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ABSTRACT

Scaling Transformers to ultra-long contexts is bottlenecked by the O(n?d) cost
of self-attention. Existing methods reduce this cost along the sequence axis
through local windows, kernel approximations, or token-level sparsity, but these
approaches consistently degrade accuracy. In this paper, we instead explore an or-
thogonal axis: feature sparsity. We propose Sparse Feature Attention (SFA),
where queries and keys are represented as k-sparse codes that preserve high-
dimensional expressivity while reducing the cost of attention from ©(n2d) to
O(n?k?/d). To make this efficient at scale, we introduce FlashSFA, an 10-aware
kernel that extends FlashAttention to operate directly on sparse overlaps with-
out materializing dense score matrices. Across GPT-2 and Qwen3 pretraining,
SFA matches dense baselines while improving speed by up to 2.5x and reducing
FLOPs and KV-cache by nearly 50%. On synthetic and downstream benchmarks,
SFA preserves retrieval accuracy and robustness at long contexts, outperforming
short-embedding baselines that collapse feature diversity. These results establish
feature-level sparsity as a complementary and underexplored axis for efficient at-
tention, enabling Transformers to scale to orders-of-magnitude longer contexts
with minimal quality loss.
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Figure 1: Overview of our proposed method. (a) Trade-off between performance and speed.
Compared to directly reducing dimensionality with short embeddings, our method achieves a more
favorable balance, delivering a 259% speedup over the original dimensionality while improving
performance by 21.4% relative to the short-embedding baseline. (b) Computational and memory
efficiency comparison. Our method reduces KV-cache memory usage by 41% and FLOPs by 49%.

1 INTRODUCTION

Scaling language models to ever longer contexts is fundamentally limited by the O(n?d) cost of
self-attention, where n is the sequence length and d the feature dimension. Most existing approaches
attempt to reduce this cost along the sequence axis. Windowed or low-rank attention variants con-
strain interactions to achieve linear complexity, while token-level sparsity prunes which tokens in-
teract (Child et al., [2019; Beltagy et al., [2020; Zaheer et al., |2020; (Choromanski et al., [2020; Wang
et al., 2020; Xiong et al., 2021). Yet large-scale benchmarks consistently show that these approx-
imations sacrifice accuracy, leaving dense attention the most reliable option at long ranges. This
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raises a natural question: rather than reducing the set of tokens, can we explore feature diversity as
an orthogonal axis for scaling attention?

This question is motivated by findings in representation learning, where sparse embeddings (Formal
et al., 2021} Wen et al.,|2025) show that high-dimensional spaces encode rich features and that selec-
tive activation can preserve expressivity while yielding large efficiency gains. If attention itself can
be viewed as retrieval over feature coordinates, then sparsifying queries and keys by activating only
their most salient dimensions could reduce computation without collapsing representational capac-
ity. The challenge is to realize this idea in practice: how to preserve expressivity while sparsifying,
how to implement kernels that benefit from sparsity without materializing the n X n score matrix,
and how to adapt pretrained dense models without eroding their quality.

We address these challenges with Sparse Feature Attention (SFA). Instead of dense d-dimensional
queries and keys, SFA learns k-sparse codes in which each token activates only a handful of coor-
dinates. Attention scores are computed solely from overlaps between these supports, reducing the
arithmetic of QK " from ©(n2d) to ©(n?k?/d) — a fraction (k/d)? of the dense cost — while stor-
ing only O(nk) nonzeros. To make this efficient at scale, we introduce FlashSFA, a new 10-aware
kernel that extends FlashAttention by operating directly on sparse overlaps with online softmax.
This design avoids materializing any dense nxn scores, retains exactness, and brings compute and
memory scaling in line with feature sparsity.

The benefits of this shift are demonstrated in Figure [T} Compared to simply shrinking hidden size
(“short embeddings”), SFA achieves a much better trade-off: it improves perplexity by more than
20% while delivering over 2.5 speedup, and reduces FLOPs by nearly half together with a 41%
drop in KV-cache memory. Experiments confirm that these benefits extend broadly. On GPT-2 and
Qwen3 pretraining, SFA matches dense baselines in perplexity and downstream accuracy. On syn-
thetic long-context benchmarks such as Needle-in-a-Haystack, it sustains retrieval accuracy across
unseen lengths, while providing consistent latency gains. Crucially, the method is orthogonal to
token-level sparsity and paging, multiplying their benefits by lowering per-interaction cost.

This work thus establishes feature-level sparsity as a powerful and previously underexplored axis
for efficient attention. By leveraging feature diversity rather than compressing it away, SFA pre-
serves high-dimensional expressivity while unlocking substantial efficiency gains. Together with
FlashSFA, it makes exact long-context attention practical at scale, and paves the way for context
windows extended by orders of magnitude without compromising model quality.

2 PRELIMINARIES

Transformers and multi-head attention. Let a sequence of n tokens be represented by hidden
states X € R"*dmal For each head h € {1,..., H} with head dimension d, standard scaled
dot-product attention computes:

Qn=XWZ eR™  K,=XWEeR™,  V,=XWYeR™ ()
_ QnK,

Vd

where M encodes causal or padding masks, and the head outputs are concatenated and projected.
The principal cost arises from the dense Qp K ;Lr and materialization of Pj; IO0-aware kernels (e.g.,
FlashAttention) compute Oy, in tiles without forming P, explicitly, minimizing HBM traffic while
remaining exact (Dao et al.|, [2022; |Dao, |2023}; |Shah et al.| [2024).

S, € R™*", P, = softmax(Sy, ® M) € R™*", Oy = P,V e R™¥4(2)

Sparse formats for efficient storage. Sparse matrices that contain only a few non-zero elements can
be stored efficiently in sparse formats. Consider a matrix A € R"*? with nnz(A) nonzero elements.
In the Compressed Sparse Row (CSR) format, we store three arrays: (i) data € Rr0#(4) containing
the values of all nonzero entries, (ii) indices € {0,...,d — 1}““2<A), recording the column index of
each nonzero, and (iii) indptr € {0, ..., nnz(A)}"*!, where indptr[i] marks the offset in data/indices
where row ¢ begins. Thus, the nonzeros of row i can be read quickly from data[indptr[i]:indptr[i+1]].
The Compressed Sparse Column (CSC) format is analogous, but compresses by columns instead of
rows, with an indptr array of length d + 1 (Saad, 2003} Davis, [2006).
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Figure 2: Three paradigms of attention. Left: Standard attention computes all N x N query—key
interactions in the full feature dimension d. Middle: Sparse attention reduces cost by selecting,
for each query 7, a small subset of keys €2; and masking the remaining logits before softmax, but
each retained interaction still spans all d features. Right: Sparse Feature Attention (ours) keeps
all tokens but sparsifies along the feature axis by selecting the top-k channels in Q and K (Q =
Topk, (@), K = Topk, (K)). Attention is then computed only over overlapping selected features
with sparse matrix multiplication. This shifts sparsity from the token axis (N x N) to the feature
axis, achieving efficiency while preserving token coverage.

Efficient multiplication with spare formats. When multiplying two sparse matrices, the cost is
not proportional to the dense size n x d but rather to the number of structural intersections between
the nonzero patterns of rows and columns. This operation, called Sparse General Matrix Multi-
plication (SpGEMM), is typically implemented by Gustavson’s row-wise accumulation algorithm
(Gustavson, [1978)) or by hash-based methods (Buluc & Gilbert, 2011). The efficiency of SpGEMM
therefore depends on how many row—column index sets overlap, making CSR and CSC natural
formats for storing query and key matrices in our method.

3 SPARSE FEATURE ATTENTION

This section introduces Sparse Feature Attention (SFA), a drop-in modification of multi-head self-
attention that operates along the feature axis. Each query/key vector is converted into a k-sparse
code; attention scores are then computed only on overlapping active coordinates. This preserves the
probabilistic semantics of exact softmax attention over learned supports while reducing arithmetic,
memory traffic, and KV-cache growth.

3.1 ATTENTION VIA SPARSE MATRIX MULTIPLICATION

The key idea of SFA is to sparsify the query and key features before attention computation, so that
only their most salient coordinates contribute to similarity scores. As illustrated in Figure 2] (right),
given dense projections @, K,V € R"*?, we apply a row-wise Top-k operator to both ¢ and K:

Q = Topk,(Q), K = Topk,(K), 3)
where for x € R?,

Xy, u € argtopk(|z|),
0, otherwise.

Topky, (x), = { 4
Thus each query and key vector is converted into a k-sparse representation, preserving only its k
largest-magnitude entries. These @, K serve as sparse query and key features for attention.

Sparse attention via sparse matrix multiplication. Attention scores are then computed as S =
QK. Instead of full dense multiplication, we exploit sparsity: each nonzero in §; interacts only
with keys that share the same active coordinate. For query ¢ with support .S;,

1 _ ~
=72 > Giwkja, 5)

u€S;NS;

which corresponds to sparse matrix multiplication between Q (CSR format) and K ' (CSC format).
Traversing active coordinates yields only the nonzero attention edges. The resulting scores are then
passed through the usual softmax and value aggregation steps.
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Backward computation. Leveraging the sparse structure, we can also skip computing the gradient
for the full query and key matrices at backward computation. Specifically, we use a straight-through
estimator: gradients flow back only through the selected coordinates. For query ¢ with support .S;,

oL
oL _ ) G u e Si,
8Qi7u 07 u ¢ Si7

(6)

and similarly for k; ,,. Both forward and backward passes scale only with the sparse edge set.

Efficiency analysis. Dense attention requires ©(n?d) computation and ©(n?) memory, since every
query interacts with every key across all d feature dimensions. In contrast, SFA only forms scores
along feature coordinates selected by both queries and keys. Each token activates k features, giving
nk nonzeros in total. Assuming supports are balanced across dimensions, each coordinate is chosen
by about deg(u) & nk/d tokens. The number of query—key overlaps contributed by coordinate u is
then deg(u)?, and summing over all d coordinates yields:

d
E =~ Zdeg(u)2 R~ d(%’“f = "2dk2. (7)
u=1

Thus the total cost for attention shrinks from ©(n2d) (dense) to ©(n2k?/d) (sparse), which is only
a fraction k%/d? of the dense cost. Both forward and backward passes then cost O(E + Ed,,)
FLOPs, and memory for storing query and key drops from O(nd) to O(nk) with the sparse formats.
For concreteness, with d = 128 and k = 16 (default setting considered in this work), the ratio is
k?/d* = 1/64, i.e. about a 64 x reduction in theory. As the dimension d increases in larger models,
the gain could be even higher. For d = 1024 and £ = 32 (shown to have very similar retrieval
performance in|Wen et al.| (2025))), the ratio is 322 / 10242 =1 /1024, i.e., a reduction of more than
1000x. This means sparse feature attention can potentially extend context length by one to three
orders of magnitude at similar compute cost. For example, turning a 1M context window into 64M
or even 1G, opening up substantial improvements for long-context applications.

3.2 FLASHSFA: FAST SPARSE FEATURE ATTENTION WITHOUT MATERIALIZATION

A key challenge in Sparse Feature Attention (SFA) is that, although we reduce the number of pair-
wise interactions from n2d to n?k?/d, a naive implementation would still require materializing an
n X n score matrix to apply the softmax. This would destroy the memory advantage, as the O(n?)
storage is often the real bottleneck at long sequence lengths.

FlashAttention addressed exactly this issue in the dense case: it avoids storing QK ' by processing
queries and keys in small tiles, keeping only a temporary tile buffer of partial scores on-chip. An
online softmax update maintains numerical stability and exactness without ever writing the full n xn
matrix to memory (Dao et al.,2022)). FlashAttention-2 and -3 extend this idea with more parallelism
and precision refinements (Daol 2023} [Shah et al.| [2024). Our proposed FlashSFA extends this
principle to SFA. We retain the IO-aware tiling and online-softmax machinery of FlashAttention, but
replace dense tile multiplications with sparse feature-intersection kernels. For a tile of queries (rows
1 € [ig,i0+DB,)) and keys (columns j € [jo, jo+B.)), the kernel iterates over the active features of
these tokens, intersects their supports, and performs scatter-adds into a compact B, x B, score buffer.
This buffer is immediately consumed by the online softmax update, so no large score matrix is ever
written to memory. The result is mathematically identical to computing softmax(@f( T/ \/&)V but
with both compute and memory scaling as in SFA.

Efficiency and design. FlashSFA inherits the same O(n) IO complexity of FlashAttention, since
only tiles (not the full matrix) touch high-bandwidth memory. Within each tile, the work is pro-
portional to the number of overlapping features rather than d, yielding the O(n?k?/d) complexity
analyzed in The online softmax logic, masking for causality, and streaming of V' are un-
changed. Indices for sparse features add modest overhead (O(nk)), and can be stored efficiently
with 16-bit integers for typical d < 65,535.

By marrying the sparsity of SFA with the memory-efficient tiling of FlashAttention, FlashSFA

achieves the best of both worlds: it avoids O(n?) materialization while preserving the ’;—2 reduc-
tion in arithmetic and memory cost. This enables exact attention with dramatically lower compute
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Table 1: Perplexity and Accuracy results. Dense baselines use full hidden size and uncompressed
KV cache; “Dense (d=X)” denotes short-embedding baselines with reduced feature dimension. PPL
is evaluated on OpenWebText for GPT-2 and Pile for Qwen3. Note that “Dense (full)" serves as a
reference upper bound; we highlights the best results among the sparse/compressed baselines.

Model ‘ Latency | PPL | Acc T
‘ 128k context OWT/Pile PiQA LAMBADA ARC-e ARC-c HellaS Avg-Acc
Dense (full) 16.86 17.29 42.74 22.78 28.35 8.12 19.61 24.32
GPT2-124M Dense (d = 32) 7.86 20.88 39.27 19.39 2572 652 1426  21.03
SFA (k = 8) 9.41 18.27 41.62 21.03 2841 739 1926 23.54
Dense (full) 46.78 15.03 45.81 24.74 30.19 9.78  22.04  26.51
GPT2-350M Dense (d = 32) 20.58 19.89 40.72 19.96 28.15 454 1843 22.16
SFA (k = 8) 23.67 16.78 44.94 23.83 3022 652 2213  25.53
Dense (full) 77.65 4.66 62.47 34.82 4541 20.35 3395 39.40
Dense (d = 64) 30.84 6.03 58.43 31.27 41.58 15.83 2829  36.68
Qwen3-0.6B
SFA (k = 16) 34.20 4.81 61.73 34.05 45.62 19.27 34.03 38.94

and memory footprints, making long-context training and inference practical at scale. We defer a
full description of the FlashSFA algorithm to Appendix

4 EXPERIMENTS

4.1 PRETRAINING EXPERIMENTS

Having introduced Sparse Feature Attention (SFA) and the FlashSFA kernel, we next examine
whether autoregressive LMs trained from scratch can maintain modeling quality under feature spar-
sification. We evaluate GPT-2 and Qwen3 models against dense and short-embedding baselines,
measuring both modeling quality and efficiency.

Models and baselines. We study GPT-2 Small/Medium (Radford et al., |2019) and Qwen3-0.6B
(Yang et al., 2025)), replacing dense QK " scoring with SFA while keeping V dense. Sparsity
budgets k € {8,16} are tested. Baselines include standard dense attention and short-embedding
variants (halving the hidden size of @)/K). Note that “Dense (full)" serves as a reference upper
bound; we highlights the best results among the sparse/compressed baselines. We use the RTopK
kernel (Xie et al., [2024) for efficient topk operations. Additional implementation details, including
model configurations and handling of RoPE dimensions in Qwen3, are deferred to Appendix [A.T]

Datasets and benchmarks. GPT-2 models are trained on OpenWebText (Gokaslan et al., [2019),
Qwen3 on The Pile (Gao et al.,[2020; Biderman et al.,2022). We report validation perplexity (PPL),
zero-shot accuracy on PiQA (Bisk et al., [2020), LAMBADA (Paperno et al., 2016), ARC-e/ARC-
¢ (Clark et al., 2018), and HellaSwag (Zellers et al., 2019), as well as decoding throughput at 128k
tokens (Speed@128k) to assess long-context efficiency.

GPT-2 results. Table [I| shows that SFA with k& = 16 (not shown here but consistent with k¥ = 8
trends) closely tracks dense baselines, with negligible differences in perplexity and accuracy. SFA
with £ = 8 incurs slightly higher PPL and minor accuracy drops, but these remain within accept-
able bounds. This demonstrates that sparsified features preserve most of the model’s expressive
capacity. By contrast, short-embedding baselines degrade more substantially: they reduce perplex-
ity efficiency and underperform on challenging tasks such as ARC-c, especially for GPT-2 Small.
While such baselines deliver higher throughput, their quality—efficiency balance is skewed toward
speed, making them less appealing. On retrieval-like tasks (LAMBADA, HellaSwag), sparse models
underperform relative to their PPL, motivating further retrieval-focused experiments (Section 4.2).

Qwen3 results. For Qwen3-0.6B, also in Table |1} SFA with & = 8 maintains perplexity nearly
identical to dense (4.81 vs. 4.66) and preserves accuracy across PiQA, ARC-e, and HellaSwag. The
small differences on ARC-c (19.27 vs. 20.35) and average accuracy (38.94 vs. 39.40) suggest only
a marginal quality cost. Short-embedding baselines again degrade more severely, with higher PPL
(6.03) and lower accuracy (Avg-Acc 36.68). This confirms that even in modern architectures with
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Table 2: Long context pretraining results. Comparison of NIAH accuracy rates for different
lengths under various training lengths. (a) Models are trained on 8k synthetic NIAH data, and the
accuracy rate on test lengths from 1k to 8k. (b) Models are trained on 32k synthetic NIAH data, and
the accuracy rate on test lengths from 1k to 32k.

(a) NIAH accuracy (%) within 8k Sequence Length. (b) NIAH accuracy (%) within 32k Sequence Length.

Context Length Context Length

Method 1k 2k 4k 8k Speed@8k Method 1k 4k 16k 32k Speed@32k
Dense (d =64) 94% 93% 90% 95% 1.0x Dense (d =64) 92% 94% 83% 80% 1.0x
SFA (k = 2) 95% 95% 97% 98% 1.9% SFA (k = 8) 95% 94% 83% 82% 1.3x
SFA (k = 8) 98% 100% 99% 98% 1.3x SFA (k=16) 97% 96% 83% 83% 1.0x

200 - - Dense (ful) - S::i:i::;" 3 — — Dense (full 100 — — Dense (full
ngO SFA (ours) g400 _______________ ’g‘Zk __________ S_FA_(t:ur_S)_- @ 80 SFA (ours)
Z'100 g z g OO T
550 3 5 - 20

%2 16 8 i 32 % 1 s 4 3 %% 1w 8 4 3 %2 16 8 i 3
Sparsity(k) Sparsity(k) Sparsity(k) Sparsity(k)
(a) Dot-Product only (b) Attention Block  (c¢) FlashAttention Block (d) Entire Transformer

Figure 3: Latency vs. feature sparsity. Latency Comparison of dense attention and SFA (ours) at
different modular levels in Transformers under 16k context length. Higher sparsity brings substantial
decrease in latency.

RoPE and normalization refinements, sparsified features remain competitive with dense attention,
while offering clear efficiency benefits at long context.

Efficiency results. Across GPT-2 and Qwen3, short-embedding variants provide the largest raw
speedups due to narrower hidden size, but their accuracy loss makes them less practical. Sparse
models present a more balanced trade-off: £ = 16 maintains baseline-level quality, and &k = 8
provides moderate speedups while remaining close in accuracy. In practice, k¥ = 8 emerges as the
most attractive setting, balancing efficiency and modeling quality. This setting is therefore used in
subsequent scaling and efficiency benchmarks (Section {.3).

4.2 SYNTHETIC NIAH EXPERIMENTS

The synthetic Needle-in-a-Haystack (NIAH) benchmark provides a controlled way to examine how
models handle extremely long contexts and retrieval-style reasoning. To further examine whether
sparse attention preserves retrieval capacity over long contexts, we conduct experiments on the syn-
thetic NIAH task. Following the RULER methodology, haystacks are constructed by repeating the
character “#” and inserting a single target “needle” token that the model must recover. We train
GPT-2 models (124M) from scratch on synthetic NIAH QA data under two training regimes: one
restricted to 8k contexts and one extended to 32k contexts. In both cases, we then evaluate test accu-
racy across multiple held-out lengths, measuring how well models generalize beyond their training
window. Speed is also measured at the maximum training length to capture efficiency.

Results within 8k. Table 2a] reports results when models are trained up to 8k tokens. Dense base-
lines perform well across all lengths but incur standard compute costs. Sparse models not only
match but slightly exceed dense accuracy, achieving near-perfect recovery at all test lengths. At the
same time, SFA delivers a 1.9x decoding speedup at 8k for £ = 2, confirming that sparse scoring
reduces computation without sacrificing reliability.

Results within 32k. Table [2b] extends training to 32k tokens. Dense baselines degrade as length
grows, dropping to 80% accuracy at 32k. SFA models maintain higher accuracy: k¥ = 8 holds
steady at 82% and k = 16 at 83%. Notably, k& = 8 delivers 1.3 faster generation at 32k, while
k = 16 matches dense throughput. These results show that sparse attention generalizes robustly
across unseen lengths while simultaneously reducing long-context latency.
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Figure 4: Latency vs. feature sparsity with various config. Latency Comparison of dense attention

and SFA (ours) at different head dimensions and context lengths. Notably, the latency of SFA can be
much lower than dense attention under high dimension per head and long context, e.g., Figure @

8k Dense (full)
Dense (full) 1 SFA (k=4) 2.0k Dense (full)

G 6k SFA (k=4) €100 SFA (k=8) B4 SFA (k=4)
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0 4k c £ 1.0k
] I s0 3
T 8 s
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0 0 0

1k 4k 8k 16k 32k 65k 1k 4k 8k 16k 32k 65k 1k 4k 8k 16k 32k 65k
SeqglLen SeqglLen SeqglLen
(a) Latency vs context length (b) FLOPs vs context length (c) KV-cache vs context length

Figure 5: Scaling dense attention and SFA with context length. SFA can consistently reduce both
the computatin cost and KV cache size by a constant factor of at least 2.

Discussion. The NIAH task isolates retrieval in a controlled setting, making it possible to compare
dense and sparse features without confounding factors. Across both 8k and 32k training regimes,
SFA preserves or improves accuracy while achieving consistent speedups. This complements the
pretraining results in Section sparse attention does not erode retrieval ability, and under syn-
thetic stress tests it can even provide stronger length generalization than dense attention.

4.3 BENCHMARKING COMPUTATION AND MEMORY EFFICIENCY OF SFA

We benchmark Sparse Feature Attention (SFA) in both training and inference scenarios, since they
stress different system bottlenecks. Training-time attention is dominated by quadratic computation,
while inference-time attention with KV cache is dominated by memory traffic. Experiments are
run on an A800 GPU with CUDA 12.4, using INT32 for indptr and INTS8 for indices, FP16
for values, and pinned batches in HBM. Timing excludes dataloader overhead. All kernels are
compiled with CUDA and Ninja, and we report medians over 50 warm runs. We built our FlashSFA
kernel upon LeetCUDA.

Influence of SFA in Transformers. Figure [3|compares latency of SFA and dense attention across
different modular levels of a Transformer: from the raw dot-product to the full model. As sparsity
increases (smaller k), latency drops significantly. Importantly, the benefit compounds with complex-
ity: while dot-product alone shows modest gains, the full Transformer achieves over 2x reduction.
This demonstrates that sparsity scales well when applied throughout the network stack.

Influence of Dimension and Context Length. Figure @] examines latency under varying head di-
mensions (128 vs. 256) and context lengths (4k vs. 65k). At shorter contexts (4k tokens), SFA offers
consistent but moderate gains. However, under long contexts (65k tokens) and larger head sizes (256
dim), the improvement is dramatic: SFA reduces latency by more than an order of magnitude. This
confirms that sparsity is most effective in the large-scale regime, where dense attention becomes
prohibitively expensive.

Latency and Memory Scaling at Inference. Figure [5|benchmarks autoregressive inference with
KV cache. For short contexts (<4k), dense attention remains competitive because sparse kernels
incur lookup overhead. Beyond 8k—16k tokens, however, SFA consistently outperforms dense atten-
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Table 3: Evaluation on general reasoning tasks and synthetic retrieval (NIAH). Accuracy is in %.

Model Variant General Tasks NIAH Acc
GSM-8K Arxiv PubMed 4096 8192 16384 32768
Base 59.59 13.65 10.48 90 87 77 52
Qwen3-0.6B  Fine-tune 63.42 41.17 40.54 94 92 79 55
SFA (k = 16) 61.46 39.14 39.03 95 93 77 53
Base 75.44 31.52 29.19 97 95 90 81
Qwen3-4B Fine-tune 76.18 49.31 49.05 99 96 92 84
SFA (k = 16) 75.56 46.28 4791 99 93 91 84
Base 87.62 40.13 37.22 100 100 97 92
Qwen3-8B Fine-tune 89.11 54.26 55.07 100 100 99 95

SFA (k = 16) 87.99 52.74 52.61 100 100 100 97

tion. Moreover, SFA reduces KV-cache size proportionally to sparsity, saving up to ~40% memory
at k = 4. This makes sparse features especially valuable for long-context inference, where memory
footprint is often the limiting factor.

Together, these results show that SFA addresses both compute and memory bottlenecks. During
training, it accelerates high-dimension, long-context workloads by cutting FLOPs; during inference,
it reduces both latency and KV-cache usage for long sequences. These complementary benefits make
SFA well-suited for scaling LLMs to ultra-long contexts.

5 EXPLORING SFA ADAPTATION WITH PRETRAINED LLMS

In addition to incorporating SFA during the pretraining stage, we also attempted to adjust models
with dense pretraining to a sparse feature attention pattern through fine-tuning. In this section, we
explore the use of SFA in fine-tuning.

Regularized Sparse Finetuning. During finetuning, we keep SFA consistent with our strategy in
the pre-training phase (Eqs. [3] & [6). Nevertheless, the sparsification of pretrained dense features in-
troduces a severe distribution shift for the pretrained model. Therefore, we regularize the finetuning
with an additional MSE loss such that SFA’s attention scores approximate that of dense features.
Since FlashAttention and FlashSPA do not materialize the full attention matrix, in practice we ap-
proximate the denese attention output O, (with stop gradient) with SFA’s attention output Oy, at
each head h, leading to the final finetuning objective:

H
- 1 N
L = Lim + Areg = —Euy) logpg(y | z; S, V) + )\E E H Oy — stopgrad(Oh)Hi. (8)
h=1

Datasets. To comprehensively evaluate the performance of SFA during fine-tuning, we conduct
experiments using mathematical tasks, document question answering, and long-context retrieval
tasks. We use GSM-8K (Cobbe et al., 2021)), Sci-papers (Arxiv and PubMed (Cohan et al.| 2018)),
and NIAH data constructed from real texts, respectively. Because applying TopK to the features
almost resets the pattern of the previous dense features, we first restore the model’s language ability
by training on a similar reasoning dataset, MWP-200k (Mitra et al., 2024)), before GSM-8K. For the
NIAH data, we use the Pile dataset as haystack for random filling. The size of the training set is set
to 100k, and 100 test data entries for each length in the test set.

Training Settings. We fine-tune Qwen3-0.6B and Qwen3-4B using Llama-Factory (Zheng et al.,
2024) with k& = 16 for SFA. For mathematical reasoning and science QA tasks, the training con-
text length is set to 16,384 tokens, while for long-context retrieval tasks it is set to 32,768 tokens,
with evaluation spanning 4k—32k contexts. All models are trained for three epochs with identical
hyperparameters. Detailed experiment setting can be found in Section[A.2]

Result Analysis. Table 3| compares the base model, dense fine-tuning, and our Top-16 variant.
On general tasks, dense fine-tuning yields large gains on Arxiv and PubMed by adapting to the
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evaluation format, and SFA closely tracks these improvements, showing that sparsified features
preserve document-comprehension signals even under hard k. On GSM-8K, Top-16 lags slightly
behind dense fine-tuning, indicating that arithmetic reasoning is more sensitive to pruning. For
long-context retrieval (NIAH), Top-16 performs nearly identically to dense fine-tuning, consistent
with Section[4.2} suggesting that sparse supports provide an effective inductive bias for locality. At
the 4B scale, Top-16 remains within 1-3 points of dense on general tasks and holds parity on NIAH,
confirming its robustness and compatibility with larger backbones.

6 RELATED WORK

Token-level sparsity. Many approaches reduce the quadratic cost by pruning which tokens interact.
Structured patterns (local/strided/global) and learned routing yield strong long-context performance:
Sparse Transformers (Child et al.l 2019), Longformer and BigBird (Beltagy et al.| 2020} [Zaheer
et al., [2020), Routing Transformers (Roy et al., 2021), and Reformer (Kitaev et al., 2020). Recent
inference systems dynamically select salient tokens or pages (HoO, SnapKV, Quest) (Zhang et al.,
2023} L1 et al., |2024; Tang et al., 2024). These methods are orthogonal to ours: they sparsify the
set of tokens, while we sparsify the feature coordinates used to score any retained token pair. In
practice, SFA composes with token sparsity and paging by shrinking the per-interaction cost.

Low-rank/kernel approximations vs. feature sparsity. A parallel line alters the operator to
achieve linear or near-linear time via low-rank or kernel approximations: Linformer projects K,V
(Wang et all 2020); Performer approximates softmax with random features (Choromanski et al.,
2020); Nystromformer uses landmark decompositions (Xiong et al.l [2021). These compress infor-
mation into a dense r < d space, often trading expressivity for speed. By contrast, SFA keeps
the high-dimensional feature space but activates only k < d learned coordinates per token; attention
scores are computed exactly over the overlap of active supports (no kernel surrogates). This is closer
in spirit to sparse coding and sparse embeddings (e.g., SPLADE; CSR) that preserve semantic detail
while enabling inverted-index efficiency (Formal et al., 2021}, [Wen et al., 2025)).

Efficient attention kernels and sparse representations. FlashAttention reorders computation and
IO to keep attention exact while minimizing off-chip traffic (Dao et al., 2022; |Dao, 2023}; |Shah
et al.| 2024)); systems like xFormers and flashinfer expose page/block sparsity primitives (xFormers
Contributors, [2022-2025;, [flashinfer Contributors, [2024-2025). Some works use feature cues to
drive token selection atop such kernels (e.g., SPAR-Q; LoKI) (Fang et al., |2024; [Tsiamas et al.,
2024). SFA differs by learning sparse QQ/K codes as first-class representations and introducing
an IO0-aware kernel (FlashSFA) that iterates intersections of active coordinates rather than dense d-
dimensional products, yielding arithmetic and bandwidth savings proportional to £ and composing
naturally with token-sparse routing. Our focus is thus complementary: we open the underexplored
axis of feature-level sparsity inside attention while remaining compatible with token-level sparsity
and paging.

7 CONCLUSION AND LIMITATIONS

We presented Sparse Feature Attention (SFA), a new approach to scaling long-context Transform-
ers through dimension-level sparsity. By learning sparse query/key codes and computing attention
via feature overlaps, SFA preserves high-dimensional expressivity while reducing both memory and
compute. We introduced two adaptation strategies (end-to-end Top-k finetuning and adapter-based
training) and an [0-aware FlashSFA kernel that integrates sparsity directly into the online-softmax
pipeline. Experiments across synthetic and real tasks show that SFA achieves comparable qual-
ity to dense attention with growing efficiency gains at longer contexts, and complements existing
token-level sparsity methods.

While promising, several aspects remain open. Sparse tensor products require stronger support
from GPU hardware and CUDA libraries to fully unlock their efficiency, though these system-level
challenges are likely to be resolved over time. Very sparse query/key codes can lead to occasional
quality degradation, suggesting the need for adaptive sparsity budgets. Finally, how to best com-
bine foken-level and dimension-level sparsity remains an exciting direction, offering the possibility
of compounding gains in both compute and memory. We view SFA as a first step toward explor-
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ing this new axis of sparsity in attention, and hope it motivates further work at the intersection of
representation learning, attention design, and efficient systems.

Ethics Statement. This work complies with the ICLR Code of Ethics. Our research primarily
utilizes publicly available datasets and pretrained models, and we do not foresee any direct negative
societal impacts or ethical concerns arising from our methodology.

Reproducibility. We provide detailed descriptions of our methodology, datasets, model configu-
rations, and evaluation metrics in the main text and Appendix. Upon acceptance, we will release
source code and scripts to enable full replication of our experiments.
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A ADDITIONAL EXPERIMENTAL DETAILS

A.1 PRETRAINING SETUP

Model configurations. Table[]lists detailed configurations of GPT-2 and Qwen3 models, including
parameter counts, hidden dimensions, number of layers/heads, and short-embedding baselines.

Size \ #Parameters hidden_size num_layers num_heads short_hidden position_embedding
Small 124M 768 12 12 384 APE
Medium 350M 1024 24 16 512 APE
Large 596M 1024 28 16/8 512 RoPE

Table 4: Base model configurations. “Short” refers to halving the hidden size for Q/K.

Implementation notes. For fairness, short-embedding baselines insert only linear projections be-
fore and after attention. For Qwen3, we add an extra linear transformation after RoPE to isolate
positional dimensions from sparsification. FlashSFA kernels are used for tiled execution.

Training. GPT-2 models are trained on OpenWebText and Qwen3 on The Pile with standard LM
objectives. Validation PPL is reported on held-out splits. Zero-shot evaluations follow PiQA, LAM-
BADA, ARC-e/ARC-c, and HellaSwag. Long-context efficiency is measured as decoding through-
put at 128k tokens.

A.2 FINE-TUNING SETUP

Table 5: Configurations for fine-tuning MoE models

Model Dataset Epoch Batch_Size Lr  Warmup_Ratio Gradient_Ckecpointing
GSM8K 3 256 6e-4 0.1 False
Arxiv 2 256 le-5 0.05 False
Qwen3-06B  piiMed 2 256 2e-5 0.05 False
NIAH 3 256 2e-5 0.05 False
GSMEK 3 256 6e-6 0.1 True
Qwen3-4B Arxiv 2 256 2e-6 0.1 True
PubMed 2 256 2e-6 0.1 True
NIAH 3 256 2e-6 0.1 True

B ADDITIONAL EXPERIMENTS

B.1 LATENCY

We benchmarked the latency of the attention module on three feature dimensions: 256, 128, and 64,
respectively.

Prefilling Latency The computational complexity of the full attention module can be expressed
as O(n%d). So we can express Latency as Latencyai, o< N2d. To better analyze the impact of the
feature dimension d on computational complexity, we conduct the analysis in the logarithmic space
while fix Batch = 8 and Heads = 8 :

©))

The results in the logarithmic coordinate system are shown in Figure x. As shown in the figure,
we can observe that the latency generally exhibits a linear relationship with the sequence length.
Furthermore, the latency gap between different compression ratios are close to a constant value in
the logarithmic space, which also indicates that the absolute efficiency improvement achieved by
compressing the feature dimension increases exponentially with the sequence length.

log(Latencyqasin) < 2logN + logd

13
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Figure 6: Comparison of latencies in different attention scenarios: (a) full attention and (b) kv-cache
attention.

KV-cache Latency KV cache, which has been widely used in LLM decoding, is known as a
memory bound task. Therefore, we benchmarked the inference latency and KV cache memory usage
of sparse features and dense features in the KV cache decoding scenario, while keeping Batch = 8
and Heads = 8 unchanged. Since setting the length of the Query IV, = 1, the computational
complexity of the decoding attention can be expressed as O(Nd), which means that as the sequence
length increases, the computational complexity grows linearly. Our experimental results confirm
this. As shown in Table. 2, sparse attention becomes increasingly advantageous as the context
length grows. At short sequences (e.g., 4k tokens), dense attention is still competitive or even faster
because sparse kernels pay overhead for index lookups and binary searches. However, once the
context exceeds about 8k—16k tokens, the sparse variants consistently overtake the dense baselines.

B.2 FLOPs

To further analyze the operation of full-attention, we separately counted the number of floating-point
operations (FLOPs) and integer operations (INOPs) under different settings.

Table 6: Operation counts for standard flash attention and flash attention sparse. The number
of floating-point operations (FLOPs) and integer operations (INOPs) were counted separately for
feature dimensions of 64 and 128 under different context lengths.

8192 16384 32768 65536

Config TFLOPs INOPs TFLOPs INOPs TFLOPs INOPs TFLOPs INOPs
Dense_128 2.23 / 8.92 / 35.67 / 142.67 /

Sparse_32/128 1.20 28.31 4.79 58.72 19.17  121.63 76.70  251.67
Sparse_16/128 1.15 18.87 4.59 39.85 18.35 83.89 73.40  176.17
Sparse_8/128 1.13 13.63 4.54 29.36 18.14 62.91 72.57  134.22
Dense_64 1.12 / 4.48 / 17.94 / 71.75 /

Sparse_16/64 0.61 15.16 2.42 29.36 9.69 60.82 38.76  125.83
Sparse_8/64 0.58 9.44 2.32 19.92 9.27 41.94 37.11 88.08
Sparse_4/64 0.57 6.82 2.30 14.68 9.17 31.46 36.70 67.11

As shown in TabJf| because we directly reduced the number of non-zero elements in the feature
vectors, the number of floating-point operations has significantly decreased, and a large proportion
of the floating-point operations in the sparse version come from matrix multiplication in the P@V
stage. The reason is that sparse feature attention converts a large number of FLOPs into the process
of finding overlapping non-zero elements in sparse matrix multiplication, which corresponds to the
INOPs in the table.
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C ALGORITHM DETAILS OF FLASHSFA

Since current GPUs do not support general sparse matrix multiplication well, for a fair comparison,
we compared Flash Attention Sparse with FMA-based Dense Flash Attention on the code base of
Flash Attention 2 in the LeetCUDA open-source library (DefTruth & Others, |[2025), while both use
Tensor Cores for acceleration in the P@V.

Algorithm 1 FlashSFA (forward with tile (B, x B.))

Require: CSR(Q): Q_indptr, Q_indices, Q_values; CSCfeat(f( ): Kf_indptr, Kf_indices, Kf_values;

V' (dense, row-major in HBM); tile offsets (i, jo); tile sizes (B,., B.).

1: Init score tile storage: scores < zeros(B,., B..) in SRAM.
2: Init CSR(P) row pointers: P_indptr[ig] < current nnz counter ¢ p.

3: forr=0to B, —1do > ¢ = 19 + r is the global query index
4: T4+
5: Register accumulator: row_scores[0:B.] < 0 > kept in registers per thread/warp
6: tr < Q_indptr[i]; tr + Q_indptr[i+1]
7: fort =t totg —1do > iterate nonzeros of query row @
8: f+ Q_indices[t]; qu + Q_values|t]
9: po < K f_indptr[f]; p1 < Kf_indptr[f+1] > posting list for feature f
10: (pL,pr) < BINARYSEARCHRANGE (Kf_indices[po:p1), [jo, jo+Bc))
11: for p=pr topr — 1 do > only keys 7 that fall inside the key tile
12: Jj « K f_indices[p]; ¢+ j—jo
13: kv < K f_values[p)
14: row_scores|c] += (qu - kv)/V/d > feature-overlap accumulation in registers
15: end for
16: end for
17: forc=0to B, — 1do
18: scores|[r, ¢] < row_scores|c] > store to SRAM after register accumulation
19: end for
20: end for
21: Mask (optional): apply causal mask in-place to scores.
22: Online softmax per row (as in FA)
23: forr =0to B, — 1 do
24 141+ T
25: o; < zeros(d,) in registers > accumulator for output row ¢
26: tp, < P_indptr[i|; tr < P_indptr[i+1]
27: fort =t totgr —1do > iterate nonzeros P;; in row 4
28: J + P_indices[t]; p <+ P_values|t]
29: v, + V[j,0:d,] > row-vector, contiguous load from HBM
30: 0; +=p-V;
31: end for
32: Write back: add o, to the corresponding row of O.
33: end for
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D LATENCY TIMING RESULTS

Table 7: Latency (ms) versus context length.

Context Length
Variant 1024 4096 8192 16384 32768 65536
Dense_256 10.98  176.20 712.98 2894.46 11772.47 49197.70

Sparse_32/256 3.21 45.89 180.38 715.02 2886.21 11529.74
Sparse_24/256 2.77 33.96 154.79 612.81 2488.04 8309.51
Sparse_16/256 2.31 29.15 128.52 510.18 2079.82 7388.78
Sparse_12/256 1.97 21.28 109.04 431.50 1769.73 5063.70
Sparse_10/256 1.93 20.06 106.93 422.95 1734.99 4877.05
Sparse_8/256 1.86 17.41 102.63 405.52 1665.69 4235.00
Sparse_6/256 1.68 15.62 96.25 365.26 1505.59 3841.40
Sparse_4/256 1.51 13.94 82.48 324.97 1345.26 3412.10
Sparse_2/256 1.43 13.32 77.66 305.81 1273.37 2999.38

Dense_128 2.10 28.05 112.88 449.61 1981.92 7879.33
Sparse_32/128 2.17 31.01 120.58 465.68 1802.03 7101.95
Sparse_28/128 1.80 25.06 98.13 387.02 1535.46 6103.98
Sparse_24/128 1.70 23.84 94.10 373.42 1486.14 5909.66
Sparse_16/128 1.56 17.94 70.62 279.72 1108.96 4412.02
Sparse_12/128 1.11 16.25 64.39 255.24 1017.04 4047.53

Sparse_10/128 1.00 15.03 60.41 239.77 954.21 3814.06
Sparse_8/128 0.92 13.17 54.25 215.37 T777.15 3323.53
Sparse_6/128 0.79 11.17 42.24 161.43 681.73 2738.84
Sparse_4/128 0.67 10.08 40.09 157.88 579.75 2576.93
Sparse_2/128 0.58 9.90 38.92 154.71 539.49 2423.82
Dense_64 0.77 13.51 50.62 202.56 801.50 3137.78
Sparse_16/64 0.90 12.51 39.41 195.53 779.19 2963.94
Sparse_12/64 0.70 9.71 38.23 151.60 603.18 2400.37
Sparse_10/64 0.67 9.23 36.36 144.17 573.31 2282.26
Sparse_8/64 0.59 8.14 32.00 126.99 504.23 2014.14
Sparse_6/64 0.51 7.05 27.64 109.36 434.58 1727.43
Sparse_4/64 0.41 5.41 21.07 83.12 328.83 1311.59
Sparse_2/64 0.39 5.15 19.75 77.96 309.13 1233.64
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E COMPARISON OF EFFICIENT ATTENTION BY TRAINING

Table 8: Latency, Perplexity and Accuracy results comparison with various compression and ac-
celeration techniques, categorized into Token-Level and Feature-Level Operations. For token-level
operations, "Longforemer" (Beltagy et al., 2020) denotes fixed token sparsity pattern, "NSA" (Yuan|
[2025) denotes dynamic token sparsity pattern. "Dense (full)" baselines use full hidden size
and uncompressed KV cache; "Short (d = X)" denotes baselines with half feature dimensions;
"Quant" denotes 8-bit quantization aware training (QAT 2024b))) on weights and activa-
tions; "Low-Rank" denotes PCA-based projection matrix fine-tuning; "MLA" denotes multi head
latent attention [2024a), and "MLA + SFA" combines SFA with latent key/value. "La-
tency @128k" is measured by "Decoding with KV cache (TTNT) (ms)" and "Prefilling with full
attention (TTFT) (s)". PPL is evaluated on OpenWebText for GPT-2 and Pile for Qwen3.

‘ Latency@128k | PPL | Acc T
‘Decode Forward OWT/Pile PiQA LAMBDA ARC-e ARC-c HellaS Avg

Model Variant

Dense (full) ‘ 17.08 16.86 17.29 42.74 22.78 28.35 8.12 19.61 2432

Token-Level Operation

Longformer 6.75 7.93 18.73 41.28 21.27 28.02 7.01 18.92  23.30
GPT2 +SFA (k = 8) 5.23 6.18 19.30 40.75 20.54 26.39 6.63 17.24 2231
124M Feature-Level Operation
Short (d = 32) 8.37 7.86 20.70 39.27 19.39 25.72 6.52 14.26  21.03
Low-Rank 8.93 7.99 19.89 39.81 20.04 26.47 6.89 1499 21.64
MLA 5.04 15.39 17.38 42.83 22.29 28.37 7.94 19.66 2422
MLA + SFA 3.98 15.05 19.07 41.13 21.92 27.88 7.06 19.01 2340
Quant 14.26 12.97 17.64 42.18 21.03 28.09 7.77 19.05 23.62
SFA (k = 8) 14.12 9.41 18.17 41.62 21.03 28.41 7.39 19.26  23.54
SFA (quant) 12.28 8.72 18.54 41.53 20.81 28.39 7.17 18.97 2337
Dense(full) ‘ 80.84 77.65 4.66 62.47 34.82 45.41 20.35 33.95 3940

Token-Level Operation

NSA 9.73 20.32 4.57 62.69 35.01 45.10 20.47 3442  39.54
Qwen3 +SFA (k = 16) 8.85 17.17 4.95 60.02 33.58 42.74 18.31 3248 3743
0.6B Feature-Level Operation
Short (d = 64) 38.68 30.84 6.03 58.43 31.27 41.58 15.83 2829  35.08
Low-Rank 40.58 32.46 5.50 59.19 31.49 41.77 15.8 30.65 35.78
MLA 8.74 68.92 4.69 62.39 34.71 45.41 20.17 3421 39.38
MLA + SFA 6.72 65.29 4.9 61.22 33.94 43.36 19.25 3394 3834
Quant 72.23 59.73 4.71 62.29 34.33 45.39 20.02 3391  39.19
SFA (k = 16) 66.29 34.20 4.81 61.73 34.05 45.62 19.27 34.03 38.94
SFA (quant) 57.47 30.74 5.16 59.63 33.10 44.93 15.98 33.64 3746

Table [8] compares SFA with a variety of token-level and feature-level compression / acceleration
techniques on GPT-2 124M and Qwen3-0.6B. We report both prefill (“Forward”) and decoding
(“Decode”) latency at 128K context, together with perplexity and downstream accuracy.

Orthogonality to token-level methods. For token-level operations, SFA is applied on top of Long-
former and NSA as a drop-in replacement for their dense attention blocks. In both models, adding
SFA consistently reduces both Decode and Forward latency while achieving comparable perfor-
mance. This shows that SFA is orthogonal to token-level sparsification: it can be combined with
existing token-level sparse attention methods to further accelerate long-context inference.

Feature-level speed—accuracy trade-off. Among feature-level methods, SFA can also be combined
with MLA(on the compressed latent vector) and quantization. Pure SFA reduces latency compared
to the dense baseline while keeping PPL and average accuracy close. Compared with Short and
Low-Rank feature compression, which suffer larger accuracy drops, SFA and SFA (quant) maintain
much higher accuracy at similar or better speed. Overall, SFA and its combinations deliver the
strongest performance among feature-level approaches while still providing significant end-to-end
speedups.
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Figure 7: Entropy of Top-K feature selection across layers and heads. We plot the normalized
entropy of the TopK index distribution for each attention head and layer of Qwen3-0.6B when apply-
ing SFA. (a) Entropy of the TopK positions of query vectors @) (16 heads, due to GQA). (b) Entropy
of the TopK positions of key vectors K (8 heads). Each cell corresponds to one (layer, head) pair,
and brighter colors indicate higher entropy (more balanced use of feature dimensions).

A natural concern for TopK sparsification on ) and K is that some heads or layers might collapse
to using only a few feature dimensions, leading to poor load balance. To study this, we measure
the normalized entropy of the TopK index distribution for every head and layer on a small but
diverse evaluation set: we sample 50 samples from each of the Arxiv, Github, FreeLaw, and PubMed
domains in the Pile validation split (200 samples in total) (Figure[7). For the 16 Q-heads in Qwen3
(due to GQA), the entropy ranges from 0.88 to 0.98 with an average of 0.94. For the 8§ K-
heads, the entropy ranges from 0.85 to 0.97 with an average of 0.93. These values are close to
the maximum possible entropy (1.0) and show only mild variation across layers and heads, indicating
that the selected TopK dimensions remain well distributed rather than concentrating on a few indices.

Although SFA does not introduce any explicit load-balance loss, the feature activations remain
nearly balanced. We hypothesize that, unlike TopK applied to weights (as in MoE routing), applying
TopK directly on feature vectors during end-to-end training encourages the model to exploit its full
expressive capacity: different dimensions are naturally used whenever they help reduce the training
objective. As a result, the model tends to learn a near-uniform utilization of features.
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G ORTHOGONAL BASELINES

Table 9: Comparison results with token-sparse, KV-pruning, low-rank, and kernel baselines on
GPT-2. Token-sparse training methods include Routing(Roy et all 2021)) and Longformer(Beltagy]
et al] [2020); KV-pruning (training-free) methods include HoO(Zhang et al) [2023), Quest(Tang
et al.|[2024), and SnapKV (Li et al.l 2024); Loki(Tsiamas et al.,[2024) is a low-rank key compression
method (training-free); Performer(Choromanski et al.L[2020) is a kernel-based approximation. Rows
marked “+SFA (k = 8)” apply our feature-sparse SFA to Longformer and SnapKV, showing that
SFA is orthogonal to these approaches and can be combined with them.

Model | Latency@128k PPL Acc
‘ Decode Forward OWT/Pile PiQA LAMBDA ARC-e ARC-c HellaS Avg
Dense (full) 17.08 16.86 17.29 42.74 22.78 28.35 8.12 19.61 24.32
SFA 14.12 9.41 18.17 41.62 21.03 28.41 7.39 19.26  23.54
Token Sparse (Training)
Routing 7.92 8.37 18.64 41.39 21.08 28.31 7.11 18.89 2335
Longformer 6.75 7.93 18.73 41.28 21.27 28.02 7.01 18.92  23.30
+SFA (k = 8) 5.23 6.18 19.30 40.75 20.54 26.39 6.63 17.24 2231
GPT2 KV-pruning (Training-free)
124M
H,O 13.32 16.86 18.02 41.81 20.55 27.04 7.38 18.75  23.11
Quest 10.84 16.86 17.95 42.34 20.79 28.3 7.82 18.83  23.62
SnapKV 9.88 16.86 17.91 42.49 21.92 28.43 8.01 19.38  24.05
+SFA (k = 8) 6.92 9.41 19.44 39.99 20.24 27.13 6.83 17.74  22.39
Low-rank keys (Training-free)
Loki 11.39 16.86 17.82 42.1 21.29 28.01 7.99 19.24  23.73
+SFA (k = 8) 9.09 9.41 19.29 40.83 20.04 27.85 7.13 18.03  22.78
Kernel Method
Performer ‘ 9.43 7.93 19.72 39.83 19.11 26.72 6.77 1538  21.56

Orthogonality and composability with existing token sparse methods. Table [0 compares SFA
with representative long-context techniques on GPT-2 124M and Table [8|compares SFA with other
efficient attention methods. As a standalone replacement of dense attention, SFA already improves
efficiency over the dense baseline while perplexity and average accuracy remain close. More impor-
tantly, SFA is orthogonal to existing methods and can be combined with them for additional
gains.

Token-sparse training methods. When applied on top of Longformer, we sparsify selected tokens.
SFA further reduces latency from 6.75/7.93 to 5.23/6.18 (= 1.3x faster decode and prefill), with
only a modest change in quality. This shows that feature-level sparsification in SFA complements
token-level sparsity patterns.

KV-pruning and Low-rank keys methods. KV-pruning methods such as Hy O, Quest, and SnapKV
improve speed by compressing the number of tokens in the KV cache, so they only accelerate the
Decode stage and leave Forward latency unchanged. When we combine SFA with SnapKV, we
obtain additional acceleration in both stages. Similar behavior holds relative to HoO and Quest.
This shows that SFA is complementary to KV-pruning: KV-pruning reduces the number of cached
tokens for decoding, while SFA sparsifies feature dimensions and brings additional gains.
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Figure 8: Ablation of sparsity £ on GPT-2 124M with fixed head dimension d = 64. Perplexity
on OpenWebText (left) and latency at 32K context (right) as a function of the Top-k sparsity level
used by SFA. The dashed gray line denotes the dense (full) attention baseline; the red curve shows
SFA with different k.
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Figure 9: Ablation of head dimension dpe,q on GPT-2 124M with fixed sparsity k£ = 8. Perplexity
on OpenWebText (left) and latency at 32K context (right) as a function of the head dimension dje,q
used by SFA. The dashed gray line denotes the dense (full) attention baseline; the red curve shows
SFA with different dpeqq-

Sensitivity to sparsity k. Figure [§]studies how the Top-k sparsity level affects performance. As k
increases from very sparse settings (e.g., kK = 2) to denser ones (e.g., k = 16), perplexity monotoni-
cally decreases and quickly approaches the dense baseline; for k£ > 8, the SFA curve is very close to
dense attention. In contrast, latency at 32K grows smoothly with k: very small % yields the largest
speedup, while moderate k (around k& = 8) still keeps a substantial latency advantage over
the dense model with only a small perplexity gap. Overall, SFA exhibits a stable speed—accuracy
trade-off and is not overly sensitive to the exact choice of &, allowing practitioners to pick k£ to match
a desired latency budget.

Sensitivity to head dimension dye,q. Figure E| varies the head dimension while keeping SFA en-
abled. When the heads are extremely small (e.g., dnead = 32), perplexity degrades noticeably. As
we increase the dimension, perplexity quickly improves, and at dye,g = 64 it is already very close
to the dense baseline while latency remains substantially lower. Further increasing dje,q beyond 64
brings only marginal perplexity gains but steadily increases latency. Thus dpeaq = 64 emerges as the
sweet spot of the speed—accuracy trade-off: it recovers most of the dense-model performance while
preserving most of the acceleration provided by SFA.
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I TRAINING STABILITY ANALYSIS

In this section, we investigate the training process of SFA. Figure [T0]illustrates the validation loss
trajectories across varying sparsity levels (k € {2,4,8,16}) of GPT2-124M. We observe that the
loss curves exhibit smooth, monotonic convergence devoid of divergent spikes or chaotic oscilla-
tions. Notably, even under the most aggressive sparsity constraint (K = 2, red line), the model
converges steadily. These empirical results suggest that SFA can intrinsically maintain training sta-
bility without suffering from excessive variance or optimization instability.

5ol —— SFA(k=16)
SFA(k=8)
—— SFA(k=4)
as —— SFA(k=2)
wn
%)
o
— 4.0
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Figure 10: Validation loss curves of SFA on GPT-2 (124M) pre-training. We compare varying
sparsity levels k € {2,4,8,16}. The curves decrease smoothly and monotonically without divergent
spikes, demonstrating that SFA maintains training stability even under aggressive sparsity (k = 2).

J MEMORY SAVING

In our implementation, memory gain can be achieved when k& < %d. The memory savings of SFA
compared to the dense model depend on the data precision used to store the col_indices array
and row_pointer array in the CSR matrix.

For a CSR matrix with shape (N, d) where each row has a fixed number of & non-zero values, the
required bytes for each component are calculated as follows:

* value array memory:
Memy,je = (N X k) X Sval (10)

* indices array memory:

Memipgices = (N X k) X Siax (11)

* indptr array memory (length is N 4 1):
Memingpr = (N 4+ 1) X Spr (12)

Where S denotes the number of bytes for the data format.

Therefore, the total memory consumption of the CSR format is the sum of these three parts:

Memcsr = Memvalue + Memindices + Memindp[r (13)
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Substituting the above formulas, we obtain the final memory consumption formula:

Memey = (N X k X Sya) + (N x k x Siax) + (N + 1) X Sper)
=N x k x (Sv;ﬂ + dex) + (N + 1) X Sptr (14)

Consequently, compared to a dense matrix of the same shape, the ratio of memory consumption is:

Memygense _ N x d X Sy d X Syal

Ratio = = ~
Memcsr N X k X (Sval + Sidx) + (N + ]-) X Sptr k X (Sval + Sidx) + Sptr

15)

As the /K feature dimension in Transformers is generally small, indices are typically stored in
int8 format and indptr in int 32 format. When we use fp16/bf16 to store the value array:

Memgense N dx2 2d 2d

Ratio = ~ = ~ —
MO Memey  kx(2+1)+4 3k+4 3k

(16)

K ADDITIONAL NTAH EXPERIMENT

To verify that SFA functions effectively as a general-purpose mechanism without requiring task-
specific supervision, we evaluated the retrieval capabilities of SFA in a zero-shot setting. We
trained the Qwen3-0.6B model equipped with SFA solely on general language corpora (standard
pre-training) and evaluated it on the NIAH task.

As presented in Table[T0] SFA consistently outperforms the dense attention baseline across all tested
context lengths (1k to 4k), despite lacking specific training for retrieval tasks.

At a context length of 4k, SFA (k = 16) achieves an accuracy of 71%, significantly surpassing the
dense baseline (62%). Even with aggressive sparsity (k = 8), SFA maintains superior performance
(66%).

In addition to improved accuracy, SFA provides substantial speedups. Specifically, SFA (k = 8)
achieves a 1.5 x speedup at 4k context length compared to the dense baseline.

These findings indicate that feature-level sparsification does not introduce an information bottle-
neck. On the contrary, the results suggest that SFA preserves essential semantic information while
potentially filtering out noise in long-context scenarios, allowing it to function effectively within a
general-purpose foundation model paradigm.

Table 10: NIAH accuracy (%) within 4k Context Length. Qwen3-0.6B trained on Pile dataset
with 4k window, and the accuracy rate on NIAH test lengths from 1k to 4k.

Context Length | 1k 2k 3k 4k Speedup@4k

Dense(full) 93 87 79 62 1.0x
SFA(k = 8) 95 90 80 66 1.5x
SFA(k = 16) 9% 90 83 71 1.2x
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Figure 11: Eigenvalue spectrum analysis for Qwen3-0.6B model. Layer-wise effective dimension
of (a) query and (b) key activation with normalized cumulative eigenvalue of 0.9, evaluated on the
same sampled subset of the Pile validation set in Appendix B

To better understand why Top-k feature sparsification can preserve semantic information in atten-
tion, we analyze the intrinsic dimensionality of the query and key representations in pretrained dense
model.

We use the pretrained Qwen3-0.6B model and run it on the same sampled subset of the Pile valida-
tion set in Appendix [F] For each transformer layer and attention head, we collect the corresponding
query and key vectors @, K € R (with head dimension d = 128). We then perform singular value
decomposition (SVD) on the stacked feature matrices and compute the effective rank at a given
energy threshold 7 = 0.9.

As shown in Figure despite the nominal head dimension d = 128, both () and K exhibit con-
sistently low effective rank, typically around 50—60 across layers. This confirms that the attention
features lie on a low-dimensional manifold and are therefore highly compressible. The key matrices
tend to have slightly lower effective rank than queries, but both are far from full rank, indicating
substantial redundancy in the dense representations.

M LLM USAGE STATEMENT.

In line with the ICLR policy, we disclose the use of Large Language Models during the preparation
of this manuscript. Our use of these tools was strictly limited to assistance with language and
formatting. Specifically, we employed an LLM to correct grammatical errors and improve the clarity
and readability of sentences. The LLM had no role in the core scientific aspects of this work,
including research ideation, methodological design, experimental analysis, or the generation of any
results or conclusions. All intellectual contributions and the core content of this paper are solely the
work of the authors.
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