UGM2N: An Unsupervised and Generalizable Mesh
Movement Network via M-Uniform Loss

Zhichao Wang'? Xinhai Chen'?* Qinglin Wang'!-? Xiang Gao'~
Qingyang Zhang'2 Menghan Jia’? Xiang Zhang'? Jie Liu!-?
Laboratory of Digitizing Software for Frontier Equipment,
National University of Defense Technology, Changsha, China,
2National Key Laboratory of Parallel and Distributed Computing,
National University of Defense Technology, Changsha, China,
wangzhichao@nudt.edu.cn, chenxinhail6@nudt.edu.cn

Abstract

Partial differential equations (PDEs) form the mathematical foundation for model-
ing physical systems in science and engineering, where numerical solutions demand
rigorous accuracy-efficiency tradeoffs. Mesh movement techniques address this
challenge by dynamically relocating mesh nodes to rapidly-varying regions, enhanc-
ing both simulation accuracy and computational efficiency. However, traditional
approaches suffer from high computational complexity and geometric inflexibility,
limiting their applicability, and existing supervised learning-based approaches face
challenges in zero-shot generalization across diverse PDEs and mesh topologies.
In this paper, we present an Unsupervised and Generalizable Mesh Movement
Network (UGM2N). We first introduce unsupervised mesh adaptation through
localized geometric feature learning, eliminating the dependency on pre-adapted
meshes. We then develop a physics-constrained loss function, M-Uniform loss, that
enforces mesh equidistribution at the nodal level. Experimental results demonstrate
that the proposed network exhibits equation-agnostic generalization and geometric
independence in efficient mesh adaptation. It demonstrates consistent superiority
over existing methods, including robust performance across diverse PDEs and mesh
geometries, scalability to multi-scale resolutions and guaranteed error reduction
without mesh tangling.

1 Introduction

Solving partial differential equations (PDEs) is fundamental for modeling physical phenomena,
spanning fluid dynamics, heat transfer, quantum mechanics, and financial markets [[1]. Modern PDE
solving critically relies on meshes, which serve as the foundational discretization framework for
numerical methods [2}[3]]. The accuracy and computational cost of PDE solutions are significantly
affected by mesh resolution: high-resolution meshes resolve complex physics at high computational
expense, whereas coarse meshes improve efficiency but risk missing critical features. As problem
complexity grows, geometric details demand exponentially finer resolution, while multi-physics inter-
actions require dynamic adaptation—pushing memory, parallel efficiency, and solver convergence
to their limits [4]]. To alleviate this issue, mesh adaptation methods—particularly mesh refinement
method (h-adaptation method) and mesh movement method (r-adaptation method) —dynamically op-
timize computational resources, systematically overcoming traditional bottlenecks through intelligent
spatial discretization control [SH7]].

*Corresponding Author

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Mesh refinement method dynamically adjusts resolution via local element subdivision/coarsening,
altering node counts while retaining fixed positions. In contrast, mesh movement method preserves
node counts but relocates them strategically to high-resolution regions, guided by error estimators or
gradients [8]]. While mesh refinement method handles discontinuities via topological changes, mesh
movement method suits smooth domains, avoiding remeshing overhead. However, the traditional
Monge-Ampere (MA)-based methods suffer from high computational costs due to (1) repeated
mesh-motion PDE solves (e.g., solving auxiliary equations) and (2) mesh-quality checks to prevent
inversion. In extreme cases, adaptive operations can exceed the PDE-solving cost itself, making the
enhancement of mesh adaptation efficiency an enduring open problem.

To improve the efficiency of mesh movement method, pioneering works employ supervised learning,
training models on meshes adapted via traditional MA-based methods. Song et al. [9] propose a
mesh adaptation framework trained via MSE loss between initial and adapted mesh nodes, and Zhang
et al. [10] introduce a zero-shot adaptive model trained with a combined loss of volume preservation
and Chamfer distance between initial and adapted mesh nodes. However, such supervised methods
exhibit limited generalization: M2N requires PDE- and geometry-specific retraining, risking mesh
tangling under extreme deformations, while UM2N’s zero-shot performance may degrade for unseen
domains or PDEs.

In this paper, we propose UGM2N, an unsupervised and generalizable mesh movement network.
Inspired by vision Transformers [11], we introduce node patches, locally normalized nodes with
first-order neighbors, as model inputs. Unlike M2N/UM2N’s whole-mesh processing, our method
parallelly and independently computes adapted positions for each patch, simplifying the learning
objective and enabling scale-invariant mesh adaptation. Leveraging the node patch representation, we
formulate an M-Uniform loss function that mathematically encodes local equidistribution properties,
the core objective of mesh movement methods. Minimizing this patch-wise loss can produce
approximately M-Uniform meshes while effectively matching MA-based adaptation objectives—all
achieved through an efficient unsupervised framework. By learning adaptation dynamics directly, our
model achieves equation-agnostic generalization while maintaining mesh-geometric independence.

Our main contributions are summarized as follows:

* We present an unsupervised mesh movement network, eliminating the need for pre-adapted
meshes by learning solely on initial meshes and flow fields. Our novel node-patch represen-
tation processes localized neighborhoods rather than full meshes, enabling efficient training
and inherent generalization.

* We derive a theoretically grounded M-Uniform loss function that enforces local mesh
equidistribution at the node-patch level, which aligns with MA-based optimization objectives
through a fully data-driven approach with native equation-agnostic generalization across
arbitrary mesh geometry.

* We present extensive numerical validation showing exceptional generalizability and robust-
ness across various PDE types (both steady-state and time-dependent), accommodating
different boundary conditions or initial conditions, and mesh geometries with varying shapes
or resolutions.

2 Related Work

Machine learning for mesh generation and optimization. The automation and intelligence of
mesh generation are among the key challenges in CFD 2030 [12]], driving significant research efforts
toward intelligent mesh generation and optimization. Zhang et al. [[13}[14] proposed the MeshingNet
and MeshingNet3D models to generate high-quality tetrahedral meshes, demonstrated in linear
elasticity problems on complex 3D geometries. Chen et al. [15]] introduced the MGNet model, which
employs physics-informed neural networks [[16] to achieve structured mesh generation. For mesh
optimization, Guo et al. [17]], Wang et al. [18,|19]] developed intelligent mesh optimization agents
based on supervised learning, unsupervised learning, and reinforcement learning (RL), achieving a
balance between optimization efficiency and quality.

Machine learning for mesh adaptation. Unlike static mesh optimization methods, mesh adaptation
dynamically modifies the computational mesh during simulation to enhance resolution in critical
regions (e.g., shock waves, boundary layers, or vortex-dominated flows). These techniques are

guided by error estimation schemes or feature-based criteria, ensuring computational efficiency
while preserving accuracy. Advanced implementations leverage machine learning to predict optimal
adaptation strategies, enabling high-fidelity simulations for complex, evolving flows.

For mesh refinement method, Foucart et al. [20] pioneered RL for adaptive mesh refinement, for-
mulating it as a POMDP and training policy networks directly from simulations. Dzanic et al. [21]]
developed DynAMO, using multi-agent RL to predict future solution states for anticipatory refine-
ment. Kim et al. [22] introduced GMR-Net, leveraging graph CNNs to predict optimal mesh densities
without costly error estimation. Beyond these foundational works, research in intelligent h-adaptive
mesh refinement remains highly active, with additional advancements documented in [23-29].

For mesh movement method, Omella and Pardo [30] proposed a neural network-enhanced boundary
node optimization method, which is specifically designed for tensor product meshes. Song et al. [9]
introduced M2N, a framework combining neural splines with Graph Attention Network (GAT) [31]],
enabling end-to-end mesh movement with 3—4 order-of-magnitude speedups. Hu et al. [32]] introduced
a neural mesh adapter trained via the MA equation physical loss to dynamically adjust mesh nodes,
and develops a moving mesh neural PDE solver that improves modeling accuracy for dynamic
systems. Rowbottom et al. [33] proposed a graph neural diffusion method that directly minimizes
finite element error to achieve efficient mesh adaptation, and proved that its model architecture can
effectively avoid mesh entanglement. For specialized applications, methods such as Flow2Mesh and
Para2Mesh have demonstrated the efficacy of learning-based adaptation in aerodynamic simulations
[34, 35]]. Recent work extended these advances with UM2N [10], a universal graph-transformer
architecture attempts to achieve zero-shot adaptation across diverse PDEs and geometries. Most of
the aforementioned works rely on supervised learning, where models are trained to align their outputs
with pre-adapted meshes, resulting in a lack of physical information. Additionally, they often require
retraining for different PDEs or mesh geometries, limiting their generalizability. This paper adopts an
unsupervised learning approach to achieve equation-agnostic generalization across arbitrary mesh
geometries.

3 Method

3.1 Problem statement and preliminaries

Given an initial mesh M (e.g., a uniform mesh) and associated flow field variables (such as velocity
u or pressure p), the mesh movement method optimizes the node positions to generate an adapted
mesh satisfying predefined resolution criteria. The mesh movement process can be analyzed from
different perspectives, such as coordinate mapping between uniform and adapted meshes, uniform
mesh construction in metric space, and so on [6]. The MA-based method adopts the former approach,
solving the MA equation with boundary conditions to obtain the coordinate mapping (for a detailed
introduction, refer to App. [A). In contrast, this study employs the latter perspective, enforcing uniform
distribution in metric space without explicit coordinate transformations between computational and
physical domains.

From the latter perspective, given a physical domain Q C R¢ (where d > 1), the goal of mesh
movement is to construct uniform meshes in some metric space, which is defined by a matrix-valued
monitor function M = M (x), where x € (2. A mesh is said to satisfy the mesh equidistribution
condition if it is uniformly distributed in this metric space, which can be mathematically expressed
as:

/ m(x)dx = — VK € M, (1)
K Ne

where o = [, m(x) dx, m(x) = y/det(M(x)) is the mesh density function, K is the element of
M, and N, is the number of elements in the mesh M. This condition constrains the size of mesh
elements—when m(x) is large, the element volume should be small, and vice versa. Additionally,
the M-Uniform mesh condition also requires that the mesh elements should be equilateral in the
metric space. In this work, we primarily focus on modifying the mesh density while disregarding the
equilateral alignment of mesh elements.

Compared to MA-based coordinate transformations, this approach for constructing uniform meshes
in the metric-space offers a more discretization-friendly framework, particularly well-suited for local
loss function modeling (see Section[3.3).

3.2 Network overview

The proposed UGM2N is illustrated in Fig.[I] The model takes the initial mesh with solution as
input, and node patches are constructed from all mesh nodes, with input features generated using
flow field variables. The coordinates of mesh nodes within each patch are normalized to [0, 1] x [0, 1]
via 0-1 normalization, then encoded through node and edge encoders to obtain embeddings. These
embeddings are processed by multiple deform blocks and a node decoder, producing adapted node
coordinates for each patch, which are denormalized to restore the original mesh. The flow field
features of the updated mesh are obtained through Delaunay Triangulation-based interpolation on the
original mesh, and the adapted mesh serves as the initial input for the next iteration, with the process
repeating for a maximum of E epochs.

Delaunay Triangulation-
based Interpolation

Figure 1: The proposed mesh movement network.

Node patches. Inspired by vision Transformers [11]], the proposed model processes individual mesh
node patches, unlike M2N or UM2N, which take the entire mesh as input. This patch-based approach
significantly improves local feature representation while maintaining computational efficiency and
scalability, mirroring the local optimization principles employed in mesh smoothing techniques.

In each adaptive epoch, the input consists of an initial mesh with a flow field solution, denoted as
M ={V,U,E}, where ¥V = {x1,...,xy} represents node coordinates, £ denotes connectivity, and
U = {uy,...,uy} contains flow variables on the nodes. A node patch P; = {X;, £;} is defined as
the node itself, its first-order neighbors, and their connections (excluding inter-neighbor connections).
Patch normalization scales nodes to a unit square, reducing learning difficulty and accommodating
varying mesh sizes. It is worth noting that normalization does not introduce additional computational
overhead, as it can be efficiently implemented using vectorized operations.

The flow field features are incorporated into the patch features using a mesh density function derived
from the Hessian matrix:

RN | ()]
M(x;) = (1 + max; ||H(Ug)) h .
mixs) = 1+ o) &)

max; || H(u;)[|”

where « is a constant, u; = ||u;||2, I is the identity matrix, and ||H(w;)]| is the Frobenius norm of
the Hessian. The scalar m(x;) is concatenated with node coordinates (yielding a 3D input for 2D
meshes) as the model’s input.

Mesh coordinate computation based on Graph Transformer model. The adapted node coordinates
are computed using a lightweight model. Node and edge features (central-to-neighbor coordinate
vectors) are first encoded via dedicated MLP encoders, followed by L deform blocks for graph feature
extraction. We employ a residual-connected Graph Transformer [36] in each block, proving effective
despite its simplicity. The adapted patch coordinates are then computed through the node MLP
decoder, and the centering mesh node within each patch (the pink node in Fig.[I) is denormalized to
the original mesh space through vectorized operations. For boundary nodes, we ignore them and do
not perform adaptation, since the output coordinates are unlikely to lie precisely on the boundary.

Iterative mesh adaptation with dynamic termination. Inspired by iterative mesh smoothing, multi-
epoch mesh adaptation is employed to progressively refine node distribution during inferenceﬂ the
Hessian norm values are updated between epochs via Delaunay triangulation-based interpolation from
original to adapted nodes, providing initialization for subsequent adaptations. While this process could
theoretically continue indefinitely, convergence is not guaranteed and mesh validity may degrade
(see App. for discussions). A fixed epoch count would limit optimization capability; instead,
we propose a metric-based adaptive strategy that dynamically determines termination based on
optimization progress. This approach will be detailed following the presentation of our unsupervised
loss function.

3.3 M-Uniform loss

Unlike existing methods, which adopted supervised loss functions to align predicted meshes with
reference meshes, our approach addresses two key challenges in practical applications: (1) the
frequent unavailability of high-quality reference meshes, especially for multi-physics or geometrically
complex problems, and (2) the poor zero-shot generalization to novel PDE types beyond the training
distribution. These limitations motivate our development of an unsupervised adaptation method.

As introduced in the Section [3.1] enforcing the mesh equidistribution condition offers a novel
approach. Eq. requires that the integral of m(x) over any mesh element K be constant. However,
since m(x) is only known at mesh nodes, exact integration is infeasible. We thus relax the strict
M-Uniform condition to an approximate M-uniform condition:

/ mde:mK\K|:&,VK€M, @
K Ne

1
myg = /det(Mg), Mg = |K|/ M (x)dx,)
K

where |K| represents the volume of the mesh element K and oy, is a constant. Here, My is
approximated via nodal averages: for a triangular element K with nodes K1, Ko, K3, Mg =

3 Z?Zl M (xl,) (note that M (x”) require interpolation to obtain), where x; is the adapted position
of node ¢ output by the model. Together with Eq. and we can obtain my = 3 23:1 m(x}(j).
Building upon these foundations, we can define a metric function for element K:

EszK\KL (6)

Let K} be the mesh element [in the patch of mesh node i. Rewriting Eq. in terms of the local mesh
node 4, we require that £ K be as uniform as possible around mesh node :. We measure the variation

in £ K among different mesh elements using a variance-based loss function:

1 & N2
Lo (P) = 57 2 (g ~ L))
1=1
where V; is the number of mesh elements in the patch P;, and £ Ki = N% Zl]\;’l L K- Then, the
proposed M-Uniform loss function can be writen as:
L (0) = AEieqa,... . vy Lvar (Pi) (8

where 6 is the model parameters, and A = 100 is a scaling constant. This approach shares conceptual
similarities with PINNs, where local constraints—residual conditions in PINNs and the M-Uniform
condition here—guide the learning process. By enforcing mesh equidistribution condition at the node
level, the model can adapt mesh node positions without supervised data, ensuring generalization
to arbitrary adaptive scenarios. Crucially, unlike existing adaptive methods (e.g., M2N or UM2N),
training does not require the full mesh as input. Instead, it can be trained on individual mesh nodes.
For example, during mini-batch training, we can sample a subset of mesh nodes from the mesh
and achieve efficient training through graph batchin Moreover, this approach further reduces the

*Multi-epoch mesh adaptation is disabled during training to simplify the training process.
3Notably, during training, we do not use the model outputs to update the mesh nodes—in other words, there
is no dynamic mesh update.

required amount of data, as the number of data samples is proportional to the number of mesh nodes
rather than the number of meshes.

During iterative mesh adaptation, we compute the global uniformity metric Ly,, (M) over the entire
adapted mesh M’ after each epoch to assess equidistribution compliance:

, 1 ——\2
»Cvar (M) = F (»CK; - ['K,) 5 (9)
¢ 1=1

where N, is the number of mesh elements in M’, and Ly, = Ni Zf\il L,. The model stops the

iterative mesh adaptation when L., (M) no longer decreases. During inference, we set a fixed upper
limit for the number of iterations—specifically, we set the maximum number of mesh adaptation
epochs as 10. The full adaptation algorithm is detailed in App.[B.1] and the theoretical analysis of the
effectiveness of the loss function to optimize mesh distribution is provided in App.

4 Experiment

4.1 Experiment setups

Different numerical simulations involve diverse flow-field and mesh geometries characteristics.
An effective mesh movement method must account for variations in both the flow field and the
underlying mesh geometry. Our experiments show that the proposed method achieves robust, optimal
performance across both scenarios—whether applied to different flow fields (diverse PDEs with
varying solutions) or entirely distinct mesh geometries.

Model training. Following UM2N’s protocol, we trained UGM2N on a mesh with only four flow
fields and evaluated its zero-shot generalization performance on unseen flow fields or meshes. As
depicted in Fig.[12] (App. [C.I), random perturbations were applied to mesh node positions to enhance
data diversity, resulting in a training set comprising 10,440 mesh nodes. The model was optimized
using Nadam [37] with an initial learning rate of le-4, with all experiments conducted on an NVIDIA
RTX TITAN GPU. See App. [D]for more training details.

Baselines and metrics. We performed a comparative analysis against the MA method [38], M2N,
and UM2N, using UM2N’s pre-trained weights obtained from its GitHub repository [39]]. Perfor-
mance was evaluated using two key metrics: (1) error reduction (ER), which measures the relative
improvement in PDE solution accuracy compared to the initial coarse mesh (with the high-resolution
solution serving as the reference), and (2) tangling ratio (TR), defined as the fraction of invalid
elements in the adapted mesh. Additional case-specific metrics will be presented in the corresponding
experimental sections. Detailed mathematical definitions of all metrics are provided in App. [E.T]

4.2 Performances across different flow field solutions

To assess the model’s generalization ability across diverse flow fields, we conducted experiments
using Burgers’ equation with varying initial conditions, as well as Poisson and Helmholtz equations
with different analytical solutions (refer to App.[C.3]and [C.4]for more detailed PDE configurations).
All simulations were performed on a uniform triangular mesh spanning the domain [0, 1] x [0, 1],
comprising 1,478 elements. For validation, a high-fidelity reference solution was computed on
a significantly refined mesh with 23,250 elements, ensuring precise accuracy for benchmarking
purposes.

The test results are summarized in Table [T} it can be observed that the our model demonstrates
significant advantages in the vast majority of cases. In the seven test cases for the Poisson equation, our
model achieved optimal performance (highest ER or lowest TR) in five cases, particularly excelling

2 _)2 .
with complex functions. For example, for 3, ; exp|— (a:g;g;) - (yo.yz’g;)], ours achieved an ER

of 9% , far surpassing the comparison methods. Additionally, ours achieved complete dominance in
the Helmholtz equation, securing the four highest ER out of five test cases. Although slightly inferior
to M2N in the Burgers equation, ours still significantly outperformed UM2N. Moreover, in all cases,
our model did not produce any mesh tangling phenomena (for the mesh tangling test on non-convex
meshes, refer to App. [E.2). These results validate the robustness and generalization capability of our

Table 1: Model performance of different flow fields
ER(%)1 or TR(%)/

PDEs Variables
MA [38] M2N[0] UM2N Ours
Uexact
1 + 872 cos(2mx) cos(27y) 15.40 0.92 6.74 14.56
2 2
3., e5D [— (552) - (%)] 864 -30.20 559 9.00
Poisson sin(47z) sin(4my) 9.79 -98.01 -2.19 12.46
1/exp((z — 0.5)% + (y — 0.5)2) -28.22 1.15 -2.98 1.70
sin(2mx + 27y) 169 -34.03 9.07 9.07
cos(mz) exp(—((z — 0.5)2 + (y — 0.5)2)) -8.94 -41.89 5.15 4.90
— 2
cos vz =05 + (s~ 05") X 2523 162 353 256
exp(((z—0.5)2+ (y — 0.5)?))
Uexact
cos(2my) 1560 -11.16 10.86 14.11
cos(2m) 1029 -37.24 6.80 13.15
Helmholtz cos(2my) cos(2mx) 13.48 -24.33 5.63 15.03
cos(2my) cos(47z) 1087 -351.63 261 14.09
cos(4my) cos(2rx) 13.50 -250 343 16.98
Uic
T
. 2 2
Burgers [sm (—20 (z - 0.5)) . cos (—20 (y —0.5))]) 2681 44.82 046 3222
[exp (7 ((z —05)%+ (y— 0.5)2) y 100) 70] 5112 2993 276 30.19

method in mesh adaptation across different PDEs, achieving state-of-the-art performance compared
to existing approaches.

The mesh adaptation results for
the Helmholtz equation are shown cos(2my) cos(2mz) cos(2my) cos(2mx) cos(2my)cos(dmx) cos(4my) cos(2mz)

in Fig. 2] (for results on the Pois-

son and Burgers equation, refer to |,
App. [E3). Our method demon-
strates superior visual alignment

with the target flow field while
simultaneously generating meshes
with excellent quality compared to
alternative approaches. It is notewor-

thy that, although M2N and UM2N

can generate qualitatively adaptive
meshes, they exhibit weaker com- "
pliance with the mesh equidistribu-

tion condition compared with our
method (see App. [E3). Addition-

ally, in the present work the bound- vom
ary nodes are kept fixed during

adaptation; experiments that allow
constrained movement of boundary Figure 2: Mesh adaptation results for the Helmholtz equation
nodes are reported in App.[E-4] with different solutions.

4.3 Performance across varying mesh geometries

Varying mesh resolutions. Practical simulations often involves meshes with varying element sizes,
making it crucial for the model to handle meshes of different resolutions. We tested the model’s
performance on the Helmholtz equation with different mesh element sizes, where the solutions are
the same as in Tablem The coarse mesh element sizes were [0.05, 0.04, 0.03, 0.02], corresponding to
mesh element counts of [944, 1478, 2744, 5824]. As shown in Fig.El, our model achieved improved
solution accuracy across all element sizes, whereas the M2N model failed to adapt the mesh at any
resolution, and UM2N could only generalize on some of the element sizes. The results demonstrate

‘xu = [0.25,0.25]7, y, = [0.25,0.25]7

S
S
—
=
===
=l
———

Element Size.

cos(2ny)cos(anx)

g,
w0
o

ggggggggggg

cos(any)cos(2nx)

IJ » |I IJ IJ Figure 4: The performance of mesh
0 movement methods under different

mesh resolutions is presented. The
dashed line in the figure indicates
the time required for UGM2N to
complete a single iteration.

002 003 001 005
002

Figure 3: The ER for different mesh resolutions on the
Helmholtz equation. For clarity, we clipped the minimum
ER at -1%, even though for some methods (e.g., M2N), their
adapted meshes significantly increased the solution error.

that the loss function based on MSE between mesh nodes in M2N struggles to generalize to unseen
meshes. Furthermore, UM2N’s volume loss exhibits only limited generalizability.

Regarding computational efficiency, as illustrated in Fig.[d] we present the time required for mesh
movement under varying element sizes. For each model configuration, we conducted ten repeated
tests on different solutions of the Helmholtz equation and reported the average mesh movement time
per trial. Compared with the MA method, the neural-based mesh movement method demonstrates
significant advantages. For detailed efficiency and scalability analysis, see App.[E.6]

t =249s t = 2.53s) Cumulative Error

t = 2.56s t = 2.505 S % W T e = w0

Time Step

s

125

5 100

L2 Error Norm

2.0
17
150
Lo
7
5
2

075
050
025

Drag Coefficient

— High-resolution mesh
-37 —— Coarse mesh (MAE: 5.33e-02)
—— UM2N (MAE: 2.47e-02)
—— UGM2N (MAE: 7.20e-03)

¢ UGM2N
Figure 5: Results on the cylinder flow. We present the adaptive

meshes at four time slices, with the results over the entire simu-
lation period provided in the supplementary video materials.

Figure 6: Mesh adaptation on the
subsonic flow case. MA method
fails to converge in this case.

Varying mesh shapes. Another potential variable in the simulation is the shape of mesh. To
evaluate the model’s generalization capability under different mesh geometric configurations, we
quantitatively conducted three distinct simulation cases: subsonic flow around a NACAQ0012 airfoil,
cylinder flow, and the wave equation on a circular domain, with the experimental setups provided in
App. The adaptive results of the airfoil mesh are shown in Fig.[f] which shows that our model
effectively captures the shock wave location without introducing any invalid elements. Additionally,
at the position y = 0.25, our model obtains the minimum mean absolute error (MAEH) in pressure
coefficient result. For the cylinder flow case, neither MA nor M2N could produce valid meshes. As

5The average absolute error between the solution on the high-resolution mesh and the solution on the adaptive
(coarse) mesh at each position (time step).

shown in Fig.[5] compared to UM2N, our model further reduces the prediction error of the drag
coefficient and slightly decreasing the cumulative error during the solving process. The results of
the wave equation are shown in Fig.[7] At any given time step, our proposed method consistently
generates smooth, high-quality adaptive meshes. In contrast, other methods may produce distorted
mesh elements and fail to reduce errors, although they can also generate adaptive meshes.

To further validate UGM2N’s generalization to more complex mesh topologies, we demonstrated
its capability on irregular and anisotropic meshes in App. [E.7} where the regularity assumption
(App. [B-2) may not hold. Additionally, we benchmarked all methods on 1,000 random polygonal
domains using Gaussian mixture flow fields as exact solutions in App. [E.8] UGM2N achieves a
Positive ER Ratio of 0.807 with a stable mean ER of 13.99% =+ 21.05%, decisively outperforming MA
(0.110) and UM2N (0.245), both of which frequently yield negative ER. These results demonstrate
that UGM2N achieves substantial error reduction and robust adaptation even in challenging scenarios.

. Mesh around the)
Time step : Time step

ER t=0.75s t=1.25s

FAIL | MA

-8.18%

M2N

-52.75% UM2N

Figure 8: Mesh adaptation on moving cylinder and supersonic

flow cases. In supersonic flow, UGM2N’s adaptive mesh dy-
uem2n namically adjusts nodes to track shock waves; in the moving

cylinder case, it precisely captures both the cylinder bound-

ary and wake flow. The UM2N results for M2N are given in
Figure 7: Mesh adaptation results on App.[E9] The results are also presented in the supplementary
the wave equation. video.

21.81%

Additionally, three qualitative experiments—supersonic flow over a wedge, moving cylinder in a
channel, and Tohoku tsunami with complex boundaries—are provided (first two in Fig. (8] third in
supplementary materials), demonstrating effective adaptive meshes for realistic simulation scenarios.

4.4 Ablation study

Loss function To validate the effectiveness of the M-Uniform loss compared to the coordinate loss
of M2N and the volume loss of UM2N, we trained models with the same architecture and the same
training data but different loss functions. The supervised data was generated using the MA method.
Table 2| presents the average ER on PDEs with different solutions of models trained with different
loss functions on three types of equations (the equation configurations are the same as in Table|[T).
With only a small amount of training data, supervised learning methods using the entire mesh as
input struggle to produce effective models. In contrast, our unsupervised training approach requires
no adaptive meshes as supervised data, and the node patch-based training method enables effective
model training even with limited data. App. analysis shows increasing training data (10,440
to 41,760 patches) improves ER by up to 43% for Poisson and Helmholtz cases, indicating richer
datasets further enhance model optimization.

Iterative mesh adaptation To demonstrate the effectiveness of our iterative mesh adaptation ap-
proach, Fig.[9]shows the error reduction across optimization iterations for the Poisson equation in

Table[T] The results reveal that the error reduction exhibits a non-monotonic trend, initially increasing
before decreasing as optimization progresses. Notably, our adaptive adaptation epochs (marked with
a diamond) consistently stay within high ER regime, demonstrating the effectiveness of our method.

Mesh Adaptation Epoch and ER

Table 2: The mesh adaptation performance of models trained [o= o
with different loss functions N
ER (%) 1 s e i
Loss Poisson Helmholtz Burgers te
Coordinate loss ~ -8.19 -4.46 -9.17 15z O I s |
Volume loss -8.27 -0.52 -1.46 i R I B O B
M-Uniform loss 5.21 9.94 30.07 T e o™

Figure 9: Error reduction in solving
the Poisson equation under different
adaptive epoch settings.

Scaling parameter \. To assess the sensitivity of UGM2N to the scaling parameter A in the M-
Uniform loss, we conducted an ablation study with A = 105°?° (scale € {-1,0,1,2,3}, 5 runs per
value). The left panel of Fig. [I0]shows that the converged test loss scales linearly with A, consistent
with Eq.[8] confirming that A modulates loss magnitude without affecting convergence dynamics.
Adaptation performance, measured by error reduction, remains stable across most PDEs (right panel
of Fig.[T0). Minor sensitivity in Helmholtz1, Poisson4, and Poisson7 (highlighted in red) arises from
case-specific optimization challenges, not model limitations, as these cases are difficult across all
baselines. Overall, \ exerts negligible influence on convergence and adaptation quality, validating the
robustness of the M-Uniform loss design.

Test Loss vs A Adaptation Performance Across PDEs

~=~ Linear fit (Eq. 8) [stable

B Sensitive (case-specific)
15.0 _} {
1255 —I— 1’

Converged Test Loss

§ Bl

10-1 100 10! 107 10° > >
' P PP E PSP LR
Scaling parameter A PO P A &
5 6% o8 o8 o o o
BRI S S SR SR S S
RIS

%,

PDE Case

Figure 10: Ablation study on scaling parameter \. Left: Converged test loss vs A (log-log scale) with
theoretical linear fit (dashed). Right: Error reduction across PDEs; error bars represent ER variability
across different A values; red bars highlight sensitive cases.

5 Conclusion

We introduce UGM2N, an unsupervised and generalizable mesh movement network. This network
removes the requirement for pre-adapted meshes while demonstrating strong generalization capabili-
ties across various PDEs, geometric configurations, and mesh resolutions. By leveraging localized
node-patch representations and a novel M-Uniform loss, our approach enforces mesh equidistribution
properties comparable to Monge-Ampere-based methods—but in a more efficient, unsupervised man-
ner. Extensive experiments demonstrate consistent performance improvements over both supervised
learning baselines and traditional mesh adaptation techniques, achieving significant error reductions
without mesh tangling across diverse PDEs and mesh geometries. See App. [Hfor the discussions on
limitations and broader impacts.

10

Acknowledgment

We appreciate the reviewers for their valuable insights and helpful comments. This research
was partially supported by the National Key Research and Development Program of China
(2021YFB0300101, 2023YFB3001903), the National Natural Science Foundation of China
(12402349), the Natural Science Foundation of Hunan Province (2024JJ6468), and the Youth Foun-
dation of the National University of Defense Technology (ZK2023-11).

References

[1] Lawrence C. Evans. Partial Differential Equations, volume 19. American Mathematical Society,
2022.

[2] Olgierd Cecil Zienkiewicz, Robert Leroy Taylor, and Jian Z. Zhu. The Finite Element Method:
Its Basis and Fundamentals. Elsevier, 2005.

[3] Randall J. LeVeque. Finite Difference Methods for Ordinary and Partial Differential Equations:
Steady-State and Time-Dependent Problems. Society for Industrial and Applied Mathematics,
January 2007. ISBN 978-0-89871-629-0 978-0-89871-783-9. doi: 10.1137/1.9780898717839.

[4] Patrick M. Knupp. Algebraic Mesh Quality Metrics for Unstructured Initial Meshes. Finite
Elements in Analysis and Design, 39(3):217-241, 2003. doi: 10.1016/S0168-874X(02)00070-7.

[5] Marsha J. Berger and Joseph Oliger. Adaptive Mesh Refinement for Hyperbolic Partial
Differential Equations. Journal of computational Physics, 53(3):484-512, 1984. doi:
10.1016/0021-9991(84)90073-1.

[6] Adaptive Moving Mesh Methods.

[7] Wolfgang Bangerth and Rolf Rannacher. Adaptive Finite Element Methods for Differential
Equations. Springer Science & Business Media, 2003.

[8] Shengtai Li and Linda Petzold. Moving Mesh Methods with Upwinding Schemes for Time-
Dependent PDEs. Journal of Computational Physics, 131(2):368-377, 1997. doi: 10.1006/jcph.
1996.5611.

[9] Wenbin Song, Mingrui Zhang, Joseph G. Wallwork, Junpeng Gao, Zheng Tian, Fanglei Sun,
Matthew Piggott, Junqing Chen, Zuoqgiang Shi, and Xiang Chen. M2N: Mesh Movement
Networks for PDE Solvers. Advances in Neural Information Processing Systems, 35:7199—
7210, 2022.

[10] Mingrui Zhang, Chunyang Wang, Stephan Kramer, Joseph G. Wallwork, Siyi Li, Jiancheng
Liu, Xiang Chen, and Matthew D. Piggott. Towards Universal Mesh Movement Networks.
http://arxiv.org/abs/2407.00382, July 2024.

[11] Salman Khan, Muzammal Naseer, Munawar Hayat, Syed Waqas Zamir, Fahad Shahbaz Khan,
and Mubarak Shah. Transformers in Vision: A Survey. ACM Computing Surveys, 54(10s):1-41,
January 2022. ISSN 0360-0300, 1557-7341. doi: 10.1145/3505244.

[12] Jeffrey P. Slotnick, Abdollah Khodadoust, Juan Alonso, David Darmofal, William Gropp,
Elizabeth Lurie, and Dimitri J. Mavriplis. CFD vision 2030 study: A path to revolutionary
computational aerosciences. Technical report, 2014.

[13] Zheyan Zhang, Yongxing Wang, Peter K. Jimack, and He Wang. MeshingNet: A New Mesh
Generation Method Based on Deep Learning. In Valeria V. Krzhizhanovskaya, Gdbor Zavod-
szky, Michael H. Lees, Jack J. Dongarra, Peter M. A. Sloot, Sérgio Brissos, and Joao Teixeira,
editors, Computational Science — ICCS 2020, volume 12139, pages 186—198. Springer In-
ternational Publishing, Cham, 2020. ISBN 978-3-030-50419-9 978-3-030-50420-5. doi:
10.1007/978-3-030-50420-5_14.

[14] Zheyan Zhang, Peter K. Jimack, and He Wang. MeshingNet3D: Efficient Generation of Adapted
Tetrahedral Meshes for Computational Mechanics. Advances in Engineering Software, 157:
103021, 2021.

[15] Xinhai Chen, Tiejun Li, Qian Wan, Xiaoyu He, Chunye Gong, Yufei Pang, and Jie Liu. MGNet:
A Novel Differential Mesh Generation Method Based on Unsupervised Neural Networks.
Engineering with Computers, 38(5):4409—4421, October 2022. ISSN 0177-0667, 1435-5663.
doi: 10.1007/s00366-022-01632-7.

11

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

Salvatore Cuomo, Vincenzo Schiano Di Cola, Fabio Giampaolo, Gianluigi Rozza, Maziar
Raissi, and Francesco Piccialli. Scientific Machine Learning Through Physics—Informed
Neural Networks: Where we are and What’s Next. Journal of Scientific Computing, 92(3):88,
September 2022. ISSN 0885-7474, 1573-7691. doi: 10.1007/s10915-022-01939-z.

Yufei Guo, Chuanrui Wang, Zhe Ma, Xuhui Huang, Kewu Sun, and Rongli Zhao. A New Mesh
Smoothing Method Based on a Neural Network. Computational Mechanics, 69(2):425-438,
February 2022. ISSN 1432-0924. doi: 10.1007/s00466-021-02097-z.

Zhichao Wang, Xinhai Chen, Chunye Gong, Bo Yang, Liang Deng, Yufei Sun, Yufei Pang, and
Jie Liu. GNNRL-Smoothing: A Prior-Free Reinforcement Learning Model for Mesh Smoothing.
http://arxiv.org/abs/2410.19834, October 2024.

Zhichao Wang, Xinhai Chen, Junjun Yan, and Jie Liu. An Intelligent Mesh-Smoothing Method
with Graph Neural Networks. Frontiers of Information Technology & Electronic Engineering,
26(3):367-384, March 2025. ISSN 2095-9184, 2095-9230. doi: 10.1631/FITEE.2300878.

Corbin Foucart, Aaron Charous, and Pierre F. J. Lermusiaux. Deep Reinforcement Learning for
Adaptive Mesh Refinement. https://arxiv.org/abs/2209.12351, 2022.

Tarik Dzanic, Ketan Mittal, Dohyun Kim, Jiachen Yang, Socratis Petrides, Brendan Keith, and
Robert Anderson. DynAMO: Multi-agent Reinforcement Learning for Dynamic Anticipatory
Mesh Optimization with Applications to Hyperbolic Conservation Laws. October 2023. doi:
10.48550/arXiv.2310.01695.

Minseong Kim, Jaeseung Lee, and Jibum Kim. GMR-Net: GCN-based Mesh Refinement
Framework for Elliptic PDE Problems. Engineering with Computers, 39(5):3721-3737, October
2023. ISSN 0177-0667, 1435-5663. doi: 10.1007/s00366-023-01811-0.

Tomasz Stuzalec, Rafat Grzeszczuk, Sergio Rojas, Witold Dzwinel, and Maciej Paszynski.
Quasi-Optimal Hp-Finite Element Refinements towards Singularities via Deep Neural Network
Prediction. Computers & Mathematics with Applications, 142:157-174, 2023. doi: 10.1016/j.
camwa.2023.04.023.

Andrew Gillette, Brendan Keith, and Socratis Petrides. Learning Robust Marking Policies
for Adaptive Mesh Refinement. SIAM Journal on Scientific Computing, 46(1):A264—A289,
February 2024. ISSN 1064-8275, 1095-7197. doi: 10.1137/22M1510613.

Jiachen Yang, Ketan Mittal, Tarik Dzanic, Socratis Petrides, Brendan Keith, Brenden Petersen,
Daniel Faissol, and Robert Anderson. Multi-Agent Reinforcement Learning for Adaptive Mesh
Refinement. http://arxiv.org/abs/2211.00801, February 2023.

Niklas Freymuth, Philipp Dahlinger, Tobias Wiirth, Simon Reisch, Luise Kérger, and Gerhard
Neumann. Adaptive Swarm Mesh Refinement Using Deep Reinforcement Learning with Local
Rewards. http://arxiv.org/abs/2406.08440, June 2024.

Jiachen Yang, Tarik Dzanic, Brenden Petersen, Jun Kudo, Ketan Mittal, Vladimir Tomov,
Jean-Sylvain Camier, Tuo Zhao, Hongyuan Zha, and Tzanio Kolev. Reinforcement Learning for
Adaptive Mesh Refinement. In International Conference on Artificial Intelligence and Statistics,
pages 5997-6014. PMLR, 2023.

Tailin Wu, Takashi Maruyama, Qingqing Zhao, Gordon Wetzstein, and Jure Leskovec. Learning
Controllable Adaptive Simulation for Multi-resolution Physics. https://arxiv.org/abs/2305.01122,
2023.

Yongzheng Zhu, Shiji Zhao, Yuanye Zhou, Hong Liang, and Xin Bian. An Unstructured
Adaptive Mesh Refinement for Steady Flows Based on Physics-Informed Neural Networks.
http://arxiv.org/abs/2411.19200, November 2024.

Angel J. Omella and David Pardo. \r-{ Adaptive Deep Learning Method for Solving Partial
Differential Equations. http://arxiv.org/abs/2210.10900, October 2022.

Petar Velickovié¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Li0, and Yoshua
Bengio. Graph Attention Networks, February 2018.

Peiyan Hu, Yue Wang, and Zhi-Ming Ma. Better Neural PDE Solvers Through Data-Free Mesh
Movers. http://arxiv.org/abs/2312.05583, February 2024.

12

[33] James Rowbottom, Georg Maierhofer, Teo Deveney, Eike Hermann Miiller, Alberto Paganini,
Katharina Schratz, Pietro Lio, Carola-Bibiane Schénlieb, and Chris Budd. G-Adaptivity: Opti-
mised graph-based mesh relocation for finite element methods. In Forty-Second International
Conference on Machine Learning, June 2025.

[34] Jian Yu, Honggiang Lyu, Ran Xu, Wenxuan Ouyang, and Xuejun Liu. Flow2Mesh: A Flow-
Guided Data-Driven Mesh Adaptation Framework. Physics of Fluids, 36(3):037124, 2024.
ISSN 1070-6631, 1089-7666. doi: 10.1063/5.0188690.

[35] Jian Yu, Honggiang Lyu, Ran Xu, Wenxuan Ouyang, and Xuejun Liu. Para2Mesh: A Dual
Diffusion Framework for Moving Mesh Adaptation. Chinese Journal of Aeronautics, page
103441, February 2025. ISSN 1000-9361. doi: 10.1016/j.cja.2025.103441.

[36] Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjin Wang, and Yu Sun.
Masked Label Prediction: Unified Message Passing Model for Semi-Supervised Classification.
http://arxiv.org/abs/2009.03509, May 2021.

[37] Timothy Dozat. Incorporating nesterov momentum into adam. 2016.

[38] Mesh-adaptation/movement: Mesh movement methods for finite element problems solved using
Firedrake. https://github.com/mesh-adaptation/movement, .

[39] Mesh-adaptation/UM2N: [NeurIPS 2024 Spotlight] Towards Universal Mesh Movement Net-
works. https://github.com/mesh-adaptation/UM2N, .

[40] Mingrui Zhang, Chunyang Wang, Stephan C. Kramer, and Joseph G. Wallwork. UM2N, October
2024.

[41] KratosMultiphysics/Examples. KratosMultiphysics, May 2025.

13

A Monge-Ampere-based mesh adaptation

Monge-Ampere (MA)-based mesh adaptation methods leverage optimal transport theory to map
gradient or Hessian information from the evolving physical solution onto a mesh density function,
thereby generating highly adaptive structured or unstructured meshes that dynamically refine in critical
regions. The core idea is to reformulate mesh adaptation as solving the elliptic Monge-Ampere
equation:

det(D*¢(x)) = M, x e (10)

mo

where m(x) is the monitor function, mg is a normalization constant, ¢(x) is the convex scalar
potential whose gradient defines the optimal coordinate transformation, and D?¢(x) is its Hessian
matrix. This yields an optimal transport mapping that automatically refines the mesh in high-gradient
or high-curvature zones while coarsening it in smooth regions.

However, solving the Monge-Ampere equation demands costly nonlinear iterations—such as Newton
or fixed-point methods—that are computationally expensive, sensitive to initial guesses, and often fail
to converge in complex domains (e.g., non-convex geometries or those with non-smooth boundaries).
These limitations severely restrict the use of MA-based methods in real-time or large-scale adaptive
simulations. The present work overcomes this bottleneck by introducing an unsupervised learning
framework that accelerates the MA solution process while preserving high-quality adaptive meshes.

B Method

B.1 The proposed mesh movement method

The proposed mesh movement method based on UGM2N is presented in Alg.[I] Given an initial
mesh and the corresponding flow field, UGM2N iteratively refines the mesh through multiple adaptive
operations to obtain the optimal mesh. In this algorithm, operations such as Patch Processing, Mesh
Reconstruction, and Convergence Check can all be vectorized, ensuring high computational efficiency
in our method.

Algorithm 1 The proposed mesh movement method

Input: Initial mesh M" = {1°,U° £}, max epochs E
Output: Adapted mesh M*
1: fore =1to E do
2. Patch Processing:
Construct node patches {P;}Y ; from M°~!
for each patch P; = {X;,&;} do
Normalize coordinates X; — [0,1] // Vectorized operations in the loop
Compute density function m(x;) via Eq. 2]and 3]
Encode features: H; = NodeEncoder([X;, m(X;)]) // The operator m is
applied row-wise to the X;
8: Update positions: X! = NodeDecoder(DeformBlocks(H;, EdgeEncoder(&;)))
9: Denormalize centering node in X/ to the original mesh space
10: end for
11: Mesh Reconstruction:
12: Assemble adapted mesh M’ = {V' U’ &'}
13: Interpolate Hessian norm (or grad norm) ||H(x})|| via Delaunay triangulation
14: Convergence Check:
15: Compute global uniformity Ly, (M) via Eq.[9)

A A

16: if L,,, stops decreasing or e == FE then
17: M* — M’

18: break

19: else

20: Mé — M’

21: endif

22: end for

14

B.2 Analysis of M-Uniform loss

Here, we theoretically demonstrate that optimizing the local M-Uniform loss effectively optimizes
the objective function associated with mesh equidistribution in one adaptation epoch. Consider a
mesh M (we omit epoch e for clarity), let Ly € {LK; i€{1,2,...,N},j€{1,2,...,N;}} and
L € {Lk, |1 €{1,2,..., N.}} represent discrete random variables defined over mesh elements
(see Eq. E] and Eq. é]}, and I € {1,2,..., N} be a discrete uniform random variable. Here, N denotes
the total number of mesh nodes, while /N, indicates the number of mesh elements in the patch centered
at node ¢. Simply put, L’ is a random variable defined on all mesh elements, and L Ki is a random

variable defined on the mesh elements contained within all patches. According to the law of total
variance, we have:

Var(Lg) = E[Var(Lg | I)] + Var (E[Lg | I]). (11)

The expectation E[Var(Lg | I)] quantifies the average local variance across node-centered patches,
which simplifies to:

=z

i N

N
1 S 1
E [Var (Lg | 1)] Z (Lii = L) | = 5 D Luar(P2). (12)
i=1 Ni =1 i=1

Lyar (P;)

Moreover, from Eq.[0] we have L., (M) = Var(L;). When the samples in L are repeated samples
from L’ (i.e., each sample is duplicated n times), we have Var(Lg) = Var(L). Assuming that
each mesh element appears in approximately the same number of local patches—i.e., the sampling
of L in L is nearly identical—we can adopt the approximation Var(Ly) ~ Var(L’). This
regularity assumption holds, for example, in high-quality triangular meshes generated by mesh
generation software, where almost all mesh nodes have a degree of 6. Moreover, the number
of nodes on the boundary is relatively small compared to the number of interior nodes. With
Var (E[Lg | I]) > 0, we get such an inequality:

Lone(M) = Var(Ly) ~ Var(Li) > E[Var(Lx | I)] = l.cM), (13

an

)\»Cvar(M) Z CIM() (14)

Therefore, £;(60) provides a valid lower bound for AL, (M). In each adaptation epoch, when the
model can successfully minimizes £ (6), it concurrently optimizes the lower bound of ALy,, (M),
thereby promoting mesh equidistribution. Moreover, in the limit where £;(6) = 0, all local
variances Ly, (P;) vanish, implying that L is constant over all patches. Consequently, L’ must
also be constant, leading to AL, (M) = 0, which corresponds to exact mesh equidistribution.

Convergence and approximation analysis. The M-Uniform loss optimizes local mesh equidistribu-
tion by minimizing L., (P;) (Eq. , similar to traditional mesh smoothing techniques that optimize
geometric quality metrics (e.g., aspect ratio). In a serial implementation, sequential node updates
improve Ly, (P;) for a specific mesh node 7 at each iteration, suggesting convergence. However,
training errors limit exact minimization (L., (P;) = 0), and serial updates are computationally
inefficient. Our Jacobi-style parallel updates enhance efficiency but complicate analysis due to data
races, update conflicts, and the nonlinear nature of the transformation represented by our model. The
non-convex Hessian of the objective function further precludes standard optimization guarantees.
Despite these theoretical challenges, we demonstrate through extensive experiments in Section 4] that
UGM2N achieves robust convergence.

To further validate convergence, we track the nodal displacement norm &, = || X**! — X*|| over
iterations, where X* denotes the mesh node positions at iteration k. As shown in Fig. Of
exhibits consistent decay toward zero across five Helmholtz equation cases, confirming convergence.
Although 6, may stagnate or even increase for larger iterations (k > 10) in some instances, our
dynamic termination strategy (App. effectively mitigates this, ensuring stable mesh adaptation.

15

Nodal Displacement Norm & Across Iterations

—e— Helmholtzl
—e— Helmholtz2
—e— Helmholtz3
—e— Helmholtz4
—e— Helmholtz5

0.12

o
o
=)

JIXk+1 = XK||
o
o
o

b=
o
o
=)

0.04

0 2 4 6 8
Iteration (k)

Figure 11: Nodal displacement norm 8, = || X*+1 — X*|| across iterations for Helmholtz equations.

C Dataset

C.1 Train data setups

We only used four flow fields on the same mesh to train the model, as shown in Fig.[12] The analytical
solutions for the four flow fields are:

1. ui(z,y) = 10sin(27x) sin(27y);

2. ug(z,y) = —2 sin(rz) sin(mwy);

3. ug(z,y) = 10(sin(52)'° + cos(10 + 25zy) cos(5x));
4. ug(z,y) = 10(1 — €* cos(4my)

Additionally, we perform data augmentation on the mesh by introducing random perturbations to the

mesh nodes.
Uy Uz u3 Uy

Figure 12: Flow fields for trianing the mesh movement model.

Origin

Coarsened

C.2 Impact of training data volume

UGM2N attains robust generalization using merely 4 flow fields (yielding 10,440 node-patch samples)
via its unsupervised learning paradigm. To quantify the effect of training data volume, we evaluated
model performance across 4, 8, and 16 flow fields—corresponding to 10,440, 20,880, and 41,760
patches, respectively. As shown in Table [3] performance improves steadily with increasing data
volume. Notably, the Poisson and Helmholtz cases exhibit substantial error reductions, improving
from 5.21% to 7.43% and 9.94% to 14.21%, respectively. Overall, scaling the training data volume
reliably boosts UGM2N’s generalization capability, with especially marked gains in complex PDEs,
highlighting the critical role of larger datasets in future developments.

16

Table 3: Error reduction (%) vs. training data volume (node patches)

Data Volume Poisson Helmholtz Burgers

10,440 5.21 9.94 30.07
20,880 6.56 13.68 29.36
41,760 7.43 14.21 30.56

C.3 Test data setups

Helmholtz. The Helmholtz equation describes the propagation of time-harmonic waves in physics
and engineering. Here, we solve an equation of the following form:

—V2u+u=f,u=gondQ, (15)

where v is the solution variable, 02 denotes the boundary, g is the boundary function for u, and
f is the source term. To test the generalization capability of the model, we construct five different
solutions (see Table[I)), compute f and g to formulate the Helmholtz equation, and evaluate the
model’s performance.

Poisson. The Poisson equation describes how a scalar field responds to a given source distribution,
written as V2u = f. Using the same approach as for the Helmholtz equation, we constructed Poisson
equations with seven different exact solutions (see Table[I)) to test the model.

Burgers. The Burgers equation is a fundamental nonlinear partial differential equation in fluid
dynamics, combining convection and diffusion effects. In this paper, we solve the following Burgers
equation:
0
a—l;+(u-V)u—yV2u:O,
(n-V)u=0on,

where the viscosity coefficient » = 0.005, and the initial conditions are given in Table [T, The
simulation employs a time step of At = %s and runs for a total duration of 0.5s.

(16)

Airfoil and cylinder flow case. The airfoil case was simulated under conditions of Mach 0.8 at 1.55°
angle of attack, while the cylinder flow case employed a Reynolds number of 100 with characteristic
length of 0.2, kinematic viscosity of 0.01, time step of 0.001s, and total simulation duration of
3.5s. In our experiments, the airfoil case employed a coarse mesh with 10,466 elements and a
high-resolution mesh with 41,364 elements, while the cylinder flow used 5,536 (coarse) and 11,624
(high-resolution) elements.

Wave equation. The wave equation is a partial differential equation that describes the propagation
of waves (such as sound waves, light waves, water waves, etc.) through a medium or space. This
experiment solves the two-dimensional wave equation for the initial value problem on a unit circle,
namely:
0%u 9

where the initial condition is u(x,y,0) = (1 — 22 — y?)sin(mz) sin(7y). The time step is 0.01s,
and the total time is 2s. The coarse mesh consists of 2,048 elements, while the high-resolution mesh
contains 8,192 elements.

Moving cylinder and supersonic flow over the wedge. Both cases are benchmark cases from the
Kratos official website [41]. The mesh element count for the moving cylinder case is 9,852, and the
element count for the supersonic flow case is 27,115. Please refer to the official site for more details.

C.4 Monitor function setups

Table [presents the values of the monitoring function « for different cases. Notably, in the airfoil
case study, the monitoring function employs the gradient norm (rather than the Hessian norm) of
mesh nodes to better capture the shock location. To address the long-tail distributions observed in
both the cylinder flow and airfoil cases (since most mesh nodes have small Hessian norm values), a
logarithmic transformation was applied to the monitoring function at mesh nodes.

17

Table 4: « for different cases

Case «

Train data 5

Poisson, Helmholtz, Burgers, Wave 5
Cylinder flow, Airfoil case 10

D More model training details

We partitioned the dataset into training, validation, and test sets with an 8:1:1 ratio, employing
the validation set for early stopping. The model architecture consists of node and edge encoders
implemented as two linear layers [2, 512], followed by deformation blocks containing an 8-layer
Graph Transformer with 512 hidden dimensions, residual connections, and 4 attention heads, and
finally a node decoder comprising a LayerNorm-equipped MLP [512, 256, 2]. All components utilize
ReLU activation functions. The model was trained on a machine with an I17-9700KF CPU, NVIDIA
RTX TITAN GPU, and 64GB of memory, with the complete model only requiring approximately 3.1
hours of training time.

E Results

E.1 Evaluation metrics

Error reduction (ER). Error reduction quantifies the relative enhancement in PDE solution accuracy,
computed as the improvement over the initial coarse mesh solution, where the high-resolution result
is treated as the ground truth. For the steady case, error reduction is defined as:

ER — Hucoarse — Upef ||2 - ||uadapled — Upef ||2

x 100%, (18)

Hucoarse — Upef ||2

where Ugoarse 18 the initial coarse mesh solution, uy. is the reference solution on the high-resolution
mesh, and Uygapied 18 the solution on the adapted mesh. A negative ER value indicates that the mesh
adaptation process failed to improve the solution accuracy compared to the initial coarse mesh. For
the unsteady case, error reduction is used to evaluate cumulative error reduction, defined as:

ER \/ZlT ”ucoarse,i - uref,i”% - \/E? ||uadapted,i - uref,i”i
\/ZZT ||ucoarse,i - uref,i”%

where Ucoarse,i» Uadapted,i» and Uger ; represent the numerical solutions at timestep ¢ from the initial
coarse mesh, adapted mesh, and high-resolution mesh respectively.

x 100%, (19)

Cumulative error. Cumulative error refers to the accumulation of errors over time, which is defined
as:

T
Cumulative error = Z la; — w13, (20)
i

where u; and u;; are the numerical solutions at timestep ¢ from the current mesh and the high-
resolution mesh, and 7' is the total timestep.

MAE of C}, and Cp. The MAE (Mean Absolute Error) of the pressure coefficient C,, and drag
coefficient C'p measures the errors between the solutions obtained at different positions or time steps
and the results from the high-resolution mesh, defined as:

£ 3
Cpmae = Mean;|Cy, ; — CF; |, Cp mag = Mean;|Cp ; — O, (21)

where C), ; and C'p ; represent the pressure coefficient and drag coefficient computed on the coarse
(adapted) mesh at the i-th location (or time step), and C;efi and C'S', denote the corresponding values
computed on the high-resolution mesh at the same location/time step.

18

E.2 Mesh tangling evaluation on non-convex meshes

To further test whether our model avoids mesh tangling during the adaptation process on non-convex
meshes, we adopted the same testing method as UM2N [39]. Specifically, we generated 100 meshes,
each containing 8 nodes, with four located at the corners of a unit square and the remaining four
randomly sampled within the unit square. The flow field was constructed using a mixture of Gaussian
distributions. The results are shown in Table [5] demonstrating that both our model and UM2N
consistently produced valid meshes. In contrast, the MA method struggles with non-convex cases
and only generates valid meshes in limited scenarios. Fig. [I3]shows some meshes after adaptation by
our UGM2N model; our model generalizes well to unseen non-convex meshes without producing any
mesh tangling.

Table 5: Results of the mesh tangling test on non-convex meshes

Metric MA UM2N UGM2N
Tangling ratio per mesh (mean+std) 6.63%+10.91% 0% 0%
Valid mesh 41 100 100

P RN DA P
Ralal [l
Nalale ol ol |

Figure 13: Mesh adaptation results of non-convex meshes (10 out of 100 cases).
in(47x) sin(4ry) 1/ exp((x — 0.5)2 + (y — 0.5, n(2rx + 2my) cos(ma) exp(—((z — 0.5 5)%)) exp(~((x — 0.5)% + (y — 0.5)%))

’ o

0.5) cos =20 (y — Du

Jﬁx

Uexact 1+ 872 cos(2m) cos 2"y)

Poisson

Time step At

At =%

Uje = sm

Wje = exp +(y Oo ><1(]0 0

Burgers

Figure 14: Mesh adaptation on Poisson’s equation and Burgers’ equation.

19

E.3 Mesh adaptation results on Poisson’s equation and Burgers’ equation

As shown in Fig.[T4] our method can effectively generate adaptive meshes in flow fields with different
distributions, whether for steady or unsteady cases.

E.4 Impact of boundary node treatment on model performance

Ensuring geometric consistency of mesh boundaries remains a key challenge in learned mesh
movement. The core difficulty arises from inevitable prediction errors in ML models: even minor
deviations in predicted boundary node positions can severely distort boundary layers—the thin
near-wall regions where viscous, thermal, or electromagnetic gradients are physically dominant and
numerically critical.

To further evaluate different boundary handling strategies, we conducted experiments enabling
simple clip-to-boundary projection (i.e., projecting adapted boundary nodes back onto the domain
boundary if they drift outside), with results summarized in Table [f] The results show that clip
projection yields modest gains in internally dominated flows—where gradients or Hessian values are
predominantly large in the interior—but delivers substantial improvements when large Hessian values
are concentrated near the boundaries while interior values remain small (e.g., Poisson4, Poisson6,
Poisson7).

These findings confirm that, while our fixed-boundary strategy ensures stability and prevents boundary
layer collapse, simple post-hoc projection can safely enhance performance in scenarios where flow
features vary sharply near boundaries. This highlights considerable potential for future improvements
through learned boundary constraints or hybrid adaptation-projection schemes, especially in wall-
bounded and multi-physics applications.

Table 6: Error reduction with and without boundary clip projection. Cases follow Table|l|in the main
paper.

Burgers0 Burgersl Helmholtzl Helmholtz2 Helmholtz3 Helmholtz4 Helmholtz5

ER w.o. Clip (%) 32.22 30.19 14.11 13.15 15.03 14.09 16.98
ER with Clip (%) 35.27 30.18 16.68 16.17 15.94 15.57 17.34
Gain (%) 13.05 10.01 12.57 13.02 10.91 11.48 10.36

Poissonl Poisson2 Poisson3 Poissond Poisson5 Poisson6 Poisson7

ER w.o. Clip (%) 14.56 9.00 12.46 1.70 9.07 4.90 2.56
ER with Clip (%) 17.49 14.82 13.08 15.98 11.18 17.85 15.69
Gain (%) 12.93 15.82 10.62 11428 f2.11 11295 113.13

E.5 The mesh equidistribution condition on the adapted mesh

Table [7] presents the value of Ly, (M’) on the mesh. Quantitative analysis reveals our method
produces minimal error values, indicating its adapted mesh most closely approximates the ideal
equidistribution condition.

Fig. shows the absolute error between L and Ly on each mesh element after adaptation, while

Table 7: L., (M) on the adapted meshes for the Helmholtz equation with different solutions
Solution of the Helmholtz equation

Method cos(2my) cos(2mz) cos(2my) cos(2wz) cos(2my) cos(dwz) cos(4my) cos(2mz)
MA [38] 3.21e-7 3.89¢-7 1.68e-7 1.30e-7 1.50e-7
M2N [9] 4.41e-7 5.90e-7 2.62e-7 4.67e-7 4.82e-7
UM2N [40] 5.41e-7 5.50e-7 2.89¢-7 3.32e-7 3.73e-7
UGM2N (ours) 2.12e-7 2.68e-7 1.52e-7 1.10e-7 1.19e-7

20

MA

M2N

UM2N

UGM2N

Figure 15: |Lx — L | on the adapted meshes.

E.6 Detailed efficiency analysis and scalability

A key consideration is the scalability of our model to large meshes. Theoretically, our GNN-based
model imposes no restrictions on mesh scale, as it can process graphs of arbitrary size. However,
practical GPU memory constraints limit single-GPU performance. On an RTX TITAN GPU (24GB),
UGM2N can process up to 40,000 mesh elements, with inference requiring 345ms and interpolation
61ms, achieving a significant speedup over the MA method (25,510m:s).

To further evaluate scalability, we measured inference, interpolation, and I/O times (data transfer
between CPU and GPU) across varying mesh sizes (Table[8).It can be observed that I/0 operations
account for the majority of the time overhead. This is because, in each epoch, the mesh must be
transferred from the GPU back to the CPU for Delaunay triangulation-based interpolation. If a GPU-
accelerated Delaunay triangulation algorithm were available, both inference and interpolation could
be performed entirely on the GPU—this represents one of the key directions for future optimization.

Furthermore, UGM2N’s absence of data dependencies between node patches enables efficient
parallelization across N GPUs, with processing time scaling as O(1/N) (excluding communication
overheads). This supports real-time mesh adaptation for large-scale simulations.

Table 8: Timing breakdown (ms) for UGM2N across mesh sizes. For each element count, we repeated
the experiment ten times and report the mean and standard deviation.

Elements Inference Interpolation /0

1,478 14.3+0.12 0.75+0.02 48.7+0.84
2,396 17.940.12 1.304+0.30 75.91+0.85
4,126 25.54+0.45 2.4940.02 136+0.39
9,248 43.940.67 7.17+0.07 302+0.83

36,098 3544+1.88 60.0£0.60 1,010£1.55

E.7 The mesh adaptation results on the irregular and anisotropic mesh
In App. [B.2] we derive the validity of the proposed loss function by assuming mesh regularity

Var(Lg) ~ Var(L'). This assumption holds for meshes generated by mature mesh generation
software, as they often ensure a certain level of mesh quality (e.g., for a 2D test case with 60k mesh

21

elements generated by mature mesh generation software, we observed that 92.96% of nodes had
a degree of 6, while 2.96% had a degree of 5—meaning around 95% of nodes fell into these two
categories). Furthermore, we tested the model’s applicability to irregular and anisotropic meshes—i.e.,
scenarios where the assumption does not hold.

Irregular mesh. We uniformly sampled mesh points within a unit rectangular domain and generated
meshes using Delaunay triangulation, followed by mesh smoothing to optimize quality. As shown in
Fig.[16} the resulting meshes feature numerous nodes with varying degrees, thus failing to satisfy the
regularity assumption. We generated a total of 10 such samples, with each sample’s flow field solution
defined as cos(27(z — p,)), where y, is a random value uniformly drawn from [0, 1]. The error
reduction results for our model are presented in Table[J] These results demonstrate that, despite being
trained on regular meshes, our model generalizes effectively to highly irregular meshes, achieving
substantial error reduction in 8 out of 10 cases.

Table 9: Error reduction of UGM2N on irregular meshes
Casel Case2 Case3 Cased4 Case5 Case6 Case7 Case8 Case9 Casel0
ER (%) -2.07 16.07 10.69 11.11 18.10 14.24 -2.10 8.46 9.84 7.16

Case 2 Case 3 Case 4 Case 5
5 s 0

Origin

Adapted

Case 6 Case 8 Case 9 Case 10

Origin

Adapted

Figure 16: Mesh adaptation results on irregular meshes (successful cases). It can be observed that
mesh nodes move toward regions of high Hessian values in the flow field.

Anisotropic mesh. To evaluate our model’s performance on anisotropic meshes, we solve the Poisson

—(2-0.5)2
equation with the exact solution u(z,y) = (1 — e~oor)((z—0.5)% —1) for [z,y] € [0,1] x [0,1].

We first generate preliminary stretched mesh elements via anisotropic adaptation to produce the initial
anisotropic mesh, as shown in Fig. This mesh is then input to the mesh adaptation models, which
further optimize the node distribution to align with the solution’s characteristics. In this solution, the
Hessian values peak at approximately « = 0.3, 0.5, and 0.7. As illustrated in Fig.[T7} compared to
the initial anisotropic mesh, both the UM2N and UGM2N models more accurately capture these three
locations, while the MA method yields an invalid mesh. The absolute error reductions achieved after

22

solving with the optimized anisotropic meshes are presented in Table[I0} These results demonstrate
that our model achieves the optimal error reduction, confirming its applicability to anisotropic meshes.

Origin UM2N

=
22
== =
AN

——

==

=

=
=S %& 5
SRR

——

==

——

——

——

)
h
)
%
[/

e
e
S

A g A S

/)

VAN

=

%
2
77

—

i
aRa !
R

S

=
AVAS Y

Figure 17: Mesh adaptation results on Anisotropic meshes. The UGM2N model successfully captures
the peak locations of the Hessian values.

Table 10: Absolute error reduction on anisotropic mesh
MA M2N UM2N UGM2N
Absolute error reduction Fail Fail 0.02 0.09

E.8 Large-scale robustness validation on random geometries

To rigorously evaluate generalization under extreme geometric and flow variability, we conducted a
large-scale experiment on 1,000 randomly generated mesh samples. Each sample features a random
polygon with 3—6 edges and a synthetic flow field drawn from a Gaussian mixture model. We solved
the Helmholtz equation using these flow fields as exact solutions and compared mesh adaptation
performance across methods.

Results are presented in Table [TT] and Fig. [I8] Both MA and UM2N exhibit high variance and
frequent negative error reduction, reflecting poor generalization across diverse geometries and flow
structures. In contrast, UGM2N achieves a Positive ER Ratio of 0.807 (807 successful cases out of
1,000) with a stable mean ER of 13.99% =+ 21.05%, demonstrating superior robustness. M2N was
excluded from comparison due to its inability to generalize to arbitrary geometries and flow fields
without case-specific training.

Table 11: Robustness comparison on 1,000 random polygonal domains with Gaussian mixture flow
fields (Helmholtz equation). Positive ER Ratio = fraction of cases with ER > 0.

Method ER (mean% = std%) Positive ER Ratio
MA -227.76 + 468.82 0.110
UM2N -50.72 + 68.36 0.245
UGM2N (Ours) 13.99 + 21.05 0.807

E.9 More results of qualitative experiments

For the supersonic flow and moving cylinder cases, MA method exhibited divergence during the
solution of the monitor function equation in both cases, ultimately failing to produce valid adapted
meshes. As shown in Fig. [T9] the M2N method displayed inconsistent behavior, particularly in
the moving cylinder case, where it generated well-adapted meshes at certain time steps but yielded
highly distorted elements at others. For the supersonic flow, M2N successfully captured the shock
position; however, the resulting mesh exhibited lower nodal density at the shock compared to UGM2N.
Similarly, UM2N identified the shock location in the supersonic case but introduced undesirable
element distortions in irrelevant regions away from the shock. In the moving cylinder scenario, while
UM2N effectively fitted the flow field distribution, its excessive adjustments led to prominent mesh
distortions.

23

- g
&
&t
L <
~d

Figure 18: Mesh adaptation results of UGM2N on different flow fields across different meshes
(30 cases out of 1000). Whether it is changes in the mesh or changes in the flow field, UGM2N
demonstrates excellent robustness.

F Limitations and broader impacts

Limitations. 1) The model currently fixes boundary nodes during adaptation to ensure geometric
consistency and prevent boundary layer distortions; while post-hoc clip projection to the boundary
yields modest improvements in some cases, future work could integrate learned boundary constraints
for more flexible handling. 2) The approximation in Eq. [I3]assumes mesh regularity (i.e., similar
node degrees), but empirical tests on irregular meshes (App. [E.7) demonstrate robust performance
in 80% of cases despite violations. Further validation on highly non-uniform or anisotropic meshes
with extreme degree variations remains warranted. 3) The model adopts a relatively simple and
lightweight architecture. Future work could explore more complex model designs to achieve better
mesh adaptation performance. 4) By adopting a node-patch-based processing strategy, our method
achieves scale invariance and translation invariance—that is, adaptation results remain unchanged
under uniform scaling or translation of the mesh. However, we observe that all Al-based mesh
adaptation methods currently lack rotation invariance: rotating the coordinate system of the mesh
leads to inconsistent results. This remains an important open challenge for future work.

Broader impacts. The UGM2N method proposed in this paper significantly improves the efficiency
of mesh movement techniques in mesh adaptation through unsupervised learning and localized
mesh adaptation technology. It reduces the high computational costs of traditional mesh adaptation
methods, thereby accelerating the simulation of complex physical phenomena such as fluid dynamics
and heat transfer under limited computational resources. Its generalizability allows it to be applied
to various partial differential equations and geometric shapes, enhancing the practical engineering
applications of current Al-based mesh adaptation methods.

24

Time step M2N UM2N

M2N

Time step 0 5 10

UM2N

Figure 19: Mesh adaptation results of the M2N and UM2N models for the supersonic flow and
moving cylinder cases. Red boxes mark the locations of mesh distortions.

25

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately summarize the paper’s key con-
tributions: an unsupervised and generalizable mesh movement network (UGM2N), the
M-Uniform loss function, and strong generalization across PDEs and geometries, all sup-
ported by experimental results in Section 4] and theoretical analysis in Section [3.3] and

App.[B2}
Guidelines:

¢ The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of the current method in App.[H
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

26

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide the necessary assumptions and the correct and complete proofs in
Section [3.3]and App.[B.2]to demonstrate the effectiveness of the proposed M-Uniform Loss
function in mesh adaptation tasks.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The training data, test data, model architecture, and hyperparameters are
provided in Section 4.1} as well as in App.[C|and App.[D]

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in

27

some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: Due to time constraints, the code is still being organized, and we will release a
runnable and reproducible version in the future.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experimental setups are fully specified, including datasets (App. [C)), training
procedures (Sectiond.Tand App. D)), and baselines (Section 4.T)).

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Error bars are not reported because the simulation experiments are deterministic
(non-random).

Guidelines:

* The answer NA means that the paper does not include experiments.

28

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We describe the hardware environment for training the model in App. D]and
specify the required training time: "The model was trained on a machine with an 17-9700KF
CPU, NVIDIA RTX TITAN GPU, and 64GB of memory, with the complete model only
requiring approximately 3.1 hours of training time."

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The work adheres to NeurIPS ethics guidelines, with no human subjects or
sensitive data involved.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

29

https://neurips.cc/public/EthicsGuidelines

11.

12.

Answer: [NA]

Justification: This paper does not involve social impact; it primarily addresses the issue of
mesh adaptation in computational fluid dynamics.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Not applicable; the method poses no direct societal risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All third-party assets used are properly cited with references to their original
papers.

Guidelines:

* The answer NA means that the paper does not use existing assets.

30

13.

14.

15.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not introduce new assets, but we will release a runnable and
reproducible code in the future.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

31

paperswithcode.com/datasets

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We only employed the LLM for language translation and polishing.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

32

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Method
	Problem statement and preliminaries
	Network overview
	M-Uniform loss

	Experiment
	Experiment setups
	Performances across different flow field solutions
	Performance across varying mesh geometries
	Ablation study

	Conclusion
	Monge-Ampère-based mesh adaptation
	Method
	The proposed mesh movement method
	Analysis of M-Uniform loss

	Dataset
	Train data setups
	Impact of training data volume
	Test data setups
	Monitor function setups

	More model training details
	Results
	Evaluation metrics
	Mesh tangling evaluation on non-convex meshes
	Mesh adaptation results on Poisson's equation and Burgers' equation
	Impact of boundary node treatment on model performance
	The mesh equidistribution condition on the adapted mesh
	Detailed efficiency analysis and scalability
	The mesh adaptation results on the irregular and anisotropic mesh
	Large-scale robustness validation on random geometries
	More results of qualitative experiments

	Limitations and broader impacts

