistently.

D.3 COMPARISON OF ERROR BAR

The error bar comparison across different methods using Gurobi and SCIP as optimizers provides
insights into the variability and confidence in solutions across large-scale MILP instances. Error
bars quantify the uncertainty or inconsistency in the results, with smaller values indicating more
reliable and consistent performance.

As shown in Table 9, for methods using Gurobi, LLM-LNS again demonstrates strong reliability
with relatively small error bars across most instances. For example, in SC1, MVC2, and MIKS2,
LLM-LNS has error bars of 27.9, 289.8, and 259.2, respectively. These values are noticeably smaller
than those for methods like Random-LNS and ACP, which exhibit much larger error bars, reflecting
greater instability. Light-MILPopt also shows excellent performance with particularly low error bars
in SC1 (1.4) and MIKS1 (63.3), but its error increases significantly in some other instances. Notably,
SCIP exhibits extremely large error bars in several instances, such as SC2 and MIKS2, where the
error bars exceed 533,000 and 433,000, respectively, indicating significant inconsistency in its per-
formance on these large-scale problems. GNN&GBDT also shows high error bars, suggesting that
its performance is less reliable across different runs.

As shown in Table 10, when using SCIP as the optimizer, LLM-LNS continues to demonstrate
relatively low error bars, particularly in SC1, MVC2, and MIKS1, where the values are 31.7, 266.7,
and 105.9, respectively. These results are significantly more stable compared to methods like ACP
and GNN&GBDT, which show very high error bars in instances like SC2 (error bar of 10845.3 for
ACP) and MIKS2. SCIP itself again shows extremely high error bars for instances such as SC2

and MIKS2, further highlighting its instability in handling large-scale problems. Light-MILPopt

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

0 500 1000 1500 2000

Time

105

2 × 104

3 × 104

4 × 104

6 × 104

Ob
je

ct
iv

e

Random-LNS
ACP
Gurobi
GNN&GBDT
Light-MILPOPT
LLM-LNS(Ours)

0 500 1000 1500 2000

Time

3 × 104

4 × 104

5 × 104

Ob
je

ct
iv

e

Random-LNS
ACP
CL-LNS
Gurobi
GNN&GBDT
Light-MILPOPT
LLM-LNS(Ours)

0 500 1000 1500 2000

Time

1.2 × 104

1.4 × 104

1.6 × 104

1.8 × 104

2 × 104

2.2 × 104

Ob
je

ct
iv

e

Random-LNS
ACP
CL-LNS
Gurobi
GNN&GBDT
Light-MILPOPT
LLM-LNS(Ours)

0 250 500 750 1000 1250 1500 1750 2000

Time

2 × 104

3 × 104

Ob
je

ct
iv

e

Random-LNS
ACP
Gurobi
Light-MILPOPT
LLM-LNS(Ours)

Figure 6: Time-objective value graphs of medium-scale problems using Gurobi: SC1, MVC1, IS1,
and MIKS1.
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Figure 7: Time-objective value graphs of large-scale problems using Gurobi: SC2, MVC2, IS2, and
MIKS2.
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Figure 8: Time-objective value graphs of medium-scale problems using SCIP: SC1, MVC1, IS1,
and MIKS1.
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Figure 9: Time-objective value graphs of large-scale problems using SCIP: SC2, MVC2, IS2, and
MIKS2.

performs well in some instances but also shows considerable variation in others, with error bars as
high as 1473.9 in MIKS2.

Overall, LLM-LNS consistently demonstrates lower error bars across both optimizers, Gurobi and
SCIP, indicating that it provides more reliable and consistent solutions for large-scale MILP prob-
lems. This makes it a strong candidate for scenarios where both solution quality and stability are
critical.

D.4 CONVERGENCE ANALYSIS

In this section, we analyze the convergence performance of our proposed approach, our proposed
LLM-LNS, in comparison to several baseline methods for solving large-scale MILP problems, in-
cluding Random-LNS, ACP, Gurobi, GNN&GBDT, and Light-MILPOPT. The experimental results
are shown in Figures 6 through 9, which include instances of four different problem types: Set
Covering (SC), Maximum Vertex Covering (MVC), Independent Set (IS), and Mixed Integer Knap-
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sack Set (MIKS). We evaluate both medium-scale and large-scale instances using two solvers as
sub-optimizer, Gurobi and SCIP.

The analysis of the convergence curves reveals several important observations:

• Faster Initial Convergence: For nearly all problem instances, the LLM-LNS approach
demonstrates a significantly faster initial convergence compared to the baseline methods.
The objective value drops sharply within the first few time steps, indicating that our method
can quickly identify high-quality solutions. In contrast, methods like Random-LNS and
ACP exhibit slower initial convergence, requiring more time to achieve similar reductions
in the objective value.

• Superior Final Objective Value: Across both medium- and large-scale problem instances,
our proposed LLM-LNS consistently achieves lower final objective values compared to the
other methods. This is particularly evident in the large-scale instances (e.g., SC2, MVC2,
IS2, and MIKS2), where the superiority of our method becomes more pronounced. While
methods such as Random-LNS and ACP plateau early, often with suboptimal solutions,
our proposed LLM-LNS continues to improve the solution even after other methods have
stagnated.

• Stable Convergence Behavior: The convergence curves of our proposed LLM-LNS ex-
hibit smooth and gradual decreases in the objective value, indicating stable optimiza-
tion behavior. In contrast, some of the baseline methods, especially Random-LNS and
GNN&GBDT, show more erratic convergence patterns, characterized by large and sudden
jumps in the objective value. This suggests that our method is more robust and avoids the
instability that can arise in heuristic-based search strategies.

• Scalability: The performance gap between our proposed LLM-LNS and the baseline meth-
ods becomes even more pronounced in large-scale problem instances. For example, in the
large-scale MIKS2 and SC2 instances, our proposed LLM-LNS outperforms all other meth-
ods by a significant margin, converging to a much lower objective value within a shorter
time frame. This demonstrates the scalability of our method, as it remains effective even
as the problem size increases, whereas the performance of other methods, such as Light-
MILPOPT and ACP, degrades considerably.

• Comparison with Exact Solvers: When compared to the exact solver Gurobi, our pro-
posed LLM-LNS shows comparable or even superior performance, particularly in terms
of convergence speed. While Gurobi tends to find solutions that improve gradually over
time, our proposed LLM-LNS reaches competitive solutions much faster, which is crucial
in time-constrained scenarios. This highlights the practical advantage of our method in
scenarios where computational resources or time are limited.

In summary, the experimental results demonstrate that LLM-LNS has clear advantages in terms of
convergence speed, final solution quality, and robustness compared to both heuristic-based and exact
optimization methods. Our approach is particularly well-suited for large-scale MILP problems,
where it consistently outperforms the baseline methods by a significant margin.
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