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Abstract

Most existing Visual Question Answering001
(VQA) systems are constrained to support002
domain-specific questions, i.e., to train differ-003
ent models separately for different VQA tasks,004
thus generalizing poorly to others. For exam-005
ple, models trained on the reasoning-focused006
dataset GQA struggle to effectively handle sam-007
ples from the knowledge-emphasizing dataset008
OKVQA. Meanwhile, in real-world scenarios,009
it is user-unfriendly to restrict the domain of010
questions. Therefore, this paper proposes a011
necessary task: One-to-Many Visual Question012
Answering, of which the ultimate goal is to en-013
able a single model to answer as many different014
domains of questions as possible by the effec-015
tive integration of available VQA resources. To016
this end, we first investigate into ten common017
VQA datasets, and break the task of VQA down018
into the integration of three key abilities. Then,019
considering assorted questions rely on different020
VQA abilities, this paper proposes a novel dy-021
namic Mixture of LoRAs (MoL) strategy. MoL022
mixes three individually trained LoRA adapters023
(corresponding to each VQA ability) dynami-024
cally for different samples demanding various025
VQA abilities. The proposed MoL strategy is026
verified to be highly effective by experiments,027
establishing SOTAs on four datasets. In addi-028
tion, MoL generalizes well to three extra zero-029
shot datasets. Data and codes will be released.030

1 Introduction031

Visual question answering (VQA) is a deeply in-032

terlaced task of CV and NLP which requires an-033

swering a question given an image. Driven by its034

wide range of application and thirst for exploring035

the interaction between both modalities, VQA has036

attracted a growing number of researches in re-037

cent years. Such enthusiasm has thus fertilized038

the growth in both the diversity and practicality039

of the task setting. For example, GQA (Hudson040

and Manning, 2019) demand comprehension of the041

scene and reasoning over objects, while OKVQA 042

(Marino et al., 2019) emphasizes the capability of 043

utilizing knowledge. 044

However, the researches on these VQA tasks 045

are usually separate from each other. Intuitively, 046

performing well on a VQA dataset does not neces- 047

sarily guarantee acceptable results on others. As 048

we can expect all sorts of questions from users, a 049

model trained on a single specific domain may not 050

be competent for real-world application. Therefore, 051

to prompt exploration towards such direction, in 052

this paper, we propose the task of One-to-Many 053

Visual Question Answering, which mimics the 054

authentic situation in the real world and demands 055

a single model to answer assorted common ques- 056

tions. 057

To perform well on such a challenging stage, 058

an ideal model shall master various VQA abilities. 059

There are former works (Goyal et al., 2017; Hud- 060

son and Manning, 2019; Kafle and Kanan, 2017) 061

classifying the VQA questions into various classes. 062

However, their categorization mainly focus on the 063

forms or intention of questions within only a sin- 064

gle dataset like GQA (Hudson and Manning, 2019) 065

or TDIUC (Kafle and Kanan, 2017), which fails 066

to cover all VQA abilities. For example, TDIUC 067

(Kafle and Kanan, 2017) divides questions into 068

classes like Object Presence and Sport Recognition. 069

Their motivation and implementation do not fit in 070

our One-to-Many VQA here. Normally, the focus 071

of a VQA dataset is unique and confined to a single 072

VQA ability, like knowledge or reasoning. To the 073

best of our knowledge, no dataset available is able 074

to complete our proposed task on its own, which 075

means accommodating sufficient diverse VQA re- 076

sources is necessary. 077

In addition, to provide better generalization for 078

all sorts of VQA questions, we first break the task 079

of VQA down into the integration of basic VQA 080

abilities. Having taken both the commonality and 081

distinction into consideration, with thoughtful de- 082
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liberation, we come up with three basic VQA abil-083

ities, i.e., Knowledge Capability (KC), Visual At-084

tribute Recognition (VAR) and Scene Comprehen-085

sion (SC). As their names suggest, KC encapsulates086

the capability to store and apply knowledge, VAR087

encompasses attribute recognition and basic forms088

of reasoning, such as counting, and SC denotes089

the proficiency to infer relationships across objects.090

The relationship among these abilities is further091

analyzed in our experiments. Then, ten common092

VQA datasets are collected. Through analysis of093

their motivation and styles, we categorize them ac-094

cording to the focused abilities. Additionally, we095

select three extra datasets as the Held-Out group,096

which are not used in training but reserved for the097

zero-shot testing. Ideally, a model having mas-098

tered the three VQA abilities will generalize well099

to them.100

To integrate each ability while maintaining the101

flexibility for dynamically adjusting the model to102

focus on the required ability of each sample, we103

propose a Mixture of LoRAs strategy (MoL). Ap-104

plying trainable adapters to a frozen MLLM (multi-105

modal large languange model) is an ideal solution106

under the setting, as LoRA adapters are flexible to107

merge and expand, while MLLMs already contain108

basic multimodal skills, which aids to generaliza-109

tion. Specifically, three LoRA adapters are individ-110

ually trained for each ability and then weightedly111

averaged during inference. The objective is to allow112

for dynamic weighting and adjustment, tailoring113

the emphasis to the core of each question, which is114

captured by a trained smaller language model.115

We present a comprehensive study on the One-116

to-Many setting and verify the effectiveness of the117

proposed method. Experiments shows that spe-118

cialist models which trained on single datasets fail119

to generalize well to other datasets. Compared to120

the advanced visual-language pretrained models121

and multimodal LLMs, our method achieves the122

best One-to-Many performance on most datasets,123

as shown in Figure 1. Even in comparison with124

previous specialist models, our method establishes125

the new state-of-the-art accuracy on four datasets,126

OKVQA, KRVQA, COCO-QA and DAQUAR. Be-127

sides, our method brings significant improvement128

on zero-shot performance for Held-Out datasets,129

VQA abs, VizWiz and A-OKVQA. To summary,130

our contributions are as follows:131

• To the best of our knowledge, we are the first132

to propose One-to-Many VQA, which is a133
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Figure 1: Performance demonstration of our proposed
MoLLW applied on LLaVA-1.5-7b (Liu et al., 2023a)
(right) against one-to-one specialist SOTAs and strong
One-to-Many baselines (one of the most advanced VLP
models OFA (Wang et al., 2022b), and MLLMs Qwen-
VL and LLaVA-1.5). Our method performs best among
the One-to-Many methods and demonstrates competi-
tive performance even compared with specialist models
on most datasets. Refer to Appendix C for our One-to-
Many baseline settings.

challenging task simulating real-life scenarios, 134

and conduct detailed analyses into the three 135

VQA abilities on the proposed benchmark. 136

• We propose a novel Mixture of LoRAs strat- 137

egy (MoL) to dynamically adjust the capa- 138

bility of the model for each sample demand- 139

ing various VQA abilities. In experiments, 140

MoL demonstrates promising flexibility and 141

embraces evident improvement under the One- 142

to-Many setting across two MLLMs. 143

• We establish new state-of-the-art performance 144

on four Held-In VQA datasets, OKVQA, 145

KRVQA, COCO-QA, DAQUAR and signif- 146

icantly improve zero-shot performance on 147

three Held-Out datasets, VQA abs, VizWiz 148

and A-OKVQA. 149

2 One-to-Many VQA 150

Assorted VQA datasets mainly differ in their scales 151

and required VQA abilities for solution. As shown 152

in Table 1, we investigate into ten common VQA 153

datasets. Taking into account the motivation behind 154

these datasets and the actual cognitive processes in- 155

volved when humans perform VQA, we categorize 156

them into three groups according to three proposed 157

VQA abilities, i.e., Knowledge Capability, Visual 158

Attributes and Scene Comprehension. Datasets 159

clustered under each of them tend to focus on and 160
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Figure 2: Examples of the ten VQA datasets. Different colors stand for different focus of VQA abilities. Blue for
Knowledge Capability, green for Visual Attribute Recognition, and yellow for Scene Comprehension. The styles of
these datasets and their motivation make it easy to cluster.

benefit from (but not solely relied on) the same cor-161

responding VQA ability. Note that these abilities162

are not completely independent from each other.163

For example, to apply knowledge, basic recogni-164

tion ability is indispensable.165

Knowledge Capability Abbreviated as KC, the166

ability of Knowledge Capability aims at storing and167

utilizing knowledge. This group contains FVQA168

(Wang et al., 2017), OKVQA (Marino et al., 2019),169

KBVQA (Wang et al., 2015) and KRVQA (Cao170

et al., 2021). FVQA and KBVQA both provide171

extra knowledge for solution. The former provides172

a sentence of fact for each sample, while the latter173

utilizes DB-pedia (Auer et al., 2007) to consult for174

knowledge. OKVQA comes from the most open175

setting of VQA, that models are allowed to use176

any form of external knowledge, from knowledge177

bases to even the Internet or GPTs. KRVQA aims178

to avoid the language-prior shortcut by erasing the179

mentioned entity in a question and replacing it with180

a knowledge-based description.181

Visual Attribute Recognition Abbreviated as182

VAR, the ability of visual attribute recognition aims183

at recognizing attributes and simple reasoning like184

counting. This group contains TDIUC (Kafle and185

Kanan, 2017), COCO-QA (Ren et al., 2015), VQA186

v2 (Goyal et al., 2017) and VG-QA (Krishna et al.,187

2017). TDIUC generates questions using annota-188

tion in MS-COCO images (Lin et al., 2014) and189

collects filtered samples from VQA v1 (Antol et al.,190

2015) as well as VG-QA, dividing them into 12 191

fine-grained tasks. COCO-QA provides a larger 192

and more diverse dataset than DAQUAR as an early 193

work. VQA v2 is proposed to reduce the bias in 194

VQA v1 by collecting complementary data towards 195

existing ones, and has been a widely used dataset 196

for testing on VQA. Visual Genome dataset (Kr- 197

ishna et al., 2017) provides detailed annotations 198

about the objects in images for future analysis. VG- 199

QA is a corresponding VQA dataset provided along 200

with it, which is relatively tough due to its assorted 201

styles of answers. 202

Scene Comprehension Abbreviated as SC, the 203

ability of Scene Comprehension aims at reasoning 204

over objects to catch relations. This group contains 205

GQA (Hudson and Manning, 2019) and DAQUAR 206

(Malinowski and Fritz, 2014). GQA leverages the 207

annotations of scene graphs to automatically con- 208

struct questions with a question engine. Questions 209

in GQA usually involve reasoning over objects. 210

Following previous works (Tan and Bansal, 2019; 211

Wang et al., 2022b), we combine the training and 212

validation sets of GQA balanced for training, and 213

use the testdev set for testing. DAQUAR is the 214

first VQA dataset available, focusing on in-door 215

scenarios. However, questions in DAQUAR also 216

require frequent reasoning. 217

Held-Out Datasets These datasets are selected 218

to evaluate the zero-shot performance and thus not 219

involved in training. This group contains VizWiz 220
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Usage Group Datasets # Images # Samples Avg. Len

Held-In

KC

FVQA 2,190 5,826 9.5
OKVQA 14,031 14,055 8.1
KBVQA 700 2,741 6.9
KRVQA 19,739 126,525 11.7

VAR

TDIUC 167,437 1,654,167 6.9
COCO-QA 69.172 117.684 8.7

VQA v2 204,721 658,111 6.2
VG-QA 108,077 1,445,316 5.7

GQA
GQA 82,772 1,087,640 8.8

DAQUAR 1,447 12,468 10.6

Held-Out Held-Out
VizWiz VQA 17,925 17,925 6.3
VQA abstract 30,000 90,000 6.2
A-OKVQA 17,652 18,201 8.8

Table 1: Datasets statistics. The name of each group
denotes the focused VQA ability in it. # Images and #
Samples stand for the numbers of questions and samples
in each dataset. The average length of questions is
denoted by Avg. Len.

VQA (Gurari et al., 2018), VQA v1 abstract (An-221

tol et al., 2015) and A-OKVQA (Schwenk et al.,222

2022). VizWiz VQA aims to help the blind by223

answering their questions about what they are pho-224

toing at, which is why it is poor in image quality225

and questions are sometimes informal or even unan-226

swerable. To use it as a zero-shot test set, we only227

pick the answerable questions. VQA v1 abstract228

comes from the abstract scenes in VQA v1. Its229

cartoon-style images presents challenge but are not230

too abstract like CLEVR. A-OKVQA is a newer231

version of OKVQA, as introduced before. Though232

similar in goals, A-OKVQA shares no overlap with233

OKVQA, possessing no risk of information leak.234

To be consistent with other datasets, we utilize the235

open-ended answers from A-OKVQA.236

Dataset Statistics Table 1 shows the statistics of237

our collected datasets. As mentioned above, these238

datasets share large differences against each other,239

like the focused VQA abilities, sizes and the spar-240

sity of answers. Such properties make it unrealistic241

to analyze dataset by dataset. Not only will it cost242

unnecessary effort, but also makes it hard to cap-243

ture the commonality among them, which is why244

we analyze by groups. 1245

3 Method246

Our method is proposed to address all three abilities247

mentioned above and dynamically adjust to focus248

1There were actually more datasets we considered, like
CLEVR (Johnson et al., 2017), KVQA (Shah et al., 2019) and
so on. But those datasets based on too abstract scenes like
CLEVR are not compatible with our tendency for the real-life
application. KVQA requires face recognition and is confined
to a limited scene, which is too specific. For reasons similar to
the above, we finally reduce them to a total number of thirteen
Held-In and Held-Out datasets while maintaining generality.

on the required core ability of each sample. This 249

section introduces our design. 250

3.1 Architecture 251

One-to-Many VQA requires a single model to be 252

capable of answering assorted questions, which 253

brings challenge towards the generalization and ca- 254

pacity to the model. This paper proposes to use 255

LoRA (Low-Rank Adaptation) adapters to train 256

MLLMs for each focused VQA ability and merge 257

the adapters as experts. Intuitively, MLLMs (Zhu 258

et al., 2023; Liu et al., 2023b; Peng et al., 2023; 259

Dai et al., 2023) generalize well to assorted in- 260

structions and contain rich multimodal knowledge, 261

which aligns well with the proposed One-to-Many 262

VQA task. Meanwhile, not only can LoRA save 263

training resources, but most importantly, it con- 264

tains the potential to be merged as different experts. 265

Rather than scaling up the parameters by routing 266

among FFNs or models, like the traditional mix- 267

ture of experts (MoE), we hope to explore using 268

each fine-tuned LoRA as an expert and combine 269

different experts with weighted averaging within a 270

single model. Further, this paper extends to a dy- 271

namical weighted averaging strategy that captures 272

the required abilities of each sample and adjusts 273

the focus of the model accordingly. 274

3.1.1 Overview 275

The proposed framework is shown in Figure 3. 276

QwenLM (Bai et al., 2023) is a decoder-only large 277

language model trained on 2.2T tokens, contain- 278

ing a vision transformer (ViT)(Dosovitskiy et al., 279

2020), a VL adapter and a LLM. In addition, un- 280

der the same paradigm, this paper experiment with 281

LLaVA-1.5-7b (Liu et al., 2023a) as well and our 282

strategy generalizes well to it. 283

3.2 LoRA Expert Training 284

This paper trains three LoRAs adapters to learn the 285

focused VQA ability of each group respectively. 286

The model is optimized with cross entropy loss. 287

Assume a sample s, with an input question sq, an 288

image sv and an output sy containing |sy| tokens. 289

Original model parameter and LoRA parameter are 290

represented by θ0 and θlora respectively, Taking ym 291

as the mth token and y<m as the tokens ahead of 292

ym, then the language modeling loss for the sample 293

s is computed as: 294
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Figure 3: Overview of the proposed method. We experiment with Qwen-VL and LLaVA-1.5 as the backbone in turn,
and train a LoRA on each group to learn the corresponding VQA ability. Subsequently, the three individually trained
LoRA adapters are merged by weights for integration of VQA abilities. This paper proposes a dynamic weighting
method, MoLLW , that generates weights for each sample using a small language model, Roberta, to tailor the focus
on the specific ability required for each question. Finally, the merged LoRA is employed for inference.

Ls = −
|sy |∑
m=1

logPθ0+θlora(ym|y<m, sv, sq) (1)295

We adopt the loss function above to train and296

obtain three LoRA checkpoints, i.e., θKC =297

{Bl
KC , A

l
KC}Ll=1, θSAR = {Bl

SAR, A
l
SAR}Ll=1298

and θSC = {Bl
SC , A

l
SC}Ll=1, where L presents the299

number of weight matrices of the LoRA we apply300

to Qwen-VL and LLaVA-1.5.301

3.3 Mixture of LoRAs302

The three LoRAs BiAi individually trained above303

can be assumed to have learned the corresponding304

VQA ability, and in order to integrate their respec-305

tive wisdom for inference, we mix them together306

linearly by weights:307

BMoL = αBKC + βBV AR + γBSC (2)308

AMoL = αAKC + βAV AR + γASC (3)309

θMoL = {BMoL, AMoL}Ll=1 (4)310

where α, β, γ are the weights of adapters, and311

θMoL is the parameter of the weightedly mixed312

adapter.313

After mixture, assuming θ = θ0 + θMoL, the314

model fθ is evaluated by the average score Savg315

calculated on all groups:316

Savg =
3∑

k=1

1

|Gk|

|Gk|∑
j=1

1

|Gkj |

|Gkj
|∑

s=1

Score(s, fθ(s))

(5)317

where |Gk| and |Gkj | are the number of datasets in 318

group Gk and number of samples in dataset Gkj . 319

The score Score(s, fθ) is computed by the eval- 320

uation metric (refer to Appendix D) on sample s. 321

This paper explores several methods for generating 322

weights to achieve best average performance on the 323

three groups with trained LoRAs, which is to find 324

a set of α, β, γ that: 325

α, β, γ = argmax
α,β,γ∈[0,1]

Savg (6) 326

s.t. α+ β + γ = 1 327

This paper explores three methods for mixture: 328

Simple Average, Empirical Weights and Learned 329

Weights. 330

Simple Average (MoLSA) MoLSA merges by 331

simply averaging all LoRA adapters, i.e., all 332

weights (α, β, γ in Equ. 6) are set to 1/3. MoLSA 333

treats all VQA abilities with a same weight, regard- 334

less of the sizes of the corresponding groups in 335

training and the overall priority of each ability. 336

Empirical Weights (MoLEW ) To catch an over- 337

all priority among the VQA abilities, MoLEW 338

merges by assigning a set of manually decided 339

weights empirically, i.e., conducting a grid search 340

on Equ. 6 for a best set of (α, β, γ). 341

MoLEW surpasses MoLSA in design by allow- 342

ing for tendency towards different VQA abilities. 343

However, it still ignores the fact that the multi- 344

farious questions coming from all datasets under 345
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our setting depend on varied VQA abilities. For346

example, for a knowledge-focused question, ask-347

ing about the function of a building in the image,348

Scene Comprehension seems much less useful than349

Knowledge Capability and Visual Attribute Recog-350

nition.351

Such feature inspires us to dynamically adjust352

the weights α, β, γ of LoRA adapters to incline ac-353

cording to the focused VQA ability of each sample.354

Learned Weights (MoLLW ) In order to dynam-355

ically identify and incline the model towards the356

required abilities of each sample, MoLLW trains357

a small language model, Roberta-large (Liu et al.,358

2019), to generate a set of weights α, β, γ in Equ.359

6. Assuming g for a Roberta model, the weights360

are generated by: α, β, γ = g(s).361

Take the group VAR, for example. Given sam-362

ples sV AR from the group GV AR, to train a g to an-363

alyze and allocate the weights according to sV AR,364

we treat it as a three-label regression problem. The365

target is a set of weights, e.g., (0.07, 0.82, 0.11) for366

αV AR, βV AR, γV AR, which are grid-searched for367

a best performance on VAR. Loss function is Mean368

Squared Error (MSE):369

Ls =
1

3
[(αV AR−α̂)2+(βV AR−β̂)2+(γV AR−γ̂)2]

(7)370

where Ls is the loss of sample sV AR, and α̂, β̂, γ̂371

are prediction results. The same applies for KC372

and SC as well.373

During inference, since the generated weights374

are continuous and different by samples, the model375

needs re-initialization for each and every single376

sample to assign precise weights to merge adapters.377

Therefore, in order to infer by batches, we use378

k-means clustering to cluster samples with simi-379

lar weights together, thus reducing the cost of re-380

initialization each time, and k is set to 20 with381

random initial centers.382

4 Experiments and Analyses383

This section presents the results from experiments384

and corresponding analyses towards different com-385

ponents in our method and the two MLLMs used as386

backbones. Implementation details are introduced387

in Appendix A.388

4.1 Pilot Experiments389

First of all, we wish to verify whether a single390

dataset is capable of enabling a model to master391

all VQA abilities (acquiring sound results on all392

datasets). Unfortunately, but also expectedly, the 393

results are quite poor (refer to Appendix B for de- 394

tailed pilot experimental results). It is clear that 395

when trained on a single dataset, the model merely 396

acquires acceptable results on its own test set, and 397

its results on test sets from other datasets are gen- 398

erally quite poor. When trained on a mixture of 399

all data simultaneously, although the generaliza- 400

tion appears to be better, we still witness evident 401

performance degradation on each test set. 402

Therefore, as there appears to be an inevitable 403

trade-off between the generalization and specificity, 404

inspired by MoE (Mixture of Experts) (Jacobs et al., 405

1991), our strategy is to ensure both of them simul- 406

taneously by the dynamic allocation and integra- 407

tion of LoRA adapters focusing on different VQA 408

abilities. 409

4.2 Comparison of LoRA Mixture Methods 410

In order to explore the performance of the proposed 411

methods in Section 3.3, we provide results in Table 412

2. According to the results, the proposed MoLLW 413

is the most effective mixing method across both 414

Qwen-VL and LLaVA-1.5, surpassing MoLEW 415

by a notable average margin of 5.0% and 5.7% on 416

Held-In respectively. Compared with simply train- 417

ing on all data together (the first row), MoLLW 418

improves the Held-In results by 3.0% and 2.6% 419

respectively. Meanwhile, it is worthy to note that 420

neither MoLSA or MoLEW obtains comparable 421

Held-In results with simply training on all data 422

together. We believe simply training on all data 423

enables an automatic trade-off for required general 424

VQA abilities, and thus performs better than grid- 425

searched weights in MoLEW . Since MoLLW is 426

capable of dynamically accommodating to differ- 427

ent demands for VQA abilities, rather than fixing 428

to a static allocation of focused abilities, it is much 429

more flexible and versatile, achieving the best per- 430

formance with clear margin. 431

The columns of Held-Out provide average re- 432

sults on the Held-Out group. Although MoLLW 433

still performs the best, its results from Qwen-VL 434

and LLaVA are different in comparison to w/o MoL. 435

For Qwen-VL, a simple MoLSA is able to sur- 436

pass w/o MoL by 1.9% on the Held-Out group, 437

while neither MoLSA or MoLEW on LLaVA ob- 438

tains better performance than w/o MoL. Also, there 439

is an evident gap between MoLSA and MoLEW 440

on both the Held-In and Held-Out LLaVA perfor- 441

mance. Such phenomenon, as we deduce, is caused 442

by the uneven amount of multimodal training data 443
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Methods
Qwen-VL-Chat LLaVA-1.5-7b

KC VAR SC Held-In Held-Out KC VAR SC Held-In Held-Out
w/o MoL 43.2 71.1 48.9 54.4 54.3 45.1 68.4 46.0 53.2 53.5
MoLSA 39.5 66.6 41.2 49.1 56.2 27.7 54.8 40.3 40.9 40.6
MoLEW 41.6 71.3 44.1 52.4 56.8 45.3 64.5 40.7 50.1 52.9
MoLLW 48.4 72.6 51.1 57.4 57.8 48.8 67.9 50.8 55.8 56.0

Table 2: Experimental results from the three methods of mixture on two MLLMs. The tested MLLMs are Qwen-
VL-Chat (Bai et al., 2023) and LLaVA-1.5-7b (Liu et al., 2023a). MoLSA, MoLEW and MoLLW denote the three
merging methods, Simple Average, Empirical Weights and Learned Weights as introduced in Section 3.3. The row
of w/o MoL denotes the results from training a single LoRA adapter on the combination of all groups. KC, VAR,
SC, Held-Out represent the average scores of the datasets belong to each group. To avoid direct influence from
different numbers of datasets in each group, the column of Held-In is the macro average of scores in Held-In data,
which is the average score of KC, VAR and SC, instead of individual datasets. Held-Out is the average results on
the three Held-Out datasets.

from Qwen-VL and LLaVA-1.5. The former im-444

ports about 1,450M samples for pre-training and445

instruction-tuning, while that for the latter is merely446

1.23M (Liu et al., 2023a). We believe the train-447

ing on overwhelming amount of data from Qwen-448

VL is not in vain and empowers Qwen-VL with449

better generalization ability, which makes LoRA450

adapters from Qwen-VL more stable and versatile451

in weighted mixing.452

4.3 Mutual Influence Among Abilities453

To take a deeper look at the mutual influence of the454

three VQA abilities, Table 3 provide clues. Results455

from the first three rows confirm that training for a456

single VQA ability is far from acquiring an accept-457

able generalization performance on other groups,458

which accords with results in pilot experiments that459

the limited amount and diversity of data in a single460

dataset or group is not competent for the One-to-461

Many VQA task. Yet from another perspective, the462

model trained on a different group is still able to463

acquire limited scores on the current group, with464

performance degradation. Thus it lies both com-465

monality and distinction among the proposed three466

VQA abilities. Further, the commonality among467

groups may benefit the performance. Both the per-468

formance of MoLLW from Qwen-VL and LLaVA-469

1.5 on the group of KC surpass training on KC itself470

(the first row) by 0.6% and 0.7% respectively.The471

boost brought by other groups suggests that bi-472

asing the model solely towards the required core473

ability of each sample does not guarantee best per-474

formance. On the contrary, the mixture of the VQA475

abilities will be more effective in general. Such pat-476

tern also applies for low-resourced datasets (like477

the group of KC here), and importing experts with478

different focus can be helpful.479

4.4 Comparison with SOTAs 480

Table 4 provides comparison with previous special- 481

ist methods on OKVQA, KRVQA, COCO-QA and 482

DAQUAR. Even compared to the specialist models 483

designed for the corresponding dataset, our method 484

surpasses four of them2. Especially in OKVQA 485

and KRVQA, our method does not involve external 486

knowledge bases or querying GPT-3 for assistance, 487

which is the main source of improvement for previ- 488

ous methods. 489

Table 6 reports the comparison of One-to-Many 490

performance on ten Held-In datasets and three 491

Held-Out datasets. We believe that Qwen-VL and 492

LLaVA-1.5 are two of the most advanced multi- 493

modal language models with One-to-Many capa- 494

bility, which is why we select them as baselines 495

and use them as backbones. As shown in Table 6 , 496

our method has the best performance on most Held- 497

In dataset with clear margins over OFA, Qwen-VL 498

and LLaVA-1.5 without MoL, bringing much better 499

general performance. As for the Held-Out datasets, 500

our method always performs best in the zero-shot 501

fashion, which verifies the generalization of our 502

One-to-Many models. 503

5 Related Works 504

5.1 VQA Datasets 505

From the first general VQA dataset, DAQUAR 506

(Malinowski and Fritz, 2014), and the much larger 507

VQA v1 and v2, to assorted task-oriented datasets 508

like CLEVR (Johnson et al., 2017), GQA (Hudson 509

and Manning, 2019) and OKVQA (Marino et al., 510

2019), VQA datasets are becoming larger and more 511

2The SOTAs of FVQA and KBVQA benefit from utilizing
the knowledge bases used to construct these datasets them-
selves.
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Methods
Qwen-VL-Chat LLaVA-1.5-7b

KC VAR SC Held-In Held-Out KC VAR SC Held-In Held-Out
Group KC 47.8 60.6 40.4 49.6 51.6 48.1 59.0 40.8 49.3 51.5
Group V AR 36.6 72.4 42.3 50.4 55.3 39.3 71.3 41.4 50.7 55.6
Group SC 34.0 59.4 52.1 48.5 50.2 36.4 61.0 51.6 49.7 51.6

MoLLW (ours) 48.4 72.6 51.1 57.4 57.8 48.8 67.9 50.8 55.8 56.0

Table 3: Mutual influence among the three VQA abilities. Group KC , Group V AR and Group SC denote results
from training a single LoRA expert on the corresponding group, without mixture of experts. MoLLW represents
the results from the proposed method MoLLW .

method OKVQA
LXMERT (Tan and Bansal, 2019) 37.4
methods with external knowledge base
TRiG (Gao et al., 2022) 49.4
TwO (Si et al., 2023) 56.7
methods with GPT-3 API
PICa (Yang et al., 2022) 48.0
Prophet (Shao et al., 2023) 61.1
Qwen-VL MoLLW (ours) 58.6
LLaVA-1.5 MoLLW (ours) 61.3

method KRVQA
Mucko (Yu et al., 2020) 24.0
KM-net (Cao et al., 2019) 25.2
DMMGR (2-steps) (Li and Moens, 2022) 31.8
Qwen-VL MoLLW (ours) 32.4
LLaVA-1.5 MoLLW (ours) 32.8

method COCO-QA
VSE FULL (Ren et al., 2015) 57.8
DPPnet (Noh et al., 2016) 61.2
A+C+Selected (Wu et al., 2017) 71.0
Qwen-VL MoLLW (ours) 80.4
LLaVA-1.5 MoLLW (ours) 72.9

method DAQUAR
DPPnet (Noh et al., 2016) 29.0
A+C+Selected (Wu et al., 2017) 29.2
SANs (Yang et al., 2016) 29.3
Qwen-VL MoLLW (ours) 38.1
LLaVA-1.5 MoLLW (ours) 37.7

Table 4: Comparison with previous specialist SOTAs.

diverse in tasks, requiring various VQA abilities,512

like knowledge and complicated reasoning. To the513

best of our knowledge, there is no current VQA514

dataset aiming for the proposed One-to-Many task.515

5.2 VQA Models516

Classic VQA models usually follow a two-stage517

paradigm where image features are extracted by ob-518

ject detection and then interacted with the text fea-519

ture (Anderson et al., 2018; Tan and Bansal, 2019;520

Li et al., 2019). During recent years, it is common521

for to leverage pretrained models for a better per-522

formance. Common VQA paradigms includes a523

pretrained visual-language encoder model with a524

classifier (Tan and Bansal, 2019; Li et al., 2019)525

or a transformer-based encoder-decoder genera-526

tive model (Wang et al., 2022b,a; Lu et al., 2022).527

MLLMs are also available for VQA tasks (Alayrac528

et al., 2022), Pali (Chen et al., 2022), as well as529

the backbones in this paper, Qwen-VL (Bai et al.,530

2023) and LLaVA-1.5 (Liu et al., 2023a).531

5.3 Mixture of Experts 532

Mixture of Experts, MOE (Jacobs et al., 1991), as 533

a fusion method to integrate multiple FFNs or mod- 534

els, has boosted extensive researches (Zoph et al., 535

2022; Komatsuzaki et al., 2022; Kudugunta et al., 536

2021; Zadouri et al., 2023). MOE enables to signif- 537

icantly increase the model capacity as well as the 538

size of a model while causing limited augmentation 539

in inference consumption. Classic methods focus 540

on route enhancing (Zhou et al., 2022; Zuo et al., 541

2021), of which the basic idea is to select a best ex- 542

pert for the current sample or token. The proposed 543

MoL in this paper differs from previous methods 544

significantly. The model for inference is a single 545

model initialized from the mixture of various LoRA 546

adapters, as opposed to multiple candidate experts, 547

thus maintaining the same amount of parameters 548

and computational cost. Meanwhile, MoL is easy 549

to expand. Given a LoRA adapter trained on an- 550

other VQA subtask, MoL treats it as an additional 551

adapter and merge it into the previous three. 552

6 Conclusion 553

This paper proposes the task of One-to-Many Vi- 554

sual Question Answering, aiming at answering all 555

sorts of common questions in the real world with a 556

single model. To analyze and address the task, we 557

break the task down into the integration of three 558

key VQA abilities and investigate into ten datasets 559

which are categorized into three groups accord- 560

ing to their emphasized abilities. Then, a Mix- 561

ture of LoRAs (MoL) strategy is proposed with 562

the aim of dynamically adjusting the capability of 563

MLLMs (Qwen-VL and LLaVA-1.5) towards the 564

focused ability of each sample. Experiments have 565

verified the effectiveness of the proposed method, 566

which significantly improves the One-to-Many per- 567

formance and generalizes well to zero-shot test 568

datsets. In addition, our method establishes new 569

SOTA results on OKVQA, KRVQA, COCO-QA 570

and DAQUAR, and competitive zero-shot perfor- 571

mance on VQA abstract, VizWiz and A-OKVQA. 572
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7 Limitations573

Task Compatibility Although the proposed MoL574

strategy has been verified to be highly effective575

under the One-to-Many VQA task and has the po-576

tential to expand to other VQA subtasks by inte-577

grating more LoRA adapters, it is unclear how well578

it deals with LoRA adapters from another task be-579

yond VQA, e.g., image captioning. In addition, as580

MoL does not introduce extra parameters or com-581

putation, due to the limit of model size and model582

capacity, merging too many LoRA adapters could583

cause potential overall performance degradation.584

Potential Risk of Hallucination Merging LoRA585

adapters with weights may cause potential risk of586

hallucination. As LoRA adapters are individually587

trained to ensure convenient expansion in a plug-588

and-use fashion, adapters may import untrue infor-589

mation from other domains.590

Limited Available Resources Due to the fact591

that there are not sufficient accessible general VQA592

datasets exist, results of zero-shot generalization593

come from the three Held-Out datasets, which are594

not diverse enough to cover the three VQA abilities595

evenly and fairly.596
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This paper utilizes Qwen-VL-Chat (7B) (Bai et al., 887

2023), LLaVA-1.5-7b (Liu et al., 2023a) and 888

Roberta-Large (Liu et al., 2019) from hugging- 889

face transformers (Wolf et al., 2020), LoRA (Hu 890

et al., 2021) from hugging-face PEFT(0.6.1) (Man- 891

grulkar et al., 2022), and the code is based on Py- 892

torch(2.1.1) and hugging-face Accelerate(0.24.0). 893

AdamW (Loshchilov and Hutter, 2017) optimizer is 894

used with a peak learning rate 1e-4 for experiments 895

whose training sizes are smaller than a hundred 896
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dropout rate. Experiments are conducted on four901

Tesla A100 gpus. The evaluation metric used in902

this paper is VQA score (for samples with multiple903

candidate answers) and Exact Match (for samples904

with only one answer).905

B Pilot Experimental Results906

Table 5 provides results from our pilot experiments.907

It is clear that training on a single dataset is com-908

petent for the One-to-Many VQA task, as the per-909

formance fails to generalize to other datasets, es-910

pecially to datasets from another group. Such phe-911

nomenon is expected, as different VQA questions912

share different focus and required abilities, like rea-913

soning or knowledge capability, a single model is914

incapable of handling every ability simultaneously915

without significant drop in performance.916

C Overall Performance Comparison917

Table 6 provides comparison of our methods with918

previous specialist models and one-to-many base-919

lines.920

D VQA Evaluation Metrics921

VQA evaluation metrics contain Exact Match (Ma-922

linowski and Fritz, 2014) and VQA Score (Antol923

et al., 2015). They apply for different settings in924

VQA datasets. When only a single correct answer925

exists in each sample, like DAQUAR (Malinowski926

and Fritz, 2014), TDIUC (Kafle and Kanan, 2017),927

GQA (Hudson and Manning, 2019), the Exact928

Match metric is used. When each sample contains929

ten candidate answers, like VQA v2 (Goyal et al.,930

2017), OKVQA (Marino et al., 2019), VizWiz (Gu-931

rari et al., 2018), VQA Score is used.932

Exact Match Exact Match calculates by judging933

whether the answer is identical to the annotated934

ground-truth answer, and if matches, the score will935

be 1, otherwise 0.936

VQA Score VQA Score evaluates how many
times the answer appear in the ten candidate an-
swers, and mark the score according to the overlap,
which is computed as follows:

accuracy = min(
# correct hits

3
, 1)

As there are ten candidate answers, # correct hits937

represents numbers of matched answers. Therefore,938

as long as there are three or more candidates are the939

same with the predicted answer, the answer will be940

considered fully correct, and gets a score of 1.941

E Dataset Preprocessing 942

The preprocessing of datasets affects more under 943

the setting of One-to-Many VQA task than a single- 944

dataset case. The inconsistency among datasets 945

presents challenge to both the training and evalua- 946

tion by a universal model. For example, the num- 947

bers in OKVQA are alphabetic numbers, like 1, 2 948

and 3, while that in KRVQA are English numbers, 949

like one, two and three, and two-word answers in 950

DAQUAR are all concatenated by a - instead of a 951

space. Therefore, we need to align different for- 952

mats. In addition, any adjustment shall not make it 953

unfair if compared with results from other works. 954

Specifically, we argue a fair processing shall en- 955

able to restore each generated answer back to its 956

original form according merely to its own training 957

set. 958

First, we have verified that for numbers, almost 959

all dataset used in this paper are either fully in al- 960

phabetic form or English form. Although FVQA 961

has 5 samples of exception, 10 for VQA v1 ab- 962

stract, we consider them to be negligible compared 963

to the total amount of samples.3 However, sub- 964

stantial number answers in VG-QA are either in 965

alphabetic or English forms, which would be un- 966

fair to simply convert to a unified form. Due to 967

the metric of evaluating the correctness of answers, 968

answers with similar meaning but different types 969

against the ground truth (like 1 against One) are 970

treated as errors. Considering there are few work 971

about the accuracy of VG-QA recently (perhaps 972

due to the same reason), we do not compare its 973

result with former ones and provide results under 974

our setting as a benchmark, and suggest following 975

work to maintain such setting for rationality and 976

consistency. In addition, we find the first letter of 977

all answers are either all uppercased or not, so it is 978

fair to lower them. 979

In addition, for TDIUC, there are substantial 980

samples (about 22.35%) with answers of does- 981

notapply, which refer to questions that are unan- 982

swerable. No other training dataset or group con- 983

tains similar features. Consequently, when trained 984

on other datasets or groups that does not contain 985

TDIUC samples, the model is unable to predict 986

3There are a few samples in VQA v2 and KRVQA that
contains answers of English number one or two. However, we
observe that the questions of these samples actually are not
about numbers. For example, a question asking What activity
is the man doing contains a candidate answer of One, which is
quite confusing but does not affect the fairness if we convert
it to alphabetic form, because the question does not lead to
counting.
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Training Set FVQA OKVQA KBVQA KRVQA TDIUC COCO-QA VQAv2 VG-QA GQA DAQUAR Avg.

FVQA 70.1 47.6 36.3 9.9 81.8 59.4 73.5 34.2 52.2 25.1 47.3
OKVQA 54.1 59.5 34.0 10.1 78.3 55.7 70.9 30.1 53.2 28.0 46.3
KBVQA 55.5. 49.0 43.4 6.5 82.9 54.0 74.4 33.0 52.5 27.9 46.6
KRVQA 54.2 49.3 28.7 31.8 80.3 54.0 72.4 28.0 52.7 26.9 46.5
TDIUC 55.0 43.5 43.1 7.4 92.7 62.5 74.4 36.0 51.7 25.1 47.4

COCO-QA 54.7 42.8 41.0 7.1 83.7 82.3 73.8 33.8 52.1 28.1 48.3
VQA v2 53.8 45.6 43.0 9.0 86.0 60.0 78.9 34.7 52.7 27.0 47.5
VG-QA 52.5 42.1 40.5 7.0 85.0 59.5 75.9 45.1 51.1 27.1 47.0

GQA 50.8 42.9 39.4 8.6 77.7 60.4 72.8 31.1 65.3 28.3 47.6
DAQUAR 54.1 46.5 39.0 8.0 77.4 55.5 75.8 32.5 54.8 39.9 48.2

All 63.0 43.6 36.7 26.7 88.5 77.6 76.9 42.9 60.6 33.1 53.6

Table 5: Pilot experiments with specialist models. A LoRA model based on Qwen-VL-Chat is trained on a single
dataset from the ordinate each time and tested on each dataset in the abscissa. Bold numbers indicate the best result
tested on each dataset, which in this case, are all on the main diagonal. The last row, All, is a generalist model that
trained with all datasets together.

Methods
KC VAR SC Held-Out

FVQA OKVQA KBVQA KRVQA TDIUC COCO-QA VQAv2 VG-QA GQA DAQUAR VQA abs VizWiz A-OKVQA
Specialist SOTAs 81.2 61.1 69.6 31.8 - 71.0 86.1 - 77.0 29.3 - - -

OFA-large† 54.5 42.1 36.7 29.2 91.9 74.6 76.4 42.2 61.0 32.2 63.7 25.9 49.4
Qwen-VL-Chat† 63.0 45.7 36.7 26.8 90.5 77.6 76.9 43.0 60.6 33.1 67.2 38.5 54.4
LLaVA-1.5-7b† 60.7 53.9 39.0 26.6 86.8 71.7 74.4 40.7 62.6 29.4 62.1 38.1 60.3

Qwen-VL MoLLW (ours) 64.0 58.6 39.6 31.3 86.2 80.4 79.0 45.0 64.1 38.1 70.1 44.6 58.6
LLaVA MoLLW (ours) 61.5 61.3 39.5 32.8 83.0 72.9 76.8 39.0 63.9 37.7 61.3 43.8 62.9

Table 6: Comparison on each dataset with baselines. † denotes results come from our implementation where models
are trained on all groups. Specialist SOTAs denotes the SOTAs on each dataset from one-to-one task-specific
models: FVQA (Li and Moens, 2022), OKVQA (Shao et al., 2023), KBVQA (Wang et al., 2015), KRVQA (Li and
Moens, 2022), COCO-QA (Wu et al., 2017), VQA v2 (Chen et al., 2022), GQA (Yao et al., 2022), DAQUAR (Yang
et al., 2016).As we have modified TDIUC and VG-QA to improve consistency (refer to Appendix E), no SOTA
results are available. Note that all results of each group on Held-Out datasets come from zero-shot testing.

doesnotapply and thus the performance on TDIUC987

drops significantly, causing interference for anal-988

yses. Therefore, for consistency among datasets,989

we remove the samples in TDIUC that are labeled990

with doesnotapply.991

Therefore, in this paper, our preprocessing can992

be concluded as follows: 1) Mapping all numbers993

into alphabetic numbers. 2) Replacing the short994

dash - in DAQUAR answers with a space (two-995

word answers with a comma in the middle are not996

revised). 3) Removing the dot at the end of VG-997

QA answers. 4) Lowering all texts. 5) Removing998

samples with answers of doesnotapply in TDIUC.999

6) Removing same samples that appear across any1000

validation set with training sets to avoid sample1001

leak.1002
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